src/share/vm/opto/type.hpp

Sat, 19 Oct 2013 12:16:43 +0200

author
roland
date
Sat, 19 Oct 2013 12:16:43 +0200
changeset 5981
3213ba4d3dff
parent 5791
c9ccd7b85f20
child 5991
b2ee5dc63353
permissions
-rw-r--r--

8024069: replace_in_map() should operate on parent maps
Summary: type information gets lost because replace_in_map() doesn't update parent maps
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowPtr;
    52 class     TypeNarrowOop;
    53 class     TypeNarrowKlass;
    54 class   TypeAry;
    55 class   TypeTuple;
    56 class   TypeVect;
    57 class     TypeVectS;
    58 class     TypeVectD;
    59 class     TypeVectX;
    60 class     TypeVectY;
    61 class   TypePtr;
    62 class     TypeRawPtr;
    63 class     TypeOopPtr;
    64 class       TypeInstPtr;
    65 class       TypeAryPtr;
    66 class       TypeKlassPtr;
    67 class     TypeMetadataPtr;
    69 //------------------------------Type-------------------------------------------
    70 // Basic Type object, represents a set of primitive Values.
    71 // Types are hash-cons'd into a private class dictionary, so only one of each
    72 // different kind of Type exists.  Types are never modified after creation, so
    73 // all their interesting fields are constant.
    74 class Type {
    75   friend class VMStructs;
    77 public:
    78   enum TYPES {
    79     Bad=0,                      // Type check
    80     Control,                    // Control of code (not in lattice)
    81     Top,                        // Top of the lattice
    82     Int,                        // Integer range (lo-hi)
    83     Long,                       // Long integer range (lo-hi)
    84     Half,                       // Placeholder half of doubleword
    85     NarrowOop,                  // Compressed oop pointer
    86     NarrowKlass,                // Compressed klass pointer
    88     Tuple,                      // Method signature or object layout
    89     Array,                      // Array types
    90     VectorS,                    //  32bit Vector types
    91     VectorD,                    //  64bit Vector types
    92     VectorX,                    // 128bit Vector types
    93     VectorY,                    // 256bit Vector types
    95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    96     RawPtr,                     // Raw (non-oop) pointers
    97     OopPtr,                     // Any and all Java heap entities
    98     InstPtr,                    // Instance pointers (non-array objects)
    99     AryPtr,                     // Array pointers
   100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
   102     MetadataPtr,                // Generic metadata
   103     KlassPtr,                   // Klass pointers
   105     Function,                   // Function signature
   106     Abio,                       // Abstract I/O
   107     Return_Address,             // Subroutine return address
   108     Memory,                     // Abstract store
   109     FloatTop,                   // No float value
   110     FloatCon,                   // Floating point constant
   111     FloatBot,                   // Any float value
   112     DoubleTop,                  // No double value
   113     DoubleCon,                  // Double precision constant
   114     DoubleBot,                  // Any double value
   115     Bottom,                     // Bottom of lattice
   116     lastype                     // Bogus ending type (not in lattice)
   117   };
   119   // Signal values for offsets from a base pointer
   120   enum OFFSET_SIGNALS {
   121     OffsetTop = -2000000000,    // undefined offset
   122     OffsetBot = -2000000001     // any possible offset
   123   };
   125   // Min and max WIDEN values.
   126   enum WIDEN {
   127     WidenMin = 0,
   128     WidenMax = 3
   129   };
   131 private:
   132   typedef struct {
   133     const TYPES                dual_type;
   134     const BasicType            basic_type;
   135     const char*                msg;
   136     const bool                 isa_oop;
   137     const int                  ideal_reg;
   138     const relocInfo::relocType reloc;
   139   } TypeInfo;
   141   // Dictionary of types shared among compilations.
   142   static Dict* _shared_type_dict;
   143   static TypeInfo _type_info[];
   145   static int uhash( const Type *const t );
   146   // Structural equality check.  Assumes that cmp() has already compared
   147   // the _base types and thus knows it can cast 't' appropriately.
   148   virtual bool eq( const Type *t ) const;
   150   // Top-level hash-table of types
   151   static Dict *type_dict() {
   152     return Compile::current()->type_dict();
   153   }
   155   // DUAL operation: reflect around lattice centerline.  Used instead of
   156   // join to ensure my lattice is symmetric up and down.  Dual is computed
   157   // lazily, on demand, and cached in _dual.
   158   const Type *_dual;            // Cached dual value
   159   // Table for efficient dualing of base types
   160   static const TYPES dual_type[lastype];
   162 protected:
   163   // Each class of type is also identified by its base.
   164   const TYPES _base;            // Enum of Types type
   166   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   167   // ~Type();                   // Use fast deallocation
   168   const Type *hashcons();       // Hash-cons the type
   170 public:
   172   inline void* operator new( size_t x ) throw() {
   173     Compile* compile = Compile::current();
   174     compile->set_type_last_size(x);
   175     void *temp = compile->type_arena()->Amalloc_D(x);
   176     compile->set_type_hwm(temp);
   177     return temp;
   178   }
   179   inline void operator delete( void* ptr ) {
   180     Compile* compile = Compile::current();
   181     compile->type_arena()->Afree(ptr,compile->type_last_size());
   182   }
   184   // Initialize the type system for a particular compilation.
   185   static void Initialize(Compile* compile);
   187   // Initialize the types shared by all compilations.
   188   static void Initialize_shared(Compile* compile);
   190   TYPES base() const {
   191     assert(_base > Bad && _base < lastype, "sanity");
   192     return _base;
   193   }
   195   // Create a new hash-consd type
   196   static const Type *make(enum TYPES);
   197   // Test for equivalence of types
   198   static int cmp( const Type *const t1, const Type *const t2 );
   199   // Test for higher or equal in lattice
   200   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   202   // MEET operation; lower in lattice.
   203   const Type *meet( const Type *t ) const;
   204   // WIDEN: 'widens' for Ints and other range types
   205   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   206   // NARROW: complement for widen, used by pessimistic phases
   207   virtual const Type *narrow( const Type *old ) const { return this; }
   209   // DUAL operation: reflect around lattice centerline.  Used instead of
   210   // join to ensure my lattice is symmetric up and down.
   211   const Type *dual() const { return _dual; }
   213   // Compute meet dependent on base type
   214   virtual const Type *xmeet( const Type *t ) const;
   215   virtual const Type *xdual() const;    // Compute dual right now.
   217   // JOIN operation; higher in lattice.  Done by finding the dual of the
   218   // meet of the dual of the 2 inputs.
