src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 11 May 2009 16:30:56 -0700

author
iveresov
date
Mon, 11 May 2009 16:30:56 -0700
changeset 1229
315a5d70b295
parent 1186
20c6f43950b5
child 1231
29e7d79232b9
permissions
-rw-r--r--

6484957: G1: parallel concurrent refinement
6826318: G1: remove traversal-based refinement code
Summary: Removed traversal-based refinement code as it's no longer used. Made the concurrent refinement (queue-based) parallel.
Reviewed-by: tonyp

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 // turn it on so that the contents of the young list (scan-only /
    29 // to-be-collected) are printed at "strategic" points before / during
    30 // / after the collection --- this is useful for debugging
    31 #define SCAN_ONLY_VERBOSE 0
    32 // CURRENT STATUS
    33 // This file is under construction.  Search for "FIXME".
    35 // INVARIANTS/NOTES
    36 //
    37 // All allocation activity covered by the G1CollectedHeap interface is
    38 //   serialized by acquiring the HeapLock.  This happens in
    39 //   mem_allocate_work, which all such allocation functions call.
    40 //   (Note that this does not apply to TLAB allocation, which is not part
    41 //   of this interface: it is done by clients of this interface.)
    43 // Local to this file.
    45 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    46   SuspendibleThreadSet* _sts;
    47   G1RemSet* _g1rs;
    48   ConcurrentG1Refine* _cg1r;
    49   bool _concurrent;
    50 public:
    51   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    52                               G1RemSet* g1rs,
    53                               ConcurrentG1Refine* cg1r) :
    54     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    55   {}
    56   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    57     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    58     if (_concurrent && _sts->should_yield()) {
    59       // Caller will actually yield.
    60       return false;
    61     }
    62     // Otherwise, we finished successfully; return true.
    63     return true;
    64   }
    65   void set_concurrent(bool b) { _concurrent = b; }
    66 };
    69 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    70   int _calls;
    71   G1CollectedHeap* _g1h;
    72   CardTableModRefBS* _ctbs;
    73   int _histo[256];
    74 public:
    75   ClearLoggedCardTableEntryClosure() :
    76     _calls(0)
    77   {
    78     _g1h = G1CollectedHeap::heap();
    79     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    80     for (int i = 0; i < 256; i++) _histo[i] = 0;
    81   }
    82   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    83     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    84       _calls++;
    85       unsigned char* ujb = (unsigned char*)card_ptr;
    86       int ind = (int)(*ujb);
    87       _histo[ind]++;
    88       *card_ptr = -1;
    89     }
    90     return true;
    91   }
    92   int calls() { return _calls; }
    93   void print_histo() {
    94     gclog_or_tty->print_cr("Card table value histogram:");
    95     for (int i = 0; i < 256; i++) {
    96       if (_histo[i] != 0) {
    97         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
    98       }
    99     }
   100   }
   101 };
   103 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   104   int _calls;
   105   G1CollectedHeap* _g1h;
   106   CardTableModRefBS* _ctbs;
   107 public:
   108   RedirtyLoggedCardTableEntryClosure() :
   109     _calls(0)
   110   {
   111     _g1h = G1CollectedHeap::heap();
   112     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   113   }
   114   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   115     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   116       _calls++;
   117       *card_ptr = 0;
   118     }
   119     return true;
   120   }
   121   int calls() { return _calls; }
   122 };
   124 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   125 public:
   126   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   127     *card_ptr = CardTableModRefBS::dirty_card_val();
   128     return true;
   129   }
   130 };
   132 YoungList::YoungList(G1CollectedHeap* g1h)
   133   : _g1h(g1h), _head(NULL),
   134     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   135     _length(0), _scan_only_length(0),
   136     _last_sampled_rs_lengths(0),
   137     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   138 {
   139   guarantee( check_list_empty(false), "just making sure..." );
   140 }
   142 void YoungList::push_region(HeapRegion *hr) {
   143   assert(!hr->is_young(), "should not already be young");
   144   assert(hr->get_next_young_region() == NULL, "cause it should!");
   146   hr->set_next_young_region(_head);
   147   _head = hr;
   149   hr->set_young();
   150   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   151   ++_length;
   152 }
   154 void YoungList::add_survivor_region(HeapRegion* hr) {
   155   assert(hr->is_survivor(), "should be flagged as survivor region");
   156   assert(hr->get_next_young_region() == NULL, "cause it should!");
   158   hr->set_next_young_region(_survivor_head);
   159   if (_survivor_head == NULL) {
   160     _survivor_tail = hr;
   161   }
   162   _survivor_head = hr;
   164   ++_survivor_length;
   165 }
   167 HeapRegion* YoungList::pop_region() {
   168   while (_head != NULL) {
   169     assert( length() > 0, "list should not be empty" );
   170     HeapRegion* ret = _head;
   171     _head = ret->get_next_young_region();
   172     ret->set_next_young_region(NULL);
   173     --_length;
   174     assert(ret->is_young(), "region should be very young");
   176     // Replace 'Survivor' region type with 'Young'. So the region will
   177     // be treated as a young region and will not be 'confused' with
   178     // newly created survivor regions.
   179     if (ret->is_survivor()) {
   180       ret->set_young();
   181     }
   183     if (!ret->is_scan_only()) {
   184       return ret;
   185     }
   187     // scan-only, we'll add it to the scan-only list
   188     if (_scan_only_tail == NULL) {
   189       guarantee( _scan_only_head == NULL, "invariant" );
   191       _scan_only_head = ret;
   192       _curr_scan_only = ret;
   193     } else {
   194       guarantee( _scan_only_head != NULL, "invariant" );
   195       _scan_only_tail->set_next_young_region(ret);
   196     }
   197     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   198     _scan_only_tail = ret;
   200     // no need to be tagged as scan-only any more
   201     ret->set_young();
   203     ++_scan_only_length;
   204   }
   205   assert( length() == 0, "list should be empty" );
   206   return NULL;
   207 }
   209 void YoungList::empty_list(HeapRegion* list) {
   210   while (list != NULL) {
   211     HeapRegion* next = list->get_next_young_region();
   212     list->set_next_young_region(NULL);
   213     list->uninstall_surv_rate_group();
   214     list->set_not_young();
   215     list = next;
   216   }
   217 }
   219 void YoungList::empty_list() {
   220   assert(check_list_well_formed(), "young list should be well formed");
   222   empty_list(_head);
   223   _head = NULL;
   224   _length = 0;
   226   empty_list(_scan_only_head);
   227   _scan_only_head = NULL;
   228   _scan_only_tail = NULL;
   229   _scan_only_length = 0;
   230   _curr_scan_only = NULL;
   232   empty_list(_survivor_head);
   233   _survivor_head = NULL;
   234   _survivor_tail = NULL;
   235   _survivor_length = 0;
   237   _last_sampled_rs_lengths = 0;
   239   assert(check_list_empty(false), "just making sure...");
   240 }
   242 bool YoungList::check_list_well_formed() {
   243   bool ret = true;
   245   size_t length = 0;
   246   HeapRegion* curr = _head;
   247   HeapRegion* last = NULL;
   248   while (curr != NULL) {
   249     if (!curr->is_young() || curr->is_scan_only()) {
   250       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   251                              "incorrectly tagged (%d, %d)",
   252                              curr->bottom(), curr->end(),
   253                              curr->is_young(), curr->is_scan_only());
   254       ret = false;
   255     }
   256     ++length;
   257     last = curr;
   258     curr = curr->get_next_young_region();
   259   }
   260   ret = ret && (length == _length);
   262   if (!ret) {
   263     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   264     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   265                            length, _length);
   266   }
   268   bool scan_only_ret = true;
   269   length = 0;
   270   curr = _scan_only_head;
   271   last = NULL;
   272   while (curr != NULL) {
   273     if (!curr->is_young() || curr->is_scan_only()) {
   274       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   275                              "incorrectly tagged (%d, %d)",
   276                              curr->bottom(), curr->end(),
   277                              curr->is_young(), curr->is_scan_only());
   278       scan_only_ret = false;
   279     }
   280     ++length;
   281     last = curr;
   282     curr = curr->get_next_young_region();
   283   }
   284   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   286   if ( (last != _scan_only_tail) ||
   287        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   288        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   289      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   290      scan_only_ret = false;
   291   }
   293   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   294     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   295     scan_only_ret = false;
   296    }
   298   if (!scan_only_ret) {
   299     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   300     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   301                   length, _scan_only_length);
   302   }
   304   return ret && scan_only_ret;
   305 }
   307 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   308                                  bool check_sample) {
   309   bool ret = true;
   311   if (_length != 0) {
   312     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   313                   _length);
   314     ret = false;
   315   }
   316   if (check_sample && _last_sampled_rs_lengths != 0) {
   317     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   318     ret = false;
   319   }
   320   if (_head != NULL) {
   321     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   322     ret = false;
   323   }
   324   if (!ret) {
   325     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   326   }
   328   if (ignore_scan_only_list)
   329     return ret;
   331   bool scan_only_ret = true;
   332   if (_scan_only_length != 0) {
   333     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   334                   _scan_only_length);
   335     scan_only_ret = false;
   336   }
   337   if (_scan_only_head != NULL) {
   338     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   339      scan_only_ret = false;
   340   }
   341   if (_scan_only_tail != NULL) {
   342     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   343     scan_only_ret = false;
   344   }
   345   if (!scan_only_ret) {
   346     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   347   }
   349   return ret && scan_only_ret;
   350 }
   352 void
   353 YoungList::rs_length_sampling_init() {
   354   _sampled_rs_lengths = 0;
   355   _curr               = _head;
   356 }
   358 bool
   359 YoungList::rs_length_sampling_more() {
   360   return _curr != NULL;
   361 }
   363 void
   364 YoungList::rs_length_sampling_next() {
   365   assert( _curr != NULL, "invariant" );
   366   _sampled_rs_lengths += _curr->rem_set()->occupied();
   367   _curr = _curr->get_next_young_region();
   368   if (_curr == NULL) {
   369     _last_sampled_rs_lengths = _sampled_rs_lengths;
   370     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   371   }
   372 }
   374 void
   375 YoungList::reset_auxilary_lists() {
   376   // We could have just "moved" the scan-only list to the young list.
   377   // However, the scan-only list is ordered according to the region
   378   // age in descending order, so, by moving one entry at a time, we
   379   // ensure that it is recreated in ascending order.
   381   guarantee( is_empty(), "young list should be empty" );
   382   assert(check_list_well_formed(), "young list should be well formed");
   384   // Add survivor regions to SurvRateGroup.
   385   _g1h->g1_policy()->note_start_adding_survivor_regions();
   386   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   387   for (HeapRegion* curr = _survivor_head;
   388        curr != NULL;
   389        curr = curr->get_next_young_region()) {
   390     _g1h->g1_policy()->set_region_survivors(curr);
   391   }
   392   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   394   if (_survivor_head != NULL) {
   395     _head           = _survivor_head;
   396     _length         = _survivor_length + _scan_only_length;
   397     _survivor_tail->set_next_young_region(_scan_only_head);
   398   } else {
   399     _head           = _scan_only_head;
   400     _length         = _scan_only_length;
   401   }
   403   for (HeapRegion* curr = _scan_only_head;
   404        curr != NULL;
   405        curr = curr->get_next_young_region()) {
   406     curr->recalculate_age_in_surv_rate_group();
   407   }
   408   _scan_only_head   = NULL;
   409   _scan_only_tail   = NULL;
   410   _scan_only_length = 0;
   411   _curr_scan_only   = NULL;
   413   _survivor_head    = NULL;
   414   _survivor_tail   = NULL;
   415   _survivor_length  = 0;
   416   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   418   assert(check_list_well_formed(), "young list should be well formed");
   419 }
   421 void YoungList::print() {
   422   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   423   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   425   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   426     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   427     HeapRegion *curr = lists[list];
   428     if (curr == NULL)
   429       gclog_or_tty->print_cr("  empty");
   430     while (curr != NULL) {
   431       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   432                              "age: %4d, y: %d, s-o: %d, surv: %d",
   433                              curr->bottom(), curr->end(),
   434                              curr->top(),
   435                              curr->prev_top_at_mark_start(),
   436                              curr->next_top_at_mark_start(),
   437                              curr->top_at_conc_mark_count(),
   438                              curr->age_in_surv_rate_group_cond(),
   439                              curr->is_young(),
   440                              curr->is_scan_only(),
   441                              curr->is_survivor());
   442       curr = curr->get_next_young_region();
   443     }
   444   }
   446   gclog_or_tty->print_cr("");
   447 }
   449 void G1CollectedHeap::stop_conc_gc_threads() {
   450   _cg1r->stop();
   451   _czft->stop();
   452   _cmThread->stop();
   453 }
   456 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   457   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   458   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   460   // Count the dirty cards at the start.
   461   CountNonCleanMemRegionClosure count1(this);
   462   ct_bs->mod_card_iterate(&count1);
   463   int orig_count = count1.n();
   465   // First clear the logged cards.
   466   ClearLoggedCardTableEntryClosure clear;
   467   dcqs.set_closure(&clear);
   468   dcqs.apply_closure_to_all_completed_buffers();
   469   dcqs.iterate_closure_all_threads(false);
   470   clear.print_histo();
   472   // Now ensure that there's no dirty cards.
   473   CountNonCleanMemRegionClosure count2(this);
   474   ct_bs->mod_card_iterate(&count2);
   475   if (count2.n() != 0) {
   476     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   477                            count2.n(), orig_count);
   478   }
   479   guarantee(count2.n() == 0, "Card table should be clean.");
   481   RedirtyLoggedCardTableEntryClosure redirty;
   482   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   483   dcqs.apply_closure_to_all_completed_buffers();
   484   dcqs.iterate_closure_all_threads(false);
   485   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   486                          clear.calls(), orig_count);
   487   guarantee(redirty.calls() == clear.calls(),
   488             "Or else mechanism is broken.");
   490   CountNonCleanMemRegionClosure count3(this);
   491   ct_bs->mod_card_iterate(&count3);
   492   if (count3.n() != orig_count) {
   493     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   494                            orig_count, count3.n());
   495     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   496   }
   498   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   499 }
   501 // Private class members.
   503 G1CollectedHeap* G1CollectedHeap::_g1h;
   505 // Private methods.
   507 // Finds a HeapRegion that can be used to allocate a given size of block.
   510 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   511                                                  bool do_expand,
   512                                                  bool zero_filled) {
   513   ConcurrentZFThread::note_region_alloc();
   514   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   515   if (res == NULL && do_expand) {
   516     expand(word_size * HeapWordSize);
   517     res = alloc_free_region_from_lists(zero_filled);
   518     assert(res == NULL ||
   519            (!res->isHumongous() &&
   520             (!zero_filled ||
   521              res->zero_fill_state() == HeapRegion::Allocated)),
   522            "Alloc Regions must be zero filled (and non-H)");
   523   }
   524   if (res != NULL && res->is_empty()) _free_regions--;
   525   assert(res == NULL ||
   526          (!res->isHumongous() &&
   527           (!zero_filled ||
   528            res->zero_fill_state() == HeapRegion::Allocated)),
   529          "Non-young alloc Regions must be zero filled (and non-H)");
   531   if (G1PrintRegions) {
   532     if (res != NULL) {
   533       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   534                              "top "PTR_FORMAT,
   535                              res->hrs_index(), res->bottom(), res->end(), res->top());
   536     }
   537   }
   539   return res;
   540 }
   542 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   543                                                          size_t word_size,
   544                                                          bool zero_filled) {
   545   HeapRegion* alloc_region = NULL;
   546   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   547     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   548     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   549       alloc_region->set_survivor();
   550     }
   551     ++_gc_alloc_region_counts[purpose];
   552   } else {
   553     g1_policy()->note_alloc_region_limit_reached(purpose);
   554   }
   555   return alloc_region;
   556 }
   558 // If could fit into free regions w/o expansion, try.
   559 // Otherwise, if can expand, do so.
   560 // Otherwise, if using ex regions might help, try with ex given back.
   561 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   562   assert(regions_accounted_for(), "Region leakage!");
   564   // We can't allocate H regions while cleanupComplete is running, since
   565   // some of the regions we find to be empty might not yet be added to the
   566   // unclean list.  (If we're already at a safepoint, this call is
   567   // unnecessary, not to mention wrong.)
   568   if (!SafepointSynchronize::is_at_safepoint())
   569     wait_for_cleanup_complete();
   571   size_t num_regions =
   572     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   574   // Special case if < one region???
   576   // Remember the ft size.
   577   size_t x_size = expansion_regions();
   579   HeapWord* res = NULL;
   580   bool eliminated_allocated_from_lists = false;
   582   // Can the allocation potentially fit in the free regions?
   583   if (free_regions() >= num_regions) {
   584     res = _hrs->obj_allocate(word_size);
   585   }
   586   if (res == NULL) {
   587     // Try expansion.
   588     size_t fs = _hrs->free_suffix();
   589     if (fs + x_size >= num_regions) {
   590       expand((num_regions - fs) * HeapRegion::GrainBytes);
   591       res = _hrs->obj_allocate(word_size);
   592       assert(res != NULL, "This should have worked.");
   593     } else {
   594       // Expansion won't help.  Are there enough free regions if we get rid
   595       // of reservations?
   596       size_t avail = free_regions();
   597       if (avail >= num_regions) {
   598         res = _hrs->obj_allocate(word_size);
   599         if (res != NULL) {
   600           remove_allocated_regions_from_lists();
   601           eliminated_allocated_from_lists = true;
   602         }
   603       }
   604     }
   605   }
   606   if (res != NULL) {
   607     // Increment by the number of regions allocated.
   608     // FIXME: Assumes regions all of size GrainBytes.
   609 #ifndef PRODUCT
   610     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   611                                            HeapRegion::GrainWords));
   612 #endif
   613     if (!eliminated_allocated_from_lists)
   614       remove_allocated_regions_from_lists();
   615     _summary_bytes_used += word_size * HeapWordSize;
   616     _free_regions -= num_regions;
   617     _num_humongous_regions += (int) num_regions;
   618   }
   619   assert(regions_accounted_for(), "Region Leakage");
   620   return res;
   621 }
   623 HeapWord*
   624 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   625                                          bool permit_collection_pause) {
   626   HeapWord* res = NULL;
   627   HeapRegion* allocated_young_region = NULL;
   629   assert( SafepointSynchronize::is_at_safepoint() ||
   630           Heap_lock->owned_by_self(), "pre condition of the call" );
   632   if (isHumongous(word_size)) {
   633     // Allocation of a humongous object can, in a sense, complete a
   634     // partial region, if the previous alloc was also humongous, and
   635     // caused the test below to succeed.
   636     if (permit_collection_pause)
   637       do_collection_pause_if_appropriate(word_size);
   638     res = humongousObjAllocate(word_size);
   639     assert(_cur_alloc_region == NULL
   640            || !_cur_alloc_region->isHumongous(),
   641            "Prevent a regression of this bug.");
   643   } else {
   644     // We may have concurrent cleanup working at the time. Wait for it
   645     // to complete. In the future we would probably want to make the
   646     // concurrent cleanup truly concurrent by decoupling it from the
   647     // allocation.
   648     if (!SafepointSynchronize::is_at_safepoint())
   649       wait_for_cleanup_complete();
   650     // If we do a collection pause, this will be reset to a non-NULL
   651     // value.  If we don't, nulling here ensures that we allocate a new
   652     // region below.
   653     if (_cur_alloc_region != NULL) {
   654       // We're finished with the _cur_alloc_region.
   655       _summary_bytes_used += _cur_alloc_region->used();
   656       _cur_alloc_region = NULL;
   657     }
   658     assert(_cur_alloc_region == NULL, "Invariant.");
   659     // Completion of a heap region is perhaps a good point at which to do
   660     // a collection pause.
   661     if (permit_collection_pause)
   662       do_collection_pause_if_appropriate(word_size);
   663     // Make sure we have an allocation region available.
   664     if (_cur_alloc_region == NULL) {
   665       if (!SafepointSynchronize::is_at_safepoint())
   666         wait_for_cleanup_complete();
   667       bool next_is_young = should_set_young_locked();
   668       // If the next region is not young, make sure it's zero-filled.
   669       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   670       if (_cur_alloc_region != NULL) {
   671         _summary_bytes_used -= _cur_alloc_region->used();
   672         if (next_is_young) {
   673           set_region_short_lived_locked(_cur_alloc_region);
   674           allocated_young_region = _cur_alloc_region;
   675         }
   676       }
   677     }
   678     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   679            "Prevent a regression of this bug.");
   681     // Now retry the allocation.
