src/share/vm/opto/library_call.cpp

Sat, 19 Oct 2013 12:16:43 +0200

author
roland
date
Sat, 19 Oct 2013 12:16:43 +0200
changeset 5981
3213ba4d3dff
parent 5798
29bdcf12457c
child 5991
b2ee5dc63353
permissions
-rw-r--r--

8024069: replace_in_map() should operate on parent maps
Summary: type information gets lost because replace_in_map() doesn't update parent maps
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _is_predicted;
    50   bool             _does_virtual_dispatch;
    51   vmIntrinsics::ID _intrinsic_id;
    53  public:
    54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
    55     : InlineCallGenerator(m),
    56       _is_virtual(is_virtual),
    57       _is_predicted(is_predicted),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _intrinsic_id(id)
    60   {
    61   }
    62   virtual bool is_intrinsic() const { return true; }
    63   virtual bool is_virtual()   const { return _is_virtual; }
    64   virtual bool is_predicted()   const { return _is_predicted; }
    65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
    67   virtual Node* generate_predicate(JVMState* jvms);
    68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    69 };
    72 // Local helper class for LibraryIntrinsic:
    73 class LibraryCallKit : public GraphKit {
    74  private:
    75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    76   Node*             _result;        // the result node, if any
    77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    81  public:
    82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    83     : GraphKit(jvms),
    84       _intrinsic(intrinsic),
    85       _result(NULL)
    86   {
    87     // Check if this is a root compile.  In that case we don't have a caller.
    88     if (!jvms->has_method()) {
    89       _reexecute_sp = sp();
    90     } else {
    91       // Find out how many arguments the interpreter needs when deoptimizing
    92       // and save the stack pointer value so it can used by uncommon_trap.
    93       // We find the argument count by looking at the declared signature.
    94       bool ignored_will_link;
    95       ciSignature* declared_signature = NULL;
    96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    99     }
   100   }
   102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   104   ciMethod*         caller()    const    { return jvms()->method(); }
   105   int               bci()       const    { return jvms()->bci(); }
   106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   108   ciMethod*         callee()    const    { return _intrinsic->method(); }
   110   bool try_to_inline();
   111   Node* try_to_predicate();
   113   void push_result() {
   114     // Push the result onto the stack.
   115     if (!stopped() && result() != NULL) {
   116       BasicType bt = result()->bottom_type()->basic_type();
   117       push_node(bt, result());
   118     }
   119   }
   121  private:
   122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   124   }
   126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   127   void  set_result(RegionNode* region, PhiNode* value);
   128   Node*     result() { return _result; }
   130   virtual int reexecute_sp() { return _reexecute_sp; }
   132   // Helper functions to inline natives
   133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   134   Node* generate_slow_guard(Node* test, RegionNode* region);
   135   Node* generate_fair_guard(Node* test, RegionNode* region);
   136   Node* generate_negative_guard(Node* index, RegionNode* region,
   137                                 // resulting CastII of index:
   138                                 Node* *pos_index = NULL);
   139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   140                                    // resulting CastII of index:
   141                                    Node* *pos_index = NULL);
   142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   143                              Node* array_length,
   144                              RegionNode* region);
   145   Node* generate_current_thread(Node* &tls_output);
   146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   148   Node* load_mirror_from_klass(Node* klass);
   149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   150                                       RegionNode* region, int null_path,
   151                                       int offset);
   152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   153                                RegionNode* region, int null_path) {
   154     int offset = java_lang_Class::klass_offset_in_bytes();
   155     return load_klass_from_mirror_common(mirror, never_see_null,
   156                                          region, null_path,
   157                                          offset);
   158   }
   159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   160                                      RegionNode* region, int null_path) {
   161     int offset = java_lang_Class::array_klass_offset_in_bytes();
   162     return load_klass_from_mirror_common(mirror, never_see_null,
   163                                          region, null_path,
   164                                          offset);
   165   }
   166   Node* generate_access_flags_guard(Node* kls,
   167                                     int modifier_mask, int modifier_bits,
   168                                     RegionNode* region);
   169   Node* generate_interface_guard(Node* kls, RegionNode* region);
   170   Node* generate_array_guard(Node* kls, RegionNode* region) {
   171     return generate_array_guard_common(kls, region, false, false);
   172   }
   173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, true);
   175   }
   176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, true, false);
   178   }
   179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, true);
   181   }
   182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   183                                     bool obj_array, bool not_array);
   184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   186                                      bool is_virtual = false, bool is_static = false);
   187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   188     return generate_method_call(method_id, false, true);
   189   }
   190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, true, false);
   192   }
   193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   197   bool inline_string_compareTo();
   198   bool inline_string_indexOf();
   199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   200   bool inline_string_equals();
   201   Node* round_double_node(Node* n);
   202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   203   bool inline_math_native(vmIntrinsics::ID id);
   204   bool inline_trig(vmIntrinsics::ID id);
   205   bool inline_math(vmIntrinsics::ID id);
   206   bool inline_math_mathExact(Node* math);
   207   bool inline_math_addExact();
   208   bool inline_exp();
   209   bool inline_pow();
   210   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   211   bool inline_min_max(vmIntrinsics::ID id);
   212   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   213   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   214   int classify_unsafe_addr(Node* &base, Node* &offset);
   215   Node* make_unsafe_address(Node* base, Node* offset);
   216   // Helper for inline_unsafe_access.
   217   // Generates the guards that check whether the result of
   218   // Unsafe.getObject should be recorded in an SATB log buffer.
   219   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   220   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   221   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   222   static bool klass_needs_init_guard(Node* kls);
   223   bool inline_unsafe_allocate();
   224   bool inline_unsafe_copyMemory();
   225   bool inline_native_currentThread();
   226 #ifdef TRACE_HAVE_INTRINSICS
   227   bool inline_native_classID();
   228   bool inline_native_threadID();
   229 #endif
   230   bool inline_native_time_funcs(address method, const char* funcName);
   231   bool inline_native_isInterrupted();
   232   bool inline_native_Class_query(vmIntrinsics::ID id);
   233   bool inline_native_subtype_check();
   235   bool inline_native_newArray();
   236   bool inline_native_getLength();
   237   bool inline_array_copyOf(bool is_copyOfRange);
   238   bool inline_array_equals();
   239   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   240   bool inline_native_clone(bool is_virtual);
   241   bool inline_native_Reflection_getCallerClass();
   242   // Helper function for inlining native object hash method
   243   bool inline_native_hashcode(bool is_virtual, bool is_static);
   244   bool inline_native_getClass();
   246   // Helper functions for inlining arraycopy
   247   bool inline_arraycopy();
   248   void generate_arraycopy(const TypePtr* adr_type,
   249                           BasicType basic_elem_type,
   250                           Node* src,  Node* src_offset,
   251                           Node* dest, Node* dest_offset,
   252                           Node* copy_length,
   253                           bool disjoint_bases = false,
   254                           bool length_never_negative = false,
   255                           RegionNode* slow_region = NULL);
   256   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   257                                                 RegionNode* slow_region);
   258   void generate_clear_array(const TypePtr* adr_type,
   259                             Node* dest,
   260                             BasicType basic_elem_type,
   261                             Node* slice_off,
   262                             Node* slice_len,
   263                             Node* slice_end);
   264   bool generate_block_arraycopy(const TypePtr* adr_type,
   265                                 BasicType basic_elem_type,
   266                                 AllocateNode* alloc,
   267                                 Node* src,  Node* src_offset,
   268                                 Node* dest, Node* dest_offset,
   269                                 Node* dest_size, bool dest_uninitialized);
   270   void generate_slow_arraycopy(const TypePtr* adr_type,
   271                                Node* src,  Node* src_offset,
   272                                Node* dest, Node* dest_offset,
   273                                Node* copy_length, bool dest_uninitialized);
   274   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   275                                      Node* dest_elem_klass,
   276                                      Node* src,  Node* src_offset,
   277                                      Node* dest, Node* dest_offset,
   278                                      Node* copy_length, bool dest_uninitialized);
   279   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   280                                    Node* src,  Node* src_offset,
   281                                    Node* dest, Node* dest_offset,
   282                                    Node* copy_length, bool dest_uninitialized);
   283   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   284                                     BasicType basic_elem_type,
   285                                     bool disjoint_bases,
   286                                     Node* src,  Node* src_offset,
   287                                     Node* dest, Node* dest_offset,
   288                                     Node* copy_length, bool dest_uninitialized);
   289   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   290   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   291   bool inline_unsafe_ordered_store(BasicType type);
   292   bool inline_unsafe_fence(vmIntrinsics::ID id);
   293   bool inline_fp_conversions(vmIntrinsics::ID id);
   294   bool inline_number_methods(vmIntrinsics::ID id);
   295   bool inline_reference_get();
   296   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   297   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   298   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   299   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   300   bool inline_encodeISOArray();
   301   bool inline_updateCRC32();
   302   bool inline_updateBytesCRC32();
   303   bool inline_updateByteBufferCRC32();
   304 };
   307 //---------------------------make_vm_intrinsic----------------------------
   308 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   309   vmIntrinsics::ID id = m->intrinsic_id();
   310   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   312   if (DisableIntrinsic[0] != '\0'
   313       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   314     // disabled by a user request on the command line:
   315     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   316     return NULL;
   317   }
   319   if (!m->is_loaded()) {
   320     // do not attempt to inline unloaded methods
   321     return NULL;
   322   }
   324   // Only a few intrinsics implement a virtual dispatch.
   325   // They are expensive calls which are also frequently overridden.
   326   if (is_virtual) {
   327     switch (id) {
   328     case vmIntrinsics::_hashCode:
   329     case vmIntrinsics::_clone:
   330       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   331       break;
   332     default:
   333       return NULL;
   334     }
   335   }
   337   // -XX:-InlineNatives disables nearly all intrinsics:
   338   if (!InlineNatives) {
   339     switch (id) {
   340     case vmIntrinsics::_indexOf:
   341     case vmIntrinsics::_compareTo:
   342     case vmIntrinsics::_equals:
   343     case vmIntrinsics::_equalsC:
   344     case vmIntrinsics::_getAndAddInt:
   345     case vmIntrinsics::_getAndAddLong:
   346     case vmIntrinsics::_getAndSetInt:
   347     case vmIntrinsics::_getAndSetLong:
   348     case vmIntrinsics::_getAndSetObject:
   349     case vmIntrinsics::_loadFence:
   350     case vmIntrinsics::_storeFence:
   351     case vmIntrinsics::_fullFence:
   352       break;  // InlineNatives does not control String.compareTo
   353     case vmIntrinsics::_Reference_get:
   354       break;  // InlineNatives does not control Reference.get
   355     default:
   356       return NULL;
   357     }
   358   }
   360   bool is_predicted = false;
   361   bool does_virtual_dispatch = false;
   363   switch (id) {
   364   case vmIntrinsics::_compareTo:
   365     if (!SpecialStringCompareTo)  return NULL;
   366     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   367     break;
   368   case vmIntrinsics::_indexOf:
   369     if (!SpecialStringIndexOf)  return NULL;
   370     break;
   371   case vmIntrinsics::_equals:
   372     if (!SpecialStringEquals)  return NULL;
   373     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   374     break;
   375   case vmIntrinsics::_equalsC:
   376     if (!SpecialArraysEquals)  return NULL;
   377     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   378     break;
   379   case vmIntrinsics::_arraycopy:
   380     if (!InlineArrayCopy)  return NULL;
   381     break;
   382   case vmIntrinsics::_copyMemory:
   383     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   384     if (!InlineArrayCopy)  return NULL;
   385     break;
   386   case vmIntrinsics::_hashCode:
   387     if (!InlineObjectHash)  return NULL;
   388     does_virtual_dispatch = true;
   389     break;
   390   case vmIntrinsics::_clone:
   391     does_virtual_dispatch = true;
   392   case vmIntrinsics::_copyOf:
   393   case vmIntrinsics::_copyOfRange:
   394     if (!InlineObjectCopy)  return NULL;
   395     // These also use the arraycopy intrinsic mechanism:
   396     if (!InlineArrayCopy)  return NULL;
   397     break;
   398   case vmIntrinsics::_encodeISOArray:
   399     if (!SpecialEncodeISOArray)  return NULL;
   400     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   401     break;
   402   case vmIntrinsics::_checkIndex:
   403     // We do not intrinsify this.  The optimizer does fine with it.
   404     return NULL;
   406   case vmIntrinsics::_getCallerClass:
   407     if (!UseNewReflection)  return NULL;
   408     if (!InlineReflectionGetCallerClass)  return NULL;
   409     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   410     break;
   412   case vmIntrinsics::_bitCount_i:
   413     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   414     break;
   416   case vmIntrinsics::_bitCount_l:
   417     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   418     break;
   420   case vmIntrinsics::_numberOfLeadingZeros_i:
   421     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   422     break;
   424   case vmIntrinsics::_numberOfLeadingZeros_l:
   425     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   426     break;
   428   case vmIntrinsics::_numberOfTrailingZeros_i:
   429     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   430     break;
   432   case vmIntrinsics::_numberOfTrailingZeros_l:
   433     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   434     break;
   436   case vmIntrinsics::_reverseBytes_c:
   437     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   438     break;
   439   case vmIntrinsics::_reverseBytes_s:
   440     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   441     break;
   442   case vmIntrinsics::_reverseBytes_i:
   443     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   444     break;
   445   case vmIntrinsics::_reverseBytes_l:
   446     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   447     break;
   449   case vmIntrinsics::_Reference_get:
   450     // Use the intrinsic version of Reference.get() so that the value in
   451     // the referent field can be registered by the G1 pre-barrier code.
   452     // Also add memory barrier to prevent commoning reads from this field
   453     // across safepoint since GC can change it value.
   454     break;
   456   case vmIntrinsics::_compareAndSwapObject:
   457 #ifdef _LP64
   458     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   459 #endif
   460     break;
   462   case vmIntrinsics::_compareAndSwapLong:
   463     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   464     break;
   466   case vmIntrinsics::_getAndAddInt:
   467     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   468     break;
   470   case vmIntrinsics::_getAndAddLong:
   471     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   472     break;
   474   case vmIntrinsics::_getAndSetInt:
   475     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   476     break;
   478   case vmIntrinsics::_getAndSetLong:
   479     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   480     break;
   482   case vmIntrinsics::_getAndSetObject:
   483 #ifdef _LP64
   484     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   485     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   486     break;
   487 #else
   488     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   489     break;
   490 #endif
   492   case vmIntrinsics::_aescrypt_encryptBlock:
   493   case vmIntrinsics::_aescrypt_decryptBlock:
   494     if (!UseAESIntrinsics) return NULL;
   495     break;
   497   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   498   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   499     if (!UseAESIntrinsics) return NULL;
   500     // these two require the predicated logic
   501     is_predicted = true;
   502     break;
   504   case vmIntrinsics::_updateCRC32:
   505   case vmIntrinsics::_updateBytesCRC32:
   506   case vmIntrinsics::_updateByteBufferCRC32:
   507     if (!UseCRC32Intrinsics) return NULL;
   508     break;
   510   case vmIntrinsics::_addExact:
   511     if (!Matcher::match_rule_supported(Op_AddExactI)) {
   512       return NULL;
   513     }
   514     if (!UseMathExactIntrinsics) {
   515       return NULL;
   516     }
   517     break;
   519  default:
   520     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   521     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   522     break;
   523   }
   525   // -XX:-InlineClassNatives disables natives from the Class class.
   526   // The flag applies to all reflective calls, notably Array.newArray
   527   // (visible to Java programmers as Array.newInstance).
   528   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   529       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   530     if (!InlineClassNatives)  return NULL;
   531   }
   533   // -XX:-InlineThreadNatives disables natives from the Thread class.
   534   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   535     if (!InlineThreadNatives)  return NULL;
   536   }
   538   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   539   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   540       m->holder()->name() == ciSymbol::java_lang_Float() ||
   541       m->holder()->name() == ciSymbol::java_lang_Double()) {
   542     if (!InlineMathNatives)  return NULL;
   543   }
   545   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   546   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   547     if (!InlineUnsafeOps)  return NULL;
   548   }
   550   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
   551 }
   553 //----------------------register_library_intrinsics-----------------------
   554 // Initialize this file's data structures, for each Compile instance.
   555 void Compile::register_library_intrinsics() {
   556   // Nothing to do here.
   557 }
   559 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
   560   LibraryCallKit kit(jvms, this);
   561   Compile* C = kit.C;
   562   int nodes = C->unique();
   563 #ifndef PRODUCT
   564   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   565     char buf[1000];
   566     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   567     tty->print_cr("Intrinsic %s", str);
   568   }
   569 #endif
   570   ciMethod* callee = kit.callee();
   571   const int bci    = kit.bci();
   573   // Try to inline the intrinsic.
   574   if (kit.try_to_inline()) {
   575     if (C->print_intrinsics() || C->print_inlining()) {
   576       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   577     }
   578     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   579     if (C->log()) {
   580       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   581                      vmIntrinsics::name_at(intrinsic_id()),
   582                      (is_virtual() ? " virtual='1'" : ""),
   583                      C->unique() - nodes);
   584     }
   585     // Push the result from the inlined method onto the stack.
   586     kit.push_result();
   587     return kit.transfer_exceptions_into_jvms();
   588   }
   590   // The intrinsic bailed out
   591   if (C->print_intrinsics() || C->print_inlining()) {
   592     if (jvms->has_method()) {
   593       // Not a root compile.
   594       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   595       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   596     } else {
   597       // Root compile
   598       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   599                vmIntrinsics::name_at(intrinsic_id()),
   600                (is_virtual() ? " (virtual)" : ""), bci);
   601     }
   602   }
   603   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   604   return NULL;
   605 }
   607 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   608   LibraryCallKit kit(jvms, this);
   609   Compile* C = kit.C;
   610   int nodes = C->unique();
   611 #ifndef PRODUCT
   612   assert(is_predicted(), "sanity");
   613   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   614     char buf[1000];
   615     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   616     tty->print_cr("Predicate for intrinsic %s", str);
   617   }
   618 #endif
   619   ciMethod* callee = kit.callee();
   620   const int bci    = kit.bci();
   622   Node* slow_ctl = kit.try_to_predicate();
   623   if (!kit.failing()) {
   624     if (C->print_intrinsics() || C->print_inlining()) {
   625       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   626     }
   627     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   628     if (C->log()) {
   629       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   630                      vmIntrinsics::name_at(intrinsic_id()),
   631                      (is_virtual() ? " virtual='1'" : ""),
   632                      C->unique() - nodes);
   633     }
   634     return slow_ctl; // Could be NULL if the check folds.
   635   }
   637   // The intrinsic bailed out
   638   if (C->print_intrinsics() || C->print_inlining()) {
   639     if (jvms->has_method()) {
   640       // Not a root compile.
   641       const char* msg = "failed to generate predicate for intrinsic";
   642       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   643     } else {
   644       // Root compile
   645       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   646                                         vmIntrinsics::name_at(intrinsic_id()),
   647                                         (is_virtual() ? " (virtual)" : ""), bci);
   648     }
   649   }
   650   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   651   return NULL;
   652 }
   654 bool LibraryCallKit::try_to_inline() {
   655   // Handle symbolic names for otherwise undistinguished boolean switches:
   656   const bool is_store       = true;
   657   const bool is_native_ptr  = true;
   658   const bool is_static      = true;
   659   const bool is_volatile    = true;
   661   if (!jvms()->has_method()) {
   662     // Root JVMState has a null method.
   663     assert(map()->memory()->Opcode() == Op_Parm, "");
   664     // Insert the memory aliasing node
   665     set_all_memory(reset_memory());
   666   }
   667   assert(merged_memory(), "");
   670   switch (intrinsic_id()) {
   671   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   672   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   673   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   675   case vmIntrinsics::_dsin:
   676   case vmIntrinsics::_dcos:
   677   case vmIntrinsics::_dtan:
   678   case vmIntrinsics::_dabs:
   679   case vmIntrinsics::_datan2:
   680   case vmIntrinsics::_dsqrt:
   681   case vmIntrinsics::_dexp:
   682   case vmIntrinsics::_dlog:
   683   case vmIntrinsics::_dlog10:
   684   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   686   case vmIntrinsics::_min:
   687   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   689   case vmIntrinsics::_addExact:                 return inline_math_addExact();
   691   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   693   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   694   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   695   case vmIntrinsics::_equals:                   return inline_string_equals();
   697   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   698   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   699   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   700   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   701   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   702   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   703   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   704   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   705   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   707   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   708   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   709   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   710   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   711   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   712   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   713   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   714   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   715   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   717   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   718   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   719   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   720   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   721   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   722   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   723   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   724   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   726   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   727   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   728   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   729   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   730   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   731   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   732   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   733   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   735   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   736   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   737   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   738   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   739   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   740   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   741   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   742   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   743   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   745   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   746   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   747   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   748   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   749   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   750   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   751   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   752   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   753   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   755   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   756   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   757   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   758   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   760   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   761   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   762   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   764   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   765   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   766   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   768   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   769   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   770   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   771   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   772   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   774   case vmIntrinsics::_loadFence:
   775   case vmIntrinsics::_storeFence:
   776   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   778   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   779   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   781 #ifdef TRACE_HAVE_INTRINSICS
   782   case vmIntrinsics::_classID:                  return inline_native_classID();
   783   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   784   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   785 #endif
   786   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   787   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   788   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   789   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   790   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   791   case vmIntrinsics::_getLength:                return inline_native_getLength();
   792   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   793   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   794   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   795   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   797   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   799   case vmIntrinsics::_isInstance:
   800   case vmIntrinsics::_getModifiers:
   801   case vmIntrinsics::_isInterface:
   802   case vmIntrinsics::_isArray:
   803   case vmIntrinsics::_isPrimitive:
   804   case vmIntrinsics::_getSuperclass:
   805   case vmIntrinsics::_getComponentType:
   806   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   808   case vmIntrinsics::_floatToRawIntBits:
   809   case vmIntrinsics::_floatToIntBits:
   810   case vmIntrinsics::_intBitsToFloat:
   811   case vmIntrinsics::_doubleToRawLongBits:
   812   case vmIntrinsics::_doubleToLongBits:
   813   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   815   case vmIntrinsics::_numberOfLeadingZeros_i:
   816   case vmIntrinsics::_numberOfLeadingZeros_l:
   817   case vmIntrinsics::_numberOfTrailingZeros_i:
   818   case vmIntrinsics::_numberOfTrailingZeros_l:
   819   case vmIntrinsics::_bitCount_i:
   820   case vmIntrinsics::_bitCount_l:
   821   case vmIntrinsics::_reverseBytes_i:
   822   case vmIntrinsics::_reverseBytes_l:
   823   case vmIntrinsics::_reverseBytes_s:
   824   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   826   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   828   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   830   case vmIntrinsics::_aescrypt_encryptBlock:
   831   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   833   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   834   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   835     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   837   case vmIntrinsics::_encodeISOArray:
   838     return inline_encodeISOArray();
   840   case vmIntrinsics::_updateCRC32:
   841     return inline_updateCRC32();
   842   case vmIntrinsics::_updateBytesCRC32:
   843     return inline_updateBytesCRC32();
   844   case vmIntrinsics::_updateByteBufferCRC32:
   845     return inline_updateByteBufferCRC32();
   847   default:
   848     // If you get here, it may be that someone has added a new intrinsic
   849     // to the list in vmSymbols.hpp without implementing it here.