   219   const Type *join( const Type *t ) const {
   220     return dual()->meet(t->dual())->dual(); }
   222   // Modified version of JOIN adapted to the needs Node::Value.
   223   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   224   // Currently, it also works around limitations involving interface types.
   225   virtual const Type *filter( const Type *kills ) const;
   227 #ifdef ASSERT
   228   // One type is interface, the other is oop
   229   virtual bool interface_vs_oop(const Type *t) const;
   230 #endif
   232   // Returns true if this pointer points at memory which contains a
   233   // compressed oop references.
   234   bool is_ptr_to_narrowoop() const;
   235   bool is_ptr_to_narrowklass() const;
   237   bool is_ptr_to_boxing_obj() const;
   240   // Convenience access
   241   float getf() const;
   242   double getd() const;
   244   const TypeInt    *is_int() const;
   245   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   246   const TypeLong   *is_long() const;
   247   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   248   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
   249   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   250   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   251   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
   252   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   253   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   254   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   255   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   256   const TypeVect   *is_vect() const;             // Vector
   257   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   258   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   259   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   260   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   261   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   262   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   263   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   264   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
   265   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
   266   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   267   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   268   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   269   const TypeInstPtr  *is_instptr() const;        // Instance
   270   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   271   const TypeAryPtr   *is_aryptr() const;         // Array oop
   273   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
   274   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
   275   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
   276   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
   278   virtual bool      is_finite() const;           // Has a finite value
   279   virtual bool      is_nan()    const;           // Is not a number (NaN)
   281   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   282   const TypePtr* make_ptr() const;
   284   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   285   // Asserts if the underlying type is not an oopptr or narrowoop.
   286   const TypeOopPtr* make_oopptr() const;
   288   // Returns this compressed pointer or the equivalent compressed version
   289   // of this pointer type.
   290   const TypeNarrowOop* make_narrowoop() const;
   292   // Returns this compressed klass pointer or the equivalent
   293   // compressed version of this pointer type.
   294   const TypeNarrowKlass* make_narrowklass() const;
   296   // Special test for register pressure heuristic
   297   bool is_floatingpoint() const;        // True if Float or Double base type
   299   // Do you have memory, directly or through a tuple?
   300   bool has_memory( ) const;
   302   // TRUE if type is a singleton
   303   virtual bool singleton(void) const;
   305   // TRUE if type is above the lattice centerline, and is therefore vacuous
   306   virtual bool empty(void) const;
   308   // Return a hash for this type.  The hash function is public so ConNode
   309   // (constants) can hash on their constant, which is represented by a Type.
   310   virtual int hash() const;
   312   // Map ideal registers (machine types) to ideal types
   313   static const Type *mreg2type[];
   315   // Printing, statistics
   316 #ifndef PRODUCT
   317   void         dump_on(outputStream *st) const;
   318   void         dump() const {
   319     dump_on(tty);
   320   }
   321   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   322   static  void dump_stats();
   323 #endif
   324   void typerr(const Type *t) const; // Mixing types error
   326   // Create basic type
   327   static const Type* get_const_basic_type(BasicType type) {
   328     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   329     return _const_basic_type[type];
   330   }
   332   // Mapping to the array element's basic type.
   333   BasicType array_element_basic_type() const;
   335   // Create standard type for a ciType:
   336   static const Type* get_const_type(ciType* type);
   338   // Create standard zero value:
   339   static const Type* get_zero_type(BasicType type) {
   340     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   341     return _zero_type[type];
   342   }
   344   // Report if this is a zero value (not top).
   345   bool is_zero_type() const {
   346     BasicType type = basic_type();
   347     if (type == T_VOID || type >= T_CONFLICT)
   348       return false;
   349     else
   350       return (this == _zero_type[type]);
   351   }
   353   // Convenience common pre-built types.
   354   static const Type *ABIO;
   355   static const Type *BOTTOM;
   356   static const Type *CONTROL;
   357   static const Type *DOUBLE;
   358   static const Type *FLOAT;
   359   static const Type *HALF;
   360   static const Type *MEMORY;
   361   static const Type *MULTI;
   362   static const Type *RETURN_ADDRESS;
   363   static const Type *TOP;
   365   // Mapping from compiler type to VM BasicType
   366   BasicType basic_type() const       { return _type_info[_base].basic_type; }
   367   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
   368   const char* msg() const            { return _type_info[_base].msg; }
   369   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
   370   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
   372   // Mapping from CI type system to compiler type:
   373   static const Type* get_typeflow_type(ciType* type);
   375   static const Type* make_from_constant(ciConstant constant,
   376                                         bool require_constant = false,
   377                                         bool is_autobox_cache = false);
   379 private:
   380   // support arrays
   381   static const BasicType _basic_type[];
   382   static const Type*        _zero_type[T_CONFLICT+1];
   383   static const Type* _const_basic_type[T_CONFLICT+1];
   384 };
   386 //------------------------------TypeF------------------------------------------
   387 // Class of Float-Constant Types.
   388 class TypeF : public Type {
   389   TypeF( float f ) : Type(FloatCon), _f(f) {};
   390 public:
   391   virtual bool eq( const Type *t ) const;
   392   virtual int  hash() const;             // Type specific hashing
   393   virtual bool singleton(void) const;    // TRUE if type is a singleton
   394   virtual bool empty(void) const;        // TRUE if type is vacuous
   395 public:
   396   const float _f;               // Float constant
   398   static const TypeF *make(float f);
   400   virtual bool        is_finite() const;  // Has a finite value
   401   virtual bool        is_nan()    const;  // Is not a number (NaN)
   403   virtual const Type *xmeet( const Type *t ) const;
   404   virtual const Type *xdual() const;    // Compute dual right now.
   405   // Convenience common pre-built types.
   406   static const TypeF *ZERO; // positive zero only
   407   static const TypeF *ONE;
   408 #ifndef PRODUCT
   409   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   410 #endif
   411 };
   413 //------------------------------TypeD------------------------------------------
   414 // Class of Double-Constant Types.
   415 class TypeD : public Type {
   416   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   417 public:
   418   virtual bool eq( const Type *t ) const;
   419   virtual int  hash() const;             // Type specific hashing
   420   virtual bool singleton(void) const;    // TRUE if type is a singleton
   421   virtual bool empty(void) const;        // TRUE if type is vacuous
   422 public:
   423   const double _d;              // Double constant
   425   static const TypeD *make(double d);
   427   virtual bool        is_finite() const;  // Has a finite value
   428   virtual bool        is_nan()    const;  // Is not a number (NaN)
   430   virtual const Type *xmeet( const Type *t ) const;
   431   virtual const Type *xdual() const;    // Compute dual right now.