   682     if (_cur_alloc_region != NULL) {
   683       res = _cur_alloc_region->allocate(word_size);
   684     }
   685   }
   687   // NOTE: fails frequently in PRT
   688   assert(regions_accounted_for(), "Region leakage!");
   690   if (res != NULL) {
   691     if (!SafepointSynchronize::is_at_safepoint()) {
   692       assert( permit_collection_pause, "invariant" );
   693       assert( Heap_lock->owned_by_self(), "invariant" );
   694       Heap_lock->unlock();
   695     }
   697     if (allocated_young_region != NULL) {
   698       HeapRegion* hr = allocated_young_region;
   699       HeapWord* bottom = hr->bottom();
   700       HeapWord* end = hr->end();
   701       MemRegion mr(bottom, end);
   702       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   703     }
   704   }
   706   assert( SafepointSynchronize::is_at_safepoint() ||
   707           (res == NULL && Heap_lock->owned_by_self()) ||
   708           (res != NULL && !Heap_lock->owned_by_self()),
   709           "post condition of the call" );
   711   return res;
   712 }
   714 HeapWord*
   715 G1CollectedHeap::mem_allocate(size_t word_size,
   716                               bool   is_noref,
   717                               bool   is_tlab,
   718                               bool* gc_overhead_limit_was_exceeded) {
   719   debug_only(check_for_valid_allocation_state());
   720   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   721   HeapWord* result = NULL;
   723   // Loop until the allocation is satisified,
   724   // or unsatisfied after GC.
   725   for (int try_count = 1; /* return or throw */; try_count += 1) {
   726     int gc_count_before;
   727     {
   728       Heap_lock->lock();
   729       result = attempt_allocation(word_size);
   730       if (result != NULL) {
   731         // attempt_allocation should have unlocked the heap lock
   732         assert(is_in(result), "result not in heap");
   733         return result;
   734       }
   735       // Read the gc count while the heap lock is held.
   736       gc_count_before = SharedHeap::heap()->total_collections();
   737       Heap_lock->unlock();
   738     }
   740     // Create the garbage collection operation...
   741     VM_G1CollectForAllocation op(word_size,
   742                                  gc_count_before);
   744     // ...and get the VM thread to execute it.
   745     VMThread::execute(&op);
   746     if (op.prologue_succeeded()) {
   747       result = op.result();
   748       assert(result == NULL || is_in(result), "result not in heap");
   749       return result;
   750     }
   752     // Give a warning if we seem to be looping forever.
   753     if ((QueuedAllocationWarningCount > 0) &&
   754         (try_count % QueuedAllocationWarningCount == 0)) {
   755       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   756               try_count);
   757     }
   758   }
   759 }
   761 void G1CollectedHeap::abandon_cur_alloc_region() {
   762   if (_cur_alloc_region != NULL) {
   763     // We're finished with the _cur_alloc_region.
   764     if (_cur_alloc_region->is_empty()) {
   765       _free_regions++;
   766       free_region(_cur_alloc_region);
   767     } else {
   768       _summary_bytes_used += _cur_alloc_region->used();
   769     }
   770     _cur_alloc_region = NULL;
   771   }
   772 }
   774 void G1CollectedHeap::abandon_gc_alloc_regions() {
   775   // first, make sure that the GC alloc region list is empty (it should!)
   776   assert(_gc_alloc_region_list == NULL, "invariant");
   777   release_gc_alloc_regions(true /* totally */);
   778 }
   780 class PostMCRemSetClearClosure: public HeapRegionClosure {
   781   ModRefBarrierSet* _mr_bs;
   782 public:
   783   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   784   bool doHeapRegion(HeapRegion* r) {
   785     r->reset_gc_time_stamp();
   786     if (r->continuesHumongous())
   787       return false;
   788     HeapRegionRemSet* hrrs = r->rem_set();
   789     if (hrrs != NULL) hrrs->clear();
   790     // You might think here that we could clear just the cards
   791     // corresponding to the used region.  But no: if we leave a dirty card
   792     // in a region we might allocate into, then it would prevent that card
   793     // from being enqueued, and cause it to be missed.
   794     // Re: the performance cost: we shouldn't be doing full GC anyway!
   795     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   796     return false;
   797   }
   798 };
   801 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   802   ModRefBarrierSet* _mr_bs;
   803 public:
   804   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   805   bool doHeapRegion(HeapRegion* r) {
   806     if (r->continuesHumongous()) return false;
   807     if (r->used_region().word_size() != 0) {
   808       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   809     }
   810     return false;
   811   }
   812 };
   814 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   815   G1CollectedHeap*   _g1h;
   816   UpdateRSOopClosure _cl;
   817   int                _worker_i;
   818 public:
   819   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   820     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   821     _worker_i(worker_i),
   822     _g1h(g1)
   823   { }
   824   bool doHeapRegion(HeapRegion* r) {
   825     if (!r->continuesHumongous()) {
   826       _cl.set_from(r);
   827       r->oop_iterate(&_cl);
   828     }
   829     return false;
   830   }
   831 };
   833 class ParRebuildRSTask: public AbstractGangTask {
   834   G1CollectedHeap* _g1;
   835 public:
   836   ParRebuildRSTask(G1CollectedHeap* g1)
   837     : AbstractGangTask("ParRebuildRSTask"),
   838       _g1(g1)
   839   { }
   841   void work(int i) {
   842     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   843     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   844                                          HeapRegion::RebuildRSClaimValue);
   845   }
   846 };
   848 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   849                                     size_t word_size) {
   850   ResourceMark rm;
   852   if (full && DisableExplicitGC) {
   853     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   854     return;
   855   }
   857   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   858   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   860   if (GC_locker::is_active()) {
   861     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   862   }
   864   {
   865     IsGCActiveMark x;
   867     // Timing
   868     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   869     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   870     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   872     double start = os::elapsedTime();
   873     GCOverheadReporter::recordSTWStart(start);
   874     g1_policy()->record_full_collection_start();
   876     gc_prologue(true);
   877     increment_total_collections();
   879     size_t g1h_prev_used = used();
   880     assert(used() == recalculate_used(), "Should be equal");
   882     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   883       HandleMark hm;  // Discard invalid handles created during verification
   884       prepare_for_verify();
   885       gclog_or_tty->print(" VerifyBeforeGC:");
   886       Universe::verify(true);
   887     }
   888     assert(regions_accounted_for(), "Region leakage!");
   890     COMPILER2_PRESENT(DerivedPointerTable::clear());
   892     // We want to discover references, but not process them yet.
   893     // This mode is disabled in
   894     // instanceRefKlass::process_discovered_references if the
   895     // generation does some collection work, or
   896     // instanceRefKlass::enqueue_discovered_references if the
   897     // generation returns without doing any work.
   898     ref_processor()->disable_discovery();
   899     ref_processor()->abandon_partial_discovery();
   900     ref_processor()->verify_no_references_recorded();
   902     // Abandon current iterations of concurrent marking and concurrent
   903     // refinement, if any are in progress.
   904     concurrent_mark()->abort();
   906     // Make sure we'll choose a new allocation region afterwards.
   907     abandon_cur_alloc_region();
   908     abandon_gc_alloc_regions();
   909     assert(_cur_alloc_region == NULL, "Invariant.");
   910     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   911     tear_down_region_lists();
   912     set_used_regions_to_need_zero_fill();
   913     if (g1_policy()->in_young_gc_mode()) {
   914       empty_young_list();
   915       g1_policy()->set_full_young_gcs(true);
   916     }
   918     // Temporarily make reference _discovery_ single threaded (non-MT).
   919     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   921     // Temporarily make refs discovery atomic
   922     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   924     // Temporarily clear _is_alive_non_header
   925     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   927     ref_processor()->enable_discovery();
   928     ref_processor()->setup_policy(clear_all_soft_refs);
   930     // Do collection work
   931     {
   932       HandleMark hm;  // Discard invalid handles created during gc
   933       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   934     }
   935     // Because freeing humongous regions may have added some unclean
   936     // regions, it is necessary to tear down again before rebuilding.
   937     tear_down_region_lists();
   938     rebuild_region_lists();
   940     _summary_bytes_used = recalculate_used();
   942     ref_processor()->enqueue_discovered_references();
   944     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   946     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   947       HandleMark hm;  // Discard invalid handles created during verification
   948       gclog_or_tty->print(" VerifyAfterGC:");
   949       prepare_for_verify();
   950       Universe::verify(false);
   951     }
   952     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   954     reset_gc_time_stamp();
   955     // Since everything potentially moved, we will clear all remembered
   956     // sets, and clear all cards.  Later we will rebuild remebered
   957     // sets. We will also reset the GC time stamps of the regions.
   958     PostMCRemSetClearClosure rs_clear(mr_bs());
   959     heap_region_iterate(&rs_clear);
   961     // Resize the heap if necessary.
   962     resize_if_necessary_after_full_collection(full ? 0 : word_size);
   964     if (_cg1r->use_cache()) {
   965       _cg1r->clear_and_record_card_counts();
   966       _cg1r->clear_hot_cache();
   967     }
   969     // Rebuild remembered sets of all regions.
   970     if (ParallelGCThreads > 0) {
   971       ParRebuildRSTask rebuild_rs_task(this);
   972       assert(check_heap_region_claim_values(
   973              HeapRegion::InitialClaimValue), "sanity check");
   974       set_par_threads(workers()->total_workers());
   975       workers()->run_task(&rebuild_rs_task);
   976       set_par_threads(0);
   977       assert(check_heap_region_claim_values(
   978              HeapRegion::RebuildRSClaimValue), "sanity check");
   979       reset_heap_region_claim_values();
   980     } else {
   981       RebuildRSOutOfRegionClosure rebuild_rs(this);
   982       heap_region_iterate(&rebuild_rs);
   983     }
   985     if (PrintGC) {
   986       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
   987     }
   989     if (true) { // FIXME
   990       // Ask the permanent generation to adjust size for full collections
   991       perm()->compute_new_size();
   992     }
   994     double end = os::elapsedTime();
   995     GCOverheadReporter::recordSTWEnd(end);
   996     g1_policy()->record_full_collection_end();
   998 #ifdef TRACESPINNING
   999     ParallelTaskTerminator::print_termination_counts();
  1000 #endif
  1002     gc_epilogue(true);
  1004     // Discard all rset updates
  1005     JavaThread::dirty_card_queue_set().abandon_logs();
  1006     assert(!G1DeferredRSUpdate
  1007            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1008     assert(regions_accounted_for(), "Region leakage!");
  1011   if (g1_policy()->in_young_gc_mode()) {
  1012     _young_list->reset_sampled_info();
  1013     assert( check_young_list_empty(false, false),
  1014             "young list should be empty at this point");
  1018 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1019   do_collection(true, clear_all_soft_refs, 0);
  1022 // This code is mostly copied from TenuredGeneration.
  1023 void
  1024 G1CollectedHeap::
  1025 resize_if_necessary_after_full_collection(size_t word_size) {
  1026   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1028   // Include the current allocation, if any, and bytes that will be
  1029   // pre-allocated to support collections, as "used".
  1030   const size_t used_after_gc = used();
  1031   const size_t capacity_after_gc = capacity();
  1032   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1034   // We don't have floating point command-line arguments
  1035   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1036   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1037   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1038   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1040   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1041   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1043   // Don't shrink less than the initial size.
  1044   minimum_desired_capacity =
  1045     MAX2(minimum_desired_capacity,
  1046          collector_policy()->initial_heap_byte_size());
  1047   maximum_desired_capacity =
  1048     MAX2(maximum_desired_capacity,
  1049          collector_policy()->initial_heap_byte_size());
  1051   // We are failing here because minimum_desired_capacity is
  1052   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1053   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1055   if (PrintGC && Verbose) {
  1056     const double free_percentage = ((double)free_after_gc) / capacity();
  1057     gclog_or_tty->print_cr("Computing new size after full GC ");
  1058     gclog_or_tty->print_cr("  "
  1059                            "  minimum_free_percentage: %6.2f",
  1060                            minimum_free_percentage);
  1061     gclog_or_tty->print_cr("  "
  1062                            "  maximum_free_percentage: %6.2f",
  1063                            maximum_free_percentage);
  1064     gclog_or_tty->print_cr("  "
  1065                            "  capacity: %6.1fK"
  1066                            "  minimum_desired_capacity: %6.1fK"
  1067                            "  maximum_desired_capacity: %6.1fK",
  1068                            capacity() / (double) K,
  1069                            minimum_desired_capacity / (double) K,
  1070                            maximum_desired_capacity / (double) K);
  1071     gclog_or_tty->print_cr("  "
  1072                            "   free_after_gc   : %6.1fK"
  1073                            "   used_after_gc   : %6.1fK",
  1074                            free_after_gc / (double) K,
  1075                            used_after_gc / (double) K);
  1076     gclog_or_tty->print_cr("  "
  1077                            "   free_percentage: %6.2f",
  1078                            free_percentage);
  1080   if (capacity() < minimum_desired_capacity) {
  1081     // Don't expand unless it's significant
  1082     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1083     expand(expand_bytes);
  1084     if (PrintGC && Verbose) {
  1085       gclog_or_tty->print_cr("    expanding:"
  1086                              "  minimum_desired_capacity: %6.1fK"
  1087                              "  expand_bytes: %6.1fK",
  1088                              minimum_desired_capacity / (double) K,
  1089                              expand_bytes / (double) K);
  1092     // No expansion, now see if we want to shrink
  1093   } else if (capacity() > maximum_desired_capacity) {
  1094     // Capacity too large, compute shrinking size
  1095     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1096     shrink(shrink_bytes);
  1097     if (PrintGC && Verbose) {
  1098       gclog_or_tty->print_cr("  "
  1099                              "  shrinking:"
  1100                              "  initSize: %.1fK"
  1101                              "  maximum_desired_capacity: %.1fK",
  1102                              collector_policy()->initial_heap_byte_size() / (double) K,
  1103                              maximum_desired_capacity / (double) K);
  1104       gclog_or_tty->print_cr("  "
  1105                              "  shrink_bytes: %.1fK",
  1106                              shrink_bytes / (double) K);
  1112 HeapWord*
  1113 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1114   HeapWord* result = NULL;
  1116   // In a G1 heap, we're supposed to keep allocation from failing by
  1117   // incremental pauses.  Therefore, at least for now, we'll favor
  1118   // expansion over collection.  (This might change in the future if we can
  1119   // do something smarter than full collection to satisfy a failed alloc.)
  1121   result = expand_and_allocate(word_size);
  1122   if (result != NULL) {
  1123     assert(is_in(result), "result not in heap");
  1124     return result;
  1127   // OK, I guess we have to try collection.
  1129   do_collection(false, false, word_size);
  1131   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1133   if (result != NULL) {
  1134     assert(is_in(result), "result not in heap");
  1135     return result;
  1138   // Try collecting soft references.
  1139   do_collection(false, true, word_size);
  1140   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1141   if (result != NULL) {
  1142     assert(is_in(result), "result not in heap");
  1143     return result;
  1146   // What else?  We might try synchronous finalization later.  If the total
  1147   // space available is large enough for the allocation, then a more
  1148   // complete compaction phase than we've tried so far might be
  1149   // appropriate.
  1150   return NULL;
  1153 // Attempting to expand the heap sufficiently
  1154 // to support an allocation of the given "word_size".  If
  1155 // successful, perform the allocation and return the address of the
  1156 // allocated block, or else "NULL".
  1158 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1159   size_t expand_bytes = word_size * HeapWordSize;
  1160   if (expand_bytes < MinHeapDeltaBytes) {
  1161     expand_bytes = MinHeapDeltaBytes;
  1163   expand(expand_bytes);
  1164   assert(regions_accounted_for(), "Region leakage!");
  1165   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1166   return result;
  1169 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1170   size_t pre_used = 0;
  1171   size_t cleared_h_regions = 0;
  1172   size_t freed_regions = 0;
  1173   UncleanRegionList local_list;
  1174   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1175                                     freed_regions, &local_list);
  1177   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1178                           &local_list);
  1179   return pre_used;
  1182 void
  1183 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1184                                                    size_t& pre_used,
  1185                                                    size_t& cleared_h,
  1186                                                    size_t& freed_regions,
  1187                                                    UncleanRegionList* list,
  1188                                                    bool par) {
  1189   assert(!hr->continuesHumongous(), "should have filtered these out");
  1190   size_t res = 0;
  1191   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1192       !hr->is_young()) {
  1193     if (G1PolicyVerbose > 0)
  1194       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1195                                                                                " during cleanup", hr, hr->used());
  1196     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1200 // FIXME: both this and shrink could probably be more efficient by
  1201 // doing one "VirtualSpace::expand_by" call rather than several.
  1202 void G1CollectedHeap::expand(size_t expand_bytes) {
  1203   size_t old_mem_size = _g1_storage.committed_size();
  1204   // We expand by a minimum of 1K.
  1205   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1206   size_t aligned_expand_bytes =
  1207     ReservedSpace::page_align_size_up(expand_bytes);
  1208   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1209                                        HeapRegion::GrainBytes);
  1210   expand_bytes = aligned_expand_bytes;
  1211   while (expand_bytes > 0) {
  1212     HeapWord* base = (HeapWord*)_g1_storage.high();
  1213     // Commit more storage.
  1214     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1215     if (!successful) {
  1216         expand_bytes = 0;
  1217     } else {
  1218       expand_bytes -= HeapRegion::GrainBytes;
  1219       // Expand the committed region.
  1220       HeapWord* high = (HeapWord*) _g1_storage.high();
  1221       _g1_committed.set_end(high);
  1222       // Create a new HeapRegion.
  1223       MemRegion mr(base, high);
  1224       bool is_zeroed = !_g1_max_committed.contains(base);
  1225       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1227       // Now update max_committed if necessary.
  1228       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1230       // Add it to the HeapRegionSeq.
  1231       _hrs->insert(hr);
  1232       // Set the zero-fill state, according to whether it's already
  1233       // zeroed.
  1235         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1236         if (is_zeroed) {
  1237           hr->set_zero_fill_complete();
  1238           put_free_region_on_list_locked(hr);
  1239         } else {
  1240           hr->set_zero_fill_needed();
  1241           put_region_on_unclean_list_locked(hr);
  1244       _free_regions++;
  1245       // And we used up an expansion region to create it.
  1246       _expansion_regions--;
  1247       // Tell the cardtable about it.
  1248       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1249       // And the offset table as well.
  1250       _bot_shared->resize(_g1_committed.word_size());
  1253   if (Verbose && PrintGC) {
  1254     size_t new_mem_size = _g1_storage.committed_size();
  1255     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1256                            old_mem_size/K, aligned_expand_bytes/K,
  1257                            new_mem_size/K);
  1261 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1263   size_t old_mem_size = _g1_storage.committed_size();
  1264   size_t aligned_shrink_bytes =
  1265     ReservedSpace::page_align_size_down(shrink_bytes);
  1266   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1267                                          HeapRegion::GrainBytes);
  1268   size_t num_regions_deleted = 0;
  1269   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1271   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1272   if (mr.byte_size() > 0)
  1273     _g1_storage.shrink_by(mr.byte_size());
  1274   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1276   _g1_committed.set_end(mr.start());
  1277   _free_regions -= num_regions_deleted;
  1278   _expansion_regions += num_regions_deleted;
  1280   // Tell the cardtable about it.
  1281   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1283   // And the offset table as well.
  1284   _bot_shared->resize(_g1_committed.word_size());
  1286   HeapRegionRemSet::shrink_heap(n_regions());
  1288   if (Verbose && PrintGC) {
  1289     size_t new_mem_size = _g1_storage.committed_size();
  1290     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1291                            old_mem_size/K, aligned_shrink_bytes/K,
  1292                            new_mem_size/K);
  1296 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1297   release_gc_alloc_regions(true /* totally */);
  1298   tear_down_region_lists();  // We will rebuild them in a moment.
  1299   shrink_helper(shrink_bytes);
  1300   rebuild_region_lists();
  1303 // Public methods.
  1305 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1306 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1307 #endif // _MSC_VER
  1310 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1311   SharedHeap(policy_),
  1312   _g1_policy(policy_),
  1313   _ref_processor(NULL),
  1314   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1315   _bot_shared(NULL),
  1316   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1317   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1318   _evac_failure_scan_stack(NULL) ,
  1319   _mark_in_progress(false),
  1320   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1321   _cur_alloc_region(NULL),
  1322   _refine_cte_cl(NULL),
  1323   _free_region_list(NULL), _free_region_list_size(0),
  1324   _free_regions(0),
  1325   _full_collection(false),
  1326   _unclean_region_list(),
  1327   _unclean_regions_coming(false),
  1328   _young_list(new YoungList(this)),
  1329   _gc_time_stamp(0),
  1330   _surviving_young_words(NULL),
  1331   _in_cset_fast_test(NULL),
  1332   _in_cset_fast_test_base(NULL) {
  1333   _g1h = this; // To catch bugs.