   850 #ifndef PRODUCT
   851     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   852       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   853                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   854     }
   855 #endif
   856     return false;
   857   }
   858 }
   860 Node* LibraryCallKit::try_to_predicate() {
   861   if (!jvms()->has_method()) {
   862     // Root JVMState has a null method.
   863     assert(map()->memory()->Opcode() == Op_Parm, "");
   864     // Insert the memory aliasing node
   865     set_all_memory(reset_memory());
   866   }
   867   assert(merged_memory(), "");
   869   switch (intrinsic_id()) {
   870   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   871     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   872   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   873     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   875   default:
   876     // If you get here, it may be that someone has added a new intrinsic
   877     // to the list in vmSymbols.hpp without implementing it here.
   878 #ifndef PRODUCT
   879     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   880       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   881                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   882     }
   883 #endif
   884     Node* slow_ctl = control();
   885     set_control(top()); // No fast path instrinsic
   886     return slow_ctl;
   887   }
   888 }
   890 //------------------------------set_result-------------------------------
   891 // Helper function for finishing intrinsics.
   892 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   893   record_for_igvn(region);
   894   set_control(_gvn.transform(region));
   895   set_result( _gvn.transform(value));
   896   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   897 }
   899 //------------------------------generate_guard---------------------------
   900 // Helper function for generating guarded fast-slow graph structures.
   901 // The given 'test', if true, guards a slow path.  If the test fails
   902 // then a fast path can be taken.  (We generally hope it fails.)
   903 // In all cases, GraphKit::control() is updated to the fast path.
   904 // The returned value represents the control for the slow path.
   905 // The return value is never 'top'; it is either a valid control
   906 // or NULL if it is obvious that the slow path can never be taken.
   907 // Also, if region and the slow control are not NULL, the slow edge
   908 // is appended to the region.
   909 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   910   if (stopped()) {
   911     // Already short circuited.
   912     return NULL;
   913   }
   915   // Build an if node and its projections.
   916   // If test is true we take the slow path, which we assume is uncommon.
   917   if (_gvn.type(test) == TypeInt::ZERO) {
   918     // The slow branch is never taken.  No need to build this guard.
   919     return NULL;
   920   }
   922   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   924   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   925   if (if_slow == top()) {
   926     // The slow branch is never taken.  No need to build this guard.
   927     return NULL;
   928   }
   930   if (region != NULL)
   931     region->add_req(if_slow);
   933   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   934   set_control(if_fast);
   936   return if_slow;
   937 }
   939 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   940   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   941 }
   942 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   943   return generate_guard(test, region, PROB_FAIR);
   944 }
   946 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   947                                                      Node* *pos_index) {
   948   if (stopped())
   949     return NULL;                // already stopped
   950   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   951     return NULL;                // index is already adequately typed
   952   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   953   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   954   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   955   if (is_neg != NULL && pos_index != NULL) {
   956     // Emulate effect of Parse::adjust_map_after_if.
   957     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   958     ccast->set_req(0, control());
   959     (*pos_index) = _gvn.transform(ccast);
   960   }
   961   return is_neg;
   962 }
   964 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   965                                                         Node* *pos_index) {
   966   if (stopped())
   967     return NULL;                // already stopped
   968   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   969     return NULL;                // index is already adequately typed
   970   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   971   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   972   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
   973   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   974   if (is_notp != NULL && pos_index != NULL) {
   975     // Emulate effect of Parse::adjust_map_after_if.
   976     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   977     ccast->set_req(0, control());
   978     (*pos_index) = _gvn.transform(ccast);
   979   }
   980   return is_notp;
   981 }
   983 // Make sure that 'position' is a valid limit index, in [0..length].
   984 // There are two equivalent plans for checking this:
   985 //   A. (offset + copyLength)  unsigned<=  arrayLength
   986 //   B. offset  <=  (arrayLength - copyLength)
   987 // We require that all of the values above, except for the sum and
   988 // difference, are already known to be non-negative.
   989 // Plan A is robust in the face of overflow, if offset and copyLength
   990 // are both hugely positive.
   991 //
   992 // Plan B is less direct and intuitive, but it does not overflow at
   993 // all, since the difference of two non-negatives is always
   994 // representable.  Whenever Java methods must perform the equivalent
   995 // check they generally use Plan B instead of Plan A.
   996 // For the moment we use Plan A.
   997 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   998                                                   Node* subseq_length,
   999                                                   Node* array_length,
  1000                                                   RegionNode* region) {
  1001   if (stopped())
  1002     return NULL;                // already stopped
  1003   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1004   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1005     return NULL;                // common case of whole-array copy
  1006   Node* last = subseq_length;
  1007   if (!zero_offset)             // last += offset
  1008     last = _gvn.transform(new (C) AddINode(last, offset));
  1009   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1010   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1011   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1012   return is_over;
  1016 //--------------------------generate_current_thread--------------------
  1017 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1018   ciKlass*    thread_klass = env()->Thread_klass();
  1019   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1020   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1021   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1022   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
  1023   tls_output = thread;
  1024   return threadObj;
  1028 //------------------------------make_string_method_node------------------------
  1029 // Helper method for String intrinsic functions. This version is called
  1030 // with str1 and str2 pointing to String object nodes.
  1031 //
  1032 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1033   Node* no_ctrl = NULL;
  1035   // Get start addr of string
  1036   Node* str1_value   = load_String_value(no_ctrl, str1);
  1037   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1038   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1040   // Get length of string 1
  1041   Node* str1_len  = load_String_length(no_ctrl, str1);
  1043   Node* str2_value   = load_String_value(no_ctrl, str2);
  1044   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1045   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1047   Node* str2_len = NULL;
  1048   Node* result = NULL;
  1050   switch (opcode) {
  1051   case Op_StrIndexOf:
  1052     // Get length of string 2
  1053     str2_len = load_String_length(no_ctrl, str2);
  1055     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1056                                  str1_start, str1_len, str2_start, str2_len);
  1057     break;
  1058   case Op_StrComp:
  1059     // Get length of string 2
  1060     str2_len = load_String_length(no_ctrl, str2);
  1062     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1063                                  str1_start, str1_len, str2_start, str2_len);
  1064     break;
  1065   case Op_StrEquals:
  1066     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1067                                str1_start, str2_start, str1_len);
  1068     break;
  1069   default:
  1070     ShouldNotReachHere();
  1071     return NULL;
  1074   // All these intrinsics have checks.
  1075   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1077   return _gvn.transform(result);
  1080 // Helper method for String intrinsic functions. This version is called
  1081 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1082 // to Int nodes containing the lenghts of str1 and str2.
  1083 //
  1084 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1085   Node* result = NULL;
  1086   switch (opcode) {
  1087   case Op_StrIndexOf:
  1088     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1089                                  str1_start, cnt1, str2_start, cnt2);
  1090     break;
  1091   case Op_StrComp:
  1092     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1093                                  str1_start, cnt1, str2_start, cnt2);
  1094     break;
  1095   case Op_StrEquals:
  1096     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1097                                  str1_start, str2_start, cnt1);
  1098     break;
  1099   default:
  1100     ShouldNotReachHere();
  1101     return NULL;
  1104   // All these intrinsics have checks.
  1105   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1107   return _gvn.transform(result);
  1110 //------------------------------inline_string_compareTo------------------------
  1111 // public int java.lang.String.compareTo(String anotherString);
  1112 bool LibraryCallKit::inline_string_compareTo() {
  1113   Node* receiver = null_check(argument(0));
  1114   Node* arg      = null_check(argument(1));
  1115   if (stopped()) {
  1116     return true;
  1118   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1119   return true;
  1122 //------------------------------inline_string_equals------------------------
  1123 bool LibraryCallKit::inline_string_equals() {
  1124   Node* receiver = null_check_receiver();
  1125   // NOTE: Do not null check argument for String.equals() because spec
  1126   // allows to specify NULL as argument.
  1127   Node* argument = this->argument(1);
  1128   if (stopped()) {
  1129     return true;
  1132   // paths (plus control) merge
  1133   RegionNode* region = new (C) RegionNode(5);
  1134   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1136   // does source == target string?
  1137   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1138   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1140   Node* if_eq = generate_slow_guard(bol, NULL);
  1141   if (if_eq != NULL) {
  1142     // receiver == argument
  1143     phi->init_req(2, intcon(1));
  1144     region->init_req(2, if_eq);
  1147   // get String klass for instanceOf
  1148   ciInstanceKlass* klass = env()->String_klass();
  1150   if (!stopped()) {
  1151     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1152     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1153     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1155     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1156     //instanceOf == true, fallthrough
  1158     if (inst_false != NULL) {
  1159       phi->init_req(3, intcon(0));
  1160       region->init_req(3, inst_false);
  1164   if (!stopped()) {
  1165     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1167     // Properly cast the argument to String
  1168     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1169     // This path is taken only when argument's type is String:NotNull.
  1170     argument = cast_not_null(argument, false);
  1172     Node* no_ctrl = NULL;
  1174     // Get start addr of receiver
  1175     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1176     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1177     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1179     // Get length of receiver
  1180     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1182     // Get start addr of argument
  1183     Node* argument_val    = load_String_value(no_ctrl, argument);
  1184     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1185     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1187     // Get length of argument
  1188     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1190     // Check for receiver count != argument count
  1191     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1192     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1193     Node* if_ne = generate_slow_guard(bol, NULL);
  1194     if (if_ne != NULL) {
  1195       phi->init_req(4, intcon(0));
  1196       region->init_req(4, if_ne);
  1199     // Check for count == 0 is done by assembler code for StrEquals.
  1201     if (!stopped()) {
  1202       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1203       phi->init_req(1, equals);
  1204       region->init_req(1, control());
  1208   // post merge
  1209   set_control(_gvn.transform(region));
  1210   record_for_igvn(region);
  1212   set_result(_gvn.transform(phi));
  1213   return true;
  1216 //------------------------------inline_array_equals----------------------------
  1217 bool LibraryCallKit::inline_array_equals() {
  1218   Node* arg1 = argument(0);
  1219   Node* arg2 = argument(1);
  1220   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1221   return true;
  1224 // Java version of String.indexOf(constant string)
  1225 // class StringDecl {
  1226 //   StringDecl(char[] ca) {
  1227 //     offset = 0;
  1228 //     count = ca.length;
  1229 //     value = ca;
  1230 //   }
  1231 //   int offset;
  1232 //   int count;
  1233 //   char[] value;
  1234 // }
  1235 //
  1236 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1237 //                             int targetOffset, int cache_i, int md2) {
  1238 //   int cache = cache_i;
  1239 //   int sourceOffset = string_object.offset;
  1240 //   int sourceCount = string_object.count;
  1241 //   int targetCount = target_object.length;
  1242 //
  1243 //   int targetCountLess1 = targetCount - 1;
  1244 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1245 //
  1246 //   char[] source = string_object.value;
  1247 //   char[] target = target_object;
  1248 //   int lastChar = target[targetCountLess1];
  1249 //
  1250 //  outer_loop:
  1251 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1252 //     int src = source[i + targetCountLess1];
  1253 //     if (src == lastChar) {
  1254 //       // With random strings and a 4-character alphabet,
  1255 //       // reverse matching at this point sets up 0.8% fewer
  1256 //       // frames, but (paradoxically) makes 0.3% more probes.
  1257 //       // Since those probes are nearer the lastChar probe,
  1258 //       // there is may be a net D$ win with reverse matching.
  1259 //       // But, reversing loop inhibits unroll of inner loop
  1260 //       // for unknown reason.  So, does running outer loop from
  1261 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1262 //       for (int j = 0; j < targetCountLess1; j++) {
  1263 //         if (target[targetOffset + j] != source[i+j]) {
  1264 //           if ((cache & (1 << source[i+j])) == 0) {
  1265 //             if (md2 < j+1) {
  1266 //               i += j+1;
  1267 //               continue outer_loop;
  1268 //             }
  1269 //           }
  1270 //           i += md2;
  1271 //           continue outer_loop;
  1272 //         }
  1273 //       }
  1274 //       return i - sourceOffset;
  1275 //     }
  1276 //     if ((cache & (1 << src)) == 0) {
  1277 //       i += targetCountLess1;
  1278 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1279 //     i++;
  1280 //   }
  1281 //   return -1;
  1282 // }
  1284 //------------------------------string_indexOf------------------------
  1285 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1286                                      jint cache_i, jint md2_i) {
  1288   Node* no_ctrl  = NULL;
  1289   float likely   = PROB_LIKELY(0.9);
  1290   float unlikely = PROB_UNLIKELY(0.9);
  1292   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1294   Node* source        = load_String_value(no_ctrl, string_object);
  1295   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1296   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1298   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1299   jint target_length = target_array->length();
  1300   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1301   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1303   // String.value field is known to be @Stable.
  1304   if (UseImplicitStableValues) {
  1305     target = cast_array_to_stable(target, target_type);
  1308   IdealKit kit(this, false, true);
  1309 #define __ kit.
  1310   Node* zero             = __ ConI(0);
  1311   Node* one              = __ ConI(1);
  1312   Node* cache            = __ ConI(cache_i);
  1313   Node* md2              = __ ConI(md2_i);
  1314   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1315   Node* targetCount      = __ ConI(target_length);
  1316   Node* targetCountLess1 = __ ConI(target_length - 1);
  1317   Node* targetOffset     = __ ConI(targetOffset_i);
  1318   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1320   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1321   Node* outer_loop = __ make_label(2 /* goto */);
  1322   Node* return_    = __ make_label(1);
  1324   __ set(rtn,__ ConI(-1));
  1325   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1326        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1327        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1328        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1329        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1330          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1331               Node* tpj = __ AddI(targetOffset, __ value(j));
  1332               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1333               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1334               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1335               __ if_then(targ, BoolTest::ne, src2); {
  1336                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1337                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1338                     __ increment(i, __ AddI(__ value(j), one));
  1339                     __ goto_(outer_loop);
  1340                   } __ end_if(); __ dead(j);
  1341                 }__ end_if(); __ dead(j);
  1342                 __ increment(i, md2);
  1343                 __ goto_(outer_loop);
  1344               }__ end_if();
  1345               __ increment(j, one);
  1346          }__ end_loop(); __ dead(j);
  1347          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1348          __ goto_(return_);
  1349        }__ end_if();
  1350        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1351          __ increment(i, targetCountLess1);
  1352        }__ end_if();
  1353        __ increment(i, one);
  1354        __ bind(outer_loop);
  1355   }__ end_loop(); __ dead(i);
  1356   __ bind(return_);
  1358   // Final sync IdealKit and GraphKit.
  1359   final_sync(kit);
  1360   Node* result = __ value(rtn);
  1361 #undef __
  1362   C->set_has_loops(true);
  1363   return result;
  1366 //------------------------------inline_string_indexOf------------------------
  1367 bool LibraryCallKit::inline_string_indexOf() {
  1368   Node* receiver = argument(0);
  1369   Node* arg      = argument(1);
  1371   Node* result;
  1372   // Disable the use of pcmpestri until it can be guaranteed that
  1373   // the load doesn't cross into the uncommited space.
  1374   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1375       UseSSE42Intrinsics) {
  1376     // Generate SSE4.2 version of indexOf
  1377     // We currently only have match rules that use SSE4.2
  1379     receiver = null_check(receiver);
  1380     arg      = null_check(arg);
  1381     if (stopped()) {
  1382       return true;
  1385     ciInstanceKlass* str_klass = env()->String_klass();
  1386     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1388     // Make the merge point
  1389     RegionNode* result_rgn = new (C) RegionNode(4);
  1390     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1391     Node* no_ctrl  = NULL;
  1393     // Get start addr of source string
  1394     Node* source = load_String_value(no_ctrl, receiver);
  1395     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1396     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1398     // Get length of source string
  1399     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1401     // Get start addr of substring
  1402     Node* substr = load_String_value(no_ctrl, arg);
  1403     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1404     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1406     // Get length of source string
  1407     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1409     // Check for substr count > string count
  1410     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1411     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1412     Node* if_gt = generate_slow_guard(bol, NULL);
  1413     if (if_gt != NULL) {
  1414       result_phi->init_req(2, intcon(-1));
  1415       result_rgn->init_req(2, if_gt);
  1418     if (!stopped()) {
  1419       // Check for substr count == 0
  1420       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1421       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1422       Node* if_zero = generate_slow_guard(bol, NULL);
  1423       if (if_zero != NULL) {
  1424         result_phi->init_req(3, intcon(0));
  1425         result_rgn->init_req(3, if_zero);
  1429     if (!stopped()) {
  1430       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1431       result_phi->init_req(1, result);
  1432       result_rgn->init_req(1, control());
  1434     set_control(_gvn.transform(result_rgn));
  1435     record_for_igvn(result_rgn);
  1436     result = _gvn.transform(result_phi);
  1438   } else { // Use LibraryCallKit::string_indexOf
  1439     // don't intrinsify if argument isn't a constant string.
  1440     if (!arg->is_Con()) {
  1441      return false;
  1443     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1444     if (str_type == NULL) {
  1445       return false;
  1447     ciInstanceKlass* klass = env()->String_klass();
  1448     ciObject* str_const = str_type->const_oop();
  1449     if (str_const == NULL || str_const->klass() != klass) {
  1450       return false;
  1452     ciInstance* str = str_const->as_instance();
  1453     assert(str != NULL, "must be instance");
  1455     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1456     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1458     int o;
  1459     int c;
  1460     if (java_lang_String::has_offset_field()) {
  1461       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1462       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1463     } else {
  1464       o = 0;
  1465       c = pat->length();
  1468     // constant strings have no offset and count == length which
  1469     // simplifies the resulting code somewhat so lets optimize for that.
  1470     if (o != 0 || c != pat->length()) {
  1471      return false;
  1474     receiver = null_check(receiver, T_OBJECT);
  1475     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1476     if (stopped()) {
  1477       return true;
  1480     // The null string as a pattern always returns 0 (match at beginning of string)
  1481     if (c == 0) {
  1482       set_result(intcon(0));
  1483       return true;
  1486     // Generate default indexOf
  1487     jchar lastChar = pat->char_at(o + (c - 1));
  1488     int cache = 0;
  1489     int i;
  1490     for (i = 0; i < c - 1; i++) {
  1491       assert(i < pat->length(), "out of range");
  1492       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1495     int md2 = c;
  1496     for (i = 0; i < c - 1; i++) {
  1497       assert(i < pat->length(), "out of range");
  1498       if (pat->char_at(o + i) == lastChar) {
  1499         md2 = (c - 1) - i;
  1503     result = string_indexOf(receiver, pat, o, cache, md2);
  1505   set_result(result);
  1506   return true;
  1509 //--------------------------round_double_node--------------------------------
  1510 // Round a double node if necessary.
  1511 Node* LibraryCallKit::round_double_node(Node* n) {
  1512   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1513     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1514   return n;
  1517 //------------------------------inline_math-----------------------------------
  1518 // public static double Math.abs(double)
  1519 // public static double Math.sqrt(double)
  1520 // public static double Math.log(double)
  1521 // public static double Math.log10(double)
  1522 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1523   Node* arg = round_double_node(argument(0));
  1524   Node* n;
  1525   switch (id) {
  1526   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1527   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1528   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1529   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1530   default:  fatal_unexpected_iid(id);  break;
  1532   set_result(_gvn.transform(n));
  1533   return true;
  1536 //------------------------------inline_trig----------------------------------
  1537 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1538 // argument reduction which will turn into a fast/slow diamond.
  1539 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1540   Node* arg = round_double_node(argument(0));
  1541   Node* n = NULL;
  1543   switch (id) {
  1544   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1545   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1546   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1547   default:  fatal_unexpected_iid(id);  break;
  1549   n = _gvn.transform(n);
  1551   // Rounding required?  Check for argument reduction!
  1552   if (Matcher::strict_fp_requires_explicit_rounding) {
  1553     static const double     pi_4 =  0.7853981633974483;
  1554     static const double neg_pi_4 = -0.7853981633974483;
  1555     // pi/2 in 80-bit extended precision
  1556     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1557     // -pi/2 in 80-bit extended precision
  1558     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1559     // Cutoff value for using this argument reduction technique
  1560     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1561     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1563     // Pseudocode for sin:
  1564     // if (x <= Math.PI / 4.0) {
  1565     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1566     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1567     // } else {
  1568     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1569     // }
  1570     // return StrictMath.sin(x);
  1572     // Pseudocode for cos:
  1573     // if (x <= Math.PI / 4.0) {
  1574     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1575     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1576     // } else {
  1577     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1578     // }
  1579     // return StrictMath.cos(x);
  1581     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1582     // requires a special machine instruction to load it.  Instead we'll try
  1583     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1584     // probably do the math inside the SIN encoding.