   432   // Convenience common pre-built types.
   433   static const TypeD *ZERO; // positive zero only
   434   static const TypeD *ONE;
   435 #ifndef PRODUCT
   436   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   437 #endif
   438 };
   440 //------------------------------TypeInt----------------------------------------
   441 // Class of integer ranges, the set of integers between a lower bound and an
   442 // upper bound, inclusive.
   443 class TypeInt : public Type {
   444   TypeInt( jint lo, jint hi, int w );
   445 public:
   446   virtual bool eq( const Type *t ) const;
   447   virtual int  hash() const;             // Type specific hashing
   448   virtual bool singleton(void) const;    // TRUE if type is a singleton
   449   virtual bool empty(void) const;        // TRUE if type is vacuous
   450 public:
   451   const jint _lo, _hi;          // Lower bound, upper bound
   452   const short _widen;           // Limit on times we widen this sucker
   454   static const TypeInt *make(jint lo);
   455   // must always specify w
   456   static const TypeInt *make(jint lo, jint hi, int w);
   458   // Check for single integer
   459   int is_con() const { return _lo==_hi; }
   460   bool is_con(int i) const { return is_con() && _lo == i; }
   461   jint get_con() const { assert( is_con(), "" );  return _lo; }
   463   virtual bool        is_finite() const;  // Has a finite value
   465   virtual const Type *xmeet( const Type *t ) const;
   466   virtual const Type *xdual() const;    // Compute dual right now.
   467   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   468   virtual const Type *narrow( const Type *t ) const;
   469   // Do not kill _widen bits.
   470   virtual const Type *filter( const Type *kills ) const;
   471   // Convenience common pre-built types.
   472   static const TypeInt *MINUS_1;
   473   static const TypeInt *ZERO;
   474   static const TypeInt *ONE;
   475   static const TypeInt *BOOL;
   476   static const TypeInt *CC;
   477   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   478   static const TypeInt *CC_GT;  // [1]   == ONE
   479   static const TypeInt *CC_EQ;  // [0]   == ZERO
   480   static const TypeInt *CC_LE;  // [-1,0]
   481   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   482   static const TypeInt *BYTE;
   483   static const TypeInt *UBYTE;
   484   static const TypeInt *CHAR;
   485   static const TypeInt *SHORT;
   486   static const TypeInt *POS;
   487   static const TypeInt *POS1;
   488   static const TypeInt *INT;
   489   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   490 #ifndef PRODUCT
   491   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   492 #endif
   493 };
   496 //------------------------------TypeLong---------------------------------------
   497 // Class of long integer ranges, the set of integers between a lower bound and
   498 // an upper bound, inclusive.
   499 class TypeLong : public Type {
   500   TypeLong( jlong lo, jlong hi, int w );
   501 public:
   502   virtual bool eq( const Type *t ) const;
   503   virtual int  hash() const;             // Type specific hashing
   504   virtual bool singleton(void) const;    // TRUE if type is a singleton
   505   virtual bool empty(void) const;        // TRUE if type is vacuous
   506 public:
   507   const jlong _lo, _hi;         // Lower bound, upper bound
   508   const short _widen;           // Limit on times we widen this sucker
   510   static const TypeLong *make(jlong lo);
   511   // must always specify w
   512   static const TypeLong *make(jlong lo, jlong hi, int w);
   514   // Check for single integer
   515   int is_con() const { return _lo==_hi; }
   516   bool is_con(int i) const { return is_con() && _lo == i; }
   517   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   519   virtual bool        is_finite() const;  // Has a finite value
   521   virtual const Type *xmeet( const Type *t ) const;
   522   virtual const Type *xdual() const;    // Compute dual right now.
   523   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   524   virtual const Type *narrow( const Type *t ) const;
   525   // Do not kill _widen bits.
   526   virtual const Type *filter( const Type *kills ) const;
   527   // Convenience common pre-built types.
   528   static const TypeLong *MINUS_1;
   529   static const TypeLong *ZERO;
   530   static const TypeLong *ONE;
   531   static const TypeLong *POS;
   532   static const TypeLong *LONG;
   533   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   534   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   535 #ifndef PRODUCT
   536   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   537 #endif
   538 };
   540 //------------------------------TypeTuple--------------------------------------
   541 // Class of Tuple Types, essentially type collections for function signatures
   542 // and class layouts.  It happens to also be a fast cache for the HotSpot
   543 // signature types.
   544 class TypeTuple : public Type {
   545   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   546 public:
   547   virtual bool eq( const Type *t ) const;
   548   virtual int  hash() const;             // Type specific hashing
   549   virtual bool singleton(void) const;    // TRUE if type is a singleton
   550   virtual bool empty(void) const;        // TRUE if type is vacuous
   552 public:
   553   const uint          _cnt;              // Count of fields
   554   const Type ** const _fields;           // Array of field types
   556   // Accessors:
   557   uint cnt() const { return _cnt; }
   558   const Type* field_at(uint i) const {
   559     assert(i < _cnt, "oob");
   560     return _fields[i];
   561   }
   562   void set_field_at(uint i, const Type* t) {
   563     assert(i < _cnt, "oob");
   564     _fields[i] = t;
   565   }
   567   static const TypeTuple *make( uint cnt, const Type **fields );
   568   static const TypeTuple *make_range(ciSignature *sig);
   569   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   571   // Subroutine call type with space allocated for argument types
   572   static const Type **fields( uint arg_cnt );
   574   virtual const Type *xmeet( const Type *t ) const;
   575   virtual const Type *xdual() const;    // Compute dual right now.
   576   // Convenience common pre-built types.
   577   static const TypeTuple *IFBOTH;
   578   static const TypeTuple *IFFALSE;
   579   static const TypeTuple *IFTRUE;
   580   static const TypeTuple *IFNEITHER;
   581   static const TypeTuple *LOOPBODY;
   582   static const TypeTuple *MEMBAR;
   583   static const TypeTuple *STORECONDITIONAL;
   584   static const TypeTuple *START_I2C;
   585   static const TypeTuple *INT_PAIR;
   586   static const TypeTuple *LONG_PAIR;
   587   static const TypeTuple *INT_CC_PAIR;
   588 #ifndef PRODUCT
   589   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   590 #endif
   591 };
   593 //------------------------------TypeAry----------------------------------------
   594 // Class of Array Types
   595 class TypeAry : public Type {
   596   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
   597       _elem(elem), _size(size), _stable(stable) {}
   598 public:
   599   virtual bool eq( const Type *t ) const;
   600   virtual int  hash() const;             // Type specific hashing
   601   virtual bool singleton(void) const;    // TRUE if type is a singleton
   602   virtual bool empty(void) const;        // TRUE if type is vacuous
   604 private:
   605   const Type *_elem;            // Element type of array
   606   const TypeInt *_size;         // Elements in array
   607   const bool _stable;           // Are elements @Stable?