  1334   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1335     vm_exit_during_initialization("Failed necessary allocation.");
  1337   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1338   _task_queues = new RefToScanQueueSet(n_queues);
  1340   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1341   assert(n_rem_sets > 0, "Invariant.");
  1343   HeapRegionRemSetIterator** iter_arr =
  1344     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1345   for (int i = 0; i < n_queues; i++) {
  1346     iter_arr[i] = new HeapRegionRemSetIterator();
  1348   _rem_set_iterator = iter_arr;
  1350   for (int i = 0; i < n_queues; i++) {
  1351     RefToScanQueue* q = new RefToScanQueue();
  1352     q->initialize();
  1353     _task_queues->register_queue(i, q);
  1356   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1357     _gc_alloc_regions[ap]          = NULL;
  1358     _gc_alloc_region_counts[ap]    = 0;
  1359     _retained_gc_alloc_regions[ap] = NULL;
  1360     // by default, we do not retain a GC alloc region for each ap;
  1361     // we'll override this, when appropriate, below
  1362     _retain_gc_alloc_region[ap]    = false;
  1365   // We will try to remember the last half-full tenured region we
  1366   // allocated to at the end of a collection so that we can re-use it
  1367   // during the next collection.
  1368   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1370   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1373 jint G1CollectedHeap::initialize() {
  1374   os::enable_vtime();
  1376   // Necessary to satisfy locking discipline assertions.
  1378   MutexLocker x(Heap_lock);
  1380   // While there are no constraints in the GC code that HeapWordSize
  1381   // be any particular value, there are multiple other areas in the
  1382   // system which believe this to be true (e.g. oop->object_size in some
  1383   // cases incorrectly returns the size in wordSize units rather than
  1384   // HeapWordSize).
  1385   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1387   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1388   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1390   // Ensure that the sizes are properly aligned.
  1391   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1392   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1394   // We allocate this in any case, but only do no work if the command line
  1395   // param is off.
  1396   _cg1r = new ConcurrentG1Refine();
  1398   // Reserve the maximum.
  1399   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1400   // Includes the perm-gen.
  1402   const size_t total_reserved = max_byte_size + pgs->max_size();
  1403   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1405   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1406                         HeapRegion::GrainBytes,
  1407                         false /*ism*/, addr);
  1409   if (UseCompressedOops) {
  1410     if (addr != NULL && !heap_rs.is_reserved()) {
  1411       // Failed to reserve at specified address - the requested memory
  1412       // region is taken already, for example, by 'java' launcher.
  1413       // Try again to reserver heap higher.
  1414       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1415       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1416                              false /*ism*/, addr);
  1417       if (addr != NULL && !heap_rs0.is_reserved()) {
  1418         // Failed to reserve at specified address again - give up.
  1419         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1420         assert(addr == NULL, "");
  1421         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1422                                false /*ism*/, addr);
  1423         heap_rs = heap_rs1;
  1424       } else {
  1425         heap_rs = heap_rs0;
  1430   if (!heap_rs.is_reserved()) {
  1431     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1432     return JNI_ENOMEM;
  1435   // It is important to do this in a way such that concurrent readers can't
  1436   // temporarily think somethings in the heap.  (I've actually seen this
  1437   // happen in asserts: DLD.)
  1438   _reserved.set_word_size(0);
  1439   _reserved.set_start((HeapWord*)heap_rs.base());
  1440   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1442   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1444   _num_humongous_regions = 0;
  1446   // Create the gen rem set (and barrier set) for the entire reserved region.
  1447   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1448   set_barrier_set(rem_set()->bs());
  1449   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1450     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1451   } else {
  1452     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1453     return JNI_ENOMEM;
  1456   // Also create a G1 rem set.
  1457   if (G1UseHRIntoRS) {
  1458     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1459       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1460     } else {
  1461       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1462       return JNI_ENOMEM;
  1464   } else {
  1465     _g1_rem_set = new StupidG1RemSet(this);
  1468   // Carve out the G1 part of the heap.
  1470   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1471   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1472                            g1_rs.size()/HeapWordSize);
  1473   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1475   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1477   _g1_storage.initialize(g1_rs, 0);
  1478   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1479   _g1_max_committed = _g1_committed;
  1480   _hrs = new HeapRegionSeq(_expansion_regions);
  1481   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1482   guarantee(_cur_alloc_region == NULL, "from constructor");
  1484   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1485                                              heap_word_size(init_byte_size));
  1487   _g1h = this;
  1489   // Create the ConcurrentMark data structure and thread.
  1490   // (Must do this late, so that "max_regions" is defined.)
  1491   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1492   _cmThread = _cm->cmThread();
  1494   // ...and the concurrent zero-fill thread, if necessary.
  1495   if (G1ConcZeroFill) {
  1496     _czft = new ConcurrentZFThread();
  1499   // Initialize the from_card cache structure of HeapRegionRemSet.
  1500   HeapRegionRemSet::init_heap(max_regions());
  1502   // Now expand into the initial heap size.
  1503   expand(init_byte_size);
  1505   // Perform any initialization actions delegated to the policy.
  1506   g1_policy()->init();
  1508   g1_policy()->note_start_of_mark_thread();
  1510   _refine_cte_cl =
  1511     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1512                                     g1_rem_set(),
  1513                                     concurrent_g1_refine());
  1514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1516   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1517                                                SATB_Q_FL_lock,
  1518                                                0,
  1519                                                Shared_SATB_Q_lock);
  1521   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1522                                                 DirtyCardQ_FL_lock,
  1523                                                 G1DirtyCardQueueMax,
  1524                                                 Shared_DirtyCardQ_lock);
  1526   if (G1DeferredRSUpdate) {
  1527     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1528                                       DirtyCardQ_FL_lock,
  1529                                       0,
  1530                                       Shared_DirtyCardQ_lock,
  1531                                       &JavaThread::dirty_card_queue_set());
  1533   // In case we're keeping closure specialization stats, initialize those
  1534   // counts and that mechanism.
  1535   SpecializationStats::clear();
  1537   _gc_alloc_region_list = NULL;
  1539   // Do later initialization work for concurrent refinement.
  1540   _cg1r->init();
  1542   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
  1543   GCOverheadReporter::initGCOverheadReporter(4, group_names);
  1545   return JNI_OK;
  1548 void G1CollectedHeap::ref_processing_init() {
  1549   SharedHeap::ref_processing_init();
  1550   MemRegion mr = reserved_region();
  1551   _ref_processor = ReferenceProcessor::create_ref_processor(
  1552                                          mr,    // span
  1553                                          false, // Reference discovery is not atomic
  1554                                                 // (though it shouldn't matter here.)
  1555                                          true,  // mt_discovery
  1556                                          NULL,  // is alive closure: need to fill this in for efficiency
  1557                                          ParallelGCThreads,
  1558                                          ParallelRefProcEnabled,
  1559                                          true); // Setting next fields of discovered
  1560                                                 // lists requires a barrier.
  1563 size_t G1CollectedHeap::capacity() const {
  1564   return _g1_committed.byte_size();
  1567 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1568                                                  int worker_i) {
  1569   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1570   int n_completed_buffers = 0;
  1571   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1572     n_completed_buffers++;
  1574   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1575                                                   (double) n_completed_buffers);
  1576   dcqs.clear_n_completed_buffers();
  1577   // Finish up the queue...
  1578   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
  1579                                                             g1_rem_set());
  1580   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1584 // Computes the sum of the storage used by the various regions.
  1586 size_t G1CollectedHeap::used() const {
  1587   assert(Heap_lock->owner() != NULL,
  1588          "Should be owned on this thread's behalf.");
  1589   size_t result = _summary_bytes_used;
  1590   if (_cur_alloc_region != NULL)
  1591     result += _cur_alloc_region->used();
  1592   return result;
  1595 class SumUsedClosure: public HeapRegionClosure {
  1596   size_t _used;
  1597 public:
  1598   SumUsedClosure() : _used(0) {}
  1599   bool doHeapRegion(HeapRegion* r) {
  1600     if (!r->continuesHumongous()) {
  1601       _used += r->used();
  1603     return false;
  1605   size_t result() { return _used; }
  1606 };
  1608 size_t G1CollectedHeap::recalculate_used() const {
  1609   SumUsedClosure blk;
  1610   _hrs->iterate(&blk);
  1611   return blk.result();
  1614 #ifndef PRODUCT
  1615 class SumUsedRegionsClosure: public HeapRegionClosure {
  1616   size_t _num;
  1617 public:
  1618   SumUsedRegionsClosure() : _num(0) {}
  1619   bool doHeapRegion(HeapRegion* r) {
  1620     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1621       _num += 1;
  1623     return false;
  1625   size_t result() { return _num; }
  1626 };
  1628 size_t G1CollectedHeap::recalculate_used_regions() const {
  1629   SumUsedRegionsClosure blk;
  1630   _hrs->iterate(&blk);
  1631   return blk.result();
  1633 #endif // PRODUCT
  1635 size_t G1CollectedHeap::unsafe_max_alloc() {
  1636   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1637   // otherwise, is there space in the current allocation region?
  1639   // We need to store the current allocation region in a local variable
  1640   // here. The problem is that this method doesn't take any locks and
  1641   // there may be other threads which overwrite the current allocation
  1642   // region field. attempt_allocation(), for example, sets it to NULL
  1643   // and this can happen *after* the NULL check here but before the call
  1644   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1645   // to be a problem in the optimized build, since the two loads of the
  1646   // current allocation region field are optimized away.
  1647   HeapRegion* car = _cur_alloc_region;
  1649   // FIXME: should iterate over all regions?
  1650   if (car == NULL) {
  1651     return 0;
  1653   return car->free();
  1656 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1657   // The caller doesn't have the Heap_lock
  1658   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1659   MutexLocker ml(Heap_lock);
  1660   collect_locked(cause);
  1663 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1664   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1665   assert(Heap_lock->is_locked(), "Precondition#2");
  1666   GCCauseSetter gcs(this, cause);
  1667   switch (cause) {
  1668     case GCCause::_heap_inspection:
  1669     case GCCause::_heap_dump: {
  1670       HandleMark hm;
  1671       do_full_collection(false);         // don't clear all soft refs
  1672       break;
  1674     default: // XXX FIX ME
  1675       ShouldNotReachHere(); // Unexpected use of this function
  1680 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1681   // Don't want to do a GC until cleanup is completed.
  1682   wait_for_cleanup_complete();
  1684   // Read the GC count while holding the Heap_lock
  1685   int gc_count_before = SharedHeap::heap()->total_collections();
  1687     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1688     VM_G1CollectFull op(gc_count_before, cause);
  1689     VMThread::execute(&op);
  1693 bool G1CollectedHeap::is_in(const void* p) const {
  1694   if (_g1_committed.contains(p)) {
  1695     HeapRegion* hr = _hrs->addr_to_region(p);
  1696     return hr->is_in(p);
  1697   } else {
  1698     return _perm_gen->as_gen()->is_in(p);
  1702 // Iteration functions.
  1704 // Iterates an OopClosure over all ref-containing fields of objects
  1705 // within a HeapRegion.
  1707 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1708   MemRegion _mr;
  1709   OopClosure* _cl;
  1710 public:
  1711   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1712     : _mr(mr), _cl(cl) {}
  1713   bool doHeapRegion(HeapRegion* r) {
  1714     if (! r->continuesHumongous()) {
  1715       r->oop_iterate(_cl);
  1717     return false;
  1719 };
  1721 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1722   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1723   _hrs->iterate(&blk);
  1724   if (do_perm) {
  1725     perm_gen()->oop_iterate(cl);
  1729 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1730   IterateOopClosureRegionClosure blk(mr, cl);
  1731   _hrs->iterate(&blk);
  1732   if (do_perm) {
  1733     perm_gen()->oop_iterate(cl);
  1737 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1739 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1740   ObjectClosure* _cl;
  1741 public:
  1742   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1743   bool doHeapRegion(HeapRegion* r) {
  1744     if (! r->continuesHumongous()) {
  1745       r->object_iterate(_cl);
  1747     return false;
  1749 };
  1751 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1752   IterateObjectClosureRegionClosure blk(cl);
  1753   _hrs->iterate(&blk);
  1754   if (do_perm) {
  1755     perm_gen()->object_iterate(cl);
  1759 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1760   // FIXME: is this right?
  1761   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1764 // Calls a SpaceClosure on a HeapRegion.
  1766 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1767   SpaceClosure* _cl;
  1768 public:
  1769   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1770   bool doHeapRegion(HeapRegion* r) {
  1771     _cl->do_space(r);
  1772     return false;
  1774 };
  1776 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1777   SpaceClosureRegionClosure blk(cl);
  1778   _hrs->iterate(&blk);
  1781 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1782   _hrs->iterate(cl);
  1785 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1786                                                HeapRegionClosure* cl) {
  1787   _hrs->iterate_from(r, cl);
  1790 void
  1791 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1792   _hrs->iterate_from(idx, cl);
  1795 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1797 void
  1798 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1799                                                  int worker,
  1800                                                  jint claim_value) {
  1801   const size_t regions = n_regions();
  1802   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1803   // try to spread out the starting points of the workers
  1804   const size_t start_index = regions / worker_num * (size_t) worker;
  1806   // each worker will actually look at all regions
  1807   for (size_t count = 0; count < regions; ++count) {
  1808     const size_t index = (start_index + count) % regions;
  1809     assert(0 <= index && index < regions, "sanity");
  1810     HeapRegion* r = region_at(index);
  1811     // we'll ignore "continues humongous" regions (we'll process them
  1812     // when we come across their corresponding "start humongous"
  1813     // region) and regions already claimed
  1814     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1815       continue;
  1817     // OK, try to claim it
  1818     if (r->claimHeapRegion(claim_value)) {
  1819       // success!
  1820       assert(!r->continuesHumongous(), "sanity");
  1821       if (r->startsHumongous()) {
  1822         // If the region is "starts humongous" we'll iterate over its
  1823         // "continues humongous" first; in fact we'll do them
  1824         // first. The order is important. In on case, calling the
  1825         // closure on the "starts humongous" region might de-allocate
  1826         // and clear all its "continues humongous" regions and, as a
  1827         // result, we might end up processing them twice. So, we'll do
  1828         // them first (notice: most closures will ignore them anyway) and
  1829         // then we'll do the "starts humongous" region.
  1830         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1831           HeapRegion* chr = region_at(ch_index);
  1833           // if the region has already been claimed or it's not
  1834           // "continues humongous" we're done
  1835           if (chr->claim_value() == claim_value ||
  1836               !chr->continuesHumongous()) {
  1837             break;
  1840           // Noone should have claimed it directly. We can given
  1841           // that we claimed its "starts humongous" region.
  1842           assert(chr->claim_value() != claim_value, "sanity");
  1843           assert(chr->humongous_start_region() == r, "sanity");
  1845           if (chr->claimHeapRegion(claim_value)) {
  1846             // we should always be able to claim it; noone else should
  1847             // be trying to claim this region
  1849             bool res2 = cl->doHeapRegion(chr);
  1850             assert(!res2, "Should not abort");
  1852             // Right now, this holds (i.e., no closure that actually
  1853             // does something with "continues humongous" regions
  1854             // clears them). We might have to weaken it in the future,
  1855             // but let's leave these two asserts here for extra safety.
  1856             assert(chr->continuesHumongous(), "should still be the case");
  1857             assert(chr->humongous_start_region() == r, "sanity");
  1858           } else {
  1859             guarantee(false, "we should not reach here");
  1864       assert(!r->continuesHumongous(), "sanity");
  1865       bool res = cl->doHeapRegion(r);
  1866       assert(!res, "Should not abort");
  1871 class ResetClaimValuesClosure: public HeapRegionClosure {
  1872 public:
  1873   bool doHeapRegion(HeapRegion* r) {
  1874     r->set_claim_value(HeapRegion::InitialClaimValue);
  1875     return false;
  1877 };
  1879 void
  1880 G1CollectedHeap::reset_heap_region_claim_values() {
  1881   ResetClaimValuesClosure blk;
  1882   heap_region_iterate(&blk);
  1885 #ifdef ASSERT
  1886 // This checks whether all regions in the heap have the correct claim
  1887 // value. I also piggy-backed on this a check to ensure that the
  1888 // humongous_start_region() information on "continues humongous"
  1889 // regions is correct.
  1891 class CheckClaimValuesClosure : public HeapRegionClosure {
  1892 private:
  1893   jint _claim_value;
  1894   size_t _failures;
  1895   HeapRegion* _sh_region;
  1896 public:
  1897   CheckClaimValuesClosure(jint claim_value) :
  1898     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1899   bool doHeapRegion(HeapRegion* r) {
  1900     if (r->claim_value() != _claim_value) {
  1901       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1902                              "claim value = %d, should be %d",
  1903                              r->bottom(), r->end(), r->claim_value(),
  1904                              _claim_value);
  1905       ++_failures;
  1907     if (!r->isHumongous()) {
  1908       _sh_region = NULL;
  1909     } else if (r->startsHumongous()) {
  1910       _sh_region = r;
  1911     } else if (r->continuesHumongous()) {
  1912       if (r->humongous_start_region() != _sh_region) {
  1913         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1914                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1915                                r->bottom(), r->end(),
  1916                                r->humongous_start_region(),
  1917                                _sh_region);
  1918         ++_failures;
  1921     return false;
  1923   size_t failures() {
  1924     return _failures;
  1926 };
  1928 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  1929   CheckClaimValuesClosure cl(claim_value);
  1930   heap_region_iterate(&cl);
  1931   return cl.failures() == 0;
  1933 #endif // ASSERT
  1935 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  1936   HeapRegion* r = g1_policy()->collection_set();
  1937   while (r != NULL) {
  1938     HeapRegion* next = r->next_in_collection_set();
  1939     if (cl->doHeapRegion(r)) {
  1940       cl->incomplete();
  1941       return;
  1943     r = next;
  1947 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  1948                                                   HeapRegionClosure *cl) {
  1949   assert(r->in_collection_set(),
  1950          "Start region must be a member of the collection set.");
  1951   HeapRegion* cur = r;
  1952   while (cur != NULL) {
  1953     HeapRegion* next = cur->next_in_collection_set();
  1954     if (cl->doHeapRegion(cur) && false) {
  1955       cl->incomplete();
  1956       return;
  1958     cur = next;
  1960   cur = g1_policy()->collection_set();
  1961   while (cur != r) {
  1962     HeapRegion* next = cur->next_in_collection_set();
  1963     if (cl->doHeapRegion(cur) && false) {
  1964       cl->incomplete();
  1965       return;
  1967     cur = next;
  1971 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  1972   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  1976 Space* G1CollectedHeap::space_containing(const void* addr) const {
  1977   Space* res = heap_region_containing(addr);
  1978   if (res == NULL)
  1979     res = perm_gen()->space_containing(addr);
  1980   return res;
  1983 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  1984   Space* sp = space_containing(addr);
  1985   if (sp != NULL) {
  1986     return sp->block_start(addr);
  1988   return NULL;
  1991 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  1992   Space* sp = space_containing(addr);
  1993   assert(sp != NULL, "block_size of address outside of heap");
  1994   return sp->block_size(addr);
  1997 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  1998   Space* sp = space_containing(addr);
  1999   return sp->block_is_obj(addr);
  2002 bool G1CollectedHeap::supports_tlab_allocation() const {
  2003   return true;
  2006 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2007   return HeapRegion::GrainBytes;
  2010 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2011   // Return the remaining space in the cur alloc region, but not less than
  2012   // the min TLAB size.
  2013   // Also, no more than half the region size, since we can't allow tlabs to
  2014   // grow big enough to accomodate humongous objects.
  2016   // We need to story it locally, since it might change between when we
  2017   // test for NULL and when we use it later.