  1586     // Make the merge point
  1587     RegionNode* r = new (C) RegionNode(3);
  1588     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1590     // Flatten arg so we need only 1 test
  1591     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1592     // Node for PI/4 constant
  1593     Node *pi4 = makecon(TypeD::make(pi_4));
  1594     // Check PI/4 : abs(arg)
  1595     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1596     // Check: If PI/4 < abs(arg) then go slow
  1597     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1598     // Branch either way
  1599     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1600     set_control(opt_iff(r,iff));
  1602     // Set fast path result
  1603     phi->init_req(2, n);
  1605     // Slow path - non-blocking leaf call
  1606     Node* call = NULL;
  1607     switch (id) {
  1608     case vmIntrinsics::_dsin:
  1609       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1610                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1611                                "Sin", NULL, arg, top());
  1612       break;
  1613     case vmIntrinsics::_dcos:
  1614       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1615                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1616                                "Cos", NULL, arg, top());
  1617       break;
  1618     case vmIntrinsics::_dtan:
  1619       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1620                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1621                                "Tan", NULL, arg, top());
  1622       break;
  1624     assert(control()->in(0) == call, "");
  1625     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1626     r->init_req(1, control());
  1627     phi->init_req(1, slow_result);
  1629     // Post-merge
  1630     set_control(_gvn.transform(r));
  1631     record_for_igvn(r);
  1632     n = _gvn.transform(phi);
  1634     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1636   set_result(n);
  1637   return true;
  1640 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1641   //-------------------
  1642   //result=(result.isNaN())? funcAddr():result;
  1643   // Check: If isNaN() by checking result!=result? then either trap
  1644   // or go to runtime
  1645   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1646   // Build the boolean node
  1647   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1649   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1650     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1651       // The pow or exp intrinsic returned a NaN, which requires a call
  1652       // to the runtime.  Recompile with the runtime call.
  1653       uncommon_trap(Deoptimization::Reason_intrinsic,
  1654                     Deoptimization::Action_make_not_entrant);
  1656     set_result(result);
  1657   } else {
  1658     // If this inlining ever returned NaN in the past, we compile a call
  1659     // to the runtime to properly handle corner cases
  1661     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1662     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1663     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1665     if (!if_slow->is_top()) {
  1666       RegionNode* result_region = new (C) RegionNode(3);
  1667       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1669       result_region->init_req(1, if_fast);
  1670       result_val->init_req(1, result);
  1672       set_control(if_slow);
  1674       const TypePtr* no_memory_effects = NULL;
  1675       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1676                                    no_memory_effects,
  1677                                    x, top(), y, y ? top() : NULL);
  1678       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1679 #ifdef ASSERT
  1680       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1681       assert(value_top == top(), "second value must be top");
  1682 #endif
  1684       result_region->init_req(2, control());
  1685       result_val->init_req(2, value);
  1686       set_result(result_region, result_val);
  1687     } else {
  1688       set_result(result);
  1693 //------------------------------inline_exp-------------------------------------
  1694 // Inline exp instructions, if possible.  The Intel hardware only misses
  1695 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1696 bool LibraryCallKit::inline_exp() {
  1697   Node* arg = round_double_node(argument(0));
  1698   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1700   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1702   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1703   return true;
  1706 //------------------------------inline_pow-------------------------------------
  1707 // Inline power instructions, if possible.
  1708 bool LibraryCallKit::inline_pow() {
  1709   // Pseudocode for pow
  1710   // if (x <= 0.0) {
  1711   //   long longy = (long)y;
  1712   //   if ((double)longy == y) { // if y is long
  1713   //     if (y + 1 == y) longy = 0; // huge number: even
  1714   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1715   //   } else {
  1716   //     result = NaN;
  1717   //   }
  1718   // } else {
  1719   //   result = DPow(x,y);
  1720   // }
  1721   // if (result != result)?  {
  1722   //   result = uncommon_trap() or runtime_call();
  1723   // }
  1724   // return result;
  1726   Node* x = round_double_node(argument(0));
  1727   Node* y = round_double_node(argument(2));
  1729   Node* result = NULL;
  1731   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1732     // Short form: skip the fancy tests and just check for NaN result.
  1733     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1734   } else {
  1735     // If this inlining ever returned NaN in the past, include all
  1736     // checks + call to the runtime.
  1738     // Set the merge point for If node with condition of (x <= 0.0)
  1739     // There are four possible paths to region node and phi node
  1740     RegionNode *r = new (C) RegionNode(4);
  1741     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1743     // Build the first if node: if (x <= 0.0)
  1744     // Node for 0 constant
  1745     Node *zeronode = makecon(TypeD::ZERO);
  1746     // Check x:0
  1747     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1748     // Check: If (x<=0) then go complex path
  1749     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1750     // Branch either way
  1751     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1752     // Fast path taken; set region slot 3
  1753     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1754     r->init_req(3,fast_taken); // Capture fast-control
  1756     // Fast path not-taken, i.e. slow path
  1757     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1759     // Set fast path result
  1760     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1761     phi->init_req(3, fast_result);
  1763     // Complex path
  1764     // Build the second if node (if y is long)
  1765     // Node for (long)y
  1766     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1767     // Node for (double)((long) y)
  1768     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1769     // Check (double)((long) y) : y
  1770     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1771     // Check if (y isn't long) then go to slow path
  1773     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1774     // Branch either way
  1775     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1776     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1778     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1780     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1781     // Node for constant 1
  1782     Node *conone = longcon(1);
  1783     // 1& (long)y
  1784     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1786     // A huge number is always even. Detect a huge number by checking
  1787     // if y + 1 == y and set integer to be tested for parity to 0.
  1788     // Required for corner case:
  1789     // (long)9.223372036854776E18 = max_jlong
  1790     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1791     // max_jlong is odd but 9.223372036854776E18 is even
  1792     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1793     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1794     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1795     Node* correctedsign = NULL;
  1796     if (ConditionalMoveLimit != 0) {
  1797       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1798     } else {
  1799       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1800       RegionNode *r = new (C) RegionNode(3);
  1801       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1802       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1803       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1804       phi->init_req(1, signnode);
  1805       phi->init_req(2, longcon(0));
  1806       correctedsign = _gvn.transform(phi);
  1807       ylong_path = _gvn.transform(r);
  1808       record_for_igvn(r);
  1811     // zero node
  1812     Node *conzero = longcon(0);
  1813     // Check (1&(long)y)==0?
  1814     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1815     // Check if (1&(long)y)!=0?, if so the result is negative
  1816     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1817     // abs(x)
  1818     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1819     // abs(x)^y
  1820     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1821     // -abs(x)^y
  1822     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1823     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1824     Node *signresult = NULL;
  1825     if (ConditionalMoveLimit != 0) {
  1826       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1827     } else {
  1828       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1829       RegionNode *r = new (C) RegionNode(3);
  1830       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1831       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1832       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1833       phi->init_req(1, absxpowy);
  1834       phi->init_req(2, negabsxpowy);
  1835       signresult = _gvn.transform(phi);
  1836       ylong_path = _gvn.transform(r);
  1837       record_for_igvn(r);
  1839     // Set complex path fast result
  1840     r->init_req(2, ylong_path);
  1841     phi->init_req(2, signresult);
  1843     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1844     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1845     r->init_req(1,slow_path);
  1846     phi->init_req(1,slow_result);
  1848     // Post merge
  1849     set_control(_gvn.transform(r));
  1850     record_for_igvn(r);
  1851     result = _gvn.transform(phi);
  1854   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1856   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1857   return true;
  1860 //------------------------------runtime_math-----------------------------
  1861 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1862   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1863          "must be (DD)D or (D)D type");
  1865   // Inputs
  1866   Node* a = round_double_node(argument(0));
  1867   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1869   const TypePtr* no_memory_effects = NULL;
  1870   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1871                                  no_memory_effects,
  1872                                  a, top(), b, b ? top() : NULL);
  1873   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1874 #ifdef ASSERT
  1875   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1876   assert(value_top == top(), "second value must be top");
  1877 #endif
  1879   set_result(value);
  1880   return true;
  1883 //------------------------------inline_math_native-----------------------------
  1884 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1885 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1886   switch (id) {
  1887     // These intrinsics are not properly supported on all hardware
  1888   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1889     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1890   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1891     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1892   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1893     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1895   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1896     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1897   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1898     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1900     // These intrinsics are supported on all hardware
  1901   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1902   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1904   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1905     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1906   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1907     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1908 #undef FN_PTR
  1910    // These intrinsics are not yet correctly implemented
  1911   case vmIntrinsics::_datan2:
  1912     return false;
  1914   default:
  1915     fatal_unexpected_iid(id);
  1916     return false;
  1920 static bool is_simple_name(Node* n) {
  1921   return (n->req() == 1         // constant
  1922           || (n->is_Type() && n->as_Type()->type()->singleton())
  1923           || n->is_Proj()       // parameter or return value
  1924           || n->is_Phi()        // local of some sort
  1925           );
  1928 //----------------------------inline_min_max-----------------------------------
  1929 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1930   set_result(generate_min_max(id, argument(0), argument(1)));
  1931   return true;
  1934 bool LibraryCallKit::inline_math_mathExact(Node* math) {
  1935   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
  1936   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
  1938   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
  1939   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1940   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  1941   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  1944     PreserveJVMState pjvms(this);
  1945     PreserveReexecuteState preexecs(this);
  1946     jvms()->set_should_reexecute(true);
  1948     set_control(slow_path);
  1949     set_i_o(i_o());
  1951     uncommon_trap(Deoptimization::Reason_intrinsic,
  1952                   Deoptimization::Action_none);
  1955   set_control(fast_path);
  1956   set_result(result);
  1957   return true;
  1960 bool LibraryCallKit::inline_math_addExact() {
  1961   Node* arg1 = argument(0);
  1962   Node* arg2 = argument(1);
  1964   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
  1965   if (add->Opcode() == Op_AddExactI) {
  1966     return inline_math_mathExact(add);
  1967   } else {
  1968     set_result(add);
  1970   return true;
  1973 Node*
  1974 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1975   // These are the candidate return value:
  1976   Node* xvalue = x0;
  1977   Node* yvalue = y0;
  1979   if (xvalue == yvalue) {
  1980     return xvalue;
  1983   bool want_max = (id == vmIntrinsics::_max);
  1985   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1986   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1987   if (txvalue == NULL || tyvalue == NULL)  return top();
  1988   // This is not really necessary, but it is consistent with a
  1989   // hypothetical MaxINode::Value method:
  1990   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1992   // %%% This folding logic should (ideally) be in a different place.
  1993   // Some should be inside IfNode, and there to be a more reliable
  1994   // transformation of ?: style patterns into cmoves.  We also want
  1995   // more powerful optimizations around cmove and min/max.
  1997   // Try to find a dominating comparison of these guys.
  1998   // It can simplify the index computation for Arrays.copyOf
  1999   // and similar uses of System.arraycopy.
  2000   // First, compute the normalized version of CmpI(x, y).
  2001   int   cmp_op = Op_CmpI;
  2002   Node* xkey = xvalue;
  2003   Node* ykey = yvalue;
  2004   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2005   if (ideal_cmpxy->is_Cmp()) {
  2006     // E.g., if we have CmpI(length - offset, count),
  2007     // it might idealize to CmpI(length, count + offset)
  2008     cmp_op = ideal_cmpxy->Opcode();
  2009     xkey = ideal_cmpxy->in(1);
  2010     ykey = ideal_cmpxy->in(2);
  2013   // Start by locating any relevant comparisons.
  2014   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2015   Node* cmpxy = NULL;
  2016   Node* cmpyx = NULL;
  2017   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2018     Node* cmp = start_from->fast_out(k);
  2019     if (cmp->outcnt() > 0 &&            // must have prior uses
  2020         cmp->in(0) == NULL &&           // must be context-independent
  2021         cmp->Opcode() == cmp_op) {      // right kind of compare
  2022       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2023       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2027   const int NCMPS = 2;
  2028   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2029   int cmpn;
  2030   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2031     if (cmps[cmpn] != NULL)  break;     // find a result
  2033   if (cmpn < NCMPS) {
  2034     // Look for a dominating test that tells us the min and max.
  2035     int depth = 0;                // Limit search depth for speed
  2036     Node* dom = control();
  2037     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2038       if (++depth >= 100)  break;
  2039       Node* ifproj = dom;
  2040       if (!ifproj->is_Proj())  continue;
  2041       Node* iff = ifproj->in(0);
  2042       if (!iff->is_If())  continue;
  2043       Node* bol = iff->in(1);
  2044       if (!bol->is_Bool())  continue;
  2045       Node* cmp = bol->in(1);
  2046       if (cmp == NULL)  continue;
  2047       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2048         if (cmps[cmpn] == cmp)  break;
  2049       if (cmpn == NCMPS)  continue;
  2050       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2051       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2052       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2053       // At this point, we know that 'x btest y' is true.
  2054       switch (btest) {
  2055       case BoolTest::eq:
  2056         // They are proven equal, so we can collapse the min/max.
  2057         // Either value is the answer.  Choose the simpler.
  2058         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2059           return yvalue;
  2060         return xvalue;
  2061       case BoolTest::lt:          // x < y
  2062       case BoolTest::le:          // x <= y
  2063         return (want_max ? yvalue : xvalue);
  2064       case BoolTest::gt:          // x > y
  2065       case BoolTest::ge:          // x >= y
  2066         return (want_max ? xvalue : yvalue);
  2071   // We failed to find a dominating test.
  2072   // Let's pick a test that might GVN with prior tests.
  2073   Node*          best_bol   = NULL;
  2074   BoolTest::mask best_btest = BoolTest::illegal;
  2075   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2076     Node* cmp = cmps[cmpn];
  2077     if (cmp == NULL)  continue;
  2078     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2079       Node* bol = cmp->fast_out(j);
  2080       if (!bol->is_Bool())  continue;
  2081       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2082       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2083       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2084       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2085         best_bol   = bol->as_Bool();
  2086         best_btest = btest;
  2091   Node* answer_if_true  = NULL;
  2092   Node* answer_if_false = NULL;
  2093   switch (best_btest) {
  2094   default:
  2095     if (cmpxy == NULL)
  2096       cmpxy = ideal_cmpxy;
  2097     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2098     // and fall through:
  2099   case BoolTest::lt:          // x < y
  2100   case BoolTest::le:          // x <= y
  2101     answer_if_true  = (want_max ? yvalue : xvalue);
  2102     answer_if_false = (want_max ? xvalue : yvalue);
  2103     break;
  2104   case BoolTest::gt:          // x > y
  2105   case BoolTest::ge:          // x >= y
  2106     answer_if_true  = (want_max ? xvalue : yvalue);
  2107     answer_if_false = (want_max ? yvalue : xvalue);
  2108     break;
  2111   jint hi, lo;
  2112   if (want_max) {
  2113     // We can sharpen the minimum.
  2114     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2115     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2116   } else {
  2117     // We can sharpen the maximum.
  2118     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2119     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2122   // Use a flow-free graph structure, to avoid creating excess control edges
  2123   // which could hinder other optimizations.
  2124   // Since Math.min/max is often used with arraycopy, we want
  2125   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2126   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2127                                answer_if_false, answer_if_true,
  2128                                TypeInt::make(lo, hi, widen));
  2130   return _gvn.transform(cmov);
  2132   /*
  2133   // This is not as desirable as it may seem, since Min and Max
  2134   // nodes do not have a full set of optimizations.
  2135   // And they would interfere, anyway, with 'if' optimizations
  2136   // and with CMoveI canonical forms.
  2137   switch (id) {
  2138   case vmIntrinsics::_min:
  2139     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2140   case vmIntrinsics::_max:
  2141     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2142   default:
  2143     ShouldNotReachHere();
  2145   */
  2148 inline int
  2149 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2150   const TypePtr* base_type = TypePtr::NULL_PTR;
  2151   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2152   if (base_type == NULL) {
  2153     // Unknown type.
  2154     return Type::AnyPtr;
  2155   } else if (base_type == TypePtr::NULL_PTR) {
  2156     // Since this is a NULL+long form, we have to switch to a rawptr.
  2157     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2158     offset = MakeConX(0);
  2159     return Type::RawPtr;
  2160   } else if (base_type->base() == Type::RawPtr) {
  2161     return Type::RawPtr;
  2162   } else if (base_type->isa_oopptr()) {
  2163     // Base is never null => always a heap address.
  2164     if (base_type->ptr() == TypePtr::NotNull) {
  2165       return Type::OopPtr;
  2167     // Offset is small => always a heap address.
  2168     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2169     if (offset_type != NULL &&
  2170         base_type->offset() == 0 &&     // (should always be?)
  2171         offset_type->_lo >= 0 &&
  2172         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2173       return Type::OopPtr;
  2175     // Otherwise, it might either be oop+off or NULL+addr.
  2176     return Type::AnyPtr;
  2177   } else {
  2178     // No information:
  2179     return Type::AnyPtr;
  2183 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2184   int kind = classify_unsafe_addr(base, offset);
  2185   if (kind == Type::RawPtr) {
  2186     return basic_plus_adr(top(), base, offset);
  2187   } else {
  2188     return basic_plus_adr(base, offset);
  2192 //--------------------------inline_number_methods-----------------------------
  2193 // inline int     Integer.numberOfLeadingZeros(int)
  2194 // inline int        Long.numberOfLeadingZeros(long)
  2195 //
  2196 // inline int     Integer.numberOfTrailingZeros(int)
  2197 // inline int        Long.numberOfTrailingZeros(long)
  2198 //
  2199 // inline int     Integer.bitCount(int)
  2200 // inline int        Long.bitCount(long)
  2201 //
  2202 // inline char  Character.reverseBytes(char)
  2203 // inline short     Short.reverseBytes(short)
  2204 // inline int     Integer.reverseBytes(int)
  2205 // inline long       Long.reverseBytes(long)
  2206 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2207   Node* arg = argument(0);
  2208   Node* n;
  2209   switch (id) {
  2210   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2211   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2212   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2213   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2214   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2215   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2216   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2217   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2218   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2219   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2220   default:  fatal_unexpected_iid(id);  break;
  2222   set_result(_gvn.transform(n));
  2223   return true;
  2226 //----------------------------inline_unsafe_access----------------------------
  2228 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2230 // Helper that guards and inserts a pre-barrier.
  2231 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2232                                         Node* pre_val, bool need_mem_bar) {
  2233   // We could be accessing the referent field of a reference object. If so, when G1
  2234   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2235   // This routine performs some compile time filters and generates suitable
  2236   // runtime filters that guard the pre-barrier code.
  2237   // Also add memory barrier for non volatile load from the referent field
  2238   // to prevent commoning of loads across safepoint.
  2239   if (!UseG1GC && !need_mem_bar)
  2240     return;
  2242   // Some compile time checks.
  2244   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2245   const TypeX* otype = offset->find_intptr_t_type();
  2246   if (otype != NULL && otype->is_con() &&
  2247       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2248     // Constant offset but not the reference_offset so just return
  2249     return;
  2252   // We only need to generate the runtime guards for instances.
  2253   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2254   if (btype != NULL) {
  2255     if (btype->isa_aryptr()) {
  2256       // Array type so nothing to do
  2257       return;
  2260     const TypeInstPtr* itype = btype->isa_instptr();
  2261     if (itype != NULL) {
  2262       // Can the klass of base_oop be statically determined to be
  2263       // _not_ a sub-class of Reference and _not_ Object?
  2264       ciKlass* klass = itype->klass();
  2265       if ( klass->is_loaded() &&
  2266           !klass->is_subtype_of(env()->Reference_klass()) &&
  2267           !env()->Object_klass()->is_subtype_of(klass)) {
  2268         return;
  2273   // The compile time filters did not reject base_oop/offset so
  2274   // we need to generate the following runtime filters
  2275   //
  2276   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2277   //   if (instance_of(base, java.lang.ref.Reference)) {
  2278   //     pre_barrier(_, pre_val, ...);
  2279   //   }
  2280   // }
  2282   float likely   = PROB_LIKELY(  0.999);
  2283   float unlikely = PROB_UNLIKELY(0.999);
  2285   IdealKit ideal(this);
  2286 #define __ ideal.
  2288   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2290   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2291       // Update graphKit memory and control from IdealKit.
  2292       sync_kit(ideal);
  2294       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2295       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2297       // Update IdealKit memory and control from graphKit.
  2298       __ sync_kit(this);
  2300       Node* one = __ ConI(1);
  2301       // is_instof == 0 if base_oop == NULL
  2302       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2304         // Update graphKit from IdeakKit.
  2305         sync_kit(ideal);
  2307         // Use the pre-barrier to record the value in the referent field
  2308         pre_barrier(false /* do_load */,
  2309                     __ ctrl(),
  2310                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2311                     pre_val /* pre_val */,
  2312                     T_OBJECT);
  2313         if (need_mem_bar) {
  2314           // Add memory barrier to prevent commoning reads from this field
  2315           // across safepoint since GC can change its value.
  2316           insert_mem_bar(Op_MemBarCPUOrder);
  2318         // Update IdealKit from graphKit.
  2319         __ sync_kit(this);
  2321       } __ end_if(); // _ref_type != ref_none
  2322   } __ end_if(); // offset == referent_offset
  2324   // Final sync IdealKit and GraphKit.
  2325   final_sync(ideal);
  2326 #undef __
  2330 // Interpret Unsafe.fieldOffset cookies correctly:
  2331 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2333 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2334   // Attempt to infer a sharper value type from the offset and base type.
  2335   ciKlass* sharpened_klass = NULL;
  2337   // See if it is an instance field, with an object type.
  2338   if (alias_type->field() != NULL) {
  2339     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2340     if (alias_type->field()->type()->is_klass()) {
  2341       sharpened_klass = alias_type->field()->type()->as_klass();
  2345   // See if it is a narrow oop array.
  2346   if (adr_type->isa_aryptr()) {
  2347     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2348       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2349       if (elem_type != NULL) {
  2350         sharpened_klass = elem_type->klass();
  2355   // The sharpened class might be unloaded if there is no class loader
  2356   // contraint in place.
  2357   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2358     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2360 #ifndef PRODUCT
  2361     if (C->print_intrinsics() || C->print_inlining()) {
  2362       tty->print("  from base type: ");  adr_type->dump();
  2363       tty->print("  sharpened value: ");  tjp->dump();
  2365 #endif
  2366     // Sharpen the value type.