   608   friend class TypeAryPtr;
   610 public:
   611   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
   613   virtual const Type *xmeet( const Type *t ) const;
   614   virtual const Type *xdual() const;    // Compute dual right now.
   615   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   616 #ifdef ASSERT
   617   // One type is interface, the other is oop
   618   virtual bool interface_vs_oop(const Type *t) const;
   619 #endif
   620 #ifndef PRODUCT
   621   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   622 #endif
   623 };
   625 //------------------------------TypeVect---------------------------------------
   626 // Class of Vector Types
   627 class TypeVect : public Type {
   628   const Type*   _elem;  // Vector's element type
   629   const uint  _length;  // Elements in vector (power of 2)
   631 protected:
   632   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   633     _elem(elem), _length(length) {}
   635 public:
   636   const Type* element_type() const { return _elem; }
   637   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   638   uint length() const { return _length; }
   639   uint length_in_bytes() const {
   640    return _length * type2aelembytes(element_basic_type());
   641   }
   643   virtual bool eq(const Type *t) const;
   644   virtual int  hash() const;             // Type specific hashing
   645   virtual bool singleton(void) const;    // TRUE if type is a singleton
   646   virtual bool empty(void) const;        // TRUE if type is vacuous
   648   static const TypeVect *make(const BasicType elem_bt, uint length) {
   649     // Use bottom primitive type.
   650     return make(get_const_basic_type(elem_bt), length);
   651   }
   652   // Used directly by Replicate nodes to construct singleton vector.
   653   static const TypeVect *make(const Type* elem, uint length);
   655   virtual const Type *xmeet( const Type *t) const;
   656   virtual const Type *xdual() const;     // Compute dual right now.
   658   static const TypeVect *VECTS;
   659   static const TypeVect *VECTD;
   660   static const TypeVect *VECTX;
   661   static const TypeVect *VECTY;
   663 #ifndef PRODUCT
   664   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   665 #endif
   666 };
   668 class TypeVectS : public TypeVect {
   669   friend class TypeVect;
   670   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   671 };
   673 class TypeVectD : public TypeVect {
   674   friend class TypeVect;
   675   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   676 };
   678 class TypeVectX : public TypeVect {
   679   friend class TypeVect;
   680   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   681 };
   683 class TypeVectY : public TypeVect {
   684   friend class TypeVect;
   685   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   686 };
   688 //------------------------------TypePtr----------------------------------------
   689 // Class of machine Pointer Types: raw data, instances or arrays.
   690 // If the _base enum is AnyPtr, then this refers to all of the above.
   691 // Otherwise the _base will indicate which subset of pointers is affected,
   692 // and the class will be inherited from.
   693 class TypePtr : public Type {
   694   friend class TypeNarrowPtr;
   695 public:
   696   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   697 protected:
   698   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   699   virtual bool eq( const Type *t ) const;
   700   virtual int  hash() const;             // Type specific hashing
   701   static const PTR ptr_meet[lastPTR][lastPTR];
   702   static const PTR ptr_dual[lastPTR];
   703   static const char * const ptr_msg[lastPTR];
   705 public:
   706   const int _offset;            // Offset into oop, with TOP & BOT
   707   const PTR _ptr;               // Pointer equivalence class
   709   const int offset() const { return _offset; }
   710   const PTR ptr()    const { return _ptr; }
   712   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   714   // Return a 'ptr' version of this type
   715   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   717   virtual intptr_t get_con() const;
   719   int xadd_offset( intptr_t offset ) const;
   720   virtual const TypePtr *add_offset( intptr_t offset ) const;
   722   virtual bool singleton(void) const;    // TRUE if type is a singleton
   723   virtual bool empty(void) const;        // TRUE if type is vacuous
   724   virtual const Type *xmeet( const Type *t ) const;
   725   int meet_offset( int offset ) const;
   726   int dual_offset( ) const;
   727   virtual const Type *xdual() const;    // Compute dual right now.
   729   // meet, dual and join over pointer equivalence sets
   730   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   731   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   733   // This is textually confusing unless one recalls that
   734   // join(t) == dual()->meet(t->dual())->dual().
   735   PTR join_ptr( const PTR in_ptr ) const {
   736     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   737   }
   739   // Tests for relation to centerline of type lattice:
   740   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   741   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   742   // Convenience common pre-built types.
   743   static const TypePtr *NULL_PTR;
   744   static const TypePtr *NOTNULL;
   745   static const TypePtr *BOTTOM;
   746 #ifndef PRODUCT
   747   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   748 #endif
   749 };
   751 //------------------------------TypeRawPtr-------------------------------------
   752 // Class of raw pointers, pointers to things other than Oops.  Examples
   753 // include the stack pointer, top of heap, card-marking area, handles, etc.
   754 class TypeRawPtr : public TypePtr {
   755 protected:
   756   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   757 public:
   758   virtual bool eq( const Type *t ) const;
   759   virtual int  hash() const;     // Type specific hashing
   761   const address _bits;          // Constant value, if applicable
   763   static const TypeRawPtr *make( PTR ptr );
   764   static const TypeRawPtr *make( address bits );
   766   // Return a 'ptr' version of this type
   767   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   769   virtual intptr_t get_con() const;
   771   virtual const TypePtr *add_offset( intptr_t offset ) const;
   773   virtual const Type *xmeet( const Type *t ) const;
   774   virtual const Type *xdual() const;    // Compute dual right now.
   775   // Convenience common pre-built types.
   776   static const TypeRawPtr *BOTTOM;
   777   static const TypeRawPtr *NOTNULL;
   778 #ifndef PRODUCT
   779   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   780 #endif
   781 };
   783 //------------------------------TypeOopPtr-------------------------------------
   784 // Some kind of oop (Java pointer), either klass or instance or array.