  2018   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2019   if (cur_alloc_space == NULL) {
  2020     return HeapRegion::GrainBytes/2;
  2021   } else {
  2022     return MAX2(MIN2(cur_alloc_space->free(),
  2023                      (size_t)(HeapRegion::GrainBytes/2)),
  2024                 (size_t)MinTLABSize);
  2028 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2029   bool dummy;
  2030   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2033 bool G1CollectedHeap::allocs_are_zero_filled() {
  2034   return false;
  2037 size_t G1CollectedHeap::large_typearray_limit() {
  2038   // FIXME
  2039   return HeapRegion::GrainBytes/HeapWordSize;
  2042 size_t G1CollectedHeap::max_capacity() const {
  2043   return _g1_committed.byte_size();
  2046 jlong G1CollectedHeap::millis_since_last_gc() {
  2047   // assert(false, "NYI");
  2048   return 0;
  2052 void G1CollectedHeap::prepare_for_verify() {
  2053   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2054     ensure_parsability(false);
  2056   g1_rem_set()->prepare_for_verify();
  2059 class VerifyLivenessOopClosure: public OopClosure {
  2060   G1CollectedHeap* g1h;
  2061 public:
  2062   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2063     g1h = _g1h;
  2065   void do_oop(narrowOop *p) {
  2066     guarantee(false, "NYI");
  2068   void do_oop(oop *p) {
  2069     oop obj = *p;
  2070     assert(obj == NULL || !g1h->is_obj_dead(obj),
  2071            "Dead object referenced by a not dead object");
  2073 };
  2075 class VerifyObjsInRegionClosure: public ObjectClosure {
  2076   G1CollectedHeap* _g1h;
  2077   size_t _live_bytes;
  2078   HeapRegion *_hr;
  2079 public:
  2080   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
  2081     _g1h = G1CollectedHeap::heap();
  2083   void do_object(oop o) {
  2084     VerifyLivenessOopClosure isLive(_g1h);
  2085     assert(o != NULL, "Huh?");
  2086     if (!_g1h->is_obj_dead(o)) {
  2087       o->oop_iterate(&isLive);
  2088       if (!_hr->obj_allocated_since_prev_marking(o))
  2089         _live_bytes += (o->size() * HeapWordSize);
  2092   size_t live_bytes() { return _live_bytes; }
  2093 };
  2095 class PrintObjsInRegionClosure : public ObjectClosure {
  2096   HeapRegion *_hr;
  2097   G1CollectedHeap *_g1;
  2098 public:
  2099   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2100     _g1 = G1CollectedHeap::heap();
  2101   };
  2103   void do_object(oop o) {
  2104     if (o != NULL) {
  2105       HeapWord *start = (HeapWord *) o;
  2106       size_t word_sz = o->size();
  2107       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2108                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2109                           (void*) o, word_sz,
  2110                           _g1->isMarkedPrev(o),
  2111                           _g1->isMarkedNext(o),
  2112                           _hr->obj_allocated_since_prev_marking(o));
  2113       HeapWord *end = start + word_sz;
  2114       HeapWord *cur;
  2115       int *val;
  2116       for (cur = start; cur < end; cur++) {
  2117         val = (int *) cur;
  2118         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2122 };
  2124 class VerifyRegionClosure: public HeapRegionClosure {
  2125 public:
  2126   bool _allow_dirty;
  2127   bool _par;
  2128   VerifyRegionClosure(bool allow_dirty, bool par = false)
  2129     : _allow_dirty(allow_dirty), _par(par) {}
  2130   bool doHeapRegion(HeapRegion* r) {
  2131     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2132               "Should be unclaimed at verify points.");
  2133     if (!r->continuesHumongous()) {
  2134       VerifyObjsInRegionClosure not_dead_yet_cl(r);
  2135       r->verify(_allow_dirty);
  2136       r->object_iterate(&not_dead_yet_cl);
  2137       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2138                 "More live objects than counted in last complete marking.");
  2140     return false;
  2142 };
  2144 class VerifyRootsClosure: public OopsInGenClosure {
  2145 private:
  2146   G1CollectedHeap* _g1h;
  2147   bool             _failures;
  2149 public:
  2150   VerifyRootsClosure() :
  2151     _g1h(G1CollectedHeap::heap()), _failures(false) { }
  2153   bool failures() { return _failures; }
  2155   void do_oop(narrowOop* p) {
  2156     guarantee(false, "NYI");
  2159   void do_oop(oop* p) {
  2160     oop obj = *p;
  2161     if (obj != NULL) {
  2162       if (_g1h->is_obj_dead(obj)) {
  2163         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2164                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2165         obj->print_on(gclog_or_tty);
  2166         _failures = true;
  2170 };
  2172 // This is the task used for parallel heap verification.
  2174 class G1ParVerifyTask: public AbstractGangTask {
  2175 private:
  2176   G1CollectedHeap* _g1h;
  2177   bool _allow_dirty;
  2179 public:
  2180   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
  2181     AbstractGangTask("Parallel verify task"),
  2182     _g1h(g1h), _allow_dirty(allow_dirty) { }
  2184   void work(int worker_i) {
  2185     HandleMark hm;
  2186     VerifyRegionClosure blk(_allow_dirty, true);
  2187     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2188                                           HeapRegion::ParVerifyClaimValue);
  2190 };
  2192 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2193   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2194     if (!silent) { gclog_or_tty->print("roots "); }
  2195     VerifyRootsClosure rootsCl;
  2196     process_strong_roots(false,
  2197                          SharedHeap::SO_AllClasses,
  2198                          &rootsCl,
  2199                          &rootsCl);
  2200     rem_set()->invalidate(perm_gen()->used_region(), false);
  2201     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2202     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2203       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2204              "sanity check");
  2206       G1ParVerifyTask task(this, allow_dirty);
  2207       int n_workers = workers()->total_workers();
  2208       set_par_threads(n_workers);
  2209       workers()->run_task(&task);
  2210       set_par_threads(0);
  2212       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2213              "sanity check");
  2215       reset_heap_region_claim_values();
  2217       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2218              "sanity check");
  2219     } else {
  2220       VerifyRegionClosure blk(allow_dirty);
  2221       _hrs->iterate(&blk);
  2223     if (!silent) gclog_or_tty->print("remset ");
  2224     rem_set()->verify();
  2225     guarantee(!rootsCl.failures(), "should not have had failures");
  2226   } else {
  2227     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2231 class PrintRegionClosure: public HeapRegionClosure {
  2232   outputStream* _st;
  2233 public:
  2234   PrintRegionClosure(outputStream* st) : _st(st) {}
  2235   bool doHeapRegion(HeapRegion* r) {
  2236     r->print_on(_st);
  2237     return false;
  2239 };
  2241 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
  2243 void G1CollectedHeap::print_on(outputStream* st) const {
  2244   PrintRegionClosure blk(st);
  2245   _hrs->iterate(&blk);
  2248 class PrintOnThreadsClosure : public ThreadClosure {
  2249   outputStream* _st;
  2250 public:
  2251   PrintOnThreadsClosure(outputStream* st) : _st(st) { }
  2252   virtual void do_thread(Thread *t) {
  2253     t->print_on(_st);
  2255 };
  2257 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2258   if (ParallelGCThreads > 0) {
  2259     workers()->print_worker_threads();
  2261   st->print("\"G1 concurrent mark GC Thread\" ");
  2262   _cmThread->print();
  2263   st->cr();
  2264   st->print("\"G1 concurrent refinement GC Threads\" ");
  2265   PrintOnThreadsClosure p(st);
  2266   _cg1r->threads_do(&p);
  2267   st->cr();
  2268   st->print("\"G1 zero-fill GC Thread\" ");
  2269   _czft->print_on(st);
  2270   st->cr();
  2273 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2274   if (ParallelGCThreads > 0) {
  2275     workers()->threads_do(tc);
  2277   tc->do_thread(_cmThread);
  2278   _cg1r->threads_do(tc);
  2279   tc->do_thread(_czft);
  2282 void G1CollectedHeap::print_tracing_info() const {
  2283   concurrent_g1_refine()->print_final_card_counts();
  2285   // We'll overload this to mean "trace GC pause statistics."
  2286   if (TraceGen0Time || TraceGen1Time) {
  2287     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2288     // to that.
  2289     g1_policy()->print_tracing_info();
  2291   if (G1SummarizeRSetStats) {
  2292     g1_rem_set()->print_summary_info();
  2294   if (G1SummarizeConcurrentMark) {
  2295     concurrent_mark()->print_summary_info();
  2297   if (G1SummarizeZFStats) {
  2298     ConcurrentZFThread::print_summary_info();
  2300   g1_policy()->print_yg_surv_rate_info();
  2302   GCOverheadReporter::printGCOverhead();
  2304   SpecializationStats::print();
  2308 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2309   HeapRegion* hr = heap_region_containing(addr);
  2310   if (hr == NULL) {
  2311     return 0;
  2312   } else {
  2313     return 1;
  2317 G1CollectedHeap* G1CollectedHeap::heap() {
  2318   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2319          "not a garbage-first heap");
  2320   return _g1h;
  2323 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2324   if (PrintHeapAtGC){
  2325     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
  2326     Universe::print();
  2328   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2329   // Call allocation profiler
  2330   AllocationProfiler::iterate_since_last_gc();
  2331   // Fill TLAB's and such
  2332   ensure_parsability(true);
  2335 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2336   // FIXME: what is this about?
  2337   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2338   // is set.
  2339   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2340                         "derived pointer present"));
  2342   if (PrintHeapAtGC){
  2343     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
  2344     Universe::print();
  2345     gclog_or_tty->print("} ");
  2349 void G1CollectedHeap::do_collection_pause() {
  2350   // Read the GC count while holding the Heap_lock
  2351   // we need to do this _before_ wait_for_cleanup_complete(), to
  2352   // ensure that we do not give up the heap lock and potentially
  2353   // pick up the wrong count
  2354   int gc_count_before = SharedHeap::heap()->total_collections();
  2356   // Don't want to do a GC pause while cleanup is being completed!
  2357   wait_for_cleanup_complete();
  2359   g1_policy()->record_stop_world_start();
  2361     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2362     VM_G1IncCollectionPause op(gc_count_before);
  2363     VMThread::execute(&op);
  2367 void
  2368 G1CollectedHeap::doConcurrentMark() {
  2369   if (G1ConcMark) {
  2370     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2371     if (!_cmThread->in_progress()) {
  2372       _cmThread->set_started();
  2373       CGC_lock->notify();
  2378 class VerifyMarkedObjsClosure: public ObjectClosure {
  2379     G1CollectedHeap* _g1h;
  2380     public:
  2381     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2382     void do_object(oop obj) {
  2383       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2384              "markandsweep mark should agree with concurrent deadness");
  2386 };
  2388 void
  2389 G1CollectedHeap::checkConcurrentMark() {
  2390     VerifyMarkedObjsClosure verifycl(this);
  2391     //    MutexLockerEx x(getMarkBitMapLock(),
  2392     //              Mutex::_no_safepoint_check_flag);
  2393     object_iterate(&verifycl, false);
  2396 void G1CollectedHeap::do_sync_mark() {
  2397   _cm->checkpointRootsInitial();
  2398   _cm->markFromRoots();
  2399   _cm->checkpointRootsFinal(false);
  2402 // <NEW PREDICTION>
  2404 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2405                                                        bool young) {
  2406   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2409 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2410                                                            predicted_time_ms) {
  2411   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2414 size_t G1CollectedHeap::pending_card_num() {
  2415   size_t extra_cards = 0;
  2416   JavaThread *curr = Threads::first();
  2417   while (curr != NULL) {
  2418     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2419     extra_cards += dcq.size();
  2420     curr = curr->next();
  2422   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2423   size_t buffer_size = dcqs.buffer_size();
  2424   size_t buffer_num = dcqs.completed_buffers_num();
  2425   return buffer_size * buffer_num + extra_cards;
  2428 size_t G1CollectedHeap::max_pending_card_num() {
  2429   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2430   size_t buffer_size = dcqs.buffer_size();
  2431   size_t buffer_num  = dcqs.completed_buffers_num();
  2432   int thread_num  = Threads::number_of_threads();
  2433   return (buffer_num + thread_num) * buffer_size;
  2436 size_t G1CollectedHeap::cards_scanned() {
  2437   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2438   return g1_rset->cardsScanned();
  2441 void
  2442 G1CollectedHeap::setup_surviving_young_words() {
  2443   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2444   size_t array_length = g1_policy()->young_cset_length();
  2445   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2446   if (_surviving_young_words == NULL) {
  2447     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2448                           "Not enough space for young surv words summary.");
  2450   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2451   for (size_t i = 0;  i < array_length; ++i) {
  2452     guarantee( _surviving_young_words[i] == 0, "invariant" );
  2456 void
  2457 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2458   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2459   size_t array_length = g1_policy()->young_cset_length();
  2460   for (size_t i = 0; i < array_length; ++i)
  2461     _surviving_young_words[i] += surv_young_words[i];
  2464 void
  2465 G1CollectedHeap::cleanup_surviving_young_words() {
  2466   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2467   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2468   _surviving_young_words = NULL;
  2471 // </NEW PREDICTION>
  2473 void
  2474 G1CollectedHeap::do_collection_pause_at_safepoint() {
  2475   char verbose_str[128];
  2476   sprintf(verbose_str, "GC pause ");
  2477   if (g1_policy()->in_young_gc_mode()) {
  2478     if (g1_policy()->full_young_gcs())
  2479       strcat(verbose_str, "(young)");
  2480     else
  2481       strcat(verbose_str, "(partial)");
  2483   if (g1_policy()->should_initiate_conc_mark())
  2484     strcat(verbose_str, " (initial-mark)");
  2486   GCCauseSetter x(this, GCCause::_g1_inc_collection_pause);
  2488   // if PrintGCDetails is on, we'll print long statistics information
  2489   // in the collector policy code, so let's not print this as the output
  2490   // is messy if we do.
  2491   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2492   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2493   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2495   ResourceMark rm;
  2496   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2497   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2498   guarantee(!is_gc_active(), "collection is not reentrant");
  2499   assert(regions_accounted_for(), "Region leakage!");
  2501   increment_gc_time_stamp();
  2503   if (g1_policy()->in_young_gc_mode()) {
  2504     assert(check_young_list_well_formed(),
  2505                 "young list should be well formed");
  2508   if (GC_locker::is_active()) {
  2509     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2512   bool abandoned = false;
  2513   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2514     IsGCActiveMark x;
  2516     gc_prologue(false);
  2517     increment_total_collections();
  2519 #if G1_REM_SET_LOGGING
  2520     gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2521     print();
  2522 #endif
  2524     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2525       HandleMark hm;  // Discard invalid handles created during verification
  2526       prepare_for_verify();
  2527       gclog_or_tty->print(" VerifyBeforeGC:");
  2528       Universe::verify(false);
  2531     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2533     // We want to turn off ref discovery, if necessary, and turn it back on
  2534     // on again later if we do.
  2535     bool was_enabled = ref_processor()->discovery_enabled();
  2536     if (was_enabled) ref_processor()->disable_discovery();
  2538     // Forget the current alloc region (we might even choose it to be part
  2539     // of the collection set!).
  2540     abandon_cur_alloc_region();
  2542     // The elapsed time induced by the start time below deliberately elides
  2543     // the possible verification above.
  2544     double start_time_sec = os::elapsedTime();
  2545     GCOverheadReporter::recordSTWStart(start_time_sec);
  2546     size_t start_used_bytes = used();
  2547     if (!G1ConcMark) {
  2548       do_sync_mark();
  2551     g1_policy()->record_collection_pause_start(start_time_sec,
  2552                                                start_used_bytes);
  2554     guarantee(_in_cset_fast_test == NULL, "invariant");
  2555     guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2556     _in_cset_fast_test_length = max_regions();
  2557     _in_cset_fast_test_base =
  2558                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2559     memset(_in_cset_fast_test_base, false,
  2560                                      _in_cset_fast_test_length * sizeof(bool));
  2561     // We're biasing _in_cset_fast_test to avoid subtracting the
  2562     // beginning of the heap every time we want to index; basically
  2563     // it's the same with what we do with the card table.
  2564     _in_cset_fast_test = _in_cset_fast_test_base -
  2565               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2567 #if SCAN_ONLY_VERBOSE
  2568     _young_list->print();
  2569 #endif // SCAN_ONLY_VERBOSE
  2571     if (g1_policy()->should_initiate_conc_mark()) {
  2572       concurrent_mark()->checkpointRootsInitialPre();
  2574     save_marks();
  2576     // We must do this before any possible evacuation that should propagate
  2577     // marks.
  2578     if (mark_in_progress()) {
  2579       double start_time_sec = os::elapsedTime();
  2581       _cm->drainAllSATBBuffers();
  2582       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2583       g1_policy()->record_satb_drain_time(finish_mark_ms);
  2586     // Record the number of elements currently on the mark stack, so we
  2587     // only iterate over these.  (Since evacuation may add to the mark
  2588     // stack, doing more exposes race conditions.)  If no mark is in
  2589     // progress, this will be zero.
  2590     _cm->set_oops_do_bound();
  2592     assert(regions_accounted_for(), "Region leakage.");
  2594     if (mark_in_progress())
  2595       concurrent_mark()->newCSet();
  2597     // Now choose the CS.
  2598     g1_policy()->choose_collection_set();
  2600     // We may abandon a pause if we find no region that will fit in the MMU
  2601     // pause.
  2602     bool abandoned = (g1_policy()->collection_set() == NULL);
  2604     // Nothing to do if we were unable to choose a collection set.
  2605     if (!abandoned) {
  2606 #if G1_REM_SET_LOGGING
  2607       gclog_or_tty->print_cr("\nAfter pause, heap:");
  2608       print();
  2609 #endif
  2611       setup_surviving_young_words();
  2613       // Set up the gc allocation regions.
  2614       get_gc_alloc_regions();
  2616       // Actually do the work...
  2617       evacuate_collection_set();
  2618       free_collection_set(g1_policy()->collection_set());
  2619       g1_policy()->clear_collection_set();
  2621       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2622       // this is more for peace of mind; we're nulling them here and
  2623       // we're expecting them to be null at the beginning of the next GC
  2624       _in_cset_fast_test = NULL;
  2625       _in_cset_fast_test_base = NULL;
  2627       release_gc_alloc_regions(false /* totally */);
  2629       cleanup_surviving_young_words();
  2631       if (g1_policy()->in_young_gc_mode()) {
  2632         _young_list->reset_sampled_info();
  2633         assert(check_young_list_empty(true),
  2634                "young list should be empty");
  2636 #if SCAN_ONLY_VERBOSE
  2637         _young_list->print();
  2638 #endif // SCAN_ONLY_VERBOSE
  2640         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2641                                              _young_list->first_survivor_region(),
  2642                                              _young_list->last_survivor_region());
  2643         _young_list->reset_auxilary_lists();
  2645     } else {
  2646       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2649     if (evacuation_failed()) {
  2650       _summary_bytes_used = recalculate_used();
  2651     } else {
  2652       // The "used" of the the collection set have already been subtracted
  2653       // when they were freed.  Add in the bytes evacuated.
  2654       _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2657     if (g1_policy()->in_young_gc_mode() &&
  2658         g1_policy()->should_initiate_conc_mark()) {
  2659       concurrent_mark()->checkpointRootsInitialPost();
  2660       set_marking_started();
  2661       doConcurrentMark();
  2664 #if SCAN_ONLY_VERBOSE
  2665     _young_list->print();
  2666 #endif // SCAN_ONLY_VERBOSE
  2668     double end_time_sec = os::elapsedTime();
  2669     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2670     g1_policy()->record_pause_time_ms(pause_time_ms);
  2671     GCOverheadReporter::recordSTWEnd(end_time_sec);
  2672     g1_policy()->record_collection_pause_end(abandoned);
  2674     assert(regions_accounted_for(), "Region leakage.");
  2676     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2677       HandleMark hm;  // Discard invalid handles created during verification
  2678       gclog_or_tty->print(" VerifyAfterGC:");
  2679       prepare_for_verify();
  2680       Universe::verify(false);
  2683     if (was_enabled) ref_processor()->enable_discovery();
  2686       size_t expand_bytes = g1_policy()->expansion_amount();
  2687       if (expand_bytes > 0) {
  2688         size_t bytes_before = capacity();
  2689         expand(expand_bytes);
  2693     if (mark_in_progress()) {
  2694       concurrent_mark()->update_g1_committed();
  2697 #ifdef TRACESPINNING
  2698     ParallelTaskTerminator::print_termination_counts();
  2699 #endif
  2701     gc_epilogue(false);
  2704   assert(verify_region_lists(), "Bad region lists.");
  2706   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2707     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2708     print_tracing_info();
  2709     vm_exit(-1);
  2713 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2714   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2715   // make sure we don't call set_gc_alloc_region() multiple times on
  2716   // the same region
  2717   assert(r == NULL || !r->is_gc_alloc_region(),
  2718          "shouldn't already be a GC alloc region");
  2719   HeapWord* original_top = NULL;
  2720   if (r != NULL)
  2721     original_top = r->top();
  2723   // We will want to record the used space in r as being there before gc.