  2367     return tjp;
  2369   return NULL;
  2372 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2373   if (callee()->is_static())  return false;  // caller must have the capability!
  2375 #ifndef PRODUCT
  2377     ResourceMark rm;
  2378     // Check the signatures.
  2379     ciSignature* sig = callee()->signature();
  2380 #ifdef ASSERT
  2381     if (!is_store) {
  2382       // Object getObject(Object base, int/long offset), etc.
  2383       BasicType rtype = sig->return_type()->basic_type();
  2384       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2385           rtype = T_ADDRESS;  // it is really a C void*
  2386       assert(rtype == type, "getter must return the expected value");
  2387       if (!is_native_ptr) {
  2388         assert(sig->count() == 2, "oop getter has 2 arguments");
  2389         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2390         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2391       } else {
  2392         assert(sig->count() == 1, "native getter has 1 argument");
  2393         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2395     } else {
  2396       // void putObject(Object base, int/long offset, Object x), etc.
  2397       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2398       if (!is_native_ptr) {
  2399         assert(sig->count() == 3, "oop putter has 3 arguments");
  2400         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2401         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2402       } else {
  2403         assert(sig->count() == 2, "native putter has 2 arguments");
  2404         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2406       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2407       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2408         vtype = T_ADDRESS;  // it is really a C void*
  2409       assert(vtype == type, "putter must accept the expected value");
  2411 #endif // ASSERT
  2413 #endif //PRODUCT
  2415   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2417   Node* receiver = argument(0);  // type: oop
  2419   // Build address expression.  See the code in inline_unsafe_prefetch.
  2420   Node* adr;
  2421   Node* heap_base_oop = top();
  2422   Node* offset = top();
  2423   Node* val;
  2425   if (!is_native_ptr) {
  2426     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2427     Node* base = argument(1);  // type: oop
  2428     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2429     offset = argument(2);  // type: long
  2430     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2431     // to be plain byte offsets, which are also the same as those accepted
  2432     // by oopDesc::field_base.
  2433     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2434            "fieldOffset must be byte-scaled");
  2435     // 32-bit machines ignore the high half!
  2436     offset = ConvL2X(offset);
  2437     adr = make_unsafe_address(base, offset);
  2438     heap_base_oop = base;
  2439     val = is_store ? argument(4) : NULL;
  2440   } else {
  2441     Node* ptr = argument(1);  // type: long
  2442     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2443     adr = make_unsafe_address(NULL, ptr);
  2444     val = is_store ? argument(3) : NULL;
  2447   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2449   // First guess at the value type.
  2450   const Type *value_type = Type::get_const_basic_type(type);
  2452   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2453   // there was not enough information to nail it down.
  2454   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2455   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2457   // We will need memory barriers unless we can determine a unique
  2458   // alias category for this reference.  (Note:  If for some reason
  2459   // the barriers get omitted and the unsafe reference begins to "pollute"
  2460   // the alias analysis of the rest of the graph, either Compile::can_alias
  2461   // or Compile::must_alias will throw a diagnostic assert.)
  2462   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2464   // If we are reading the value of the referent field of a Reference
  2465   // object (either by using Unsafe directly or through reflection)
  2466   // then, if G1 is enabled, we need to record the referent in an
  2467   // SATB log buffer using the pre-barrier mechanism.
  2468   // Also we need to add memory barrier to prevent commoning reads
  2469   // from this field across safepoint since GC can change its value.
  2470   bool need_read_barrier = !is_native_ptr && !is_store &&
  2471                            offset != top() && heap_base_oop != top();
  2473   if (!is_store && type == T_OBJECT) {
  2474     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2475     if (tjp != NULL) {
  2476       value_type = tjp;
  2480   receiver = null_check(receiver);
  2481   if (stopped()) {
  2482     return true;
  2484   // Heap pointers get a null-check from the interpreter,
  2485   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2486   // and it is not possible to fully distinguish unintended nulls
  2487   // from intended ones in this API.
  2489   if (is_volatile) {
  2490     // We need to emit leading and trailing CPU membars (see below) in
  2491     // addition to memory membars when is_volatile. This is a little
  2492     // too strong, but avoids the need to insert per-alias-type
  2493     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2494     // we cannot do effectively here because we probably only have a
  2495     // rough approximation of type.
  2496     need_mem_bar = true;
  2497     // For Stores, place a memory ordering barrier now.
  2498     if (is_store)
  2499       insert_mem_bar(Op_MemBarRelease);
  2502   // Memory barrier to prevent normal and 'unsafe' accesses from
  2503   // bypassing each other.  Happens after null checks, so the
  2504   // exception paths do not take memory state from the memory barrier,
  2505   // so there's no problems making a strong assert about mixing users
  2506   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2507   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2508   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2510   if (!is_store) {
  2511     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2512     // load value
  2513     switch (type) {
  2514     case T_BOOLEAN:
  2515     case T_CHAR:
  2516     case T_BYTE:
  2517     case T_SHORT:
  2518     case T_INT:
  2519     case T_LONG:
  2520     case T_FLOAT:
  2521     case T_DOUBLE:
  2522       break;
  2523     case T_OBJECT:
  2524       if (need_read_barrier) {
  2525         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2527       break;
  2528     case T_ADDRESS:
  2529       // Cast to an int type.
  2530       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2531       p = ConvX2L(p);
  2532       break;
  2533     default:
  2534       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2535       break;
  2537     // The load node has the control of the preceding MemBarCPUOrder.  All
  2538     // following nodes will have the control of the MemBarCPUOrder inserted at
  2539     // the end of this method.  So, pushing the load onto the stack at a later
  2540     // point is fine.
  2541     set_result(p);
  2542   } else {
  2543     // place effect of store into memory
  2544     switch (type) {
  2545     case T_DOUBLE:
  2546       val = dstore_rounding(val);
  2547       break;
  2548     case T_ADDRESS:
  2549       // Repackage the long as a pointer.
  2550       val = ConvL2X(val);
  2551       val = _gvn.transform(new (C) CastX2PNode(val));
  2552       break;
  2555     if (type != T_OBJECT ) {
  2556       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2557     } else {
  2558       // Possibly an oop being stored to Java heap or native memory
  2559       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2560         // oop to Java heap.
  2561         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2562       } else {
  2563         // We can't tell at compile time if we are storing in the Java heap or outside
  2564         // of it. So we need to emit code to conditionally do the proper type of
  2565         // store.
  2567         IdealKit ideal(this);
  2568 #define __ ideal.
  2569         // QQQ who knows what probability is here??
  2570         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2571           // Sync IdealKit and graphKit.
  2572           sync_kit(ideal);
  2573           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2574           // Update IdealKit memory.
  2575           __ sync_kit(this);
  2576         } __ else_(); {
  2577           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2578         } __ end_if();
  2579         // Final sync IdealKit and GraphKit.
  2580         final_sync(ideal);
  2581 #undef __
  2586   if (is_volatile) {
  2587     if (!is_store)
  2588       insert_mem_bar(Op_MemBarAcquire);
  2589     else
  2590       insert_mem_bar(Op_MemBarVolatile);
  2593   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2595   return true;
  2598 //----------------------------inline_unsafe_prefetch----------------------------
  2600 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2601 #ifndef PRODUCT
  2603     ResourceMark rm;
  2604     // Check the signatures.
  2605     ciSignature* sig = callee()->signature();
  2606 #ifdef ASSERT
  2607     // Object getObject(Object base, int/long offset), etc.
  2608     BasicType rtype = sig->return_type()->basic_type();
  2609     if (!is_native_ptr) {
  2610       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2611       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2612       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2613     } else {
  2614       assert(sig->count() == 1, "native prefetch has 1 argument");
  2615       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2617 #endif // ASSERT
  2619 #endif // !PRODUCT
  2621   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2623   const int idx = is_static ? 0 : 1;
  2624   if (!is_static) {
  2625     null_check_receiver();
  2626     if (stopped()) {
  2627       return true;
  2631   // Build address expression.  See the code in inline_unsafe_access.
  2632   Node *adr;
  2633   if (!is_native_ptr) {
  2634     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2635     Node* base   = argument(idx + 0);  // type: oop
  2636     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2637     Node* offset = argument(idx + 1);  // type: long
  2638     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2639     // to be plain byte offsets, which are also the same as those accepted
  2640     // by oopDesc::field_base.
  2641     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2642            "fieldOffset must be byte-scaled");
  2643     // 32-bit machines ignore the high half!
  2644     offset = ConvL2X(offset);
  2645     adr = make_unsafe_address(base, offset);
  2646   } else {
  2647     Node* ptr = argument(idx + 0);  // type: long
  2648     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2649     adr = make_unsafe_address(NULL, ptr);
  2652   // Generate the read or write prefetch
  2653   Node *prefetch;
  2654   if (is_store) {
  2655     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2656   } else {
  2657     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2659   prefetch->init_req(0, control());
  2660   set_i_o(_gvn.transform(prefetch));
  2662   return true;
  2665 //----------------------------inline_unsafe_load_store----------------------------
  2666 // This method serves a couple of different customers (depending on LoadStoreKind):
  2667 //
  2668 // LS_cmpxchg:
  2669 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2670 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2671 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2672 //
  2673 // LS_xadd:
  2674 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2675 //   public long getAndAddLong(Object o, long offset, long delta)
  2676 //
  2677 // LS_xchg:
  2678 //   int    getAndSet(Object o, long offset, int    newValue)
  2679 //   long   getAndSet(Object o, long offset, long   newValue)
  2680 //   Object getAndSet(Object o, long offset, Object newValue)
  2681 //
  2682 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2683   // This basic scheme here is the same as inline_unsafe_access, but
  2684   // differs in enough details that combining them would make the code
  2685   // overly confusing.  (This is a true fact! I originally combined
  2686   // them, but even I was confused by it!) As much code/comments as
  2687   // possible are retained from inline_unsafe_access though to make
  2688   // the correspondences clearer. - dl
  2690   if (callee()->is_static())  return false;  // caller must have the capability!
  2692 #ifndef PRODUCT
  2693   BasicType rtype;
  2695     ResourceMark rm;
  2696     // Check the signatures.
  2697     ciSignature* sig = callee()->signature();
  2698     rtype = sig->return_type()->basic_type();
  2699     if (kind == LS_xadd || kind == LS_xchg) {
  2700       // Check the signatures.
  2701 #ifdef ASSERT
  2702       assert(rtype == type, "get and set must return the expected type");
  2703       assert(sig->count() == 3, "get and set has 3 arguments");
  2704       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2705       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2706       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2707 #endif // ASSERT
  2708     } else if (kind == LS_cmpxchg) {
  2709       // Check the signatures.
  2710 #ifdef ASSERT
  2711       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2712       assert(sig->count() == 4, "CAS has 4 arguments");
  2713       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2714       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2715 #endif // ASSERT
  2716     } else {
  2717       ShouldNotReachHere();
  2720 #endif //PRODUCT
  2722   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2724   // Get arguments:
  2725   Node* receiver = NULL;
  2726   Node* base     = NULL;
  2727   Node* offset   = NULL;
  2728   Node* oldval   = NULL;
  2729   Node* newval   = NULL;
  2730   if (kind == LS_cmpxchg) {
  2731     const bool two_slot_type = type2size[type] == 2;
  2732     receiver = argument(0);  // type: oop
  2733     base     = argument(1);  // type: oop
  2734     offset   = argument(2);  // type: long
  2735     oldval   = argument(4);  // type: oop, int, or long
  2736     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2737   } else if (kind == LS_xadd || kind == LS_xchg){
  2738     receiver = argument(0);  // type: oop
  2739     base     = argument(1);  // type: oop
  2740     offset   = argument(2);  // type: long
  2741     oldval   = NULL;
  2742     newval   = argument(4);  // type: oop, int, or long
  2745   // Null check receiver.
  2746   receiver = null_check(receiver);
  2747   if (stopped()) {
  2748     return true;
  2751   // Build field offset expression.
  2752   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2753   // to be plain byte offsets, which are also the same as those accepted
  2754   // by oopDesc::field_base.
  2755   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2756   // 32-bit machines ignore the high half of long offsets
  2757   offset = ConvL2X(offset);
  2758   Node* adr = make_unsafe_address(base, offset);
  2759   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2761   // For CAS, unlike inline_unsafe_access, there seems no point in
  2762   // trying to refine types. Just use the coarse types here.
  2763   const Type *value_type = Type::get_const_basic_type(type);
  2764   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2765   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2767   if (kind == LS_xchg && type == T_OBJECT) {
  2768     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2769     if (tjp != NULL) {
  2770       value_type = tjp;
  2774   int alias_idx = C->get_alias_index(adr_type);
  2776   // Memory-model-wise, a LoadStore acts like a little synchronized
  2777   // block, so needs barriers on each side.  These don't translate
  2778   // into actual barriers on most machines, but we still need rest of
  2779   // compiler to respect ordering.
  2781   insert_mem_bar(Op_MemBarRelease);
  2782   insert_mem_bar(Op_MemBarCPUOrder);
  2784   // 4984716: MemBars must be inserted before this
  2785   //          memory node in order to avoid a false
  2786   //          dependency which will confuse the scheduler.
  2787   Node *mem = memory(alias_idx);
  2789   // For now, we handle only those cases that actually exist: ints,
  2790   // longs, and Object. Adding others should be straightforward.
  2791   Node* load_store;
  2792   switch(type) {
  2793   case T_INT:
  2794     if (kind == LS_xadd) {
  2795       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2796     } else if (kind == LS_xchg) {
  2797       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2798     } else if (kind == LS_cmpxchg) {
  2799       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2800     } else {
  2801       ShouldNotReachHere();
  2803     break;
  2804   case T_LONG:
  2805     if (kind == LS_xadd) {
  2806       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2807     } else if (kind == LS_xchg) {
  2808       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2809     } else if (kind == LS_cmpxchg) {
  2810       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2811     } else {
  2812       ShouldNotReachHere();
  2814     break;
  2815   case T_OBJECT:
  2816     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2817     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2818     // Execute transformation here to avoid barrier generation in such case.
  2819     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2820       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2822     // Reference stores need a store barrier.
  2823     if (kind == LS_xchg) {
  2824       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2825       if (!can_move_pre_barrier()) {
  2826         pre_barrier(true /* do_load*/,
  2827                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2828                     NULL /* pre_val*/,
  2829                     T_OBJECT);
  2830       } // Else move pre_barrier to use load_store value, see below.
  2831     } else if (kind == LS_cmpxchg) {
  2832       // Same as for newval above:
  2833       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2834         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2836       // The only known value which might get overwritten is oldval.
  2837       pre_barrier(false /* do_load */,
  2838                   control(), NULL, NULL, max_juint, NULL, NULL,
  2839                   oldval /* pre_val */,
  2840                   T_OBJECT);
  2841     } else {
  2842       ShouldNotReachHere();
  2845 #ifdef _LP64
  2846     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2847       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2848       if (kind == LS_xchg) {
  2849         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2850                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2851       } else {
  2852         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2853         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2854         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2855                                                                    newval_enc, oldval_enc));
  2857     } else
  2858 #endif
  2860       if (kind == LS_xchg) {
  2861         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2862       } else {
  2863         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2864         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2867     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2868     break;
  2869   default:
  2870     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2871     break;
  2874   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2875   // main role is to prevent LoadStore nodes from being optimized away
  2876   // when their results aren't used.
  2877   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  2878   set_memory(proj, alias_idx);
  2880   if (type == T_OBJECT && kind == LS_xchg) {
  2881 #ifdef _LP64
  2882     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2883       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  2885 #endif
  2886     if (can_move_pre_barrier()) {
  2887       // Don't need to load pre_val. The old value is returned by load_store.
  2888       // The pre_barrier can execute after the xchg as long as no safepoint
  2889       // gets inserted between them.
  2890       pre_barrier(false /* do_load */,
  2891                   control(), NULL, NULL, max_juint, NULL, NULL,
  2892                   load_store /* pre_val */,
  2893                   T_OBJECT);
  2897   // Add the trailing membar surrounding the access
  2898   insert_mem_bar(Op_MemBarCPUOrder);
  2899   insert_mem_bar(Op_MemBarAcquire);
  2901   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2902   set_result(load_store);
  2903   return true;
  2906 //----------------------------inline_unsafe_ordered_store----------------------
  2907 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2908 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2909 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2910 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2911   // This is another variant of inline_unsafe_access, differing in
  2912   // that it always issues store-store ("release") barrier and ensures
  2913   // store-atomicity (which only matters for "long").
  2915   if (callee()->is_static())  return false;  // caller must have the capability!
  2917 #ifndef PRODUCT
  2919     ResourceMark rm;
  2920     // Check the signatures.
  2921     ciSignature* sig = callee()->signature();
  2922 #ifdef ASSERT
  2923     BasicType rtype = sig->return_type()->basic_type();
  2924     assert(rtype == T_VOID, "must return void");
  2925     assert(sig->count() == 3, "has 3 arguments");
  2926     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2927     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2928 #endif // ASSERT
  2930 #endif //PRODUCT
  2932   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2934   // Get arguments:
  2935   Node* receiver = argument(0);  // type: oop
  2936   Node* base     = argument(1);  // type: oop
  2937   Node* offset   = argument(2);  // type: long
  2938   Node* val      = argument(4);  // type: oop, int, or long
  2940   // Null check receiver.
  2941   receiver = null_check(receiver);
  2942   if (stopped()) {
  2943     return true;
  2946   // Build field offset expression.
  2947   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2948   // 32-bit machines ignore the high half of long offsets
  2949   offset = ConvL2X(offset);
  2950   Node* adr = make_unsafe_address(base, offset);
  2951   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2952   const Type *value_type = Type::get_const_basic_type(type);
  2953   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2955   insert_mem_bar(Op_MemBarRelease);
  2956   insert_mem_bar(Op_MemBarCPUOrder);
  2957   // Ensure that the store is atomic for longs:
  2958   const bool require_atomic_access = true;
  2959   Node* store;
  2960   if (type == T_OBJECT) // reference stores need a store barrier.
  2961     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2962   else {
  2963     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2965   insert_mem_bar(Op_MemBarCPUOrder);
  2966   return true;
  2969 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  2970   // Regardless of form, don't allow previous ld/st to move down,
  2971   // then issue acquire, release, or volatile mem_bar.
  2972   insert_mem_bar(Op_MemBarCPUOrder);
  2973   switch(id) {
  2974     case vmIntrinsics::_loadFence:
  2975       insert_mem_bar(Op_MemBarAcquire);
  2976       return true;
  2977     case vmIntrinsics::_storeFence:
  2978       insert_mem_bar(Op_MemBarRelease);
  2979       return true;
  2980     case vmIntrinsics::_fullFence:
  2981       insert_mem_bar(Op_MemBarVolatile);
  2982       return true;
  2983     default:
  2984       fatal_unexpected_iid(id);
  2985       return false;
  2989 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  2990   if (!kls->is_Con()) {
  2991     return true;
  2993   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  2994   if (klsptr == NULL) {
  2995     return true;
  2997   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  2998   // don't need a guard for a klass that is already initialized
  2999   return !ik->is_initialized();
  3002 //----------------------------inline_unsafe_allocate---------------------------
  3003 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3004 bool LibraryCallKit::inline_unsafe_allocate() {
  3005   if (callee()->is_static())  return false;  // caller must have the capability!
  3007   null_check_receiver();  // null-check, then ignore
  3008   Node* cls = null_check(argument(1));
  3009   if (stopped())  return true;
  3011   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3012   kls = null_check(kls);
  3013   if (stopped())  return true;  // argument was like int.class
  3015   Node* test = NULL;
  3016   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3017     // Note:  The argument might still be an illegal value like
  3018     // Serializable.class or Object[].class.   The runtime will handle it.
  3019     // But we must make an explicit check for initialization.
  3020     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3021     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3022     // can generate code to load it as unsigned byte.
  3023     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  3024     Node* bits = intcon(InstanceKlass::fully_initialized);
  3025     test = _gvn.transform(new (C) SubINode(inst, bits));
  3026     // The 'test' is non-zero if we need to take a slow path.
  3029   Node* obj = new_instance(kls, test);
  3030   set_result(obj);
  3031   return true;
  3034 #ifdef TRACE_HAVE_INTRINSICS
  3035 /*
  3036  * oop -> myklass
  3037  * myklass->trace_id |= USED
  3038  * return myklass->trace_id & ~0x3
  3039  */
  3040 bool LibraryCallKit::inline_native_classID() {
  3041   null_check_receiver();  // null-check, then ignore
  3042   Node* cls = null_check(argument(1), T_OBJECT);
  3043   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3044   kls = null_check(kls, T_OBJECT);
  3045   ByteSize offset = TRACE_ID_OFFSET;
  3046   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3047   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  3048   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3049   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3050   Node* clsused = longcon(0x01l); // set the class bit
  3051   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3053   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3054   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  3055   set_result(andl);
  3056   return true;
  3059 bool LibraryCallKit::inline_native_threadID() {
  3060   Node* tls_ptr = NULL;
  3061   Node* cur_thr = generate_current_thread(tls_ptr);
  3062   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3063   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3064   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3066   Node* threadid = NULL;
  3067   size_t thread_id_size = OSThread::thread_id_size();
  3068   if (thread_id_size == (size_t) BytesPerLong) {
  3069     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  3070   } else if (thread_id_size == (size_t) BytesPerInt) {
  3071     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  3072   } else {
  3073     ShouldNotReachHere();
  3075   set_result(threadid);
  3076   return true;
  3078 #endif
  3080 //------------------------inline_native_time_funcs--------------
  3081 // inline code for System.currentTimeMillis() and System.nanoTime()
  3082 // these have the same type and signature
  3083 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3084   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3085   const TypePtr* no_memory_effects = NULL;
  3086   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3087   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3088 #ifdef ASSERT
  3089   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3090   assert(value_top == top(), "second value must be top");
  3091 #endif
  3092   set_result(value);
  3093   return true;
  3096 //------------------------inline_native_currentThread------------------
  3097 bool LibraryCallKit::inline_native_currentThread() {
  3098   Node* junk = NULL;
  3099   set_result(generate_current_thread(junk));
  3100   return true;
  3103 //------------------------inline_native_isInterrupted------------------
  3104 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3105 bool LibraryCallKit::inline_native_isInterrupted() {
  3106   // Add a fast path to t.isInterrupted(clear_int):
  3107   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3108   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3109   // So, in the common case that the interrupt bit is false,
  3110   // we avoid making a call into the VM.  Even if the interrupt bit
  3111   // is true, if the clear_int argument is false, we avoid the VM call.