   785 class TypeOopPtr : public TypePtr {
   786 protected:
   787   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   788 public:
   789   virtual bool eq( const Type *t ) const;
   790   virtual int  hash() const;             // Type specific hashing
   791   virtual bool singleton(void) const;    // TRUE if type is a singleton
   792   enum {
   793    InstanceTop = -1,   // undefined instance
   794    InstanceBot = 0     // any possible instance
   795   };
   796 protected:
   798   // Oop is NULL, unless this is a constant oop.
   799   ciObject*     _const_oop;   // Constant oop
   800   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   801   ciKlass*      _klass;       // Klass object
   802   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   803   bool          _klass_is_exact;
   804   bool          _is_ptr_to_narrowoop;
   805   bool          _is_ptr_to_narrowklass;
   806   bool          _is_ptr_to_boxed_value;
   808   // If not InstanceTop or InstanceBot, indicates that this is
   809   // a particular instance of this type which is distinct.
   810   // This is the the node index of the allocation node creating this instance.
   811   int           _instance_id;
   813   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   815   int dual_instance_id() const;
   816   int meet_instance_id(int uid) const;
   818 public:
   819   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   820   // Respects UseUniqueSubclasses.
   821   // If the klass is final, the resulting type will be exact.
   822   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   823     return make_from_klass_common(klass, true, false);
   824   }
   825   // Same as before, but will produce an exact type, even if
   826   // the klass is not final, as long as it has exactly one implementation.
   827   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   828     return make_from_klass_common(klass, true, true);
   829   }
   830   // Same as before, but does not respects UseUniqueSubclasses.
   831   // Use this only for creating array element types.
   832   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   833     return make_from_klass_common(klass, false, false);
   834   }
   835   // Creates a singleton type given an object.
   836   // If the object cannot be rendered as a constant,
   837   // may return a non-singleton type.
   838   // If require_constant, produce a NULL if a singleton is not possible.
   839   static const TypeOopPtr* make_from_constant(ciObject* o,
   840                                               bool require_constant = false,
   841                                               bool not_null_elements = false);
   843   // Make a generic (unclassed) pointer to an oop.
   844   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   846   ciObject* const_oop()    const { return _const_oop; }
   847   virtual ciKlass* klass() const { return _klass;     }
   848   bool klass_is_exact()    const { return _klass_is_exact; }
   850   // Returns true if this pointer points at memory which contains a
   851   // compressed oop references.
   852   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   853   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
   854   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
   855   bool is_known_instance()       const { return _instance_id > 0; }
   856   int  instance_id()             const { return _instance_id; }
   857   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   859   virtual intptr_t get_con() const;
   861   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   863   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   865   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   867   // corresponding pointer to klass, for a given instance
   868   const TypeKlassPtr* as_klass_type() const;
   870   virtual const TypePtr *add_offset( intptr_t offset ) const;
   872   virtual const Type *xmeet( const Type *t ) const;
   873   virtual const Type *xdual() const;    // Compute dual right now.
   875   // Do not allow interface-vs.-noninterface joins to collapse to top.
   876   virtual const Type *filter( const Type *kills ) const;
   878   // Convenience common pre-built type.
   879   static const TypeOopPtr *BOTTOM;
   880 #ifndef PRODUCT
   881   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   882 #endif
   883 };
   885 //------------------------------TypeInstPtr------------------------------------
   886 // Class of Java object pointers, pointing either to non-array Java instances
   887 // or to a Klass* (including array klasses).
   888 class TypeInstPtr : public TypeOopPtr {
   889   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   890   virtual bool eq( const Type *t ) const;
   891   virtual int  hash() const;             // Type specific hashing
   893   ciSymbol*  _name;        // class name
   895  public:
   896   ciSymbol* name()         const { return _name; }
   898   bool  is_loaded() const { return _klass->is_loaded(); }
   900   // Make a pointer to a constant oop.
   901   static const TypeInstPtr *make(ciObject* o) {
   902     return make(TypePtr::Constant, o->klass(), true, o, 0);
   903   }
   904   // Make a pointer to a constant oop with offset.
   905   static const TypeInstPtr *make(ciObject* o, int offset) {
   906     return make(TypePtr::Constant, o->klass(), true, o, offset);
   907   }
   909   // Make a pointer to some value of type klass.
   910   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   911     return make(ptr, klass, false, NULL, 0);
   912   }
   914   // Make a pointer to some non-polymorphic value of exactly type klass.
   915   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   916     return make(ptr, klass, true, NULL, 0);
   917   }
   919   // Make a pointer to some value of type klass with offset.
   920   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   921     return make(ptr, klass, false, NULL, offset);
   922   }
   924   // Make a pointer to an oop.
   925   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   927   /** Create constant type for a constant boxed value */
   928   const Type* get_const_boxed_value() const;
   930   // If this is a java.lang.Class constant, return the type for it or NULL.
   931   // Pass to Type::get_const_type to turn it to a type, which will usually
   932   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   933   ciType* java_mirror_type() const;
   935   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   937   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   939   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   941   virtual const TypePtr *add_offset( intptr_t offset ) const;
   943   virtual const Type *xmeet( const Type *t ) const;
   944   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   945   virtual const Type *xdual() const;    // Compute dual right now.
   947   // Convenience common pre-built types.
   948   static const TypeInstPtr *NOTNULL;
   949   static const TypeInstPtr *BOTTOM;
   950   static const TypeInstPtr *MIRROR;
   951   static const TypeInstPtr *MARK;
   952   static const TypeInstPtr *KLASS;
   953 #ifndef PRODUCT
   954   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   955 #endif
   956 };
   958 //------------------------------TypeAryPtr-------------------------------------
   959 // Class of Java array pointers
   960 class TypeAryPtr : public TypeOopPtr {
   961   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
   962               int offset, int instance_id, bool is_autobox_cache )
   963   : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id),
   964     _ary(ary),
   965     _is_autobox_cache(is_autobox_cache)
   966  {
   967 #ifdef ASSERT
   968     if (k != NULL) {
   969       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   970       ciKlass* ck = compute_klass(true);
   971       if (k != ck) {
   972         this->dump(); tty->cr();
   973         tty->print(" k: ");
   974         k->print(); tty->cr();
   975         tty->print("ck: ");
   976         if (ck != NULL) ck->print();
   977         else tty->print("<NULL>");
   978         tty->cr();
   979         assert(false, "unexpected TypeAryPtr::_klass");
   980       }
   981     }
   982 #endif
   983   }
   984   virtual bool eq( const Type *t ) const;
   985   virtual int hash() const;     // Type specific hashing
   986   const TypeAry *_ary;          // Array we point into
   987   const bool     _is_autobox_cache;
   989   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   991 public:
   992   // Accessors
   993   ciKlass* klass() const;
   994   const TypeAry* ary() const  { return _ary; }
   995   const Type*    elem() const { return _ary->_elem; }
   996   const TypeInt* size() const { return _ary->_size; }
   997   bool      is_stable() const { return _ary->_stable; }
   999   bool is_autobox_cache() const { return _is_autobox_cache; }
  1001   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
  1002   // Constant pointer to array
  1003   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, bool is_autobox_cache = false);
  1005   // Return a 'ptr' version of this type
  1006   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1008   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1010   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
  1012   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
  1013   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
  1015   virtual bool empty(void) const;        // TRUE if type is vacuous
  1016   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1018   virtual const Type *xmeet( const Type *t ) const;
  1019   virtual const Type *xdual() const;    // Compute dual right now.