  2724   // One we install it as a GC alloc region it's eligible for allocation.
  2725   // So record it now and use it later.
  2726   size_t r_used = 0;
  2727   if (r != NULL) {
  2728     r_used = r->used();
  2730     if (ParallelGCThreads > 0) {
  2731       // need to take the lock to guard against two threads calling
  2732       // get_gc_alloc_region concurrently (very unlikely but...)
  2733       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2734       r->save_marks();
  2737   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2738   _gc_alloc_regions[purpose] = r;
  2739   if (old_alloc_region != NULL) {
  2740     // Replace aliases too.
  2741     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2742       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2743         _gc_alloc_regions[ap] = r;
  2747   if (r != NULL) {
  2748     push_gc_alloc_region(r);
  2749     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2750       // We are using a region as a GC alloc region after it has been used
  2751       // as a mutator allocation region during the current marking cycle.
  2752       // The mutator-allocated objects are currently implicitly marked, but
  2753       // when we move hr->next_top_at_mark_start() forward at the the end
  2754       // of the GC pause, they won't be.  We therefore mark all objects in
  2755       // the "gap".  We do this object-by-object, since marking densely
  2756       // does not currently work right with marking bitmap iteration.  This
  2757       // means we rely on TLAB filling at the start of pauses, and no
  2758       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2759       // to fix the marking bitmap iteration.
  2760       HeapWord* curhw = r->next_top_at_mark_start();
  2761       HeapWord* t = original_top;
  2763       while (curhw < t) {
  2764         oop cur = (oop)curhw;
  2765         // We'll assume parallel for generality.  This is rare code.
  2766         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2767         curhw = curhw + cur->size();
  2769       assert(curhw == t, "Should have parsed correctly.");
  2771     if (G1PolicyVerbose > 1) {
  2772       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2773                           "for survivors:", r->bottom(), original_top, r->end());
  2774       r->print();
  2776     g1_policy()->record_before_bytes(r_used);
  2780 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2781   assert(Thread::current()->is_VM_thread() ||
  2782          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2783   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2784          "Precondition.");
  2785   hr->set_is_gc_alloc_region(true);
  2786   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2787   _gc_alloc_region_list = hr;
  2790 #ifdef G1_DEBUG
  2791 class FindGCAllocRegion: public HeapRegionClosure {
  2792 public:
  2793   bool doHeapRegion(HeapRegion* r) {
  2794     if (r->is_gc_alloc_region()) {
  2795       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2796                              r->hrs_index(), r->bottom());
  2798     return false;
  2800 };
  2801 #endif // G1_DEBUG
  2803 void G1CollectedHeap::forget_alloc_region_list() {
  2804   assert(Thread::current()->is_VM_thread(), "Precondition");
  2805   while (_gc_alloc_region_list != NULL) {
  2806     HeapRegion* r = _gc_alloc_region_list;
  2807     assert(r->is_gc_alloc_region(), "Invariant.");
  2808     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  2809     // newly allocated data in order to be able to apply deferred updates
  2810     // before the GC is done for verification purposes (i.e to allow
  2811     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  2812     // collection.
  2813     r->ContiguousSpace::set_saved_mark();
  2814     _gc_alloc_region_list = r->next_gc_alloc_region();
  2815     r->set_next_gc_alloc_region(NULL);
  2816     r->set_is_gc_alloc_region(false);
  2817     if (r->is_survivor()) {
  2818       if (r->is_empty()) {
  2819         r->set_not_young();
  2820       } else {
  2821         _young_list->add_survivor_region(r);
  2824     if (r->is_empty()) {
  2825       ++_free_regions;
  2828 #ifdef G1_DEBUG
  2829   FindGCAllocRegion fa;
  2830   heap_region_iterate(&fa);
  2831 #endif // G1_DEBUG
  2835 bool G1CollectedHeap::check_gc_alloc_regions() {
  2836   // TODO: allocation regions check
  2837   return true;
  2840 void G1CollectedHeap::get_gc_alloc_regions() {
  2841   // First, let's check that the GC alloc region list is empty (it should)
  2842   assert(_gc_alloc_region_list == NULL, "invariant");
  2844   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2845     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  2847     // Create new GC alloc regions.
  2848     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  2849     _retained_gc_alloc_regions[ap] = NULL;
  2851     if (alloc_region != NULL) {
  2852       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  2854       // let's make sure that the GC alloc region is not tagged as such
  2855       // outside a GC operation
  2856       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  2858       if (alloc_region->in_collection_set() ||
  2859           alloc_region->top() == alloc_region->end() ||
  2860           alloc_region->top() == alloc_region->bottom()) {
  2861         // we will discard the current GC alloc region if it's in the
  2862         // collection set (it can happen!), if it's already full (no
  2863         // point in using it), or if it's empty (this means that it
  2864         // was emptied during a cleanup and it should be on the free
  2865         // list now).
  2867         alloc_region = NULL;
  2871     if (alloc_region == NULL) {
  2872       // we will get a new GC alloc region
  2873       alloc_region = newAllocRegionWithExpansion(ap, 0);
  2876     if (alloc_region != NULL) {
  2877       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  2878       set_gc_alloc_region(ap, alloc_region);
  2881     assert(_gc_alloc_regions[ap] == NULL ||
  2882            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  2883            "the GC alloc region should be tagged as such");
  2884     assert(_gc_alloc_regions[ap] == NULL ||
  2885            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  2886            "the GC alloc region should be the same as the GC alloc list head");
  2888   // Set alternative regions for allocation purposes that have reached
  2889   // their limit.
  2890   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2891     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  2892     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  2893       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  2896   assert(check_gc_alloc_regions(), "alloc regions messed up");
  2899 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  2900   // We keep a separate list of all regions that have been alloc regions in
  2901   // the current collection pause. Forget that now. This method will
  2902   // untag the GC alloc regions and tear down the GC alloc region
  2903   // list. It's desirable that no regions are tagged as GC alloc
  2904   // outside GCs.
  2905   forget_alloc_region_list();
  2907   // The current alloc regions contain objs that have survived
  2908   // collection. Make them no longer GC alloc regions.
  2909   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2910     HeapRegion* r = _gc_alloc_regions[ap];
  2911     _retained_gc_alloc_regions[ap] = NULL;
  2913     if (r != NULL) {
  2914       // we retain nothing on _gc_alloc_regions between GCs
  2915       set_gc_alloc_region(ap, NULL);
  2916       _gc_alloc_region_counts[ap] = 0;
  2918       if (r->is_empty()) {
  2919         // we didn't actually allocate anything in it; let's just put
  2920         // it on the free list
  2921         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  2922         r->set_zero_fill_complete();
  2923         put_free_region_on_list_locked(r);
  2924       } else if (_retain_gc_alloc_region[ap] && !totally) {
  2925         // retain it so that we can use it at the beginning of the next GC
  2926         _retained_gc_alloc_regions[ap] = r;
  2932 #ifndef PRODUCT
  2933 // Useful for debugging
  2935 void G1CollectedHeap::print_gc_alloc_regions() {
  2936   gclog_or_tty->print_cr("GC alloc regions");
  2937   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2938     HeapRegion* r = _gc_alloc_regions[ap];
  2939     if (r == NULL) {
  2940       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  2941     } else {
  2942       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  2943                              ap, r->bottom(), r->used());
  2947 #endif // PRODUCT
  2949 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  2950   _drain_in_progress = false;
  2951   set_evac_failure_closure(cl);
  2952   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  2955 void G1CollectedHeap::finalize_for_evac_failure() {
  2956   assert(_evac_failure_scan_stack != NULL &&
  2957          _evac_failure_scan_stack->length() == 0,
  2958          "Postcondition");
  2959   assert(!_drain_in_progress, "Postcondition");
  2960   // Don't have to delete, since the scan stack is a resource object.
  2961   _evac_failure_scan_stack = NULL;
  2966 // *** Sequential G1 Evacuation
  2968 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  2969   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  2970   // let the caller handle alloc failure
  2971   if (alloc_region == NULL) return NULL;
  2972   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  2973          "Either the object is humongous or the region isn't");
  2974   HeapWord* block = alloc_region->allocate(word_size);
  2975   if (block == NULL) {
  2976     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  2978   return block;
  2981 class G1IsAliveClosure: public BoolObjectClosure {
  2982   G1CollectedHeap* _g1;
  2983 public:
  2984   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  2985   void do_object(oop p) { assert(false, "Do not call."); }
  2986   bool do_object_b(oop p) {
  2987     // It is reachable if it is outside the collection set, or is inside
  2988     // and forwarded.
  2990 #ifdef G1_DEBUG
  2991     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  2992                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  2993                            !_g1->obj_in_cs(p) || p->is_forwarded());
  2994 #endif // G1_DEBUG
  2996     return !_g1->obj_in_cs(p) || p->is_forwarded();
  2998 };
  3000 class G1KeepAliveClosure: public OopClosure {
  3001   G1CollectedHeap* _g1;
  3002 public:
  3003   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3004   void do_oop(narrowOop* p) {
  3005     guarantee(false, "NYI");
  3007   void do_oop(oop* p) {
  3008     oop obj = *p;
  3009 #ifdef G1_DEBUG
  3010     if (PrintGC && Verbose) {
  3011       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3012                              p, (void*) obj, (void*) *p);
  3014 #endif // G1_DEBUG
  3016     if (_g1->obj_in_cs(obj)) {
  3017       assert( obj->is_forwarded(), "invariant" );
  3018       *p = obj->forwardee();
  3020 #ifdef G1_DEBUG
  3021       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3022                              (void*) obj, (void*) *p);
  3023 #endif // G1_DEBUG
  3026 };
  3028 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3029 private:
  3030   G1CollectedHeap* _g1;
  3031   G1RemSet* _g1_rem_set;
  3032 public:
  3033   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3034     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3036   void do_oop(narrowOop* p) {
  3037     guarantee(false, "NYI");
  3039   void do_oop(oop* p) {
  3040     assert(_from->is_in_reserved(p), "paranoia");
  3041     if (*p != NULL && !_from->is_survivor()) {
  3042       _g1_rem_set->par_write_ref(_from, p, 0);
  3045 };
  3047 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3048 private:
  3049   G1CollectedHeap* _g1;
  3050   DirtyCardQueue *_dcq;
  3051   CardTableModRefBS* _ct_bs;
  3053 public:
  3054   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3055     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3057   void do_oop(narrowOop* p) {
  3058     guarantee(false, "NYI");
  3060   void do_oop(oop* p) {
  3061     assert(_from->is_in_reserved(p), "paranoia");
  3062     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
  3063       size_t card_index = _ct_bs->index_for(p);
  3064       if (_ct_bs->mark_card_deferred(card_index)) {
  3065         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3069 };
  3073 class RemoveSelfPointerClosure: public ObjectClosure {
  3074 private:
  3075   G1CollectedHeap* _g1;
  3076   ConcurrentMark* _cm;
  3077   HeapRegion* _hr;
  3078   size_t _prev_marked_bytes;
  3079   size_t _next_marked_bytes;
  3080   OopsInHeapRegionClosure *_cl;
  3081 public:
  3082   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3083     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3084     _next_marked_bytes(0), _cl(cl) {}
  3086   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3087   size_t next_marked_bytes() { return _next_marked_bytes; }
  3089   // The original idea here was to coalesce evacuated and dead objects.
  3090   // However that caused complications with the block offset table (BOT).
  3091   // In particular if there were two TLABs, one of them partially refined.
  3092   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3093   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3094   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3095   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3096   // would point into middle of the filler object.
  3097   //
  3098   // The current approach is to not coalesce and leave the BOT contents intact.
  3099   void do_object(oop obj) {
  3100     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3101       // The object failed to move.
  3102       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3103       _cm->markPrev(obj);
  3104       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3105       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3106       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3107         _cm->markAndGrayObjectIfNecessary(obj);
  3109       obj->set_mark(markOopDesc::prototype());
  3110       // While we were processing RSet buffers during the
  3111       // collection, we actually didn't scan any cards on the
  3112       // collection set, since we didn't want to update remebered
  3113       // sets with entries that point into the collection set, given
  3114       // that live objects fromthe collection set are about to move
  3115       // and such entries will be stale very soon. This change also
  3116       // dealt with a reliability issue which involved scanning a
  3117       // card in the collection set and coming across an array that
  3118       // was being chunked and looking malformed. The problem is
  3119       // that, if evacuation fails, we might have remembered set
  3120       // entries missing given that we skipped cards on the
  3121       // collection set. So, we'll recreate such entries now.
  3122       obj->oop_iterate(_cl);
  3123       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3124     } else {
  3125       // The object has been either evacuated or is dead. Fill it with a
  3126       // dummy object.
  3127       MemRegion mr((HeapWord*)obj, obj->size());
  3128       CollectedHeap::fill_with_object(mr);
  3129       _cm->clearRangeBothMaps(mr);
  3132 };
  3134 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3135   UpdateRSetImmediate immediate_update(_g1h);
  3136   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3137   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3138   OopsInHeapRegionClosure *cl;
  3139   if (G1DeferredRSUpdate) {
  3140     cl = &deferred_update;
  3141   } else {
  3142     cl = &immediate_update;
  3144   HeapRegion* cur = g1_policy()->collection_set();
  3145   while (cur != NULL) {
  3146     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3148     RemoveSelfPointerClosure rspc(_g1h, cl);
  3149     if (cur->evacuation_failed()) {
  3150       assert(cur->in_collection_set(), "bad CS");
  3151       cl->set_region(cur);
  3152       cur->object_iterate(&rspc);
  3154       // A number of manipulations to make the TAMS be the current top,
  3155       // and the marked bytes be the ones observed in the iteration.
  3156       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3157         // The comments below are the postconditions achieved by the
  3158         // calls.  Note especially the last such condition, which says that
  3159         // the count of marked bytes has been properly restored.
  3160         cur->note_start_of_marking(false);
  3161         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3162         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3163         // _next_marked_bytes == prev_marked_bytes.
  3164         cur->note_end_of_marking();
  3165         // _prev_top_at_mark_start == top(),
  3166         // _prev_marked_bytes == prev_marked_bytes
  3168       // If there is no mark in progress, we modified the _next variables
  3169       // above needlessly, but harmlessly.
  3170       if (_g1h->mark_in_progress()) {
  3171         cur->note_start_of_marking(false);
  3172         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3173         // _next_marked_bytes == next_marked_bytes.
  3176       // Now make sure the region has the right index in the sorted array.
  3177       g1_policy()->note_change_in_marked_bytes(cur);
  3179     cur = cur->next_in_collection_set();
  3181   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3183   // Now restore saved marks, if any.
  3184   if (_objs_with_preserved_marks != NULL) {
  3185     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3186     assert(_objs_with_preserved_marks->length() ==
  3187            _preserved_marks_of_objs->length(), "Both or none.");
  3188     guarantee(_objs_with_preserved_marks->length() ==
  3189               _preserved_marks_of_objs->length(), "Both or none.");
  3190     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3191       oop obj   = _objs_with_preserved_marks->at(i);
  3192       markOop m = _preserved_marks_of_objs->at(i);
  3193       obj->set_mark(m);
  3195     // Delete the preserved marks growable arrays (allocated on the C heap).
  3196     delete _objs_with_preserved_marks;
  3197     delete _preserved_marks_of_objs;
  3198     _objs_with_preserved_marks = NULL;
  3199     _preserved_marks_of_objs = NULL;
  3203 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3204   _evac_failure_scan_stack->push(obj);
  3207 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3208   assert(_evac_failure_scan_stack != NULL, "precondition");
  3210   while (_evac_failure_scan_stack->length() > 0) {
  3211      oop obj = _evac_failure_scan_stack->pop();
  3212      _evac_failure_closure->set_region(heap_region_containing(obj));
  3213      obj->oop_iterate_backwards(_evac_failure_closure);
  3217 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3218   markOop m = old->mark();
  3219   // forward to self
  3220   assert(!old->is_forwarded(), "precondition");
  3222   old->forward_to(old);
  3223   handle_evacuation_failure_common(old, m);
  3226 oop
  3227 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3228                                                oop old) {
  3229   markOop m = old->mark();
  3230   oop forward_ptr = old->forward_to_atomic(old);
  3231   if (forward_ptr == NULL) {
  3232     // Forward-to-self succeeded.
  3233     if (_evac_failure_closure != cl) {
  3234       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3235       assert(!_drain_in_progress,
  3236              "Should only be true while someone holds the lock.");
  3237       // Set the global evac-failure closure to the current thread's.
  3238       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3239       set_evac_failure_closure(cl);
  3240       // Now do the common part.
  3241       handle_evacuation_failure_common(old, m);
  3242       // Reset to NULL.
  3243       set_evac_failure_closure(NULL);
  3244     } else {
  3245       // The lock is already held, and this is recursive.
  3246       assert(_drain_in_progress, "This should only be the recursive case.");
  3247       handle_evacuation_failure_common(old, m);
  3249     return old;
  3250   } else {
  3251     // Someone else had a place to copy it.
  3252     return forward_ptr;
  3256 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3257   set_evacuation_failed(true);
  3259   preserve_mark_if_necessary(old, m);
  3261   HeapRegion* r = heap_region_containing(old);
  3262   if (!r->evacuation_failed()) {
  3263     r->set_evacuation_failed(true);
  3264     if (G1PrintRegions) {
  3265       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3266                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3267                           r, r->bottom(), r->end());
  3271   push_on_evac_failure_scan_stack(old);
  3273   if (!_drain_in_progress) {
  3274     // prevent recursion in copy_to_survivor_space()
  3275     _drain_in_progress = true;
  3276     drain_evac_failure_scan_stack();
  3277     _drain_in_progress = false;
  3281 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3282   if (m != markOopDesc::prototype()) {
  3283     if (_objs_with_preserved_marks == NULL) {
  3284       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3285       _objs_with_preserved_marks =
  3286         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3287       _preserved_marks_of_objs =
  3288         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3290     _objs_with_preserved_marks->push(obj);
  3291     _preserved_marks_of_objs->push(m);
  3295 // *** Parallel G1 Evacuation
  3297 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3298                                                   size_t word_size) {
  3299   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3300   // let the caller handle alloc failure
  3301   if (alloc_region == NULL) return NULL;
  3303   HeapWord* block = alloc_region->par_allocate(word_size);
  3304   if (block == NULL) {
  3305     MutexLockerEx x(par_alloc_during_gc_lock(),
  3306                     Mutex::_no_safepoint_check_flag);
  3307     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3309   return block;
  3312 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3313                                             bool par) {
  3314   // Another thread might have obtained alloc_region for the given
  3315   // purpose, and might be attempting to allocate in it, and might
  3316   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3317   // region below until we're sure the last allocation has happened.
  3318   // We ensure this by allocating the remaining space with a garbage
  3319   // object.
  3320   if (par) par_allocate_remaining_space(alloc_region);
  3321   // Now we can do the post-GC stuff on the region.
  3322   alloc_region->note_end_of_copying();
  3323   g1_policy()->record_after_bytes(alloc_region->used());
  3326 HeapWord*
  3327 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3328                                          HeapRegion*    alloc_region,
  3329                                          bool           par,
  3330                                          size_t         word_size) {
  3331   HeapWord* block = NULL;
  3332   // In the parallel case, a previous thread to obtain the lock may have
  3333   // already assigned a new gc_alloc_region.
  3334   if (alloc_region != _gc_alloc_regions[purpose]) {
  3335     assert(par, "But should only happen in parallel case.");
  3336     alloc_region = _gc_alloc_regions[purpose];
  3337     if (alloc_region == NULL) return NULL;
  3338     block = alloc_region->par_allocate(word_size);
  3339     if (block != NULL) return block;
  3340     // Otherwise, continue; this new region is empty, too.
  3342   assert(alloc_region != NULL, "We better have an allocation region");
  3343   retire_alloc_region(alloc_region, par);
  3345   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3346     // Cannot allocate more regions for the given purpose.
  3347     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3348     // Is there an alternative?
  3349     if (purpose != alt_purpose) {
  3350       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3351       // Has not the alternative region been aliased?
  3352       if (alloc_region != alt_region && alt_region != NULL) {
  3353         // Try to allocate in the alternative region.
  3354         if (par) {
  3355           block = alt_region->par_allocate(word_size);
  3356         } else {
  3357           block = alt_region->allocate(word_size);
  3359         // Make an alias.