  3112   // However, if the receiver is not currentThread, we must call the VM,
  3113   // because there must be some locking done around the operation.
  3115   // We only go to the fast case code if we pass two guards.
  3116   // Paths which do not pass are accumulated in the slow_region.
  3118   enum {
  3119     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3120     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3121     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3122     PATH_LIMIT
  3123   };
  3125   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3126   // out of the function.
  3127   insert_mem_bar(Op_MemBarCPUOrder);
  3129   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3130   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3132   RegionNode* slow_region = new (C) RegionNode(1);
  3133   record_for_igvn(slow_region);
  3135   // (a) Receiving thread must be the current thread.
  3136   Node* rec_thr = argument(0);
  3137   Node* tls_ptr = NULL;
  3138   Node* cur_thr = generate_current_thread(tls_ptr);
  3139   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3140   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3142   generate_slow_guard(bol_thr, slow_region);
  3144   // (b) Interrupt bit on TLS must be false.
  3145   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3146   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3147   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3149   // Set the control input on the field _interrupted read to prevent it floating up.
  3150   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3151   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3152   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3154   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3156   // First fast path:  if (!TLS._interrupted) return false;
  3157   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3158   result_rgn->init_req(no_int_result_path, false_bit);
  3159   result_val->init_req(no_int_result_path, intcon(0));
  3161   // drop through to next case
  3162   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3164   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3165   Node* clr_arg = argument(1);
  3166   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3167   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3168   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3170   // Second fast path:  ... else if (!clear_int) return true;
  3171   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3172   result_rgn->init_req(no_clear_result_path, false_arg);
  3173   result_val->init_req(no_clear_result_path, intcon(1));
  3175   // drop through to next case
  3176   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3178   // (d) Otherwise, go to the slow path.
  3179   slow_region->add_req(control());
  3180   set_control( _gvn.transform(slow_region));
  3182   if (stopped()) {
  3183     // There is no slow path.
  3184     result_rgn->init_req(slow_result_path, top());
  3185     result_val->init_req(slow_result_path, top());
  3186   } else {
  3187     // non-virtual because it is a private non-static
  3188     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3190     Node* slow_val = set_results_for_java_call(slow_call);
  3191     // this->control() comes from set_results_for_java_call
  3193     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3194     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3196     // These two phis are pre-filled with copies of of the fast IO and Memory
  3197     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3198     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3200     result_rgn->init_req(slow_result_path, control());
  3201     result_io ->init_req(slow_result_path, i_o());
  3202     result_mem->init_req(slow_result_path, reset_memory());
  3203     result_val->init_req(slow_result_path, slow_val);
  3205     set_all_memory(_gvn.transform(result_mem));
  3206     set_i_o(       _gvn.transform(result_io));
  3209   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3210   set_result(result_rgn, result_val);
  3211   return true;
  3214 //---------------------------load_mirror_from_klass----------------------------
  3215 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3216 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3217   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3218   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3221 //-----------------------load_klass_from_mirror_common-------------------------
  3222 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3223 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3224 // and branch to the given path on the region.
  3225 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3226 // compile for the non-null case.
  3227 // If the region is NULL, force never_see_null = true.
  3228 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3229                                                     bool never_see_null,
  3230                                                     RegionNode* region,
  3231                                                     int null_path,
  3232                                                     int offset) {
  3233   if (region == NULL)  never_see_null = true;
  3234   Node* p = basic_plus_adr(mirror, offset);
  3235   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3236   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3237   Node* null_ctl = top();
  3238   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3239   if (region != NULL) {
  3240     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3241     region->init_req(null_path, null_ctl);
  3242   } else {
  3243     assert(null_ctl == top(), "no loose ends");
  3245   return kls;
  3248 //--------------------(inline_native_Class_query helpers)---------------------
  3249 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3250 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3251 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3252   // Branch around if the given klass has the given modifier bit set.
  3253   // Like generate_guard, adds a new path onto the region.
  3254   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3255   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3256   Node* mask = intcon(modifier_mask);
  3257   Node* bits = intcon(modifier_bits);
  3258   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3259   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3260   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3261   return generate_fair_guard(bol, region);
  3263 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3264   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3267 //-------------------------inline_native_Class_query-------------------
  3268 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3269   const Type* return_type = TypeInt::BOOL;
  3270   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3271   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3272   bool expect_prim = false;     // most of these guys expect to work on refs
  3274   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3276   Node* mirror = argument(0);
  3277   Node* obj    = top();
  3279   switch (id) {
  3280   case vmIntrinsics::_isInstance:
  3281     // nothing is an instance of a primitive type
  3282     prim_return_value = intcon(0);
  3283     obj = argument(1);
  3284     break;
  3285   case vmIntrinsics::_getModifiers:
  3286     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3287     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3288     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3289     break;
  3290   case vmIntrinsics::_isInterface:
  3291     prim_return_value = intcon(0);
  3292     break;
  3293   case vmIntrinsics::_isArray:
  3294     prim_return_value = intcon(0);
  3295     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3296     break;
  3297   case vmIntrinsics::_isPrimitive:
  3298     prim_return_value = intcon(1);
  3299     expect_prim = true;  // obviously
  3300     break;
  3301   case vmIntrinsics::_getSuperclass:
  3302     prim_return_value = null();
  3303     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3304     break;
  3305   case vmIntrinsics::_getComponentType:
  3306     prim_return_value = null();
  3307     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3308     break;
  3309   case vmIntrinsics::_getClassAccessFlags:
  3310     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3311     return_type = TypeInt::INT;  // not bool!  6297094
  3312     break;
  3313   default:
  3314     fatal_unexpected_iid(id);
  3315     break;
  3318   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3319   if (mirror_con == NULL)  return false;  // cannot happen?
  3321 #ifndef PRODUCT
  3322   if (C->print_intrinsics() || C->print_inlining()) {
  3323     ciType* k = mirror_con->java_mirror_type();
  3324     if (k) {
  3325       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3326       k->print_name();
  3327       tty->cr();
  3330 #endif
  3332   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3333   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3334   record_for_igvn(region);
  3335   PhiNode* phi = new (C) PhiNode(region, return_type);
  3337   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3338   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3339   // if it is. See bug 4774291.
  3341   // For Reflection.getClassAccessFlags(), the null check occurs in
  3342   // the wrong place; see inline_unsafe_access(), above, for a similar
  3343   // situation.
  3344   mirror = null_check(mirror);
  3345   // If mirror or obj is dead, only null-path is taken.
  3346   if (stopped())  return true;
  3348   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3350   // Now load the mirror's klass metaobject, and null-check it.
  3351   // Side-effects region with the control path if the klass is null.
  3352   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3353   // If kls is null, we have a primitive mirror.
  3354   phi->init_req(_prim_path, prim_return_value);
  3355   if (stopped()) { set_result(region, phi); return true; }
  3357   Node* p;  // handy temp
  3358   Node* null_ctl;
  3360   // Now that we have the non-null klass, we can perform the real query.
  3361   // For constant classes, the query will constant-fold in LoadNode::Value.
  3362   Node* query_value = top();
  3363   switch (id) {
  3364   case vmIntrinsics::_isInstance:
  3365     // nothing is an instance of a primitive type
  3366     query_value = gen_instanceof(obj, kls);
  3367     break;
  3369   case vmIntrinsics::_getModifiers:
  3370     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3371     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3372     break;
  3374   case vmIntrinsics::_isInterface:
  3375     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3376     if (generate_interface_guard(kls, region) != NULL)
  3377       // A guard was added.  If the guard is taken, it was an interface.
  3378       phi->add_req(intcon(1));
  3379     // If we fall through, it's a plain class.
  3380     query_value = intcon(0);
  3381     break;
  3383   case vmIntrinsics::_isArray:
  3384     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3385     if (generate_array_guard(kls, region) != NULL)
  3386       // A guard was added.  If the guard is taken, it was an array.
  3387       phi->add_req(intcon(1));
  3388     // If we fall through, it's a plain class.
  3389     query_value = intcon(0);
  3390     break;
  3392   case vmIntrinsics::_isPrimitive:
  3393     query_value = intcon(0); // "normal" path produces false
  3394     break;
  3396   case vmIntrinsics::_getSuperclass:
  3397     // The rules here are somewhat unfortunate, but we can still do better
  3398     // with random logic than with a JNI call.
  3399     // Interfaces store null or Object as _super, but must report null.
  3400     // Arrays store an intermediate super as _super, but must report Object.
  3401     // Other types can report the actual _super.
  3402     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3403     if (generate_interface_guard(kls, region) != NULL)
  3404       // A guard was added.  If the guard is taken, it was an interface.
  3405       phi->add_req(null());
  3406     if (generate_array_guard(kls, region) != NULL)
  3407       // A guard was added.  If the guard is taken, it was an array.
  3408       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3409     // If we fall through, it's a plain class.  Get its _super.
  3410     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3411     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3412     null_ctl = top();
  3413     kls = null_check_oop(kls, &null_ctl);
  3414     if (null_ctl != top()) {
  3415       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3416       region->add_req(null_ctl);
  3417       phi   ->add_req(null());
  3419     if (!stopped()) {
  3420       query_value = load_mirror_from_klass(kls);
  3422     break;
  3424   case vmIntrinsics::_getComponentType:
  3425     if (generate_array_guard(kls, region) != NULL) {
  3426       // Be sure to pin the oop load to the guard edge just created:
  3427       Node* is_array_ctrl = region->in(region->req()-1);
  3428       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3429       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3430       phi->add_req(cmo);
  3432     query_value = null();  // non-array case is null
  3433     break;
  3435   case vmIntrinsics::_getClassAccessFlags:
  3436     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3437     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3438     break;
  3440   default:
  3441     fatal_unexpected_iid(id);
  3442     break;
  3445   // Fall-through is the normal case of a query to a real class.
  3446   phi->init_req(1, query_value);
  3447   region->init_req(1, control());
  3449   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3450   set_result(region, phi);
  3451   return true;
  3454 //--------------------------inline_native_subtype_check------------------------
  3455 // This intrinsic takes the JNI calls out of the heart of
  3456 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3457 bool LibraryCallKit::inline_native_subtype_check() {
  3458   // Pull both arguments off the stack.
  3459   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3460   args[0] = argument(0);
  3461   args[1] = argument(1);
  3462   Node* klasses[2];             // corresponding Klasses: superk, subk
  3463   klasses[0] = klasses[1] = top();
  3465   enum {
  3466     // A full decision tree on {superc is prim, subc is prim}:
  3467     _prim_0_path = 1,           // {P,N} => false
  3468                                 // {P,P} & superc!=subc => false
  3469     _prim_same_path,            // {P,P} & superc==subc => true
  3470     _prim_1_path,               // {N,P} => false
  3471     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3472     _both_ref_path,             // {N,N} & subtype check loses => false
  3473     PATH_LIMIT
  3474   };
  3476   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3477   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3478   record_for_igvn(region);
  3480   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3481   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3482   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3484   // First null-check both mirrors and load each mirror's klass metaobject.
  3485   int which_arg;
  3486   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3487     Node* arg = args[which_arg];
  3488     arg = null_check(arg);
  3489     if (stopped())  break;
  3490     args[which_arg] = arg;
  3492     Node* p = basic_plus_adr(arg, class_klass_offset);
  3493     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3494     klasses[which_arg] = _gvn.transform(kls);
  3497   // Having loaded both klasses, test each for null.
  3498   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3499   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3500     Node* kls = klasses[which_arg];
  3501     Node* null_ctl = top();
  3502     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3503     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3504     region->init_req(prim_path, null_ctl);
  3505     if (stopped())  break;
  3506     klasses[which_arg] = kls;
  3509   if (!stopped()) {
  3510     // now we have two reference types, in klasses[0..1]
  3511     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3512     Node* superk = klasses[0];  // the receiver
  3513     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3514     // now we have a successful reference subtype check
  3515     region->set_req(_ref_subtype_path, control());
  3518   // If both operands are primitive (both klasses null), then
  3519   // we must return true when they are identical primitives.
  3520   // It is convenient to test this after the first null klass check.
  3521   set_control(region->in(_prim_0_path)); // go back to first null check
  3522   if (!stopped()) {
  3523     // Since superc is primitive, make a guard for the superc==subc case.
  3524     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3525     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3526     generate_guard(bol_eq, region, PROB_FAIR);
  3527     if (region->req() == PATH_LIMIT+1) {
  3528       // A guard was added.  If the added guard is taken, superc==subc.
  3529       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3530       region->del_req(PATH_LIMIT);
  3532     region->set_req(_prim_0_path, control()); // Not equal after all.
  3535   // these are the only paths that produce 'true':
  3536   phi->set_req(_prim_same_path,   intcon(1));
  3537   phi->set_req(_ref_subtype_path, intcon(1));
  3539   // pull together the cases:
  3540   assert(region->req() == PATH_LIMIT, "sane region");
  3541   for (uint i = 1; i < region->req(); i++) {
  3542     Node* ctl = region->in(i);
  3543     if (ctl == NULL || ctl == top()) {
  3544       region->set_req(i, top());
  3545       phi   ->set_req(i, top());
  3546     } else if (phi->in(i) == NULL) {
  3547       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3551   set_control(_gvn.transform(region));
  3552   set_result(_gvn.transform(phi));
  3553   return true;
  3556 //---------------------generate_array_guard_common------------------------
  3557 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3558                                                   bool obj_array, bool not_array) {
  3559   // If obj_array/non_array==false/false:
  3560   // Branch around if the given klass is in fact an array (either obj or prim).
  3561   // If obj_array/non_array==false/true:
  3562   // Branch around if the given klass is not an array klass of any kind.
  3563   // If obj_array/non_array==true/true:
  3564   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3565   // If obj_array/non_array==true/false:
  3566   // Branch around if the kls is an oop array (Object[] or subtype)
  3567   //
  3568   // Like generate_guard, adds a new path onto the region.
  3569   jint  layout_con = 0;
  3570   Node* layout_val = get_layout_helper(kls, layout_con);
  3571   if (layout_val == NULL) {
  3572     bool query = (obj_array
  3573                   ? Klass::layout_helper_is_objArray(layout_con)
  3574                   : Klass::layout_helper_is_array(layout_con));
  3575     if (query == not_array) {
  3576       return NULL;                       // never a branch
  3577     } else {                             // always a branch
  3578       Node* always_branch = control();
  3579       if (region != NULL)
  3580         region->add_req(always_branch);
  3581       set_control(top());
  3582       return always_branch;
  3585   // Now test the correct condition.
  3586   jint  nval = (obj_array
  3587                 ? ((jint)Klass::_lh_array_tag_type_value
  3588                    <<    Klass::_lh_array_tag_shift)
  3589                 : Klass::_lh_neutral_value);
  3590   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3591   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3592   // invert the test if we are looking for a non-array
  3593   if (not_array)  btest = BoolTest(btest).negate();
  3594   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3595   return generate_fair_guard(bol, region);
  3599 //-----------------------inline_native_newArray--------------------------
  3600 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3601 bool LibraryCallKit::inline_native_newArray() {
  3602   Node* mirror    = argument(0);
  3603   Node* count_val = argument(1);
  3605   mirror = null_check(mirror);
  3606   // If mirror or obj is dead, only null-path is taken.
  3607   if (stopped())  return true;
  3609   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3610   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3611   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3612                                           TypeInstPtr::NOTNULL);
  3613   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3614   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3615                                           TypePtr::BOTTOM);
  3617   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3618   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3619                                                   result_reg, _slow_path);
  3620   Node* normal_ctl   = control();
  3621   Node* no_array_ctl = result_reg->in(_slow_path);
  3623   // Generate code for the slow case.  We make a call to newArray().
  3624   set_control(no_array_ctl);
  3625   if (!stopped()) {
  3626     // Either the input type is void.class, or else the
  3627     // array klass has not yet been cached.  Either the
  3628     // ensuing call will throw an exception, or else it
  3629     // will cache the array klass for next time.
  3630     PreserveJVMState pjvms(this);
  3631     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3632     Node* slow_result = set_results_for_java_call(slow_call);
  3633     // this->control() comes from set_results_for_java_call
  3634     result_reg->set_req(_slow_path, control());
  3635     result_val->set_req(_slow_path, slow_result);
  3636     result_io ->set_req(_slow_path, i_o());
  3637     result_mem->set_req(_slow_path, reset_memory());
  3640   set_control(normal_ctl);
  3641   if (!stopped()) {
  3642     // Normal case:  The array type has been cached in the java.lang.Class.
  3643     // The following call works fine even if the array type is polymorphic.
  3644     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3645     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3646     result_reg->init_req(_normal_path, control());
  3647     result_val->init_req(_normal_path, obj);
  3648     result_io ->init_req(_normal_path, i_o());
  3649     result_mem->init_req(_normal_path, reset_memory());
  3652   // Return the combined state.
  3653   set_i_o(        _gvn.transform(result_io)  );
  3654   set_all_memory( _gvn.transform(result_mem));
  3656   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3657   set_result(result_reg, result_val);
  3658   return true;
  3661 //----------------------inline_native_getLength--------------------------
  3662 // public static native int java.lang.reflect.Array.getLength(Object array);
  3663 bool LibraryCallKit::inline_native_getLength() {
  3664   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3666   Node* array = null_check(argument(0));
  3667   // If array is dead, only null-path is taken.
  3668   if (stopped())  return true;
  3670   // Deoptimize if it is a non-array.
  3671   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3673   if (non_array != NULL) {
  3674     PreserveJVMState pjvms(this);
  3675     set_control(non_array);
  3676     uncommon_trap(Deoptimization::Reason_intrinsic,
  3677                   Deoptimization::Action_maybe_recompile);
  3680   // If control is dead, only non-array-path is taken.
  3681   if (stopped())  return true;
  3683   // The works fine even if the array type is polymorphic.
  3684   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3685   Node* result = load_array_length(array);
  3687   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3688   set_result(result);
  3689   return true;
  3692 //------------------------inline_array_copyOf----------------------------
  3693 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3694 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3695 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3696   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3698   // Get the arguments.
  3699   Node* original          = argument(0);
  3700   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3701   Node* end               = is_copyOfRange? argument(2): argument(1);
  3702   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3704   Node* newcopy;
  3706   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3707   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3708   { PreserveReexecuteState preexecs(this);
  3709     jvms()->set_should_reexecute(true);
  3711     array_type_mirror = null_check(array_type_mirror);
  3712     original          = null_check(original);
  3714     // Check if a null path was taken unconditionally.
  3715     if (stopped())  return true;
  3717     Node* orig_length = load_array_length(original);
  3719     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3720     klass_node = null_check(klass_node);
  3722     RegionNode* bailout = new (C) RegionNode(1);
  3723     record_for_igvn(bailout);
  3725     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3726     // Bail out if that is so.
  3727     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3728     if (not_objArray != NULL) {
  3729       // Improve the klass node's type from the new optimistic assumption:
  3730       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3731       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3732       Node* cast = new (C) CastPPNode(klass_node, akls);
  3733       cast->init_req(0, control());
  3734       klass_node = _gvn.transform(cast);
  3737     // Bail out if either start or end is negative.
  3738     generate_negative_guard(start, bailout, &start);
  3739     generate_negative_guard(end,   bailout, &end);
  3741     Node* length = end;
  3742     if (_gvn.type(start) != TypeInt::ZERO) {
  3743       length = _gvn.transform(new (C) SubINode(end, start));
  3746     // Bail out if length is negative.
  3747     // Without this the new_array would throw
  3748     // NegativeArraySizeException but IllegalArgumentException is what
  3749     // should be thrown
  3750     generate_negative_guard(length, bailout, &length);
  3752     if (bailout->req() > 1) {
  3753       PreserveJVMState pjvms(this);
  3754       set_control(_gvn.transform(bailout));
  3755       uncommon_trap(Deoptimization::Reason_intrinsic,
  3756                     Deoptimization::Action_maybe_recompile);
  3759     if (!stopped()) {
  3760       // How many elements will we copy from the original?
  3761       // The answer is MinI(orig_length - start, length).
  3762       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3763       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3765       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3767       // Generate a direct call to the right arraycopy function(s).
  3768       // We know the copy is disjoint but we might not know if the
  3769       // oop stores need checking.
  3770       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3771       // This will fail a store-check if x contains any non-nulls.
  3772       bool disjoint_bases = true;
  3773       // if start > orig_length then the length of the copy may be
  3774       // negative.
  3775       bool length_never_negative = !is_copyOfRange;
  3776       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3777                          original, start, newcopy, intcon(0), moved,
  3778                          disjoint_bases, length_never_negative);
  3780   } // original reexecute is set back here
  3782   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3783   if (!stopped()) {
  3784     set_result(newcopy);
  3786   return true;
  3790 //----------------------generate_virtual_guard---------------------------
  3791 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3792 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3793                                              RegionNode* slow_region) {
  3794   ciMethod* method = callee();
  3795   int vtable_index = method->vtable_index();
  3796   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3797          err_msg_res("bad index %d", vtable_index));
  3798   // Get the Method* out of the appropriate vtable entry.
  3799   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3800                      vtable_index*vtableEntry::size()) * wordSize +
  3801                      vtableEntry::method_offset_in_bytes();
  3802   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3803   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3805   // Compare the target method with the expected method (e.g., Object.hashCode).
  3806   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3808   Node* native_call = makecon(native_call_addr);
  3809   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3810   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3812   return generate_slow_guard(test_native, slow_region);
  3815 //-----------------------generate_method_call----------------------------
  3816 // Use generate_method_call to make a slow-call to the real
  3817 // method if the fast path fails.  An alternative would be to
  3818 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3819 // This only works for expanding the current library call,
  3820 // not another intrinsic.  (E.g., don't use this for making an
  3821 // arraycopy call inside of the copyOf intrinsic.)
  3822 CallJavaNode*
  3823 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3824   // When compiling the intrinsic method itself, do not use this technique.