  1021   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
  1022   int stable_dimension() const;
  1024   // Convenience common pre-built types.
  1025   static const TypeAryPtr *RANGE;
  1026   static const TypeAryPtr *OOPS;
  1027   static const TypeAryPtr *NARROWOOPS;
  1028   static const TypeAryPtr *BYTES;
  1029   static const TypeAryPtr *SHORTS;
  1030   static const TypeAryPtr *CHARS;
  1031   static const TypeAryPtr *INTS;
  1032   static const TypeAryPtr *LONGS;
  1033   static const TypeAryPtr *FLOATS;
  1034   static const TypeAryPtr *DOUBLES;
  1035   // selects one of the above:
  1036   static const TypeAryPtr *get_array_body_type(BasicType elem) {
  1037     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
  1038     return _array_body_type[elem];
  1040   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
  1041   // sharpen the type of an int which is used as an array size
  1042 #ifdef ASSERT
  1043   // One type is interface, the other is oop
  1044   virtual bool interface_vs_oop(const Type *t) const;
  1045 #endif
  1046 #ifndef PRODUCT
  1047   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1048 #endif
  1049 };
  1051 //------------------------------TypeMetadataPtr-------------------------------------
  1052 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
  1053 class TypeMetadataPtr : public TypePtr {
  1054 protected:
  1055   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
  1056 public:
  1057   virtual bool eq( const Type *t ) const;
  1058   virtual int  hash() const;             // Type specific hashing
  1059   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1061 private:
  1062   ciMetadata*   _metadata;
  1064 public:
  1065   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
  1067   static const TypeMetadataPtr* make(ciMethod* m);
  1068   static const TypeMetadataPtr* make(ciMethodData* m);
  1070   ciMetadata* metadata() const { return _metadata; }
  1072   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1074   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1076   virtual const Type *xmeet( const Type *t ) const;
  1077   virtual const Type *xdual() const;    // Compute dual right now.
  1079   virtual intptr_t get_con() const;
  1081   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1082   virtual const Type *filter( const Type *kills ) const;
  1084   // Convenience common pre-built types.
  1085   static const TypeMetadataPtr *BOTTOM;
  1087 #ifndef PRODUCT
  1088   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1089 #endif
  1090 };
  1092 //------------------------------TypeKlassPtr-----------------------------------
  1093 // Class of Java Klass pointers
  1094 class TypeKlassPtr : public TypePtr {
  1095   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1097  public:
  1098   virtual bool eq( const Type *t ) const;
  1099   virtual int hash() const;             // Type specific hashing
  1100   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1101  private:
  1103   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
  1105   ciKlass* _klass;
  1107   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
  1108   bool          _klass_is_exact;
  1110 public:
  1111   ciSymbol* name()  const { return klass()->name(); }
  1113   ciKlass* klass() const { return  _klass; }
  1114   bool klass_is_exact()    const { return _klass_is_exact; }
  1116   bool  is_loaded() const { return klass()->is_loaded(); }
  1118   // Creates a type given a klass. Correctly handles multi-dimensional arrays
  1119   // Respects UseUniqueSubclasses.
  1120   // If the klass is final, the resulting type will be exact.
  1121   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
  1122     return make_from_klass_common(klass, true, false);
  1124   // Same as before, but will produce an exact type, even if
  1125   // the klass is not final, as long as it has exactly one implementation.
  1126   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
  1127     return make_from_klass_common(klass, true, true);
  1129   // Same as before, but does not respects UseUniqueSubclasses.
  1130   // Use this only for creating array element types.
  1131   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
  1132     return make_from_klass_common(klass, false, false);
  1135   // Make a generic (unclassed) pointer to metadata.
  1136   static const TypeKlassPtr* make(PTR ptr, int offset);
  1138   // ptr to klass 'k'
  1139   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1140   // ptr to klass 'k' with offset
  1141   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1142   // ptr to klass 'k' or sub-klass
  1143   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1145   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1147   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1149   // corresponding pointer to instance, for a given class
  1150   const TypeOopPtr* as_instance_type() const;
  1152   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1153   virtual const Type    *xmeet( const Type *t ) const;
  1154   virtual const Type    *xdual() const;      // Compute dual right now.
  1156   virtual intptr_t get_con() const;
  1158   // Convenience common pre-built types.
  1159   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1160   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1161 #ifndef PRODUCT
  1162   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1163 #endif
  1164 };
  1166 class TypeNarrowPtr : public Type {
  1167 protected:
  1168   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1170   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
  1171                                                   Type(t) {
  1172     assert(ptrtype->offset() == 0 ||
  1173            ptrtype->offset() == OffsetBot ||
  1174            ptrtype->offset() == OffsetTop, "no real offsets");
  1177   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
  1178   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
  1179   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
  1180   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
  1181 public:
  1182   virtual bool eq( const Type *t ) const;
  1183   virtual int  hash() const;             // Type specific hashing
  1184   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1186   virtual const Type *xmeet( const Type *t ) const;
  1187   virtual const Type *xdual() const;    // Compute dual right now.
  1189   virtual intptr_t get_con() const;
  1191   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1192   virtual const Type *filter( const Type *kills ) const;
  1194   virtual bool empty(void) const;        // TRUE if type is vacuous
  1196   // returns the equivalent ptr type for this compressed pointer
  1197   const TypePtr *get_ptrtype() const {
  1198     return _ptrtype;
  1201 #ifndef PRODUCT
  1202   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1203 #endif
  1204 };
  1206 //------------------------------TypeNarrowOop----------------------------------
  1207 // A compressed reference to some kind of Oop.  This type wraps around
  1208 // a preexisting TypeOopPtr and forwards most of it's operations to
  1209 // the underlying type.  It's only real purpose is to track the
  1210 // oopness of the compressed oop value when we expose the conversion
  1211 // between the normal and the compressed form.