  3360         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3361         if (block != NULL) {
  3362           return block;
  3364         retire_alloc_region(alt_region, par);
  3366       // Both the allocation region and the alternative one are full
  3367       // and aliased, replace them with a new allocation region.
  3368       purpose = alt_purpose;
  3369     } else {
  3370       set_gc_alloc_region(purpose, NULL);
  3371       return NULL;
  3375   // Now allocate a new region for allocation.
  3376   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3378   // let the caller handle alloc failure
  3379   if (alloc_region != NULL) {
  3381     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3382     assert(alloc_region->saved_mark_at_top(),
  3383            "Mark should have been saved already.");
  3384     // We used to assert that the region was zero-filled here, but no
  3385     // longer.
  3387     // This must be done last: once it's installed, other regions may
  3388     // allocate in it (without holding the lock.)
  3389     set_gc_alloc_region(purpose, alloc_region);
  3391     if (par) {
  3392       block = alloc_region->par_allocate(word_size);
  3393     } else {
  3394       block = alloc_region->allocate(word_size);
  3396     // Caller handles alloc failure.
  3397   } else {
  3398     // This sets other apis using the same old alloc region to NULL, also.
  3399     set_gc_alloc_region(purpose, NULL);
  3401   return block;  // May be NULL.
  3404 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3405   HeapWord* block = NULL;
  3406   size_t free_words;
  3407   do {
  3408     free_words = r->free()/HeapWordSize;
  3409     // If there's too little space, no one can allocate, so we're done.
  3410     if (free_words < (size_t)oopDesc::header_size()) return;
  3411     // Otherwise, try to claim it.
  3412     block = r->par_allocate(free_words);
  3413   } while (block == NULL);
  3414   fill_with_object(block, free_words);
  3417 #define use_local_bitmaps         1
  3418 #define verify_local_bitmaps      0
  3420 #ifndef PRODUCT
  3422 class GCLabBitMap;
  3423 class GCLabBitMapClosure: public BitMapClosure {
  3424 private:
  3425   ConcurrentMark* _cm;
  3426   GCLabBitMap*    _bitmap;
  3428 public:
  3429   GCLabBitMapClosure(ConcurrentMark* cm,
  3430                      GCLabBitMap* bitmap) {
  3431     _cm     = cm;
  3432     _bitmap = bitmap;
  3435   virtual bool do_bit(size_t offset);
  3436 };
  3438 #endif // PRODUCT
  3440 #define oop_buffer_length 256
  3442 class GCLabBitMap: public BitMap {
  3443 private:
  3444   ConcurrentMark* _cm;
  3446   int       _shifter;
  3447   size_t    _bitmap_word_covers_words;
  3449   // beginning of the heap
  3450   HeapWord* _heap_start;
  3452   // this is the actual start of the GCLab
  3453   HeapWord* _real_start_word;
  3455   // this is the actual end of the GCLab
  3456   HeapWord* _real_end_word;
  3458   // this is the first word, possibly located before the actual start
  3459   // of the GCLab, that corresponds to the first bit of the bitmap
  3460   HeapWord* _start_word;
  3462   // size of a GCLab in words
  3463   size_t _gclab_word_size;
  3465   static int shifter() {
  3466     return MinObjAlignment - 1;
  3469   // how many heap words does a single bitmap word corresponds to?
  3470   static size_t bitmap_word_covers_words() {
  3471     return BitsPerWord << shifter();
  3474   static size_t gclab_word_size() {
  3475     return G1ParallelGCAllocBufferSize / HeapWordSize;
  3478   static size_t bitmap_size_in_bits() {
  3479     size_t bits_in_bitmap = gclab_word_size() >> shifter();
  3480     // We are going to ensure that the beginning of a word in this
  3481     // bitmap also corresponds to the beginning of a word in the
  3482     // global marking bitmap. To handle the case where a GCLab
  3483     // starts from the middle of the bitmap, we need to add enough
  3484     // space (i.e. up to a bitmap word) to ensure that we have
  3485     // enough bits in the bitmap.
  3486     return bits_in_bitmap + BitsPerWord - 1;
  3488 public:
  3489   GCLabBitMap(HeapWord* heap_start)
  3490     : BitMap(bitmap_size_in_bits()),
  3491       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  3492       _shifter(shifter()),
  3493       _bitmap_word_covers_words(bitmap_word_covers_words()),
  3494       _heap_start(heap_start),
  3495       _gclab_word_size(gclab_word_size()),
  3496       _real_start_word(NULL),
  3497       _real_end_word(NULL),
  3498       _start_word(NULL)
  3500     guarantee( size_in_words() >= bitmap_size_in_words(),
  3501                "just making sure");
  3504   inline unsigned heapWordToOffset(HeapWord* addr) {
  3505     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  3506     assert(offset < size(), "offset should be within bounds");
  3507     return offset;
  3510   inline HeapWord* offsetToHeapWord(size_t offset) {
  3511     HeapWord* addr =  _start_word + (offset << _shifter);
  3512     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  3513     return addr;
  3516   bool fields_well_formed() {
  3517     bool ret1 = (_real_start_word == NULL) &&
  3518                 (_real_end_word == NULL) &&
  3519                 (_start_word == NULL);
  3520     if (ret1)
  3521       return true;
  3523     bool ret2 = _real_start_word >= _start_word &&
  3524       _start_word < _real_end_word &&
  3525       (_real_start_word + _gclab_word_size) == _real_end_word &&
  3526       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  3527                                                               > _real_end_word;
  3528     return ret2;
  3531   inline bool mark(HeapWord* addr) {
  3532     guarantee(use_local_bitmaps, "invariant");
  3533     assert(fields_well_formed(), "invariant");
  3535     if (addr >= _real_start_word && addr < _real_end_word) {
  3536       assert(!isMarked(addr), "should not have already been marked");
  3538       // first mark it on the bitmap
  3539       at_put(heapWordToOffset(addr), true);
  3541       return true;
  3542     } else {
  3543       return false;
  3547   inline bool isMarked(HeapWord* addr) {
  3548     guarantee(use_local_bitmaps, "invariant");
  3549     assert(fields_well_formed(), "invariant");
  3551     return at(heapWordToOffset(addr));
  3554   void set_buffer(HeapWord* start) {
  3555     guarantee(use_local_bitmaps, "invariant");
  3556     clear();
  3558     assert(start != NULL, "invariant");
  3559     _real_start_word = start;
  3560     _real_end_word   = start + _gclab_word_size;
  3562     size_t diff =
  3563       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  3564     _start_word = start - diff;
  3566     assert(fields_well_formed(), "invariant");
  3569 #ifndef PRODUCT
  3570   void verify() {
  3571     // verify that the marks have been propagated
  3572     GCLabBitMapClosure cl(_cm, this);
  3573     iterate(&cl);
  3575 #endif // PRODUCT
  3577   void retire() {
  3578     guarantee(use_local_bitmaps, "invariant");
  3579     assert(fields_well_formed(), "invariant");
  3581     if (_start_word != NULL) {
  3582       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  3584       // this means that the bitmap was set up for the GCLab
  3585       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  3587       mark_bitmap->mostly_disjoint_range_union(this,
  3588                                 0, // always start from the start of the bitmap
  3589                                 _start_word,
  3590                                 size_in_words());
  3591       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  3593 #ifndef PRODUCT
  3594       if (use_local_bitmaps && verify_local_bitmaps)
  3595         verify();
  3596 #endif // PRODUCT
  3597     } else {
  3598       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  3602   static size_t bitmap_size_in_words() {
  3603     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
  3605 };
  3607 #ifndef PRODUCT
  3609 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3610   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3611   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3612   return true;
  3615 #endif // PRODUCT
  3617 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  3618 private:
  3619   bool        _retired;
  3620   bool        _during_marking;
  3621   GCLabBitMap _bitmap;
  3623 public:
  3624   G1ParGCAllocBuffer() :
  3625     ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize),
  3626     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  3627     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
  3628     _retired(false)
  3629   { }
  3631   inline bool mark(HeapWord* addr) {
  3632     guarantee(use_local_bitmaps, "invariant");
  3633     assert(_during_marking, "invariant");
  3634     return _bitmap.mark(addr);
  3637   inline void set_buf(HeapWord* buf) {
  3638     if (use_local_bitmaps && _during_marking)
  3639       _bitmap.set_buffer(buf);
  3640     ParGCAllocBuffer::set_buf(buf);
  3641     _retired = false;
  3644   inline void retire(bool end_of_gc, bool retain) {
  3645     if (_retired)
  3646       return;
  3647     if (use_local_bitmaps && _during_marking) {
  3648       _bitmap.retire();
  3650     ParGCAllocBuffer::retire(end_of_gc, retain);
  3651     _retired = true;
  3653 };
  3656 class G1ParScanThreadState : public StackObj {
  3657 protected:
  3658   G1CollectedHeap* _g1h;
  3659   RefToScanQueue*  _refs;
  3660   DirtyCardQueue   _dcq;
  3661   CardTableModRefBS* _ct_bs;
  3662   G1RemSet* _g1_rem;
  3664   typedef GrowableArray<oop*> OverflowQueue;
  3665   OverflowQueue* _overflowed_refs;
  3667   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
  3668   ageTable           _age_table;
  3670   size_t           _alloc_buffer_waste;
  3671   size_t           _undo_waste;
  3673   OopsInHeapRegionClosure*      _evac_failure_cl;
  3674   G1ParScanHeapEvacClosure*     _evac_cl;
  3675   G1ParScanPartialArrayClosure* _partial_scan_cl;
  3677   int _hash_seed;
  3678   int _queue_num;
  3680   int _term_attempts;
  3681 #if G1_DETAILED_STATS
  3682   int _pushes, _pops, _steals, _steal_attempts;
  3683   int _overflow_pushes;
  3684 #endif
  3686   double _start;
  3687   double _start_strong_roots;
  3688   double _strong_roots_time;
  3689   double _start_term;
  3690   double _term_time;
  3692   // Map from young-age-index (0 == not young, 1 is youngest) to
  3693   // surviving words. base is what we get back from the malloc call
  3694   size_t* _surviving_young_words_base;
  3695   // this points into the array, as we use the first few entries for padding
  3696   size_t* _surviving_young_words;
  3698 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  3700   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  3702   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  3704   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  3705   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  3707   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
  3708     if (!from->is_survivor()) {
  3709       _g1_rem->par_write_ref(from, p, tid);
  3713   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
  3714     // If the new value of the field points to the same region or
  3715     // is the to-space, we don't need to include it in the Rset updates.
  3716     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
  3717       size_t card_index = ctbs()->index_for(p);
  3718       // If the card hasn't been added to the buffer, do it.
  3719       if (ctbs()->mark_card_deferred(card_index)) {
  3720         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  3725 public:
  3726   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3727     : _g1h(g1h),
  3728       _refs(g1h->task_queue(queue_num)),
  3729       _dcq(&g1h->dirty_card_queue_set()),
  3730       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3731       _g1_rem(g1h->g1_rem_set()),
  3732       _hash_seed(17), _queue_num(queue_num),
  3733       _term_attempts(0),
  3734       _age_table(false),
  3735 #if G1_DETAILED_STATS
  3736       _pushes(0), _pops(0), _steals(0),
  3737       _steal_attempts(0),  _overflow_pushes(0),
  3738 #endif
  3739       _strong_roots_time(0), _term_time(0),
  3740       _alloc_buffer_waste(0), _undo_waste(0)
  3742     // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3743     // we "sacrifice" entry 0 to keep track of surviving bytes for
  3744     // non-young regions (where the age is -1)
  3745     // We also add a few elements at the beginning and at the end in
  3746     // an attempt to eliminate cache contention
  3747     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3748     size_t array_length = PADDING_ELEM_NUM +
  3749                           real_length +
  3750                           PADDING_ELEM_NUM;
  3751     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3752     if (_surviving_young_words_base == NULL)
  3753       vm_exit_out_of_memory(array_length * sizeof(size_t),
  3754                             "Not enough space for young surv histo.");
  3755     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3756     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3758     _overflowed_refs = new OverflowQueue(10);
  3760     _start = os::elapsedTime();
  3763   ~G1ParScanThreadState() {
  3764     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  3767   RefToScanQueue*   refs()            { return _refs;             }
  3768   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  3769   ageTable*         age_table()       { return &_age_table;       }
  3771   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  3772     return &_alloc_buffers[purpose];
  3775   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  3776   size_t undo_waste()                            { return _undo_waste; }
  3778   void push_on_queue(oop* ref) {
  3779     assert(ref != NULL, "invariant");
  3780     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
  3782     if (!refs()->push(ref)) {
  3783       overflowed_refs()->push(ref);
  3784       IF_G1_DETAILED_STATS(note_overflow_push());
  3785     } else {
  3786       IF_G1_DETAILED_STATS(note_push());
  3790   void pop_from_queue(oop*& ref) {
  3791     if (!refs()->pop_local(ref)) {
  3792       ref = NULL;
  3793     } else {
  3794       assert(ref != NULL, "invariant");
  3795       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
  3796              "invariant");
  3798       IF_G1_DETAILED_STATS(note_pop());
  3802   void pop_from_overflow_queue(oop*& ref) {
  3803     ref = overflowed_refs()->pop();
  3806   int refs_to_scan()                             { return refs()->size();                 }
  3807   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  3809   void update_rs(HeapRegion* from, oop* p, int tid) {
  3810     if (G1DeferredRSUpdate) {
  3811       deferred_rs_update(from, p, tid);
  3812     } else {
  3813       immediate_rs_update(from, p, tid);
  3817   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  3819     HeapWord* obj = NULL;
  3820     if (word_sz * 100 <
  3821         (size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) *
  3822                                                   ParallelGCBufferWastePct) {
  3823       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  3824       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  3825       alloc_buf->retire(false, false);
  3827       HeapWord* buf =
  3828         _g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize);
  3829       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  3830       // Otherwise.
  3831       alloc_buf->set_buf(buf);
  3833       obj = alloc_buf->allocate(word_sz);
  3834       assert(obj != NULL, "buffer was definitely big enough...");
  3835     } else {
  3836       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  3838     return obj;
  3841   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  3842     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  3843     if (obj != NULL) return obj;
  3844     return allocate_slow(purpose, word_sz);
  3847   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  3848     if (alloc_buffer(purpose)->contains(obj)) {
  3849       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  3850                 "should contain whole object");
  3851       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  3852     } else {
  3853       CollectedHeap::fill_with_object(obj, word_sz);
  3854       add_to_undo_waste(word_sz);
  3858   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  3859     _evac_failure_cl = evac_failure_cl;
  3861   OopsInHeapRegionClosure* evac_failure_closure() {
  3862     return _evac_failure_cl;
  3865   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  3866     _evac_cl = evac_cl;
  3869   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  3870     _partial_scan_cl = partial_scan_cl;
  3873   int* hash_seed() { return &_hash_seed; }
  3874   int  queue_num() { return _queue_num; }
  3876   int term_attempts()   { return _term_attempts; }
  3877   void note_term_attempt()  { _term_attempts++; }
  3879 #if G1_DETAILED_STATS
  3880   int pushes()          { return _pushes; }
  3881   int pops()            { return _pops; }
  3882   int steals()          { return _steals; }
  3883   int steal_attempts()  { return _steal_attempts; }
  3884   int overflow_pushes() { return _overflow_pushes; }
  3886   void note_push()          { _pushes++; }
  3887   void note_pop()           { _pops++; }
  3888   void note_steal()         { _steals++; }
  3889   void note_steal_attempt() { _steal_attempts++; }
  3890   void note_overflow_push() { _overflow_pushes++; }
  3891 #endif
  3893   void start_strong_roots() {
  3894     _start_strong_roots = os::elapsedTime();
  3896   void end_strong_roots() {
  3897     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  3899   double strong_roots_time() { return _strong_roots_time; }
  3901   void start_term_time() {
  3902     note_term_attempt();
  3903     _start_term = os::elapsedTime();
  3905   void end_term_time() {
  3906     _term_time += (os::elapsedTime() - _start_term);
  3908   double term_time() { return _term_time; }
  3910   double elapsed() {
  3911     return os::elapsedTime() - _start;
  3914   size_t* surviving_young_words() {
  3915     // We add on to hide entry 0 which accumulates surviving words for
  3916     // age -1 regions (i.e. non-young ones)
  3917     return _surviving_young_words;
  3920   void retire_alloc_buffers() {
  3921     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3922       size_t waste = _alloc_buffers[ap].words_remaining();
  3923       add_to_alloc_buffer_waste(waste);
  3924       _alloc_buffers[ap].retire(true, false);
  3928 private:
  3929   void deal_with_reference(oop* ref_to_scan) {
  3930     if (has_partial_array_mask(ref_to_scan)) {
  3931       _partial_scan_cl->do_oop_nv(ref_to_scan);
  3932     } else {
  3933       // Note: we can use "raw" versions of "region_containing" because
  3934       // "obj_to_scan" is definitely in the heap, and is not in a
  3935       // humongous region.
  3936       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  3937       _evac_cl->set_region(r);
  3938       _evac_cl->do_oop_nv(ref_to_scan);
  3942 public:
  3943   void trim_queue() {
  3944     // I've replicated the loop twice, first to drain the overflow
  3945     // queue, second to drain the task queue. This is better than
  3946     // having a single loop, which checks both conditions and, inside
  3947     // it, either pops the overflow queue or the task queue, as each
  3948     // loop is tighter. Also, the decision to drain the overflow queue
  3949     // first is not arbitrary, as the overflow queue is not visible
  3950     // to the other workers, whereas the task queue is. So, we want to
  3951     // drain the "invisible" entries first, while allowing the other
  3952     // workers to potentially steal the "visible" entries.
  3954     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  3955       while (overflowed_refs_to_scan() > 0) {
  3956         oop *ref_to_scan = NULL;
  3957         pop_from_overflow_queue(ref_to_scan);
  3958         assert(ref_to_scan != NULL, "invariant");
  3959         // We shouldn't have pushed it on the queue if it was not
  3960         // pointing into the CSet.
  3961         assert(ref_to_scan != NULL, "sanity");
  3962         assert(has_partial_array_mask(ref_to_scan) ||
  3963                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3965         deal_with_reference(ref_to_scan);
  3968       while (refs_to_scan() > 0) {
  3969         oop *ref_to_scan = NULL;
  3970         pop_from_queue(ref_to_scan);
  3972         if (ref_to_scan != NULL) {
  3973           // We shouldn't have pushed it on the queue if it was not
  3974           // pointing into the CSet.
  3975           assert(has_partial_array_mask(ref_to_scan) ||
  3976                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3978           deal_with_reference(ref_to_scan);
  3983 };
  3985 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3986   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3987   _par_scan_state(par_scan_state) { }
  3989 // This closure is applied to the fields of the objects that have just been copied.
  3990 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
  3991 void G1ParScanClosure::do_oop_nv(oop* p) {
  3992   oop obj = *p;
  3994   if (obj != NULL) {
  3995     if (_g1->in_cset_fast_test(obj)) {
  3996       // We're not going to even bother checking whether the object is
  3997       // already forwarded or not, as this usually causes an immediate
  3998       // stall. We'll try to prefetch the object (for write, given that
  3999       // we might need to install the forwarding reference) and we'll
  4000       // get back to it when pop it from the queue
  4001       Prefetch::write(obj->mark_addr(), 0);
  4002       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
  4004       // slightly paranoid test; I'm trying to catch potential
  4005       // problems before we go into push_on_queue to know where the
  4006       // problem is coming from
  4007       assert(obj == *p, "the value of *p should not have changed");
  4008       _par_scan_state->push_on_queue(p);
  4009     } else {
  4010       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4015 void G1ParCopyHelper::mark_forwardee(oop* p) {
  4016   // This is called _after_ do_oop_work has been called, hence after
  4017   // the object has been relocated to its new location and *p points
  4018   // to its new location.
  4020   oop thisOop = *p;
  4021   if (thisOop != NULL) {
  4022     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
  4023            "shouldn't still be in the CSet if evacuation didn't fail.");
  4024     HeapWord* addr = (HeapWord*)thisOop;
  4025     if (_g1->is_in_g1_reserved(addr))
  4026       _cm->grayRoot(oop(addr));
  4030 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4031   size_t    word_sz = old->size();
  4032   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4033   // +1 to make the -1 indexes valid...
  4034   int       young_index = from_region->young_index_in_cset()+1;
  4035   assert( (from_region->is_young() && young_index > 0) ||
  4036           (!from_region->is_young() && young_index == 0), "invariant" );
  4037   G1CollectorPolicy* g1p = _g1->g1_policy();
  4038   markOop m = old->mark();
  4039   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4040                                            : m->age();
  4041   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4042                                                              word_sz);
  4043   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4044   oop       obj     = oop(obj_ptr);
  4046   if (obj_ptr == NULL) {
  4047     // This will either forward-to-self, or detect that someone else has
  4048     // installed a forwarding pointer.