  3825   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3827   ciMethod* method = callee();
  3828   // ensure the JVMS we have will be correct for this call
  3829   guarantee(method_id == method->intrinsic_id(), "must match");
  3831   const TypeFunc* tf = TypeFunc::make(method);
  3832   CallJavaNode* slow_call;
  3833   if (is_static) {
  3834     assert(!is_virtual, "");
  3835     slow_call = new(C) CallStaticJavaNode(C, tf,
  3836                            SharedRuntime::get_resolve_static_call_stub(),
  3837                            method, bci());
  3838   } else if (is_virtual) {
  3839     null_check_receiver();
  3840     int vtable_index = Method::invalid_vtable_index;
  3841     if (UseInlineCaches) {
  3842       // Suppress the vtable call
  3843     } else {
  3844       // hashCode and clone are not a miranda methods,
  3845       // so the vtable index is fixed.
  3846       // No need to use the linkResolver to get it.
  3847        vtable_index = method->vtable_index();
  3848        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3849               err_msg_res("bad index %d", vtable_index));
  3851     slow_call = new(C) CallDynamicJavaNode(tf,
  3852                           SharedRuntime::get_resolve_virtual_call_stub(),
  3853                           method, vtable_index, bci());
  3854   } else {  // neither virtual nor static:  opt_virtual
  3855     null_check_receiver();
  3856     slow_call = new(C) CallStaticJavaNode(C, tf,
  3857                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3858                                 method, bci());
  3859     slow_call->set_optimized_virtual(true);
  3861   set_arguments_for_java_call(slow_call);
  3862   set_edges_for_java_call(slow_call);
  3863   return slow_call;
  3867 //------------------------------inline_native_hashcode--------------------
  3868 // Build special case code for calls to hashCode on an object.
  3869 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3870   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3871   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3873   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3875   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3876   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3877                                           TypeInt::INT);
  3878   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3879   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3880                                           TypePtr::BOTTOM);
  3881   Node* obj = NULL;
  3882   if (!is_static) {
  3883     // Check for hashing null object
  3884     obj = null_check_receiver();
  3885     if (stopped())  return true;        // unconditionally null
  3886     result_reg->init_req(_null_path, top());
  3887     result_val->init_req(_null_path, top());
  3888   } else {
  3889     // Do a null check, and return zero if null.
  3890     // System.identityHashCode(null) == 0
  3891     obj = argument(0);
  3892     Node* null_ctl = top();
  3893     obj = null_check_oop(obj, &null_ctl);
  3894     result_reg->init_req(_null_path, null_ctl);
  3895     result_val->init_req(_null_path, _gvn.intcon(0));
  3898   // Unconditionally null?  Then return right away.
  3899   if (stopped()) {
  3900     set_control( result_reg->in(_null_path));
  3901     if (!stopped())
  3902       set_result(result_val->in(_null_path));
  3903     return true;
  3906   // After null check, get the object's klass.
  3907   Node* obj_klass = load_object_klass(obj);
  3909   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3910   // For each case we generate slightly different code.
  3912   // We only go to the fast case code if we pass a number of guards.  The
  3913   // paths which do not pass are accumulated in the slow_region.
  3914   RegionNode* slow_region = new (C) RegionNode(1);
  3915   record_for_igvn(slow_region);
  3917   // If this is a virtual call, we generate a funny guard.  We pull out
  3918   // the vtable entry corresponding to hashCode() from the target object.
  3919   // If the target method which we are calling happens to be the native
  3920   // Object hashCode() method, we pass the guard.  We do not need this
  3921   // guard for non-virtual calls -- the caller is known to be the native
  3922   // Object hashCode().
  3923   if (is_virtual) {
  3924     generate_virtual_guard(obj_klass, slow_region);
  3927   // Get the header out of the object, use LoadMarkNode when available
  3928   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3929   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3931   // Test the header to see if it is unlocked.
  3932   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3933   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  3934   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3935   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  3936   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  3938   generate_slow_guard(test_unlocked, slow_region);
  3940   // Get the hash value and check to see that it has been properly assigned.
  3941   // We depend on hash_mask being at most 32 bits and avoid the use of
  3942   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3943   // vm: see markOop.hpp.
  3944   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3945   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3946   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  3947   // This hack lets the hash bits live anywhere in the mark object now, as long
  3948   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3949   // Java spec says that HashCode is an int so there's no point in capturing
  3950   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3951   hshifted_header      = ConvX2I(hshifted_header);
  3952   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  3954   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3955   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  3956   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  3958   generate_slow_guard(test_assigned, slow_region);
  3960   Node* init_mem = reset_memory();
  3961   // fill in the rest of the null path:
  3962   result_io ->init_req(_null_path, i_o());
  3963   result_mem->init_req(_null_path, init_mem);
  3965   result_val->init_req(_fast_path, hash_val);
  3966   result_reg->init_req(_fast_path, control());
  3967   result_io ->init_req(_fast_path, i_o());
  3968   result_mem->init_req(_fast_path, init_mem);
  3970   // Generate code for the slow case.  We make a call to hashCode().
  3971   set_control(_gvn.transform(slow_region));
  3972   if (!stopped()) {
  3973     // No need for PreserveJVMState, because we're using up the present state.
  3974     set_all_memory(init_mem);
  3975     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  3976     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3977     Node* slow_result = set_results_for_java_call(slow_call);
  3978     // this->control() comes from set_results_for_java_call
  3979     result_reg->init_req(_slow_path, control());
  3980     result_val->init_req(_slow_path, slow_result);
  3981     result_io  ->set_req(_slow_path, i_o());
  3982     result_mem ->set_req(_slow_path, reset_memory());
  3985   // Return the combined state.
  3986   set_i_o(        _gvn.transform(result_io)  );
  3987   set_all_memory( _gvn.transform(result_mem));
  3989   set_result(result_reg, result_val);
  3990   return true;
  3993 //---------------------------inline_native_getClass----------------------------
  3994 // public final native Class<?> java.lang.Object.getClass();
  3995 //
  3996 // Build special case code for calls to getClass on an object.
  3997 bool LibraryCallKit::inline_native_getClass() {
  3998   Node* obj = null_check_receiver();
  3999   if (stopped())  return true;
  4000   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4001   return true;
  4004 //-----------------inline_native_Reflection_getCallerClass---------------------
  4005 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4006 //
  4007 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4008 //
  4009 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4010 // in that it must skip particular security frames and checks for
  4011 // caller sensitive methods.
  4012 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4013 #ifndef PRODUCT
  4014   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4015     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4017 #endif
  4019   if (!jvms()->has_method()) {
  4020 #ifndef PRODUCT
  4021     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4022       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4024 #endif
  4025     return false;
  4028   // Walk back up the JVM state to find the caller at the required
  4029   // depth.
  4030   JVMState* caller_jvms = jvms();
  4032   // Cf. JVM_GetCallerClass
  4033   // NOTE: Start the loop at depth 1 because the current JVM state does
  4034   // not include the Reflection.getCallerClass() frame.
  4035   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4036     ciMethod* m = caller_jvms->method();
  4037     switch (n) {
  4038     case 0:
  4039       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4040       break;
  4041     case 1:
  4042       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4043       if (!m->caller_sensitive()) {
  4044 #ifndef PRODUCT
  4045         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4046           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4048 #endif
  4049         return false;  // bail-out; let JVM_GetCallerClass do the work
  4051       break;
  4052     default:
  4053       if (!m->is_ignored_by_security_stack_walk()) {
  4054         // We have reached the desired frame; return the holder class.
  4055         // Acquire method holder as java.lang.Class and push as constant.
  4056         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4057         ciInstance* caller_mirror = caller_klass->java_mirror();
  4058         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4060 #ifndef PRODUCT
  4061         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4062           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4063           tty->print_cr("  JVM state at this point:");
  4064           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4065             ciMethod* m = jvms()->of_depth(i)->method();
  4066             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4069 #endif
  4070         return true;
  4072       break;
  4076 #ifndef PRODUCT
  4077   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4078     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4079     tty->print_cr("  JVM state at this point:");
  4080     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4081       ciMethod* m = jvms()->of_depth(i)->method();
  4082       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4085 #endif
  4087   return false;  // bail-out; let JVM_GetCallerClass do the work
  4090 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4091   Node* arg = argument(0);
  4092   Node* result;
  4094   switch (id) {
  4095   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4096   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4097   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4098   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4100   case vmIntrinsics::_doubleToLongBits: {
  4101     // two paths (plus control) merge in a wood
  4102     RegionNode *r = new (C) RegionNode(3);
  4103     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4105     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4106     // Build the boolean node
  4107     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4109     // Branch either way.
  4110     // NaN case is less traveled, which makes all the difference.
  4111     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4112     Node *opt_isnan = _gvn.transform(ifisnan);
  4113     assert( opt_isnan->is_If(), "Expect an IfNode");
  4114     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4115     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4117     set_control(iftrue);
  4119     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4120     Node *slow_result = longcon(nan_bits); // return NaN
  4121     phi->init_req(1, _gvn.transform( slow_result ));
  4122     r->init_req(1, iftrue);
  4124     // Else fall through
  4125     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4126     set_control(iffalse);
  4128     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4129     r->init_req(2, iffalse);
  4131     // Post merge
  4132     set_control(_gvn.transform(r));
  4133     record_for_igvn(r);
  4135     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4136     result = phi;
  4137     assert(result->bottom_type()->isa_long(), "must be");
  4138     break;
  4141   case vmIntrinsics::_floatToIntBits: {
  4142     // two paths (plus control) merge in a wood
  4143     RegionNode *r = new (C) RegionNode(3);
  4144     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4146     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4147     // Build the boolean node
  4148     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4150     // Branch either way.
  4151     // NaN case is less traveled, which makes all the difference.
  4152     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4153     Node *opt_isnan = _gvn.transform(ifisnan);
  4154     assert( opt_isnan->is_If(), "Expect an IfNode");
  4155     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4156     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4158     set_control(iftrue);
  4160     static const jint nan_bits = 0x7fc00000;
  4161     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4162     phi->init_req(1, _gvn.transform( slow_result ));
  4163     r->init_req(1, iftrue);
  4165     // Else fall through
  4166     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4167     set_control(iffalse);
  4169     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4170     r->init_req(2, iffalse);
  4172     // Post merge
  4173     set_control(_gvn.transform(r));
  4174     record_for_igvn(r);
  4176     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4177     result = phi;
  4178     assert(result->bottom_type()->isa_int(), "must be");
  4179     break;
  4182   default:
  4183     fatal_unexpected_iid(id);
  4184     break;
  4186   set_result(_gvn.transform(result));
  4187   return true;
  4190 #ifdef _LP64
  4191 #define XTOP ,top() /*additional argument*/
  4192 #else  //_LP64
  4193 #define XTOP        /*no additional argument*/
  4194 #endif //_LP64
  4196 //----------------------inline_unsafe_copyMemory-------------------------
  4197 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4198 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4199   if (callee()->is_static())  return false;  // caller must have the capability!
  4200   null_check_receiver();  // null-check receiver
  4201   if (stopped())  return true;
  4203   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4205   Node* src_ptr =         argument(1);   // type: oop
  4206   Node* src_off = ConvL2X(argument(2));  // type: long
  4207   Node* dst_ptr =         argument(4);   // type: oop
  4208   Node* dst_off = ConvL2X(argument(5));  // type: long
  4209   Node* size    = ConvL2X(argument(7));  // type: long
  4211   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4212          "fieldOffset must be byte-scaled");
  4214   Node* src = make_unsafe_address(src_ptr, src_off);
  4215   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4217   // Conservatively insert a memory barrier on all memory slices.
  4218   // Do not let writes of the copy source or destination float below the copy.
  4219   insert_mem_bar(Op_MemBarCPUOrder);
  4221   // Call it.  Note that the length argument is not scaled.
  4222   make_runtime_call(RC_LEAF|RC_NO_FP,
  4223                     OptoRuntime::fast_arraycopy_Type(),
  4224                     StubRoutines::unsafe_arraycopy(),
  4225                     "unsafe_arraycopy",
  4226                     TypeRawPtr::BOTTOM,
  4227                     src, dst, size XTOP);
  4229   // Do not let reads of the copy destination float above the copy.
  4230   insert_mem_bar(Op_MemBarCPUOrder);
  4232   return true;
  4235 //------------------------clone_coping-----------------------------------
  4236 // Helper function for inline_native_clone.
  4237 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4238   assert(obj_size != NULL, "");
  4239   Node* raw_obj = alloc_obj->in(1);
  4240   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4242   AllocateNode* alloc = NULL;
  4243   if (ReduceBulkZeroing) {
  4244     // We will be completely responsible for initializing this object -
  4245     // mark Initialize node as complete.
  4246     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4247     // The object was just allocated - there should be no any stores!
  4248     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4249     // Mark as complete_with_arraycopy so that on AllocateNode
  4250     // expansion, we know this AllocateNode is initialized by an array
  4251     // copy and a StoreStore barrier exists after the array copy.
  4252     alloc->initialization()->set_complete_with_arraycopy();
  4255   // Copy the fastest available way.
  4256   // TODO: generate fields copies for small objects instead.
  4257   Node* src  = obj;
  4258   Node* dest = alloc_obj;
  4259   Node* size = _gvn.transform(obj_size);
  4261   // Exclude the header but include array length to copy by 8 bytes words.
  4262   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4263   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4264                             instanceOopDesc::base_offset_in_bytes();
  4265   // base_off:
  4266   // 8  - 32-bit VM
  4267   // 12 - 64-bit VM, compressed klass
  4268   // 16 - 64-bit VM, normal klass
  4269   if (base_off % BytesPerLong != 0) {
  4270     assert(UseCompressedClassPointers, "");
  4271     if (is_array) {
  4272       // Exclude length to copy by 8 bytes words.
  4273       base_off += sizeof(int);
  4274     } else {
  4275       // Include klass to copy by 8 bytes words.
  4276       base_off = instanceOopDesc::klass_offset_in_bytes();
  4278     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4280   src  = basic_plus_adr(src,  base_off);
  4281   dest = basic_plus_adr(dest, base_off);
  4283   // Compute the length also, if needed:
  4284   Node* countx = size;
  4285   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4286   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4288   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4289   bool disjoint_bases = true;
  4290   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4291                                src, NULL, dest, NULL, countx,
  4292                                /*dest_uninitialized*/true);
  4294   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4295   if (card_mark) {
  4296     assert(!is_array, "");
  4297     // Put in store barrier for any and all oops we are sticking
  4298     // into this object.  (We could avoid this if we could prove
  4299     // that the object type contains no oop fields at all.)
  4300     Node* no_particular_value = NULL;
  4301     Node* no_particular_field = NULL;
  4302     int raw_adr_idx = Compile::AliasIdxRaw;
  4303     post_barrier(control(),
  4304                  memory(raw_adr_type),
  4305                  alloc_obj,
  4306                  no_particular_field,
  4307                  raw_adr_idx,
  4308                  no_particular_value,
  4309                  T_OBJECT,
  4310                  false);
  4313   // Do not let reads from the cloned object float above the arraycopy.
  4314   if (alloc != NULL) {
  4315     // Do not let stores that initialize this object be reordered with
  4316     // a subsequent store that would make this object accessible by
  4317     // other threads.
  4318     // Record what AllocateNode this StoreStore protects so that
  4319     // escape analysis can go from the MemBarStoreStoreNode to the
  4320     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4321     // based on the escape status of the AllocateNode.
  4322     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4323   } else {
  4324     insert_mem_bar(Op_MemBarCPUOrder);
  4328 //------------------------inline_native_clone----------------------------
  4329 // protected native Object java.lang.Object.clone();
  4330 //
  4331 // Here are the simple edge cases:
  4332 //  null receiver => normal trap
  4333 //  virtual and clone was overridden => slow path to out-of-line clone
  4334 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4335 //
  4336 // The general case has two steps, allocation and copying.
  4337 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4338 //
  4339 // Copying also has two cases, oop arrays and everything else.
  4340 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4341 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4342 //
  4343 // These steps fold up nicely if and when the cloned object's klass
  4344 // can be sharply typed as an object array, a type array, or an instance.
  4345 //
  4346 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4347   PhiNode* result_val;
  4349   // Set the reexecute bit for the interpreter to reexecute
  4350   // the bytecode that invokes Object.clone if deoptimization happens.
  4351   { PreserveReexecuteState preexecs(this);
  4352     jvms()->set_should_reexecute(true);
  4354     Node* obj = null_check_receiver();
  4355     if (stopped())  return true;
  4357     Node* obj_klass = load_object_klass(obj);
  4358     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4359     const TypeOopPtr*   toop   = ((tklass != NULL)
  4360                                 ? tklass->as_instance_type()
  4361                                 : TypeInstPtr::NOTNULL);
  4363     // Conservatively insert a memory barrier on all memory slices.
  4364     // Do not let writes into the original float below the clone.
  4365     insert_mem_bar(Op_MemBarCPUOrder);
  4367     // paths into result_reg:
  4368     enum {
  4369       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4370       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4371       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4372       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4373       PATH_LIMIT
  4374     };
  4375     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4376     result_val             = new(C) PhiNode(result_reg,
  4377                                             TypeInstPtr::NOTNULL);
  4378     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4379     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4380                                             TypePtr::BOTTOM);
  4381     record_for_igvn(result_reg);
  4383     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4384     int raw_adr_idx = Compile::AliasIdxRaw;
  4386     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4387     if (array_ctl != NULL) {
  4388       // It's an array.
  4389       PreserveJVMState pjvms(this);
  4390       set_control(array_ctl);
  4391       Node* obj_length = load_array_length(obj);
  4392       Node* obj_size  = NULL;
  4393       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4395       if (!use_ReduceInitialCardMarks()) {
  4396         // If it is an oop array, it requires very special treatment,
  4397         // because card marking is required on each card of the array.
  4398         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4399         if (is_obja != NULL) {
  4400           PreserveJVMState pjvms2(this);
  4401           set_control(is_obja);
  4402           // Generate a direct call to the right arraycopy function(s).
  4403           bool disjoint_bases = true;
  4404           bool length_never_negative = true;
  4405           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4406                              obj, intcon(0), alloc_obj, intcon(0),
  4407                              obj_length,
  4408                              disjoint_bases, length_never_negative);
  4409           result_reg->init_req(_objArray_path, control());
  4410           result_val->init_req(_objArray_path, alloc_obj);
  4411           result_i_o ->set_req(_objArray_path, i_o());
  4412           result_mem ->set_req(_objArray_path, reset_memory());
  4415       // Otherwise, there are no card marks to worry about.
  4416       // (We can dispense with card marks if we know the allocation
  4417       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4418       //  causes the non-eden paths to take compensating steps to
  4419       //  simulate a fresh allocation, so that no further
  4420       //  card marks are required in compiled code to initialize
  4421       //  the object.)
  4423       if (!stopped()) {
  4424         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4426         // Present the results of the copy.
  4427         result_reg->init_req(_array_path, control());
  4428         result_val->init_req(_array_path, alloc_obj);
  4429         result_i_o ->set_req(_array_path, i_o());
  4430         result_mem ->set_req(_array_path, reset_memory());
  4434     // We only go to the instance fast case code if we pass a number of guards.
  4435     // The paths which do not pass are accumulated in the slow_region.
  4436     RegionNode* slow_region = new (C) RegionNode(1);
  4437     record_for_igvn(slow_region);
  4438     if (!stopped()) {
  4439       // It's an instance (we did array above).  Make the slow-path tests.
  4440       // If this is a virtual call, we generate a funny guard.  We grab
  4441       // the vtable entry corresponding to clone() from the target object.
  4442       // If the target method which we are calling happens to be the
  4443       // Object clone() method, we pass the guard.  We do not need this
  4444       // guard for non-virtual calls; the caller is known to be the native
  4445       // Object clone().
  4446       if (is_virtual) {
  4447         generate_virtual_guard(obj_klass, slow_region);
  4450       // The object must be cloneable and must not have a finalizer.
  4451       // Both of these conditions may be checked in a single test.
  4452       // We could optimize the cloneable test further, but we don't care.
  4453       generate_access_flags_guard(obj_klass,
  4454                                   // Test both conditions:
  4455                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4456                                   // Must be cloneable but not finalizer:
  4457                                   JVM_ACC_IS_CLONEABLE,
  4458                                   slow_region);
  4461     if (!stopped()) {
  4462       // It's an instance, and it passed the slow-path tests.
  4463       PreserveJVMState pjvms(this);
  4464       Node* obj_size  = NULL;
  4465       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4467       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4469       // Present the results of the slow call.
  4470       result_reg->init_req(_instance_path, control());
  4471       result_val->init_req(_instance_path, alloc_obj);
  4472       result_i_o ->set_req(_instance_path, i_o());
  4473       result_mem ->set_req(_instance_path, reset_memory());
  4476     // Generate code for the slow case.  We make a call to clone().
  4477     set_control(_gvn.transform(slow_region));
  4478     if (!stopped()) {
  4479       PreserveJVMState pjvms(this);
  4480       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4481       Node* slow_result = set_results_for_java_call(slow_call);
  4482       // this->control() comes from set_results_for_java_call
  4483       result_reg->init_req(_slow_path, control());
  4484       result_val->init_req(_slow_path, slow_result);
  4485       result_i_o ->set_req(_slow_path, i_o());
  4486       result_mem ->set_req(_slow_path, reset_memory());
  4489     // Return the combined state.
  4490     set_control(    _gvn.transform(result_reg));
  4491     set_i_o(        _gvn.transform(result_i_o));
  4492     set_all_memory( _gvn.transform(result_mem));
  4493   } // original reexecute is set back here
  4495   set_result(_gvn.transform(result_val));
  4496   return true;
  4499 //------------------------------basictype2arraycopy----------------------------
  4500 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4501                                             Node* src_offset,
  4502                                             Node* dest_offset,
  4503                                             bool disjoint_bases,
  4504                                             const char* &name,
  4505                                             bool dest_uninitialized) {
  4506   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4507   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4509   bool aligned = false;
  4510   bool disjoint = disjoint_bases;
  4512   // if the offsets are the same, we can treat the memory regions as
  4513   // disjoint, because either the memory regions are in different arrays,
  4514   // or they are identical (which we can treat as disjoint.)  We can also
  4515   // treat a copy with a destination index  less that the source index
  4516   // as disjoint since a low->high copy will work correctly in this case.
  4517   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4518       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4519     // both indices are constants
  4520     int s_offs = src_offset_inttype->get_con();
  4521     int d_offs = dest_offset_inttype->get_con();
  4522     int element_size = type2aelembytes(t);
  4523     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4524               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4525     if (s_offs >= d_offs)  disjoint = true;
  4526   } else if (src_offset == dest_offset && src_offset != NULL) {
  4527     // This can occur if the offsets are identical non-constants.
  4528     disjoint = true;
  4531   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4535 //------------------------------inline_arraycopy-----------------------
  4536 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4537 //                                                      Object dest, int destPos,
  4538 //                                                      int length);
  4539 bool LibraryCallKit::inline_arraycopy() {
  4540   // Get the arguments.
  4541   Node* src         = argument(0);  // type: oop
  4542   Node* src_offset  = argument(1);  // type: int
  4543   Node* dest        = argument(2);  // type: oop
  4544   Node* dest_offset = argument(3);  // type: int
  4545   Node* length      = argument(4);  // type: int
  4547   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4548   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4549   // is.  The checks we choose to mandate at compile time are:
  4550   //
  4551   // (1) src and dest are arrays.
  4552   const Type* src_type  = src->Value(&_gvn);
  4553   const Type* dest_type = dest->Value(&_gvn);
  4554   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4555   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4556   if (top_src  == NULL || top_src->klass()  == NULL ||
  4557       top_dest == NULL || top_dest->klass() == NULL) {
  4558     // Conservatively insert a memory barrier on all memory slices.
  4559     // Do not let writes into the source float below the arraycopy.
  4560     insert_mem_bar(Op_MemBarCPUOrder);
  4562     // Call StubRoutines::generic_arraycopy stub.
  4563     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4564                        src, src_offset, dest, dest_offset, length);
  4566     // Do not let reads from the destination float above the arraycopy.
  4567     // Since we cannot type the arrays, we don't know which slices
  4568     // might be affected.  We could restrict this barrier only to those
  4569     // memory slices which pertain to array elements--but don't bother.
  4570     if (!InsertMemBarAfterArraycopy)
  4571       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4572       insert_mem_bar(Op_MemBarCPUOrder);
  4573     return true;
  4576   // (2) src and dest arrays must have elements of the same BasicType
  4577   // Figure out the size and type of the elements we will be copying.
  4578   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4579   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4580   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4581   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4583   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4584     // The component types are not the same or are not recognized.  Punt.
  4585     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4586     generate_slow_arraycopy(TypePtr::BOTTOM,
  4587                             src, src_offset, dest, dest_offset, length,
  4588                             /*dest_uninitialized*/false);
  4589     return true;
  4592   //---------------------------------------------------------------------------
  4593   // We will make a fast path for this call to arraycopy.
  4595   // We have the following tests left to perform:
  4596   //
  4597   // (3) src and dest must not be null.
  4598   // (4) src_offset must not be negative.
  4599   // (5) dest_offset must not be negative.
  4600   // (6) length must not be negative.
  4601   // (7) src_offset + length must not exceed length of src.
  4602   // (8) dest_offset + length must not exceed length of dest.
  4603   // (9) each element of an oop array must be assignable
  4605   RegionNode* slow_region = new (C) RegionNode(1);
  4606   record_for_igvn(slow_region);
  4608   // (3) operands must not be null
  4609   // We currently perform our null checks with the null_check routine.
  4610   // This means that the null exceptions will be reported in the caller
  4611   // rather than (correctly) reported inside of the native arraycopy call.
  4612   // This should be corrected, given time.  We do our null check with the
  4613   // stack pointer restored.
  4614   src  = null_check(src,  T_ARRAY);
  4615   dest = null_check(dest, T_ARRAY);
  4617   // (4) src_offset must not be negative.
  4618   generate_negative_guard(src_offset, slow_region);
  4620   // (5) dest_offset must not be negative.
  4621   generate_negative_guard(dest_offset, slow_region);
  4623   // (6) length must not be negative (moved to generate_arraycopy()).
  4624   // generate_negative_guard(length, slow_region);
  4626   // (7) src_offset + length must not exceed length of src.
  4627   generate_limit_guard(src_offset, length,
  4628                        load_array_length(src),
  4629                        slow_region);
  4631   // (8) dest_offset + length must not exceed length of dest.
  4632   generate_limit_guard(dest_offset, length,
  4633                        load_array_length(dest),
  4634                        slow_region);
  4636   // (9) each element of an oop array must be assignable
  4637   // The generate_arraycopy subroutine checks this.
  4639   // This is where the memory effects are placed:
  4640   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4641   generate_arraycopy(adr_type, dest_elem,
  4642                      src, src_offset, dest, dest_offset, length,
  4643                      false, false, slow_region);
  4645   return true;
  4648 //-----------------------------generate_arraycopy----------------------
  4649 // Generate an optimized call to arraycopy.
  4650 // Caller must guard against non-arrays.
  4651 // Caller must determine a common array basic-type for both arrays.
  4652 // Caller must validate offsets against array bounds.
  4653 // The slow_region has already collected guard failure paths
  4654 // (such as out of bounds length or non-conformable array types).
  4655 // The generated code has this shape, in general:
  4656 //
  4657 //     if (length == 0)  return   // via zero_path
  4658 //     slowval = -1
  4659 //     if (types unknown) {
  4660 //       slowval = call generic copy loop
  4661 //       if (slowval == 0)  return  // via checked_path
  4662 //     } else if (indexes in bounds) {
  4663 //       if ((is object array) && !(array type check)) {
  4664 //         slowval = call checked copy loop
  4665 //         if (slowval == 0)  return  // via checked_path
  4666 //       } else {
  4667 //         call bulk copy loop
  4668 //         return  // via fast_path
  4669 //       }
  4670 //     }
  4671 //     // adjust params for remaining work:
  4672 //     if (slowval != -1) {
  4673 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4674 //     }
  4675 //   slow_region:
  4676 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4677 //     return  // via slow_call_path
  4678 //
  4679 // This routine is used from several intrinsics:  System.arraycopy,
  4680 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4681 //
  4682 void
  4683 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4684                                    BasicType basic_elem_type,
  4685                                    Node* src,  Node* src_offset,
  4686                                    Node* dest, Node* dest_offset,
  4687                                    Node* copy_length,
  4688                                    bool disjoint_bases,
  4689                                    bool length_never_negative,
  4690                                    RegionNode* slow_region) {
  4692   if (slow_region == NULL) {
  4693     slow_region = new(C) RegionNode(1);
  4694     record_for_igvn(slow_region);
  4697   Node* original_dest      = dest;
  4698   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4699   bool  dest_uninitialized = false;
  4701   // See if this is the initialization of a newly-allocated array.
  4702   // If so, we will take responsibility here for initializing it to zero.
  4703   // (Note:  Because tightly_coupled_allocation performs checks on the
  4704   // out-edges of the dest, we need to avoid making derived pointers
  4705   // from it until we have checked its uses.)
  4706   if (ReduceBulkZeroing
  4707       && !ZeroTLAB              // pointless if already zeroed
  4708       && basic_elem_type != T_CONFLICT // avoid corner case
  4709       && !src->eqv_uncast(dest)
  4710       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4711           != NULL)
  4712       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4713       && alloc->maybe_set_complete(&_gvn)) {
  4714     // "You break it, you buy it."
  4715     InitializeNode* init = alloc->initialization();
  4716     assert(init->is_complete(), "we just did this");
  4717     init->set_complete_with_arraycopy();
  4718     assert(dest->is_CheckCastPP(), "sanity");
  4719     assert(dest->in(0)->in(0) == init, "dest pinned");
  4720     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4721     // From this point on, every exit path is responsible for
  4722     // initializing any non-copied parts of the object to zero.
  4723     // Also, if this flag is set we make sure that arraycopy interacts properly
  4724     // with G1, eliding pre-barriers. See CR 6627983.
  4725     dest_uninitialized = true;
  4726   } else {
  4727     // No zeroing elimination here.
  4728     alloc             = NULL;
  4729     //original_dest   = dest;
  4730     //dest_uninitialized = false;
  4733   // Results are placed here:
  4734   enum { fast_path        = 1,  // normal void-returning assembly stub
  4735          checked_path     = 2,  // special assembly stub with cleanup
  4736          slow_call_path   = 3,  // something went wrong; call the VM
  4737          zero_path        = 4,  // bypass when length of copy is zero
  4738          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4739          PATH_LIMIT       = 6
  4740   };
  4741   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4742   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4743   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4744   record_for_igvn(result_region);
  4745   _gvn.set_type_bottom(result_i_o);
  4746   _gvn.set_type_bottom(result_memory);
  4747   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4749   // The slow_control path:
  4750   Node* slow_control;
  4751   Node* slow_i_o = i_o();
  4752   Node* slow_mem = memory(adr_type);
  4753   debug_only(slow_control = (Node*) badAddress);
  4755   // Checked control path:
  4756   Node* checked_control = top();
  4757   Node* checked_mem     = NULL;
  4758   Node* checked_i_o     = NULL;
  4759   Node* checked_value   = NULL;
  4761   if (basic_elem_type == T_CONFLICT) {
  4762     assert(!dest_uninitialized, "");
  4763     Node* cv = generate_generic_arraycopy(adr_type,
  4764                                           src, src_offset, dest, dest_offset,
  4765                                           copy_length, dest_uninitialized);
  4766     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4767     checked_control = control();
  4768     checked_i_o     = i_o();
  4769     checked_mem     = memory(adr_type);
  4770     checked_value   = cv;
  4771     set_control(top());         // no fast path
  4774   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4775   if (not_pos != NULL) {
  4776     PreserveJVMState pjvms(this);
  4777     set_control(not_pos);
  4779     // (6) length must not be negative.
  4780     if (!length_never_negative) {
  4781       generate_negative_guard(copy_length, slow_region);
  4784     // copy_length is 0.
  4785     if (!stopped() && dest_uninitialized) {
  4786       Node* dest_length = alloc->in(AllocateNode::ALength);
  4787       if (copy_length->eqv_uncast(dest_length)
  4788           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4789         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4790       } else {
  4791         // Clear the whole thing since there are no source elements to copy.
  4792         generate_clear_array(adr_type, dest, basic_elem_type,
  4793                              intcon(0), NULL,
  4794                              alloc->in(AllocateNode::AllocSize));
  4795         // Use a secondary InitializeNode as raw memory barrier.
  4796         // Currently it is needed only on this path since other
  4797         // paths have stub or runtime calls as raw memory barriers.
  4798         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4799                                                        Compile::AliasIdxRaw,
  4800                                                        top())->as_Initialize();
  4801         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4805     // Present the results of the fast call.
  4806     result_region->init_req(zero_path, control());
  4807     result_i_o   ->init_req(zero_path, i_o());
  4808     result_memory->init_req(zero_path, memory(adr_type));
  4811   if (!stopped() && dest_uninitialized) {
  4812     // We have to initialize the *uncopied* part of the array to zero.
  4813     // The copy destination is the slice dest[off..off+len].  The other slices
  4814     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4815     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4816     Node* dest_length = alloc->in(AllocateNode::ALength);
  4817     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  4818                                                           copy_length));
  4820     // If there is a head section that needs zeroing, do it now.
  4821     if (find_int_con(dest_offset, -1) != 0) {
  4822       generate_clear_array(adr_type, dest, basic_elem_type,
  4823                            intcon(0), dest_offset,
  4824                            NULL);
  4827     // Next, perform a dynamic check on the tail length.
  4828     // It is often zero, and we can win big if we prove this.
  4829     // There are two wins:  Avoid generating the ClearArray
  4830     // with its attendant messy index arithmetic, and upgrade
  4831     // the copy to a more hardware-friendly word size of 64 bits.
  4832     Node* tail_ctl = NULL;
  4833     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4834       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  4835       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  4836       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4837       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4840     // At this point, let's assume there is no tail.
  4841     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4842       // There is no tail.  Try an upgrade to a 64-bit copy.
  4843       bool didit = false;
  4844       { PreserveJVMState pjvms(this);
  4845         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4846                                          src, src_offset, dest, dest_offset,
  4847                                          dest_size, dest_uninitialized);
  4848         if (didit) {
  4849           // Present the results of the block-copying fast call.
  4850           result_region->init_req(bcopy_path, control());
  4851           result_i_o   ->init_req(bcopy_path, i_o());
  4852           result_memory->init_req(bcopy_path, memory(adr_type));
  4855       if (didit)
  4856         set_control(top());     // no regular fast path
  4859     // Clear the tail, if any.
  4860     if (tail_ctl != NULL) {
  4861       Node* notail_ctl = stopped() ? NULL : control();
  4862       set_control(tail_ctl);
  4863       if (notail_ctl == NULL) {
  4864         generate_clear_array(adr_type, dest, basic_elem_type,
  4865                              dest_tail, NULL,
  4866                              dest_size);
  4867       } else {
  4868         // Make a local merge.
  4869         Node* done_ctl = new(C) RegionNode(3);
  4870         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4871         done_ctl->init_req(1, notail_ctl);
  4872         done_mem->init_req(1, memory(adr_type));
  4873         generate_clear_array(adr_type, dest, basic_elem_type,
  4874                              dest_tail, NULL,
  4875                              dest_size);
  4876         done_ctl->init_req(2, control());
  4877         done_mem->init_req(2, memory(adr_type));
  4878         set_control( _gvn.transform(done_ctl));
  4879         set_memory(  _gvn.transform(done_mem), adr_type );
  4884   BasicType copy_type = basic_elem_type;
  4885   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4886   if (!stopped() && copy_type == T_OBJECT) {
  4887     // If src and dest have compatible element types, we can copy bits.
  4888     // Types S[] and D[] are compatible if D is a supertype of S.
  4889     //
  4890     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4891     // which performs a fast optimistic per-oop check, and backs off
  4892     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4893     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4895     // Get the Klass* for both src and dest
  4896     Node* src_klass  = load_object_klass(src);
  4897     Node* dest_klass = load_object_klass(dest);
  4899     // Generate the subtype check.
  4900     // This might fold up statically, or then again it might not.
  4901     //
  4902     // Non-static example:  Copying List<String>.elements to a new String[].
  4903     // The backing store for a List<String> is always an Object[],
  4904     // but its elements are always type String, if the generic types
  4905     // are correct at the source level.
  4906     //
  4907     // Test S[] against D[], not S against D, because (probably)
  4908     // the secondary supertype cache is less busy for S[] than S.
  4909     // This usually only matters when D is an interface.
  4910     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4911     // Plug failing path into checked_oop_disjoint_arraycopy
  4912     if (not_subtype_ctrl != top()) {
  4913       PreserveJVMState pjvms(this);
  4914       set_control(not_subtype_ctrl);
  4915       // (At this point we can assume disjoint_bases, since types differ.)
  4916       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  4917       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4918       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4919       Node* dest_elem_klass = _gvn.transform(n1);
  4920       Node* cv = generate_checkcast_arraycopy(adr_type,
  4921                                               dest_elem_klass,
  4922                                               src, src_offset, dest, dest_offset,
  4923                                               ConvI2X(copy_length), dest_uninitialized);
  4924       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4925       checked_control = control();
  4926       checked_i_o     = i_o();
  4927       checked_mem     = memory(adr_type);
  4928       checked_value   = cv;
  4930     // At this point we know we do not need type checks on oop stores.
  4932     // Let's see if we need card marks:
  4933     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4934       // If we do not need card marks, copy using the jint or jlong stub.
  4935       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4936       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4937              "sizes agree");
  4941   if (!stopped()) {
  4942     // Generate the fast path, if possible.
  4943     PreserveJVMState pjvms(this);
  4944     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4945                                  src, src_offset, dest, dest_offset,
  4946                                  ConvI2X(copy_length), dest_uninitialized);
  4948     // Present the results of the fast call.
  4949     result_region->init_req(fast_path, control());
  4950     result_i_o   ->init_req(fast_path, i_o());
  4951     result_memory->init_req(fast_path, memory(adr_type));
  4954   // Here are all the slow paths up to this point, in one bundle:
  4955   slow_control = top();
  4956   if (slow_region != NULL)
  4957     slow_control = _gvn.transform(slow_region);
  4958   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  4960   set_control(checked_control);
  4961   if (!stopped()) {
  4962     // Clean up after the checked call.
  4963     // The returned value is either 0 or -1^K,
  4964     // where K = number of partially transferred array elements.
  4965     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  4966     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  4967     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4969     // If it is 0, we are done, so transfer to the end.
  4970     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  4971     result_region->init_req(checked_path, checks_done);
  4972     result_i_o   ->init_req(checked_path, checked_i_o);
  4973     result_memory->init_req(checked_path, checked_mem);
  4975     // If it is not zero, merge into the slow call.
  4976     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  4977     RegionNode* slow_reg2 = new(C) RegionNode(3);
  4978     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  4979     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4980     record_for_igvn(slow_reg2);
  4981     slow_reg2  ->init_req(1, slow_control);
  4982     slow_i_o2  ->init_req(1, slow_i_o);
  4983     slow_mem2  ->init_req(1, slow_mem);
  4984     slow_reg2  ->init_req(2, control());
  4985     slow_i_o2  ->init_req(2, checked_i_o);
  4986     slow_mem2  ->init_req(2, checked_mem);
  4988     slow_control = _gvn.transform(slow_reg2);
  4989     slow_i_o     = _gvn.transform(slow_i_o2);
  4990     slow_mem     = _gvn.transform(slow_mem2);
  4992     if (alloc != NULL) {
  4993       // We'll restart from the very beginning, after zeroing the whole thing.
  4994       // This can cause double writes, but that's OK since dest is brand new.
  4995       // So we ignore the low 31 bits of the value returned from the stub.
  4996     } else {
  4997       // We must continue the copy exactly where it failed, or else
  4998       // another thread might see the wrong number of writes to dest.
  4999       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5000       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5001       slow_offset->init_req(1, intcon(0));
  5002       slow_offset->init_req(2, checked_offset);
  5003       slow_offset  = _gvn.transform(slow_offset);
  5005       // Adjust the arguments by the conditionally incoming offset.
  5006       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5007       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5008       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5010       // Tweak the node variables to adjust the code produced below:
  5011       src_offset  = src_off_plus;
  5012       dest_offset = dest_off_plus;
  5013       copy_length = length_minus;
  5017   set_control(slow_control);
  5018   if (!stopped()) {
  5019     // Generate the slow path, if needed.
  5020     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5022     set_memory(slow_mem, adr_type);
  5023     set_i_o(slow_i_o);
  5025     if (dest_uninitialized) {
  5026       generate_clear_array(adr_type, dest, basic_elem_type,
  5027                            intcon(0), NULL,
  5028                            alloc->in(AllocateNode::AllocSize));
  5031     generate_slow_arraycopy(adr_type,
  5032                             src, src_offset, dest, dest_offset,
  5033                             copy_length, /*dest_uninitialized*/false);
  5035     result_region->init_req(slow_call_path, control());
  5036     result_i_o   ->init_req(slow_call_path, i_o());
  5037     result_memory->init_req(slow_call_path, memory(adr_type));
  5040   // Remove unused edges.
  5041   for (uint i = 1; i < result_region->req(); i++) {
  5042     if (result_region->in(i) == NULL)
  5043       result_region->init_req(i, top());
  5046   // Finished; return the combined state.
  5047   set_control( _gvn.transform(result_region));
  5048   set_i_o(     _gvn.transform(result_i_o)    );
  5049   set_memory(  _gvn.transform(result_memory), adr_type );
  5051   // The memory edges above are precise in order to model effects around
  5052   // array copies accurately to allow value numbering of field loads around
  5053   // arraycopy.  Such field loads, both before and after, are common in Java
  5054   // collections and similar classes involving header/array data structures.
  5055   //
  5056   // But with low number of register or when some registers are used or killed
  5057   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5058   // The next memory barrier is added to avoid it. If the arraycopy can be
  5059   // optimized away (which it can, sometimes) then we can manually remove
  5060   // the membar also.
  5061   //
  5062   // Do not let reads from the cloned object float above the arraycopy.
  5063   if (alloc != NULL) {
  5064     // Do not let stores that initialize this object be reordered with
  5065     // a subsequent store that would make this object accessible by
  5066     // other threads.
  5067     // Record what AllocateNode this StoreStore protects so that
  5068     // escape analysis can go from the MemBarStoreStoreNode to the
  5069     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5070     // based on the escape status of the AllocateNode.
  5071     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5072   } else if (InsertMemBarAfterArraycopy)
  5073     insert_mem_bar(Op_MemBarCPUOrder);
  5077 // Helper function which determines if an arraycopy immediately follows
  5078 // an allocation, with no intervening tests or other escapes for the object.
  5079 AllocateArrayNode*
  5080 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5081                                            RegionNode* slow_region) {
  5082   if (stopped())             return NULL;  // no fast path
  5083   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5085   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5086   if (alloc == NULL)  return NULL;
  5088   Node* rawmem = memory(Compile::AliasIdxRaw);
  5089   // Is the allocation's memory state untouched?
  5090   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5091     // Bail out if there have been raw-memory effects since the allocation.
  5092     // (Example:  There might have been a call or safepoint.)
  5093     return NULL;
  5095   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5096   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5097     return NULL;
  5100   // There must be no unexpected observers of this allocation.
  5101   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5102     Node* obs = ptr->fast_out(i);
  5103     if (obs != this->map()) {
  5104       return NULL;
  5108   // This arraycopy must unconditionally follow the allocation of the ptr.
  5109   Node* alloc_ctl = ptr->in(0);
  5110   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5112   Node* ctl = control();
  5113   while (ctl != alloc_ctl) {
  5114     // There may be guards which feed into the slow_region.
  5115     // Any other control flow means that we might not get a chance
  5116     // to finish initializing the allocated object.
  5117     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5118       IfNode* iff = ctl->in(0)->as_If();
  5119       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5120       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5121       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5122         ctl = iff->in(0);       // This test feeds the known slow_region.
  5123         continue;
  5125       // One more try:  Various low-level checks bottom out in
  5126       // uncommon traps.  If the debug-info of the trap omits
  5127       // any reference to the allocation, as we've already
  5128       // observed, then there can be no objection to the trap.
  5129       bool found_trap = false;
  5130       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5131         Node* obs = not_ctl->fast_out(j);
  5132         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5133             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5134           found_trap = true; break;
  5137       if (found_trap) {
  5138         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5139         continue;
  5142     return NULL;
  5145   // If we get this far, we have an allocation which immediately
  5146   // precedes the arraycopy, and we can take over zeroing the new object.
  5147   // The arraycopy will finish the initialization, and provide
  5148   // a new control state to which we will anchor the destination pointer.
  5150   return alloc;
  5153 // Helper for initialization of arrays, creating a ClearArray.
  5154 // It writes zero bits in [start..end), within the body of an array object.
  5155 // The memory effects are all chained onto the 'adr_type' alias category.
  5156 //
  5157 // Since the object is otherwise uninitialized, we are free
  5158 // to put a little "slop" around the edges of the cleared area,
  5159 // as long as it does not go back into the array's header,
  5160 // or beyond the array end within the heap.
  5161 //
  5162 // The lower edge can be rounded down to the nearest jint and the
  5163 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5164 //
  5165 // Arguments:
  5166 //   adr_type           memory slice where writes are generated
  5167 //   dest               oop of the destination array
  5168 //   basic_elem_type    element type of the destination
  5169 //   slice_idx          array index of first element to store
  5170 //   slice_len          number of elements to store (or NULL)
  5171 //   dest_size          total size in bytes of the array object
  5172 //
  5173 // Exactly one of slice_len or dest_size must be non-NULL.
  5174 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5175 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5176 void
  5177 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5178                                      Node* dest,
  5179                                      BasicType basic_elem_type,
  5180                                      Node* slice_idx,
  5181                                      Node* slice_len,
  5182                                      Node* dest_size) {
  5183   // one or the other but not both of slice_len and dest_size:
  5184   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5185   if (slice_len == NULL)  slice_len = top();
  5186   if (dest_size == NULL)  dest_size = top();
  5188   // operate on this memory slice:
  5189   Node* mem = memory(adr_type); // memory slice to operate on
  5191   // scaling and rounding of indexes:
  5192   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5193   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5194   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5195   int bump_bit  = (-1 << scale) & BytesPerInt;
  5197   // determine constant starts and ends
  5198   const intptr_t BIG_NEG = -128;
  5199   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5200   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5201   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5202   if (slice_len_con == 0) {
  5203     return;                     // nothing to do here
  5205   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5206   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5207   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5208     assert(end_con < 0, "not two cons");
  5209     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5210                        BytesPerLong);
  5213   if (start_con >= 0 && end_con >= 0) {
  5214     // Constant start and end.  Simple.
  5215     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5216                                        start_con, end_con, &_gvn);
  5217   } else if (start_con >= 0 && dest_size != top()) {
  5218     // Constant start, pre-rounded end after the tail of the array.
  5219     Node* end = dest_size;
  5220     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5221                                        start_con, end, &_gvn);
  5222   } else if (start_con >= 0 && slice_len != top()) {
  5223     // Constant start, non-constant end.  End needs rounding up.
  5224     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5225     intptr_t end_base  = abase + (slice_idx_con << scale);
  5226     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5227     Node*    end       = ConvI2X(slice_len);
  5228     if (scale != 0)
  5229       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5230     end_base += end_round;
  5231     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5232     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5233     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5234                                        start_con, end, &_gvn);
  5235   } else if (start_con < 0 && dest_size != top()) {
  5236     // Non-constant start, pre-rounded end after the tail of the array.
  5237     // This is almost certainly a "round-to-end" operation.
  5238     Node* start = slice_idx;
  5239     start = ConvI2X(start);
  5240     if (scale != 0)
  5241       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5242     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5243     if ((bump_bit | clear_low) != 0) {
  5244       int to_clear = (bump_bit | clear_low);
  5245       // Align up mod 8, then store a jint zero unconditionally
  5246       // just before the mod-8 boundary.
  5247       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5248           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5249         bump_bit = 0;
  5250         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5251       } else {
  5252         // Bump 'start' up to (or past) the next jint boundary:
  5253         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5254         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5256       // Round bumped 'start' down to jlong boundary in body of array.
  5257       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5258       if (bump_bit != 0) {
  5259         // Store a zero to the immediately preceding jint:
  5260         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5261         Node* p1 = basic_plus_adr(dest, x1);
  5262         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5263         mem = _gvn.transform(mem);
  5266     Node* end = dest_size; // pre-rounded
  5267     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5268                                        start, end, &_gvn);
  5269   } else {
  5270     // Non-constant start, unrounded non-constant end.
  5271     // (Nobody zeroes a random midsection of an array using this routine.)
  5272     ShouldNotReachHere();       // fix caller
  5275   // Done.
  5276   set_memory(mem, adr_type);
  5280 bool
  5281 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5282                                          BasicType basic_elem_type,
  5283                                          AllocateNode* alloc,
  5284                                          Node* src,  Node* src_offset,
  5285                                          Node* dest, Node* dest_offset,
  5286                                          Node* dest_size, bool dest_uninitialized) {
  5287   // See if there is an advantage from block transfer.
  5288   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5289   if (scale >= LogBytesPerLong)
  5290     return false;               // it is already a block transfer
  5292   // Look at the alignment of the starting offsets.
  5293   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5295   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5296   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5297   if (src_off_con < 0 || dest_off_con < 0)
  5298     // At present, we can only understand constants.
  5299     return false;
  5301   intptr_t src_off  = abase + (src_off_con  << scale);
  5302   intptr_t dest_off = abase + (dest_off_con << scale);
  5304   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5305     // Non-aligned; too bad.
  5306     // One more chance:  Pick off an initial 32-bit word.
  5307     // This is a common case, since abase can be odd mod 8.
  5308     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5309         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5310       Node* sptr = basic_plus_adr(src,  src_off);
  5311       Node* dptr = basic_plus_adr(dest, dest_off);
  5312       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5313       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5314       src_off += BytesPerInt;
  5315       dest_off += BytesPerInt;
  5316     } else {
  5317       return false;
  5320   assert(src_off % BytesPerLong == 0, "");
  5321   assert(dest_off % BytesPerLong == 0, "");
  5323   // Do this copy by giant steps.
  5324   Node* sptr  = basic_plus_adr(src,  src_off);
  5325   Node* dptr  = basic_plus_adr(dest, dest_off);
  5326   Node* countx = dest_size;
  5327   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5328   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5330   bool disjoint_bases = true;   // since alloc != NULL
  5331   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5332                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5334   return true;
  5338 // Helper function; generates code for the slow case.
  5339 // We make a call to a runtime method which emulates the native method,
  5340 // but without the native wrapper overhead.
  5341 void
  5342 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5343                                         Node* src,  Node* src_offset,
  5344                                         Node* dest, Node* dest_offset,
  5345                                         Node* copy_length, bool dest_uninitialized) {
  5346   assert(!dest_uninitialized, "Invariant");
  5347   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5348                                  OptoRuntime::slow_arraycopy_Type(),
  5349                                  OptoRuntime::slow_arraycopy_Java(),
  5350                                  "slow_arraycopy", adr_type,
  5351                                  src, src_offset, dest, dest_offset,
  5352                                  copy_length);
  5354   // Handle exceptions thrown by this fellow:
  5355   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5358 // Helper function; generates code for cases requiring runtime checks.
  5359 Node*
  5360 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5361                                              Node* dest_elem_klass,
  5362                                              Node* src,  Node* src_offset,
  5363                                              Node* dest, Node* dest_offset,
  5364                                              Node* copy_length, bool dest_uninitialized) {
  5365   if (stopped())  return NULL;
  5367   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5368   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5369     return NULL;
  5372   // Pick out the parameters required to perform a store-check
  5373   // for the target array.  This is an optimistic check.  It will
  5374   // look in each non-null element's class, at the desired klass's
  5375   // super_check_offset, for the desired klass.
  5376   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5377   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5378   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5379   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5380   Node* check_value  = dest_elem_klass;
  5382   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5383   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5385   // (We know the arrays are never conjoint, because their types differ.)
  5386   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5387                                  OptoRuntime::checkcast_arraycopy_Type(),
  5388                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5389                                  // five arguments, of which two are
  5390                                  // intptr_t (jlong in LP64)
  5391                                  src_start, dest_start,
  5392                                  copy_length XTOP,
  5393                                  check_offset XTOP,
  5394                                  check_value);
  5396   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5400 // Helper function; generates code for cases requiring runtime checks.
  5401 Node*
  5402 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5403                                            Node* src,  Node* src_offset,
  5404                                            Node* dest, Node* dest_offset,
  5405                                            Node* copy_length, bool dest_uninitialized) {
  5406   assert(!dest_uninitialized, "Invariant");
  5407   if (stopped())  return NULL;
  5408   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5409   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5410     return NULL;
  5413   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5414                     OptoRuntime::generic_arraycopy_Type(),
  5415                     copyfunc_addr, "generic_arraycopy", adr_type,
  5416                     src, src_offset, dest, dest_offset, copy_length);
  5418   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5421 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5422 void
  5423 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5424                                              BasicType basic_elem_type,
  5425                                              bool disjoint_bases,
  5426                                              Node* src,  Node* src_offset,
  5427                                              Node* dest, Node* dest_offset,
  5428                                              Node* copy_length, bool dest_uninitialized) {
  5429   if (stopped())  return;               // nothing to do
  5431   Node* src_start  = src;
  5432   Node* dest_start = dest;
  5433   if (src_offset != NULL || dest_offset != NULL) {
  5434     assert(src_offset != NULL && dest_offset != NULL, "");
  5435     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5436     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5439   // Figure out which arraycopy runtime method to call.
  5440   const char* copyfunc_name = "arraycopy";
  5441   address     copyfunc_addr =
  5442       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5443                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5445   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5446   make_runtime_call(RC_LEAF|RC_NO_FP,
  5447                     OptoRuntime::fast_arraycopy_Type(),
  5448                     copyfunc_addr, copyfunc_name, adr_type,
  5449                     src_start, dest_start, copy_length XTOP);
  5452 //-------------inline_encodeISOArray-----------------------------------
  5453 // encode char[] to byte[] in ISO_8859_1
  5454 bool LibraryCallKit::inline_encodeISOArray() {
  5455   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5456   // no receiver since it is static method
  5457   Node *src         = argument(0);
  5458   Node *src_offset  = argument(1);
  5459   Node *dst         = argument(2);
  5460   Node *dst_offset  = argument(3);
  5461   Node *length      = argument(4);
  5463   const Type* src_type = src->Value(&_gvn);
  5464   const Type* dst_type = dst->Value(&_gvn);
  5465   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5466   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5467   if (top_src  == NULL || top_src->klass()  == NULL ||
  5468       top_dest == NULL || top_dest->klass() == NULL) {
  5469     // failed array check
  5470     return false;
  5473   // Figure out the size and type of the elements we will be copying.
  5474   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5475   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5476   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5477     return false;
  5479   Node* src_start = array_element_address(src, src_offset, src_elem);
  5480   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5481   // 'src_start' points to src array + scaled offset
  5482   // 'dst_start' points to dst array + scaled offset
  5484   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5485   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5486   enc = _gvn.transform(enc);
  5487   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5488   set_memory(res_mem, mtype);
  5489   set_result(enc);
  5490   return true;
  5493 /**
  5494  * Calculate CRC32 for byte.
  5495  * int java.util.zip.CRC32.update(int crc, int b)
  5496  */
  5497 bool LibraryCallKit::inline_updateCRC32() {
  5498   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5499   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5500   // no receiver since it is static method
  5501   Node* crc  = argument(0); // type: int
  5502   Node* b    = argument(1); // type: int
  5504   /*
  5505    *    int c = ~ crc;
  5506    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5507    *    b = b ^ (c >>> 8);
  5508    *    crc = ~b;
  5509    */
  5511   Node* M1 = intcon(-1);
  5512   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5513   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5514   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5516   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5517   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5518   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5519   result = make_load(control(), adr, TypeInt::INT, T_INT);
  5521   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5522   result = _gvn.transform(new (C) XorINode(crc, result));
  5523   result = _gvn.transform(new (C) XorINode(result, M1));
  5524   set_result(result);
  5525   return true;
  5528 /**
  5529  * Calculate CRC32 for byte[] array.
  5530  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5531  */
  5532 bool LibraryCallKit::inline_updateBytesCRC32() {
  5533   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5534   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5535   // no receiver since it is static method
  5536   Node* crc     = argument(0); // type: int
  5537   Node* src     = argument(1); // type: oop
  5538   Node* offset  = argument(2); // type: int
  5539   Node* length  = argument(3); // type: int
  5541   const Type* src_type = src->Value(&_gvn);
  5542   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5543   if (top_src  == NULL || top_src->klass()  == NULL) {
  5544     // failed array check
  5545     return false;
  5548   // Figure out the size and type of the elements we will be copying.
  5549   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5550   if (src_elem != T_BYTE) {
  5551     return false;
  5554   // 'src_start' points to src array + scaled offset
  5555   Node* src_start = array_element_address(src, offset, src_elem);
  5557   // We assume that range check is done by caller.
  5558   // TODO: generate range check (offset+length < src.length) in debug VM.
  5560   // Call the stub.
  5561   address stubAddr = StubRoutines::updateBytesCRC32();
  5562   const char *stubName = "updateBytesCRC32";
  5564   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5565                                  stubAddr, stubName, TypePtr::BOTTOM,
  5566                                  crc, src_start, length);
  5567   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5568   set_result(result);
  5569   return true;
  5572 /**
  5573  * Calculate CRC32 for ByteBuffer.
  5574  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5575  */
  5576 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5577   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5578   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5579   // no receiver since it is static method
  5580   Node* crc     = argument(0); // type: int
  5581   Node* src     = argument(1); // type: long
  5582   Node* offset  = argument(3); // type: int
  5583   Node* length  = argument(4); // type: int
  5585   src = ConvL2X(src);  // adjust Java long to machine word
  5586   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5587   offset = ConvI2X(offset);
  5589   // 'src_start' points to src array + scaled offset
  5590   Node* src_start = basic_plus_adr(top(), base, offset);
  5592   // Call the stub.
  5593   address stubAddr = StubRoutines::updateBytesCRC32();
  5594   const char *stubName = "updateBytesCRC32";
  5596   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5597                                  stubAddr, stubName, TypePtr::BOTTOM,
  5598                                  crc, src_start, length);
  5599   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5600   set_result(result);
  5601   return true;
  5604 //----------------------------inline_reference_get----------------------------
  5605 // public T java.lang.ref.Reference.get();
  5606 bool LibraryCallKit::inline_reference_get() {
  5607   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5608   guarantee(referent_offset > 0, "should have already been set");
  5610   // Get the argument:
  5611   Node* reference_obj = null_check_receiver();
  5612   if (stopped()) return true;
  5614   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5616   ciInstanceKlass* klass = env()->Object_klass();
  5617   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5619   Node* no_ctrl = NULL;
  5620   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5622   // Use the pre-barrier to record the value in the referent field
  5623   pre_barrier(false /* do_load */,
  5624               control(),
  5625               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5626               result /* pre_val */,
  5627               T_OBJECT);
  5629   // Add memory barrier to prevent commoning reads from this field
  5630   // across safepoint since GC can change its value.
  5631   insert_mem_bar(Op_MemBarCPUOrder);
  5633   set_result(result);
  5634   return true;
  5638 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5639                                               bool is_exact=true, bool is_static=false) {
  5641   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5642   assert(tinst != NULL, "obj is null");
  5643   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5644   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5646   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5647                                                                           ciSymbol::make(fieldTypeString),
  5648                                                                           is_static);
  5649   if (field == NULL) return (Node *) NULL;
  5650   assert (field != NULL, "undefined field");
  5652   // Next code  copied from Parse::do_get_xxx():
  5654   // Compute address and memory type.
  5655   int offset  = field->offset_in_bytes();
  5656   bool is_vol = field->is_volatile();
  5657   ciType* field_klass = field->type();
  5658   assert(field_klass->is_loaded(), "should be loaded");
  5659   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5660   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5661   BasicType bt = field->layout_type();
  5663   // Build the resultant type of the load
  5664   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5666   // Build the load.
  5667   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5668   return loadedField;
  5672 //------------------------------inline_aescrypt_Block-----------------------
  5673 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5674   address stubAddr;
  5675   const char *stubName;
  5676   assert(UseAES, "need AES instruction support");
  5678   switch(id) {
  5679   case vmIntrinsics::_aescrypt_encryptBlock:
  5680     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5681     stubName = "aescrypt_encryptBlock";
  5682     break;
  5683   case vmIntrinsics::_aescrypt_decryptBlock:
  5684     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5685     stubName = "aescrypt_decryptBlock";
  5686     break;
  5688   if (stubAddr == NULL) return false;
  5690   Node* aescrypt_object = argument(0);
  5691   Node* src             = argument(1);
  5692   Node* src_offset      = argument(2);
  5693   Node* dest            = argument(3);
  5694   Node* dest_offset     = argument(4);
  5696   // (1) src and dest are arrays.
  5697   const Type* src_type = src->Value(&_gvn);
  5698   const Type* dest_type = dest->Value(&_gvn);
  5699   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5700   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5701   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5703   // for the quick and dirty code we will skip all the checks.
  5704   // we are just trying to get the call to be generated.
  5705   Node* src_start  = src;
  5706   Node* dest_start = dest;
  5707   if (src_offset != NULL || dest_offset != NULL) {
  5708     assert(src_offset != NULL && dest_offset != NULL, "");
  5709     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5710     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5713   // now need to get the start of its expanded key array
  5714   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5715   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5716   if (k_start == NULL) return false;
  5718   // Call the stub.
  5719   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5720                     stubAddr, stubName, TypePtr::BOTTOM,
  5721                     src_start, dest_start, k_start);
  5723   return true;
  5726 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5727 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5728   address stubAddr;
  5729   const char *stubName;
  5731   assert(UseAES, "need AES instruction support");
  5733   switch(id) {
  5734   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5735     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5736     stubName = "cipherBlockChaining_encryptAESCrypt";
  5737     break;
  5738   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5739     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5740     stubName = "cipherBlockChaining_decryptAESCrypt";
  5741     break;
  5743   if (stubAddr == NULL) return false;
  5745   Node* cipherBlockChaining_object = argument(0);
  5746   Node* src                        = argument(1);
  5747   Node* src_offset                 = argument(2);
  5748   Node* len                        = argument(3);
  5749   Node* dest                       = argument(4);
  5750   Node* dest_offset                = argument(5);
  5752   // (1) src and dest are arrays.
  5753   const Type* src_type = src->Value(&_gvn);
  5754   const Type* dest_type = dest->Value(&_gvn);
  5755   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5756   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5757   assert (top_src  != NULL && top_src->klass()  != NULL
  5758           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5760   // checks are the responsibility of the caller
  5761   Node* src_start  = src;
  5762   Node* dest_start = dest;
  5763   if (src_offset != NULL || dest_offset != NULL) {
  5764     assert(src_offset != NULL && dest_offset != NULL, "");
  5765     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5766     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5769   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5770   // (because of the predicated logic executed earlier).
  5771   // so we cast it here safely.
  5772   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5774   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5775   if (embeddedCipherObj == NULL) return false;
  5777   // cast it to what we know it will be at runtime
  5778   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5779   assert(tinst != NULL, "CBC obj is null");
  5780   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5781   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5782   if (!klass_AESCrypt->is_loaded()) return false;
  5784   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5785   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5786   const TypeOopPtr* xtype = aklass->as_instance_type();
  5787   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5788   aescrypt_object = _gvn.transform(aescrypt_object);
  5790   // we need to get the start of the aescrypt_object's expanded key array
  5791   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5792   if (k_start == NULL) return false;
  5794   // similarly, get the start address of the r vector
  5795   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5796   if (objRvec == NULL) return false;
  5797   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5799   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5800   make_runtime_call(RC_LEAF|RC_NO_FP,
  5801                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5802                     stubAddr, stubName, TypePtr::BOTTOM,
  5803                     src_start, dest_start, k_start, r_start, len);
  5805   // return is void so no result needs to be pushed
  5807   return true;
  5810 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5811 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5812   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5813   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5814   if (objAESCryptKey == NULL) return (Node *) NULL;
  5816   // now have the array, need to get the start address of the K array
  5817   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5818   return k_start;
  5821 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5822 // Return node representing slow path of predicate check.
  5823 // the pseudo code we want to emulate with this predicate is:
  5824 // for encryption:
  5825 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5826 // for decryption:
  5827 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5828 //    note cipher==plain is more conservative than the original java code but that's OK
  5829 //
  5830 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5831   // First, check receiver for NULL since it is virtual method.
  5832   Node* objCBC = argument(0);
  5833   objCBC = null_check(objCBC);
  5835   if (stopped()) return NULL; // Always NULL
  5837   // Load embeddedCipher field of CipherBlockChaining object.
  5838   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5840   // get AESCrypt klass for instanceOf check
  5841   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5842   // will have same classloader as CipherBlockChaining object
  5843   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5844   assert(tinst != NULL, "CBCobj is null");
  5845   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5847   // we want to do an instanceof comparison against the AESCrypt class
  5848   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5849   if (!klass_AESCrypt->is_loaded()) {
  5850     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5851     Node* ctrl = control();
  5852     set_control(top()); // no regular fast path
  5853     return ctrl;
  5855   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5857   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5858   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5859   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5861   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5863   // for encryption, we are done
  5864   if (!decrypting)
  5865     return instof_false;  // even if it is NULL
  5867   // for decryption, we need to add a further check to avoid
  5868   // taking the intrinsic path when cipher and plain are the same
  5869   // see the original java code for why.
  5870   RegionNode* region = new(C) RegionNode(3);
  5871   region->init_req(1, instof_false);
  5872   Node* src = argument(1);
  5873   Node* dest = argument(4);
  5874   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5875   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5876   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5877   region->init_req(2, src_dest_conjoint);
  5879   record_for_igvn(region);
  5880   return _gvn.transform(region);

mercurial