  1212 class TypeNarrowOop : public TypeNarrowPtr {
  1213 protected:
  1214   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
  1217   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1218     return t->isa_narrowoop();
  1221   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1222     return t->is_narrowoop();
  1225   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1226     return new TypeNarrowOop(t);
  1229   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1230     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
  1233 public:
  1235   static const TypeNarrowOop *make( const TypePtr* type);
  1237   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1238     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1241   static const TypeNarrowOop *BOTTOM;
  1242   static const TypeNarrowOop *NULL_PTR;
  1244 #ifndef PRODUCT
  1245   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1246 #endif
  1247 };
  1249 //------------------------------TypeNarrowKlass----------------------------------
  1250 // A compressed reference to klass pointer.  This type wraps around a
  1251 // preexisting TypeKlassPtr and forwards most of it's operations to
  1252 // the underlying type.
  1253 class TypeNarrowKlass : public TypeNarrowPtr {
  1254 protected:
  1255   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
  1258   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1259     return t->isa_narrowklass();
  1262   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1263     return t->is_narrowklass();
  1266   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1267     return new TypeNarrowKlass(t);
  1270   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1271     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
  1274 public:
  1275   static const TypeNarrowKlass *make( const TypePtr* type);
  1277   // static const TypeNarrowKlass *BOTTOM;
  1278   static const TypeNarrowKlass *NULL_PTR;
  1280 #ifndef PRODUCT
  1281   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1282 #endif
  1283 };
  1285 //------------------------------TypeFunc---------------------------------------
  1286 // Class of Array Types
  1287 class TypeFunc : public Type {
  1288   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1289   virtual bool eq( const Type *t ) const;
  1290   virtual int  hash() const;             // Type specific hashing
  1291   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1292   virtual bool empty(void) const;        // TRUE if type is vacuous
  1293 public:
  1294   // Constants are shared among ADLC and VM
  1295   enum { Control    = AdlcVMDeps::Control,
  1296          I_O        = AdlcVMDeps::I_O,
  1297          Memory     = AdlcVMDeps::Memory,
  1298          FramePtr   = AdlcVMDeps::FramePtr,
  1299          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1300          Parms      = AdlcVMDeps::Parms
  1301   };
  1303   const TypeTuple* const _domain;     // Domain of inputs
  1304   const TypeTuple* const _range;      // Range of results
  1306   // Accessors:
  1307   const TypeTuple* domain() const { return _domain; }
  1308   const TypeTuple* range()  const { return _range; }
  1310   static const TypeFunc *make(ciMethod* method);
  1311   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1312   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1314   virtual const Type *xmeet( const Type *t ) const;
  1315   virtual const Type *xdual() const;    // Compute dual right now.
  1317   BasicType return_type() const;
  1319 #ifndef PRODUCT
  1320   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1321 #endif
  1322   // Convenience common pre-built types.
  1323 };
  1325 //------------------------------accessors--------------------------------------
  1326 inline bool Type::is_ptr_to_narrowoop() const {
  1327 #ifdef _LP64
  1328   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1329 #else
  1330   return false;
  1331 #endif
  1334 inline bool Type::is_ptr_to_narrowklass() const {
  1335 #ifdef _LP64
  1336   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
  1337 #else
  1338   return false;
  1339 #endif
  1342 inline float Type::getf() const {
  1343   assert( _base == FloatCon, "Not a FloatCon" );
  1344   return ((TypeF*)this)->_f;
  1347 inline double Type::getd() const {
  1348   assert( _base == DoubleCon, "Not a DoubleCon" );
  1349   return ((TypeD*)this)->_d;
  1352 inline const TypeInt *Type::is_int() const {
  1353   assert( _base == Int, "Not an Int" );
  1354   return (TypeInt*)this;
  1357 inline const TypeInt *Type::isa_int() const {
  1358   return ( _base == Int ? (TypeInt*)this : NULL);
  1361 inline const TypeLong *Type::is_long() const {
  1362   assert( _base == Long, "Not a Long" );
  1363   return (TypeLong*)this;
  1366 inline const TypeLong *Type::isa_long() const {
  1367   return ( _base == Long ? (TypeLong*)this : NULL);
  1370 inline const TypeF *Type::isa_float() const {
  1371   return ((_base == FloatTop ||
  1372            _base == FloatCon ||
  1373            _base == FloatBot) ? (TypeF*)this : NULL);
  1376 inline const TypeF *Type::is_float_constant() const {
  1377   assert( _base == FloatCon, "Not a Float" );
  1378   return (TypeF*)this;
  1381 inline const TypeF *Type::isa_float_constant() const {
  1382   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1385 inline const TypeD *Type::isa_double() const {
  1386   return ((_base == DoubleTop ||
  1387            _base == DoubleCon ||
  1388            _base == DoubleBot) ? (TypeD*)this : NULL);
  1391 inline const TypeD *Type::is_double_constant() const {
  1392   assert( _base == DoubleCon, "Not a Double" );
  1393   return (TypeD*)this;
  1396 inline const TypeD *Type::isa_double_constant() const {
  1397   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1400 inline const TypeTuple *Type::is_tuple() const {
  1401   assert( _base == Tuple, "Not a Tuple" );
  1402   return (TypeTuple*)this;
  1405 inline const TypeAry *Type::is_ary() const {
  1406   assert( _base == Array , "Not an Array" );
  1407   return (TypeAry*)this;
  1410 inline const TypeVect *Type::is_vect() const {
  1411   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1412   return (TypeVect*)this;
  1415 inline const TypeVect *Type::isa_vect() const {
  1416   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1419 inline const TypePtr *Type::is_ptr() const {
  1420   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1421   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1422   return (TypePtr*)this;
  1425 inline const TypePtr *Type::isa_ptr() const {
  1426   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1427   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1430 inline const TypeOopPtr *Type::is_oopptr() const {
  1431   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1432   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
  1433   return (TypeOopPtr*)this;