  4049     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4050     return _g1->handle_evacuation_failure_par(cl, old);
  4053   // We're going to allocate linearly, so might as well prefetch ahead.
  4054   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4056   oop forward_ptr = old->forward_to_atomic(obj);
  4057   if (forward_ptr == NULL) {
  4058     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4059     if (g1p->track_object_age(alloc_purpose)) {
  4060       // We could simply do obj->incr_age(). However, this causes a
  4061       // performance issue. obj->incr_age() will first check whether
  4062       // the object has a displaced mark by checking its mark word;
  4063       // getting the mark word from the new location of the object
  4064       // stalls. So, given that we already have the mark word and we
  4065       // are about to install it anyway, it's better to increase the
  4066       // age on the mark word, when the object does not have a
  4067       // displaced mark word. We're not expecting many objects to have
  4068       // a displaced marked word, so that case is not optimized
  4069       // further (it could be...) and we simply call obj->incr_age().
  4071       if (m->has_displaced_mark_helper()) {
  4072         // in this case, we have to install the mark word first,
  4073         // otherwise obj looks to be forwarded (the old mark word,
  4074         // which contains the forward pointer, was copied)
  4075         obj->set_mark(m);
  4076         obj->incr_age();
  4077       } else {
  4078         m = m->incr_age();
  4079         obj->set_mark(m);
  4081       _par_scan_state->age_table()->add(obj, word_sz);
  4082     } else {
  4083       obj->set_mark(m);
  4086     // preserve "next" mark bit
  4087     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4088       if (!use_local_bitmaps ||
  4089           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4090         // if we couldn't mark it on the local bitmap (this happens when
  4091         // the object was not allocated in the GCLab), we have to bite
  4092         // the bullet and do the standard parallel mark
  4093         _cm->markAndGrayObjectIfNecessary(obj);
  4095 #if 1
  4096       if (_g1->isMarkedNext(old)) {
  4097         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4099 #endif
  4102     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4103     surv_young_words[young_index] += word_sz;
  4105     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4106       arrayOop(old)->set_length(0);
  4107       _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4108     } else {
  4109       // No point in using the slower heap_region_containing() method,
  4110       // given that we know obj is in the heap.
  4111       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4112       obj->oop_iterate_backwards(_scanner);
  4114   } else {
  4115     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4116     obj = forward_ptr;
  4118   return obj;
  4121 template<bool do_gen_barrier, G1Barrier barrier,
  4122          bool do_mark_forwardee, bool skip_cset_test>
  4123 void G1ParCopyClosure<do_gen_barrier, barrier,
  4124                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
  4125   oop obj = *p;
  4126   assert(barrier != G1BarrierRS || obj != NULL,
  4127          "Precondition: G1BarrierRS implies obj is nonNull");
  4129   // The only time we skip the cset test is when we're scanning
  4130   // references popped from the queue. And we only push on the queue
  4131   // references that we know point into the cset, so no point in
  4132   // checking again. But we'll leave an assert here for peace of mind.
  4133   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  4135   // here the null check is implicit in the cset_fast_test() test
  4136   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  4137 #if G1_REM_SET_LOGGING
  4138     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4139                            "into CS.", p, (void*) obj);
  4140 #endif
  4141     if (obj->is_forwarded()) {
  4142       *p = obj->forwardee();
  4143     } else {
  4144       *p = copy_to_survivor_space(obj);
  4146     // When scanning the RS, we only care about objs in CS.
  4147     if (barrier == G1BarrierRS) {
  4148       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4152   // When scanning moved objs, must look at all oops.
  4153   if (barrier == G1BarrierEvac && obj != NULL) {
  4154     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4157   if (do_gen_barrier && obj != NULL) {
  4158     par_do_barrier(p);
  4162 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  4164 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
  4165   oop obj, int start, int end) {
  4166   // process our set of indices (include header in first chunk)
  4167   assert(start < end, "invariant");
  4168   T* const base      = (T*)objArrayOop(obj)->base();
  4169   T* const start_addr = (start == 0) ? (T*) obj : base + start;
  4170   T* const end_addr   = base + end;
  4171   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
  4172   _scanner.set_region(_g1->heap_region_containing(obj));
  4173   obj->oop_iterate(&_scanner, mr);
  4176 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
  4177   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
  4178   assert(has_partial_array_mask(p), "invariant");
  4179   oop old = clear_partial_array_mask(p);
  4180   assert(old->is_objArray(), "must be obj array");
  4181   assert(old->is_forwarded(), "must be forwarded");
  4182   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4184   objArrayOop obj = objArrayOop(old->forwardee());
  4185   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4186   // Process ParGCArrayScanChunk elements now
  4187   // and push the remainder back onto queue
  4188   int start     = arrayOop(old)->length();
  4189   int end       = obj->length();
  4190   int remainder = end - start;
  4191   assert(start <= end, "just checking");
  4192   if (remainder > 2 * ParGCArrayScanChunk) {
  4193     // Test above combines last partial chunk with a full chunk
  4194     end = start + ParGCArrayScanChunk;
  4195     arrayOop(old)->set_length(end);
  4196     // Push remainder.
  4197     _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4198   } else {
  4199     // Restore length so that the heap remains parsable in
  4200     // case of evacuation failure.
  4201     arrayOop(old)->set_length(end);
  4204   // process our set of indices (include header in first chunk)
  4205   process_array_chunk<oop>(obj, start, end);
  4208 int G1ScanAndBalanceClosure::_nq = 0;
  4210 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4211 protected:
  4212   G1CollectedHeap*              _g1h;
  4213   G1ParScanThreadState*         _par_scan_state;
  4214   RefToScanQueueSet*            _queues;
  4215   ParallelTaskTerminator*       _terminator;
  4217   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4218   RefToScanQueueSet*      queues()         { return _queues; }
  4219   ParallelTaskTerminator* terminator()     { return _terminator; }
  4221 public:
  4222   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4223                                 G1ParScanThreadState* par_scan_state,
  4224                                 RefToScanQueueSet* queues,
  4225                                 ParallelTaskTerminator* terminator)
  4226     : _g1h(g1h), _par_scan_state(par_scan_state),
  4227       _queues(queues), _terminator(terminator) {}
  4229   void do_void() {
  4230     G1ParScanThreadState* pss = par_scan_state();
  4231     while (true) {
  4232       oop* ref_to_scan;
  4233       pss->trim_queue();
  4234       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  4235       if (queues()->steal(pss->queue_num(),
  4236                           pss->hash_seed(),
  4237                           ref_to_scan)) {
  4238         IF_G1_DETAILED_STATS(pss->note_steal());
  4240         // slightly paranoid tests; I'm trying to catch potential
  4241         // problems before we go into push_on_queue to know where the
  4242         // problem is coming from
  4243         assert(ref_to_scan != NULL, "invariant");
  4244         assert(has_partial_array_mask(ref_to_scan) ||
  4245                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
  4246         pss->push_on_queue(ref_to_scan);
  4247         continue;
  4249       pss->start_term_time();
  4250       if (terminator()->offer_termination()) break;
  4251       pss->end_term_time();
  4253     pss->end_term_time();
  4254     pss->retire_alloc_buffers();
  4256 };
  4258 class G1ParTask : public AbstractGangTask {
  4259 protected:
  4260   G1CollectedHeap*       _g1h;
  4261   RefToScanQueueSet      *_queues;
  4262   ParallelTaskTerminator _terminator;
  4264   Mutex _stats_lock;
  4265   Mutex* stats_lock() { return &_stats_lock; }
  4267   size_t getNCards() {
  4268     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4269       / G1BlockOffsetSharedArray::N_bytes;
  4272 public:
  4273   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4274     : AbstractGangTask("G1 collection"),
  4275       _g1h(g1h),
  4276       _queues(task_queues),
  4277       _terminator(workers, _queues),
  4278       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4279   {}
  4281   RefToScanQueueSet* queues() { return _queues; }
  4283   RefToScanQueue *work_queue(int i) {
  4284     return queues()->queue(i);
  4287   void work(int i) {
  4288     ResourceMark rm;
  4289     HandleMark   hm;
  4291     G1ParScanThreadState            pss(_g1h, i);
  4292     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4293     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4294     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4296     pss.set_evac_closure(&scan_evac_cl);
  4297     pss.set_evac_failure_closure(&evac_failure_cl);
  4298     pss.set_partial_scan_closure(&partial_scan_cl);
  4300     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4301     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4302     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4304     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4305     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4306     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4308     OopsInHeapRegionClosure        *scan_root_cl;
  4309     OopsInHeapRegionClosure        *scan_perm_cl;
  4310     OopsInHeapRegionClosure        *scan_so_cl;
  4312     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  4313       scan_root_cl = &scan_mark_root_cl;
  4314       scan_perm_cl = &scan_mark_perm_cl;
  4315       scan_so_cl   = &scan_mark_heap_rs_cl;
  4316     } else {
  4317       scan_root_cl = &only_scan_root_cl;
  4318       scan_perm_cl = &only_scan_perm_cl;
  4319       scan_so_cl   = &only_scan_heap_rs_cl;
  4322     pss.start_strong_roots();
  4323     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4324                                   SharedHeap::SO_AllClasses,
  4325                                   scan_root_cl,
  4326                                   &only_scan_heap_rs_cl,
  4327                                   scan_so_cl,
  4328                                   scan_perm_cl,
  4329                                   i);
  4330     pss.end_strong_roots();
  4332       double start = os::elapsedTime();
  4333       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4334       evac.do_void();
  4335       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4336       double term_ms = pss.term_time()*1000.0;
  4337       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4338       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4340     if (G1UseSurvivorSpaces) {
  4341       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4343     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4345     // Clean up any par-expanded rem sets.
  4346     HeapRegionRemSet::par_cleanup();
  4348     MutexLocker x(stats_lock());
  4349     if (ParallelGCVerbose) {
  4350       gclog_or_tty->print("Thread %d complete:\n", i);
  4351 #if G1_DETAILED_STATS
  4352       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4353                           pss.pushes(),
  4354                           pss.pops(),
  4355                           pss.overflow_pushes(),
  4356                           pss.steals(),
  4357                           pss.steal_attempts());
  4358 #endif
  4359       double elapsed      = pss.elapsed();
  4360       double strong_roots = pss.strong_roots_time();
  4361       double term         = pss.term_time();
  4362       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4363                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4364                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4365                           elapsed * 1000.0,
  4366                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4367                           term * 1000.0, (term*100.0/elapsed),
  4368                           pss.term_attempts());
  4369       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4370       gclog_or_tty->print("  Waste: %8dK\n"
  4371                  "    Alloc Buffer: %8dK\n"
  4372                  "    Undo: %8dK\n",
  4373                  (total_waste * HeapWordSize) / K,
  4374                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4375                  (pss.undo_waste() * HeapWordSize) / K);
  4378     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4379     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4381 };
  4383 // *** Common G1 Evacuation Stuff
  4385 class G1CountClosure: public OopsInHeapRegionClosure {
  4386 public:
  4387   int n;
  4388   G1CountClosure() : n(0) {}
  4389   void do_oop(narrowOop* p) {
  4390     guarantee(false, "NYI");
  4392   void do_oop(oop* p) {
  4393     oop obj = *p;
  4394     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
  4395            "Rem set closure called on non-rem-set pointer.");
  4396     n++;
  4398 };
  4400 static G1CountClosure count_closure;
  4402 void
  4403 G1CollectedHeap::
  4404 g1_process_strong_roots(bool collecting_perm_gen,
  4405                         SharedHeap::ScanningOption so,
  4406                         OopClosure* scan_non_heap_roots,
  4407                         OopsInHeapRegionClosure* scan_rs,
  4408                         OopsInHeapRegionClosure* scan_so,
  4409                         OopsInGenClosure* scan_perm,
  4410                         int worker_i) {
  4411   // First scan the strong roots, including the perm gen.
  4412   double ext_roots_start = os::elapsedTime();
  4413   double closure_app_time_sec = 0.0;
  4415   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4416   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4417   buf_scan_perm.set_generation(perm_gen());
  4419   process_strong_roots(collecting_perm_gen, so,
  4420                        &buf_scan_non_heap_roots,
  4421                        &buf_scan_perm);
  4422   // Finish up any enqueued closure apps.
  4423   buf_scan_non_heap_roots.done();
  4424   buf_scan_perm.done();
  4425   double ext_roots_end = os::elapsedTime();
  4426   g1_policy()->reset_obj_copy_time(worker_i);
  4427   double obj_copy_time_sec =
  4428     buf_scan_non_heap_roots.closure_app_seconds() +
  4429     buf_scan_perm.closure_app_seconds();
  4430   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4431   double ext_root_time_ms =
  4432     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4433   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4435   // Scan strong roots in mark stack.
  4436   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4437     concurrent_mark()->oops_do(scan_non_heap_roots);
  4439   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4440   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4442   // XXX What should this be doing in the parallel case?
  4443   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4444   if (scan_so != NULL) {
  4445     scan_scan_only_set(scan_so, worker_i);
  4447   // Now scan the complement of the collection set.
  4448   if (scan_rs != NULL) {
  4449     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4451   // Finish with the ref_processor roots.
  4452   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4453     ref_processor()->oops_do(scan_non_heap_roots);
  4455   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4456   _process_strong_tasks->all_tasks_completed();
  4459 void
  4460 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4461                                        OopsInHeapRegionClosure* oc,
  4462                                        int worker_i) {
  4463   HeapWord* startAddr = r->bottom();
  4464   HeapWord* endAddr = r->used_region().end();
  4466   oc->set_region(r);
  4468   HeapWord* p = r->bottom();
  4469   HeapWord* t = r->top();
  4470   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4471   while (p < t) {
  4472     oop obj = oop(p);
  4473     p += obj->oop_iterate(oc);
  4477 void
  4478 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4479                                     int worker_i) {
  4480   double start = os::elapsedTime();
  4482   BufferingOopsInHeapRegionClosure boc(oc);
  4484   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4485   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4487   OopsInHeapRegionClosure *foc;
  4488   if (g1_policy()->should_initiate_conc_mark())
  4489     foc = &scan_and_mark;
  4490   else
  4491     foc = &scan_only;
  4493   HeapRegion* hr;
  4494   int n = 0;
  4495   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4496     scan_scan_only_region(hr, foc, worker_i);
  4497     ++n;
  4499   boc.done();
  4501   double closure_app_s = boc.closure_app_seconds();
  4502   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4503   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4504   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4507 void
  4508 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4509                                        OopClosure* non_root_closure) {
  4510   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4514 class SaveMarksClosure: public HeapRegionClosure {
  4515 public:
  4516   bool doHeapRegion(HeapRegion* r) {
  4517     r->save_marks();
  4518     return false;
  4520 };
  4522 void G1CollectedHeap::save_marks() {
  4523   if (ParallelGCThreads == 0) {
  4524     SaveMarksClosure sm;
  4525     heap_region_iterate(&sm);
  4527   // We do this even in the parallel case
  4528   perm_gen()->save_marks();
  4531 void G1CollectedHeap::evacuate_collection_set() {
  4532   set_evacuation_failed(false);
  4534   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4535   concurrent_g1_refine()->set_use_cache(false);
  4536   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4537   set_par_threads(n_workers);
  4538   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4540   init_for_evac_failure(NULL);
  4542   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4543   rem_set()->prepare_for_younger_refs_iterate(true);
  4545   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4546   double start_par = os::elapsedTime();
  4547   if (ParallelGCThreads > 0) {
  4548     // The individual threads will set their evac-failure closures.
  4549     workers()->run_task(&g1_par_task);
  4550   } else {
  4551     g1_par_task.work(0);
  4554   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4555   g1_policy()->record_par_time(par_time);
  4556   set_par_threads(0);
  4557   // Is this the right thing to do here?  We don't save marks
  4558   // on individual heap regions when we allocate from
  4559   // them in parallel, so this seems like the correct place for this.
  4560   retire_all_alloc_regions();
  4562     G1IsAliveClosure is_alive(this);
  4563     G1KeepAliveClosure keep_alive(this);
  4564     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4566   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4568   concurrent_g1_refine()->set_use_cache(true);
  4570   finalize_for_evac_failure();
  4572   // Must do this before removing self-forwarding pointers, which clears
  4573   // the per-region evac-failure flags.
  4574   concurrent_mark()->complete_marking_in_collection_set();
  4576   if (evacuation_failed()) {
  4577     remove_self_forwarding_pointers();
  4578     if (PrintGCDetails) {
  4579       gclog_or_tty->print(" (evacuation failed)");
  4580     } else if (PrintGC) {
  4581       gclog_or_tty->print("--");
  4585   if (G1DeferredRSUpdate) {
  4586     RedirtyLoggedCardTableEntryFastClosure redirty;
  4587     dirty_card_queue_set().set_closure(&redirty);
  4588     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4589     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4590     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4593   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4596 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4597   size_t pre_used = 0;
  4598   size_t cleared_h_regions = 0;
  4599   size_t freed_regions = 0;
  4600   UncleanRegionList local_list;
  4602   HeapWord* start = hr->bottom();
  4603   HeapWord* end   = hr->prev_top_at_mark_start();
  4604   size_t used_bytes = hr->used();
  4605   size_t live_bytes = hr->max_live_bytes();
  4606   if (used_bytes > 0) {
  4607     guarantee( live_bytes <= used_bytes, "invariant" );
  4608   } else {
  4609     guarantee( live_bytes == 0, "invariant" );
  4612   size_t garbage_bytes = used_bytes - live_bytes;
  4613   if (garbage_bytes > 0)
  4614     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4616   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4617                    &local_list);
  4618   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4619                           &local_list);
  4622 void
  4623 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4624                                   size_t& pre_used,
  4625                                   size_t& cleared_h_regions,
  4626                                   size_t& freed_regions,
  4627                                   UncleanRegionList* list,
  4628                                   bool par) {
  4629   pre_used += hr->used();
  4630   if (hr->isHumongous()) {
  4631     assert(hr->startsHumongous(),
  4632            "Only the start of a humongous region should be freed.");
  4633     int ind = _hrs->find(hr);
  4634     assert(ind != -1, "Should have an index.");
  4635     // Clear the start region.
  4636     hr->hr_clear(par, true /*clear_space*/);
  4637     list->insert_before_head(hr);
  4638     cleared_h_regions++;
  4639     freed_regions++;
  4640     // Clear any continued regions.
  4641     ind++;
  4642     while ((size_t)ind < n_regions()) {
  4643       HeapRegion* hrc = _hrs->at(ind);
  4644       if (!hrc->continuesHumongous()) break;
  4645       // Otherwise, does continue the H region.
  4646       assert(hrc->humongous_start_region() == hr, "Huh?");
  4647       hrc->hr_clear(par, true /*clear_space*/);
  4648       cleared_h_regions++;
  4649       freed_regions++;
  4650       list->insert_before_head(hrc);
  4651       ind++;
  4653   } else {
  4654     hr->hr_clear(par, true /*clear_space*/);
  4655     list->insert_before_head(hr);
  4656     freed_regions++;
  4657     // If we're using clear2, this should not be enabled.
  4658     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4662 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4663                                               size_t cleared_h_regions,
  4664                                               size_t freed_regions,
  4665                                               UncleanRegionList* list) {
  4666   if (list != NULL && list->sz() > 0) {
  4667     prepend_region_list_on_unclean_list(list);
  4669   // Acquire a lock, if we're parallel, to update possibly-shared
  4670   // variables.
  4671   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4673     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4674     _summary_bytes_used -= pre_used;
  4675     _num_humongous_regions -= (int) cleared_h_regions;
  4676     _free_regions += freed_regions;
  4681 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4682   while (list != NULL) {
  4683     guarantee( list->is_young(), "invariant" );
  4685     HeapWord* bottom = list->bottom();
  4686     HeapWord* end = list->end();
  4687     MemRegion mr(bottom, end);
  4688     ct_bs->dirty(mr);
  4690     list = list->get_next_young_region();
  4694 void G1CollectedHeap::cleanUpCardTable() {
  4695   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4696   double start = os::elapsedTime();
  4698   ct_bs->clear(_g1_committed);
  4700   // now, redirty the cards of the scan-only and survivor regions
  4701   // (it seemed faster to do it this way, instead of iterating over
  4702   // all regions and then clearing / dirtying as approprite)
  4703   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4704   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4706   double elapsed = os::elapsedTime() - start;
  4707   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4711 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4712   if (g1_policy()->should_do_collection_pause(word_size)) {
  4713     do_collection_pause();
  4717 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4718   double young_time_ms     = 0.0;
  4719   double non_young_time_ms = 0.0;
  4721   G1CollectorPolicy* policy = g1_policy();
  4723   double start_sec = os::elapsedTime();
  4724   bool non_young = true;
  4726   HeapRegion* cur = cs_head;
  4727   int age_bound = -1;
  4728   size_t rs_lengths = 0;
  4730   while (cur != NULL) {
  4731     if (non_young) {
  4732       if (cur->is_young()) {
  4733         double end_sec = os::elapsedTime();
  4734         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4735         non_young_time_ms += elapsed_ms;
  4737         start_sec = os::elapsedTime();
  4738         non_young = false;
  4740     } else {
  4741       if (!cur->is_on_free_list()) {
  4742         double end_sec = os::elapsedTime();
  4743         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4744         young_time_ms += elapsed_ms;
  4746         start_sec = os::elapsedTime();
  4747         non_young = true;
  4751     rs_lengths += cur->rem_set()->occupied();
  4753     HeapRegion* next = cur->next_in_collection_set();
  4754     assert(cur->in_collection_set(), "bad CS");
  4755     cur->set_next_in_collection_set(NULL);
  4756     cur->set_in_collection_set(false);
  4758     if (cur->is_young()) {
  4759       int index = cur->young_index_in_cset();
  4760       guarantee( index != -1, "invariant" );
  4761       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4762       size_t words_survived = _surviving_young_words[index];
  4763       cur->record_surv_words_in_group(words_survived);
  4764     } else {
  4765       int index = cur->young_index_in_cset();
  4766       guarantee( index == -1, "invariant" );
  4769     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4770             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4771             "invariant" );
  4773     if (!cur->evacuation_failed()) {
  4774       // And the region is empty.
  4775       assert(!cur->is_empty(),
  4776              "Should not have empty regions in a CS.");
  4777       free_region(cur);
  4778     } else {
  4779       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4780       cur->uninstall_surv_rate_group();
  4781       if (cur->is_young())
  4782         cur->set_young_index_in_cset(-1);
  4783       cur->set_not_young();
  4784       cur->set_evacuation_failed(false);
  4786     cur = next;
  4789   policy->record_max_rs_lengths(rs_lengths);
  4790   policy->cset_regions_freed();
  4792   double end_sec = os::elapsedTime();
  4793   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4794   if (non_young)
  4795     non_young_time_ms += elapsed_ms;
  4796   else
  4797     young_time_ms += elapsed_ms;
  4799   policy->record_young_free_cset_time_ms(young_time_ms);
  4800   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4803 HeapRegion*
  4804 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4805   assert(ZF_mon->owned_by_self(), "Precondition");
  4806   HeapRegion* res = pop_unclean_region_list_locked();
  4807   if (res != NULL) {
  4808     assert(!res->continuesHumongous() &&
  4809            res->zero_fill_state() != HeapRegion::Allocated,
  4810            "Only free regions on unclean list.");
  4811     if (zero_filled) {
  4812       res->ensure_zero_filled_locked();
  4813       res->set_zero_fill_allocated();
  4816   return res;
  4819 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4820   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4821   return alloc_region_from_unclean_list_locked(zero_filled);
  4824 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4825   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4826   put_region_on_unclean_list_locked(r);
  4827   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4830 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4831   MutexLockerEx x(Cleanup_mon);
  4832   set_unclean_regions_coming_locked(b);
  4835 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4836   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4837   _unclean_regions_coming = b;
  4838   // Wake up mutator threads that might be waiting for completeCleanup to
  4839   // finish.
  4840   if (!b) Cleanup_mon->notify_all();
  4843 void G1CollectedHeap::wait_for_cleanup_complete() {
  4844   MutexLockerEx x(Cleanup_mon);
  4845   wait_for_cleanup_complete_locked();
  4848 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4849   assert(Cleanup_mon->owned_by_self(), "precondition");
  4850   while (_unclean_regions_coming) {
  4851     Cleanup_mon->wait();
  4855 void
  4856 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4857   assert(ZF_mon->owned_by_self(), "precondition.");
  4858   _unclean_region_list.insert_before_head(r);
  4861 void
  4862 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4863   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4864   prepend_region_list_on_unclean_list_locked(list);
  4865   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4868 void
  4869 G1CollectedHeap::
  4870 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4871   assert(ZF_mon->owned_by_self(), "precondition.");
  4872   _unclean_region_list.prepend_list(list);
  4875 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4876   assert(ZF_mon->owned_by_self(), "precondition.");
  4877   HeapRegion* res = _unclean_region_list.pop();
  4878   if (res != NULL) {
  4879     // Inform ZF thread that there's a new unclean head.
  4880     if (_unclean_region_list.hd() != NULL && should_zf())
  4881       ZF_mon->notify_all();
  4883   return res;
  4886 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4887   assert(ZF_mon->owned_by_self(), "precondition.");
  4888   return _unclean_region_list.hd();
  4892 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4893   assert(ZF_mon->owned_by_self(), "Precondition");
  4894   HeapRegion* r = peek_unclean_region_list_locked();
  4895   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4896     // Result of below must be equal to "r", since we hold the lock.
  4897     (void)pop_unclean_region_list_locked();
  4898     put_free_region_on_list_locked(r);
  4899     return true;
  4900   } else {
  4901     return false;
  4905 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4906   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4907   return move_cleaned_region_to_free_list_locked();
  4911 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4912   assert(ZF_mon->owned_by_self(), "precondition.");
  4913   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4914   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4915         "Regions on free list must be zero filled");
  4916   assert(!r->isHumongous(), "Must not be humongous.");
  4917   assert(r->is_empty(), "Better be empty");
  4918   assert(!r->is_on_free_list(),
  4919          "Better not already be on free list");
  4920   assert(!r->is_on_unclean_list(),
  4921          "Better not already be on unclean list");
  4922   r->set_on_free_list(true);
  4923   r->set_next_on_free_list(_free_region_list);
  4924   _free_region_list = r;
  4925   _free_region_list_size++;
  4926   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4929 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4930   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4931   put_free_region_on_list_locked(r);
  4934 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4935   assert(ZF_mon->owned_by_self(), "precondition.");
  4936   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4937   HeapRegion* res = _free_region_list;
  4938   if (res != NULL) {
  4939     _free_region_list = res->next_from_free_list();
  4940     _free_region_list_size--;
  4941     res->set_on_free_list(false);
  4942     res->set_next_on_free_list(NULL);
  4943     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4945   return res;
  4949 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4950   // By self, or on behalf of self.
  4951   assert(Heap_lock->is_locked(), "Precondition");
  4952   HeapRegion* res = NULL;
  4953   bool first = true;
  4954   while (res == NULL) {
  4955     if (zero_filled || !first) {
  4956       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4957       res = pop_free_region_list_locked();
  4958       if (res != NULL) {
  4959         assert(!res->zero_fill_is_allocated(),
  4960                "No allocated regions on free list.");
  4961         res->set_zero_fill_allocated();
  4962       } else if (!first) {
  4963         break;  // We tried both, time to return NULL.
  4967     if (res == NULL) {
  4968       res = alloc_region_from_unclean_list(zero_filled);
  4970     assert(res == NULL ||
  4971            !zero_filled ||
  4972            res->zero_fill_is_allocated(),
  4973            "We must have allocated the region we're returning");
  4974     first = false;
  4976   return res;
  4979 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4980   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4982     HeapRegion* prev = NULL;
  4983     HeapRegion* cur = _unclean_region_list.hd();
  4984     while (cur != NULL) {
  4985       HeapRegion* next = cur->next_from_unclean_list();
  4986       if (cur->zero_fill_is_allocated()) {
  4987         // Remove from the list.
  4988         if (prev == NULL) {
  4989           (void)_unclean_region_list.pop();
  4990         } else {
  4991           _unclean_region_list.delete_after(prev);
  4993         cur->set_on_unclean_list(false);
  4994         cur->set_next_on_unclean_list(NULL);
  4995       } else {
  4996         prev = cur;
  4998       cur = next;
  5000     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  5001            "Inv");
  5005     HeapRegion* prev = NULL;
  5006     HeapRegion* cur = _free_region_list;
  5007     while (cur != NULL) {
  5008       HeapRegion* next = cur->next_from_free_list();
  5009       if (cur->zero_fill_is_allocated()) {
  5010         // Remove from the list.
  5011         if (prev == NULL) {
  5012           _free_region_list = cur->next_from_free_list();
  5013         } else {
  5014           prev->set_next_on_free_list(cur->next_from_free_list());
  5016         cur->set_on_free_list(false);
  5017         cur->set_next_on_free_list(NULL);
  5018         _free_region_list_size--;
  5019       } else {
  5020         prev = cur;
  5022       cur = next;
  5024     assert(_free_region_list_size == free_region_list_length(), "Inv");
  5028 bool G1CollectedHeap::verify_region_lists() {
  5029   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5030   return verify_region_lists_locked();
  5033 bool G1CollectedHeap::verify_region_lists_locked() {
  5034   HeapRegion* unclean = _unclean_region_list.hd();
  5035   while (unclean != NULL) {
  5036     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  5037     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  5038     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  5039               "Everything else is possible.");
  5040     unclean = unclean->next_from_unclean_list();
  5042   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  5044   HeapRegion* free_r = _free_region_list;
  5045   while (free_r != NULL) {
  5046     assert(free_r->is_on_free_list(), "Well, it is!");
  5047     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  5048     switch (free_r->zero_fill_state()) {
  5049     case HeapRegion::NotZeroFilled:
  5050     case HeapRegion::ZeroFilling:
  5051       guarantee(false, "Should not be on free list.");
  5052       break;
  5053     default:
  5054       // Everything else is possible.
  5055       break;
  5057     free_r = free_r->next_from_free_list();
  5059   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  5060   // If we didn't do an assertion...
  5061   return true;
  5064 size_t G1CollectedHeap::free_region_list_length() {
  5065   assert(ZF_mon->owned_by_self(), "precondition.");
  5066   size_t len = 0;
  5067   HeapRegion* cur = _free_region_list;
  5068   while (cur != NULL) {
  5069     len++;
  5070     cur = cur->next_from_free_list();
  5072   return len;
  5075 size_t G1CollectedHeap::unclean_region_list_length() {
  5076   assert(ZF_mon->owned_by_self(), "precondition.");
  5077   return _unclean_region_list.length();
  5080 size_t G1CollectedHeap::n_regions() {
  5081   return _hrs->length();
  5084 size_t G1CollectedHeap::max_regions() {
  5085   return
  5086     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  5087     HeapRegion::GrainBytes;
  5090 size_t G1CollectedHeap::free_regions() {
  5091   /* Possibly-expensive assert.
  5092   assert(_free_regions == count_free_regions(),
  5093          "_free_regions is off.");
  5094   */
  5095   return _free_regions;
  5098 bool G1CollectedHeap::should_zf() {
  5099   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  5102 class RegionCounter: public HeapRegionClosure {
  5103   size_t _n;
  5104 public:
  5105   RegionCounter() : _n(0) {}
  5106   bool doHeapRegion(HeapRegion* r) {
  5107     if (r->is_empty()) {
  5108       assert(!r->isHumongous(), "H regions should not be empty.");
  5109       _n++;
  5111     return false;
  5113   int res() { return (int) _n; }
  5114 };
  5116 size_t G1CollectedHeap::count_free_regions() {
  5117   RegionCounter rc;
  5118   heap_region_iterate(&rc);
  5119   size_t n = rc.res();
  5120   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  5121     n--;
  5122   return n;
  5125 size_t G1CollectedHeap::count_free_regions_list() {
  5126   size_t n = 0;
  5127   size_t o = 0;
  5128   ZF_mon->lock_without_safepoint_check();
  5129   HeapRegion* cur = _free_region_list;
  5130   while (cur != NULL) {
  5131     cur = cur->next_from_free_list();
  5132     n++;
  5134   size_t m = unclean_region_list_length();
  5135   ZF_mon->unlock();
  5136   return n + m;
  5139 bool G1CollectedHeap::should_set_young_locked() {
  5140   assert(heap_lock_held_for_gc(),
  5141               "the heap lock should already be held by or for this thread");
  5142   return  (g1_policy()->in_young_gc_mode() &&
  5143            g1_policy()->should_add_next_region_to_young_list());
  5146 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5147   assert(heap_lock_held_for_gc(),
  5148               "the heap lock should already be held by or for this thread");
  5149   _young_list->push_region(hr);
  5150   g1_policy()->set_region_short_lived(hr);
  5153 class NoYoungRegionsClosure: public HeapRegionClosure {
  5154 private:
  5155   bool _success;
  5156 public:
  5157   NoYoungRegionsClosure() : _success(true) { }
  5158   bool doHeapRegion(HeapRegion* r) {
  5159     if (r->is_young()) {
  5160       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5161                              r->bottom(), r->end());
  5162       _success = false;
  5164     return false;
  5166   bool success() { return _success; }
  5167 };
  5169 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  5170                                              bool check_sample) {
  5171   bool ret = true;
  5173   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  5174   if (!ignore_scan_only_list) {
  5175     NoYoungRegionsClosure closure;
  5176     heap_region_iterate(&closure);
  5177     ret = ret && closure.success();
  5180   return ret;
  5183 void G1CollectedHeap::empty_young_list() {
  5184   assert(heap_lock_held_for_gc(),
  5185               "the heap lock should already be held by or for this thread");
  5186   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5188   _young_list->empty_list();
  5191 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5192   bool no_allocs = true;
  5193   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5194     HeapRegion* r = _gc_alloc_regions[ap];
  5195     no_allocs = r == NULL || r->saved_mark_at_top();
  5197   return no_allocs;
  5200 void G1CollectedHeap::retire_all_alloc_regions() {
  5201   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5202     HeapRegion* r = _gc_alloc_regions[ap];
  5203     if (r != NULL) {
  5204       // Check for aliases.
  5205       bool has_processed_alias = false;
  5206       for (int i = 0; i < ap; ++i) {
  5207         if (_gc_alloc_regions[i] == r) {
  5208           has_processed_alias = true;
  5209           break;
  5212       if (!has_processed_alias) {
  5213         retire_alloc_region(r, false /* par */);
  5220 // Done at the start of full GC.
  5221 void G1CollectedHeap::tear_down_region_lists() {
  5222   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5223   while (pop_unclean_region_list_locked() != NULL) ;
  5224   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5225          "Postconditions of loop.")
  5226   while (pop_free_region_list_locked() != NULL) ;
  5227   assert(_free_region_list == NULL, "Postcondition of loop.");
  5228   if (_free_region_list_size != 0) {
  5229     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5230     print();
  5232   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5236 class RegionResetter: public HeapRegionClosure {
  5237   G1CollectedHeap* _g1;
  5238   int _n;
  5239 public:
  5240   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5241   bool doHeapRegion(HeapRegion* r) {
  5242     if (r->continuesHumongous()) return false;
  5243     if (r->top() > r->bottom()) {
  5244       if (r->top() < r->end()) {
  5245         Copy::fill_to_words(r->top(),
  5246                           pointer_delta(r->end(), r->top()));
  5248       r->set_zero_fill_allocated();
  5249     } else {
  5250       assert(r->is_empty(), "tautology");
  5251       _n++;
  5252       switch (r->zero_fill_state()) {
  5253         case HeapRegion::NotZeroFilled:
  5254         case HeapRegion::ZeroFilling:
  5255           _g1->put_region_on_unclean_list_locked(r);
  5256           break;
  5257         case HeapRegion::Allocated:
  5258           r->set_zero_fill_complete();
  5259           // no break; go on to put on free list.
  5260         case HeapRegion::ZeroFilled:
  5261           _g1->put_free_region_on_list_locked(r);
  5262           break;
  5265     return false;
  5268   int getFreeRegionCount() {return _n;}
  5269 };
  5271 // Done at the end of full GC.
  5272 void G1CollectedHeap::rebuild_region_lists() {
  5273   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5274   // This needs to go at the end of the full GC.
  5275   RegionResetter rs;
  5276   heap_region_iterate(&rs);
  5277   _free_regions = rs.getFreeRegionCount();
  5278   // Tell the ZF thread it may have work to do.
  5279   if (should_zf()) ZF_mon->notify_all();
  5282 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5283   G1CollectedHeap* _g1;
  5284   int _n;
  5285 public:
  5286   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5287   bool doHeapRegion(HeapRegion* r) {
  5288     if (r->continuesHumongous()) return false;
  5289     if (r->top() > r->bottom()) {
  5290       // There are assertions in "set_zero_fill_needed()" below that
  5291       // require top() == bottom(), so this is technically illegal.
  5292       // We'll skirt the law here, by making that true temporarily.
  5293       DEBUG_ONLY(HeapWord* save_top = r->top();
  5294                  r->set_top(r->bottom()));
  5295       r->set_zero_fill_needed();
  5296       DEBUG_ONLY(r->set_top(save_top));
  5298     return false;
  5300 };
  5302 // Done at the start of full GC.
  5303 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5304   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5305   // This needs to go at the end of the full GC.
  5306   UsedRegionsNeedZeroFillSetter rs;
  5307   heap_region_iterate(&rs);
  5310 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5311   _refine_cte_cl->set_concurrent(concurrent);
  5314 #ifndef PRODUCT
  5316 class PrintHeapRegionClosure: public HeapRegionClosure {
  5317 public:
  5318   bool doHeapRegion(HeapRegion *r) {
  5319     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5320     if (r != NULL) {
  5321       if (r->is_on_free_list())
  5322         gclog_or_tty->print("Free ");
  5323       if (r->is_young())
  5324         gclog_or_tty->print("Young ");
  5325       if (r->isHumongous())
  5326         gclog_or_tty->print("Is Humongous ");
  5327       r->print();
  5329     return false;
  5331 };
  5333 class SortHeapRegionClosure : public HeapRegionClosure {
  5334   size_t young_regions,free_regions, unclean_regions;
  5335   size_t hum_regions, count;
  5336   size_t unaccounted, cur_unclean, cur_alloc;
  5337   size_t total_free;
  5338   HeapRegion* cur;
  5339 public:
  5340   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5341     free_regions(0), unclean_regions(0),
  5342     hum_regions(0),
  5343     count(0), unaccounted(0),
  5344     cur_alloc(0), total_free(0)
  5345   {}
  5346   bool doHeapRegion(HeapRegion *r) {
  5347     count++;
  5348     if (r->is_on_free_list()) free_regions++;
  5349     else if (r->is_on_unclean_list()) unclean_regions++;
  5350     else if (r->isHumongous())  hum_regions++;
  5351     else if (r->is_young()) young_regions++;
  5352     else if (r == cur) cur_alloc++;
  5353     else unaccounted++;
  5354     return false;
  5356   void print() {
  5357     total_free = free_regions + unclean_regions;
  5358     gclog_or_tty->print("%d regions\n", count);
  5359     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5360                         total_free, free_regions, unclean_regions);
  5361     gclog_or_tty->print("%d humongous %d young\n",
  5362                         hum_regions, young_regions);
  5363     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5364     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5366 };
  5368 void G1CollectedHeap::print_region_counts() {
  5369   SortHeapRegionClosure sc(_cur_alloc_region);
  5370   PrintHeapRegionClosure cl;
  5371   heap_region_iterate(&cl);
  5372   heap_region_iterate(&sc);
  5373   sc.print();
  5374   print_region_accounting_info();
  5375 };
  5377 bool G1CollectedHeap::regions_accounted_for() {
  5378   // TODO: regions accounting for young/survivor/tenured
  5379   return true;
  5382 bool G1CollectedHeap::print_region_accounting_info() {
  5383   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5384                          free_regions(),
  5385                          count_free_regions(), count_free_regions_list(),
  5386                          _free_region_list_size, _unclean_region_list.sz());
  5387   gclog_or_tty->print_cr("cur_alloc: %d.",
  5388                          (_cur_alloc_region == NULL ? 0 : 1));
  5389   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5391   // TODO: check regions accounting for young/survivor/tenured
  5392   return true;
  5395 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5396   HeapRegion* hr = heap_region_containing(p);
  5397   if (hr == NULL) {
  5398     return is_in_permanent(p);
  5399   } else {
  5400     return hr->is_in(p);
  5403 #endif // PRODUCT
  5405 void G1CollectedHeap::g1_unimplemented() {
  5406   // Unimplemented();
  5410 // Local Variables: ***
  5411 // c-indentation-style: gnu ***
  5412 // End: ***

mercurial