  1436 inline const TypeOopPtr *Type::isa_oopptr() const {
  1437   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1438   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
  1441 inline const TypeRawPtr *Type::isa_rawptr() const {
  1442   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1445 inline const TypeRawPtr *Type::is_rawptr() const {
  1446   assert( _base == RawPtr, "Not a raw pointer" );
  1447   return (TypeRawPtr*)this;
  1450 inline const TypeInstPtr *Type::isa_instptr() const {
  1451   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1454 inline const TypeInstPtr *Type::is_instptr() const {
  1455   assert( _base == InstPtr, "Not an object pointer" );
  1456   return (TypeInstPtr*)this;
  1459 inline const TypeAryPtr *Type::isa_aryptr() const {
  1460   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1463 inline const TypeAryPtr *Type::is_aryptr() const {
  1464   assert( _base == AryPtr, "Not an array pointer" );
  1465   return (TypeAryPtr*)this;
  1468 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1469   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1470   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1471   return (TypeNarrowOop*)this;
  1474 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1475   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1476   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1479 inline const TypeNarrowKlass *Type::is_narrowklass() const {
  1480   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
  1481   return (TypeNarrowKlass*)this;
  1484 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
  1485   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
  1488 inline const TypeMetadataPtr *Type::is_metadataptr() const {
  1489   // MetadataPtr is the first and CPCachePtr the last
  1490   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
  1491   return (TypeMetadataPtr*)this;
  1494 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
  1495   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
  1498 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1499   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1502 inline const TypeKlassPtr *Type::is_klassptr() const {
  1503   assert( _base == KlassPtr, "Not a klass pointer" );
  1504   return (TypeKlassPtr*)this;
  1507 inline const TypePtr* Type::make_ptr() const {
  1508   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1509     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
  1510      (isa_ptr() ? is_ptr() : NULL));
  1513 inline const TypeOopPtr* Type::make_oopptr() const {
  1514   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1517 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1518   return (_base == NarrowOop) ? is_narrowoop() :
  1519                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1522 inline const TypeNarrowKlass* Type::make_narrowklass() const {
  1523   return (_base == NarrowKlass) ? is_narrowklass() :
  1524                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
  1527 inline bool Type::is_floatingpoint() const {
  1528   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1529       (_base == DoubleCon) || (_base == DoubleBot) )
  1530     return true;
  1531   return false;
  1534 inline bool Type::is_ptr_to_boxing_obj() const {
  1535   const TypeInstPtr* tp = isa_instptr();
  1536   return (tp != NULL) && (tp->offset() == 0) &&
  1537          tp->klass()->is_instance_klass()  &&
  1538          tp->klass()->as_instance_klass()->is_box_klass();
  1542 // ===============================================================
  1543 // Things that need to be 64-bits in the 64-bit build but
  1544 // 32-bits in the 32-bit build.  Done this way to get full
  1545 // optimization AND strong typing.
  1546 #ifdef _LP64
  1548 // For type queries and asserts
  1549 #define is_intptr_t  is_long
  1550 #define isa_intptr_t isa_long
  1551 #define find_intptr_t_type find_long_type
  1552 #define find_intptr_t_con  find_long_con
  1553 #define TypeX        TypeLong
  1554 #define Type_X       Type::Long
  1555 #define TypeX_X      TypeLong::LONG
  1556 #define TypeX_ZERO   TypeLong::ZERO
  1557 // For 'ideal_reg' machine registers
  1558 #define Op_RegX      Op_RegL
  1559 // For phase->intcon variants
  1560 #define MakeConX     longcon
  1561 #define ConXNode     ConLNode
  1562 // For array index arithmetic
  1563 #define MulXNode     MulLNode
  1564 #define AndXNode     AndLNode
  1565 #define OrXNode      OrLNode
  1566 #define CmpXNode     CmpLNode
  1567 #define SubXNode     SubLNode
  1568 #define LShiftXNode  LShiftLNode
  1569 // For object size computation:
  1570 #define AddXNode     AddLNode
  1571 #define RShiftXNode  RShiftLNode
  1572 // For card marks and hashcodes
  1573 #define URShiftXNode URShiftLNode
  1574 // UseOptoBiasInlining
  1575 #define XorXNode     XorLNode
  1576 #define StoreXConditionalNode StoreLConditionalNode
  1577 // Opcodes
  1578 #define Op_LShiftX   Op_LShiftL
  1579 #define Op_AndX      Op_AndL
  1580 #define Op_AddX      Op_AddL
  1581 #define Op_SubX      Op_SubL
  1582 #define Op_XorX      Op_XorL
  1583 #define Op_URShiftX  Op_URShiftL
  1584 // conversions
  1585 #define ConvI2X(x)   ConvI2L(x)
  1586 #define ConvL2X(x)   (x)
  1587 #define ConvX2I(x)   ConvL2I(x)
  1588 #define ConvX2L(x)   (x)
  1590 #else
  1592 // For type queries and asserts
  1593 #define is_intptr_t  is_int
  1594 #define isa_intptr_t isa_int
  1595 #define find_intptr_t_type find_int_type
  1596 #define find_intptr_t_con  find_int_con
  1597 #define TypeX        TypeInt
  1598 #define Type_X       Type::Int
  1599 #define TypeX_X      TypeInt::INT
  1600 #define TypeX_ZERO   TypeInt::ZERO
  1601 // For 'ideal_reg' machine registers
  1602 #define Op_RegX      Op_RegI
  1603 // For phase->intcon variants
  1604 #define MakeConX     intcon
  1605 #define ConXNode     ConINode
  1606 // For array index arithmetic
  1607 #define MulXNode     MulINode
  1608 #define AndXNode     AndINode
  1609 #define OrXNode      OrINode
  1610 #define CmpXNode     CmpINode
  1611 #define SubXNode     SubINode
  1612 #define LShiftXNode  LShiftINode
  1613 // For object size computation:
  1614 #define AddXNode     AddINode
  1615 #define RShiftXNode  RShiftINode
  1616 // For card marks and hashcodes
  1617 #define URShiftXNode URShiftINode
  1618 // UseOptoBiasInlining
  1619 #define XorXNode     XorINode
  1620 #define StoreXConditionalNode StoreIConditionalNode
  1621 // Opcodes
  1622 #define Op_LShiftX   Op_LShiftI
  1623 #define Op_AndX      Op_AndI
  1624 #define Op_AddX      Op_AddI
  1625 #define Op_SubX      Op_SubI
  1626 #define Op_XorX      Op_XorI
  1627 #define Op_URShiftX  Op_URShiftI
  1628 // conversions
  1629 #define ConvI2X(x)   (x)
  1630 #define ConvL2X(x)   ConvL2I(x)
  1631 #define ConvX2I(x)   (x)
  1632 #define ConvX2L(x)   ConvI2L(x)
  1634 #endif
  1636 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial