src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 09 Apr 2015 15:41:47 +0200

author
tschatzl
date
Thu, 09 Apr 2015 15:41:47 +0200
changeset 7782
30e04eba9e29
parent 7781
33e421924c67
child 7828
cbc7c4c9e11c
permissions
-rw-r--r--

8077255: TracePageSizes output reports wrong page size on Windows with G1
Summary: Print selected page size, not alignment size chosen by ReservedSpace (which is the vm_allocation_granularity that is different to page size on Windows) in the message presented by TracePageSizes.
Reviewed-by: drwhite, jmasa

     1 /*
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "classfile/metadataOnStackMark.hpp"
    31 #include "code/codeCache.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    34 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    35 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    36 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    37 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    39 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    40 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    41 #include "gc_implementation/g1/g1EvacFailure.hpp"
    42 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    43 #include "gc_implementation/g1/g1Log.hpp"
    44 #include "gc_implementation/g1/g1MarkSweep.hpp"
    45 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    46 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    47 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    49 #include "gc_implementation/g1/g1RootProcessor.hpp"
    50 #include "gc_implementation/g1/g1StringDedup.hpp"
    51 #include "gc_implementation/g1/g1YCTypes.hpp"
    52 #include "gc_implementation/g1/heapRegion.inline.hpp"
    53 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    54 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    55 #include "gc_implementation/g1/vm_operations_g1.hpp"
    56 #include "gc_implementation/shared/gcHeapSummary.hpp"
    57 #include "gc_implementation/shared/gcTimer.hpp"
    58 #include "gc_implementation/shared/gcTrace.hpp"
    59 #include "gc_implementation/shared/gcTraceTime.hpp"
    60 #include "gc_implementation/shared/isGCActiveMark.hpp"
    61 #include "memory/allocation.hpp"
    62 #include "memory/gcLocker.inline.hpp"
    63 #include "memory/generationSpec.hpp"
    64 #include "memory/iterator.hpp"
    65 #include "memory/referenceProcessor.hpp"
    66 #include "oops/oop.inline.hpp"
    67 #include "oops/oop.pcgc.inline.hpp"
    68 #include "runtime/orderAccess.inline.hpp"
    69 #include "runtime/vmThread.hpp"
    71 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    73 // turn it on so that the contents of the young list (scan-only /
    74 // to-be-collected) are printed at "strategic" points before / during
    75 // / after the collection --- this is useful for debugging
    76 #define YOUNG_LIST_VERBOSE 0
    77 // CURRENT STATUS
    78 // This file is under construction.  Search for "FIXME".
    80 // INVARIANTS/NOTES
    81 //
    82 // All allocation activity covered by the G1CollectedHeap interface is
    83 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    84 // and allocate_new_tlab, which are the "entry" points to the
    85 // allocation code from the rest of the JVM.  (Note that this does not
    86 // apply to TLAB allocation, which is not part of this interface: it
    87 // is done by clients of this interface.)
    89 // Local to this file.
    91 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    92   bool _concurrent;
    93 public:
    94   RefineCardTableEntryClosure() : _concurrent(true) { }
    96   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
    97     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
    98     // This path is executed by the concurrent refine or mutator threads,
    99     // concurrently, and so we do not care if card_ptr contains references
   100     // that point into the collection set.
   101     assert(!oops_into_cset, "should be");
   103     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   104       // Caller will actually yield.
   105       return false;
   106     }
   107     // Otherwise, we finished successfully; return true.
   108     return true;
   109   }
   111   void set_concurrent(bool b) { _concurrent = b; }
   112 };
   115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   116   size_t _num_processed;
   117   CardTableModRefBS* _ctbs;
   118   int _histo[256];
   120  public:
   121   ClearLoggedCardTableEntryClosure() :
   122     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   123   {
   124     for (int i = 0; i < 256; i++) _histo[i] = 0;
   125   }
   127   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   128     unsigned char* ujb = (unsigned char*)card_ptr;
   129     int ind = (int)(*ujb);
   130     _histo[ind]++;
   132     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   133     _num_processed++;
   135     return true;
   136   }
   138   size_t num_processed() { return _num_processed; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   151  private:
   152   size_t _num_processed;
   154  public:
   155   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   157   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   158     *card_ptr = CardTableModRefBS::dirty_card_val();
   159     _num_processed++;
   160     return true;
   161   }
   163   size_t num_processed() const { return _num_processed; }
   164 };
   166 YoungList::YoungList(G1CollectedHeap* g1h) :
   167     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   168     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   169   guarantee(check_list_empty(false), "just making sure...");
   170 }
   172 void YoungList::push_region(HeapRegion *hr) {
   173   assert(!hr->is_young(), "should not already be young");
   174   assert(hr->get_next_young_region() == NULL, "cause it should!");
   176   hr->set_next_young_region(_head);
   177   _head = hr;
   179   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   180   ++_length;
   181 }
   183 void YoungList::add_survivor_region(HeapRegion* hr) {
   184   assert(hr->is_survivor(), "should be flagged as survivor region");
   185   assert(hr->get_next_young_region() == NULL, "cause it should!");
   187   hr->set_next_young_region(_survivor_head);
   188   if (_survivor_head == NULL) {
   189     _survivor_tail = hr;
   190   }
   191   _survivor_head = hr;
   192   ++_survivor_length;
   193 }
   195 void YoungList::empty_list(HeapRegion* list) {
   196   while (list != NULL) {
   197     HeapRegion* next = list->get_next_young_region();
   198     list->set_next_young_region(NULL);
   199     list->uninstall_surv_rate_group();
   200     // This is called before a Full GC and all the non-empty /
   201     // non-humongous regions at the end of the Full GC will end up as
   202     // old anyway.
   203     list->set_old();
   204     list = next;
   205   }
   206 }
   208 void YoungList::empty_list() {
   209   assert(check_list_well_formed(), "young list should be well formed");
   211   empty_list(_head);
   212   _head = NULL;
   213   _length = 0;
   215   empty_list(_survivor_head);
   216   _survivor_head = NULL;
   217   _survivor_tail = NULL;
   218   _survivor_length = 0;
   220   _last_sampled_rs_lengths = 0;
   222   assert(check_list_empty(false), "just making sure...");
   223 }
   225 bool YoungList::check_list_well_formed() {
   226   bool ret = true;
   228   uint length = 0;
   229   HeapRegion* curr = _head;
   230   HeapRegion* last = NULL;
   231   while (curr != NULL) {
   232     if (!curr->is_young()) {
   233       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   234                              "incorrectly tagged (y: %d, surv: %d)",
   235                              curr->bottom(), curr->end(),
   236                              curr->is_young(), curr->is_survivor());
   237       ret = false;
   238     }
   239     ++length;
   240     last = curr;
   241     curr = curr->get_next_young_region();
   242   }
   243   ret = ret && (length == _length);
   245   if (!ret) {
   246     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   247     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   248                            length, _length);
   249   }
   251   return ret;
   252 }
   254 bool YoungList::check_list_empty(bool check_sample) {
   255   bool ret = true;
   257   if (_length != 0) {
   258     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   259                   _length);
   260     ret = false;
   261   }
   262   if (check_sample && _last_sampled_rs_lengths != 0) {
   263     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   264     ret = false;
   265   }
   266   if (_head != NULL) {
   267     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   268     ret = false;
   269   }
   270   if (!ret) {
   271     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   272   }
   274   return ret;
   275 }
   277 void
   278 YoungList::rs_length_sampling_init() {
   279   _sampled_rs_lengths = 0;
   280   _curr               = _head;
   281 }
   283 bool
   284 YoungList::rs_length_sampling_more() {
   285   return _curr != NULL;
   286 }
   288 void
   289 YoungList::rs_length_sampling_next() {
   290   assert( _curr != NULL, "invariant" );
   291   size_t rs_length = _curr->rem_set()->occupied();
   293   _sampled_rs_lengths += rs_length;
   295   // The current region may not yet have been added to the
   296   // incremental collection set (it gets added when it is
   297   // retired as the current allocation region).
   298   if (_curr->in_collection_set()) {
   299     // Update the collection set policy information for this region
   300     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   301   }
   303   _curr = _curr->get_next_young_region();
   304   if (_curr == NULL) {
   305     _last_sampled_rs_lengths = _sampled_rs_lengths;
   306     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   307   }
   308 }
   310 void
   311 YoungList::reset_auxilary_lists() {
   312   guarantee( is_empty(), "young list should be empty" );
   313   assert(check_list_well_formed(), "young list should be well formed");
   315   // Add survivor regions to SurvRateGroup.
   316   _g1h->g1_policy()->note_start_adding_survivor_regions();
   317   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   319   int young_index_in_cset = 0;
   320   for (HeapRegion* curr = _survivor_head;
   321        curr != NULL;
   322        curr = curr->get_next_young_region()) {
   323     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   325     // The region is a non-empty survivor so let's add it to
   326     // the incremental collection set for the next evacuation
   327     // pause.
   328     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   329     young_index_in_cset += 1;
   330   }
   331   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   332   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   334   _head   = _survivor_head;
   335   _length = _survivor_length;
   336   if (_survivor_head != NULL) {
   337     assert(_survivor_tail != NULL, "cause it shouldn't be");
   338     assert(_survivor_length > 0, "invariant");
   339     _survivor_tail->set_next_young_region(NULL);
   340   }
   342   // Don't clear the survivor list handles until the start of
   343   // the next evacuation pause - we need it in order to re-tag
   344   // the survivor regions from this evacuation pause as 'young'
   345   // at the start of the next.
   347   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   349   assert(check_list_well_formed(), "young list should be well formed");
   350 }
   352 void YoungList::print() {
   353   HeapRegion* lists[] = {_head,   _survivor_head};
   354   const char* names[] = {"YOUNG", "SURVIVOR"};
   356   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
   357     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   358     HeapRegion *curr = lists[list];
   359     if (curr == NULL)
   360       gclog_or_tty->print_cr("  empty");
   361     while (curr != NULL) {
   362       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
   363                              HR_FORMAT_PARAMS(curr),
   364                              curr->prev_top_at_mark_start(),
   365                              curr->next_top_at_mark_start(),
   366                              curr->age_in_surv_rate_group_cond());
   367       curr = curr->get_next_young_region();
   368     }
   369   }
   371   gclog_or_tty->cr();
   372 }
   374 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
   375   OtherRegionsTable::invalidate(start_idx, num_regions);
   376 }
   378 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
   379   // The from card cache is not the memory that is actually committed. So we cannot
   380   // take advantage of the zero_filled parameter.
   381   reset_from_card_cache(start_idx, num_regions);
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 #ifdef ASSERT
   438 // A region is added to the collection set as it is retired
   439 // so an address p can point to a region which will be in the
   440 // collection set but has not yet been retired.  This method
   441 // therefore is only accurate during a GC pause after all
   442 // regions have been retired.  It is used for debugging
   443 // to check if an nmethod has references to objects that can
   444 // be move during a partial collection.  Though it can be
   445 // inaccurate, it is sufficient for G1 because the conservative
   446 // implementation of is_scavengable() for G1 will indicate that
   447 // all nmethods must be scanned during a partial collection.
   448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   449   if (p == NULL) {
   450     return false;
   451   }
   452   return heap_region_containing(p)->in_collection_set();
   453 }
   454 #endif
   456 // Returns true if the reference points to an object that
   457 // can move in an incremental collection.
   458 bool G1CollectedHeap::is_scavengable(const void* p) {
   459   HeapRegion* hr = heap_region_containing(p);
   460   return !hr->isHumongous();
   461 }
   463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   465   CardTableModRefBS* ct_bs = g1_barrier_set();
   467   // Count the dirty cards at the start.
   468   CountNonCleanMemRegionClosure count1(this);
   469   ct_bs->mod_card_iterate(&count1);
   470   int orig_count = count1.n();
   472   // First clear the logged cards.
   473   ClearLoggedCardTableEntryClosure clear;
   474   dcqs.apply_closure_to_all_completed_buffers(&clear);
   475   dcqs.iterate_closure_all_threads(&clear, false);
   476   clear.print_histo();
   478   // Now ensure that there's no dirty cards.
   479   CountNonCleanMemRegionClosure count2(this);
   480   ct_bs->mod_card_iterate(&count2);
   481   if (count2.n() != 0) {
   482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   483                            count2.n(), orig_count);
   484   }
   485   guarantee(count2.n() == 0, "Card table should be clean.");
   487   RedirtyLoggedCardTableEntryClosure redirty;
   488   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   489   dcqs.iterate_closure_all_threads(&redirty, false);
   490   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   491                          clear.num_processed(), orig_count);
   492   guarantee(redirty.num_processed() == clear.num_processed(),
   493             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   494                     redirty.num_processed(), clear.num_processed()));
   496   CountNonCleanMemRegionClosure count3(this);
   497   ct_bs->mod_card_iterate(&count3);
   498   if (count3.n() != orig_count) {
   499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   500                            orig_count, count3.n());
   501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   502   }
   503 }
   505 // Private class members.
   507 G1CollectedHeap* G1CollectedHeap::_g1h;
   509 // Private methods.
   511 HeapRegion*
   512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   515     if (!_secondary_free_list.is_empty()) {
   516       if (G1ConcRegionFreeingVerbose) {
   517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   518                                "secondary_free_list has %u entries",
   519                                _secondary_free_list.length());
   520       }
   521       // It looks as if there are free regions available on the
   522       // secondary_free_list. Let's move them to the free_list and try
   523       // again to allocate from it.
   524       append_secondary_free_list();
   526       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
   527              "empty we should have moved at least one entry to the free_list");
   528       HeapRegion* res = _hrm.allocate_free_region(is_old);
   529       if (G1ConcRegionFreeingVerbose) {
   530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   531                                "allocated "HR_FORMAT" from secondary_free_list",
   532                                HR_FORMAT_PARAMS(res));
   533       }
   534       return res;
   535     }
   537     // Wait here until we get notified either when (a) there are no
   538     // more free regions coming or (b) some regions have been moved on
   539     // the secondary_free_list.
   540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   541   }
   543   if (G1ConcRegionFreeingVerbose) {
   544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   545                            "could not allocate from secondary_free_list");
   546   }
   547   return NULL;
   548 }
   550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   552          "the only time we use this to allocate a humongous region is "
   553          "when we are allocating a single humongous region");
   555   HeapRegion* res;
   556   if (G1StressConcRegionFreeing) {
   557     if (!_secondary_free_list.is_empty()) {
   558       if (G1ConcRegionFreeingVerbose) {
   559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   560                                "forced to look at the secondary_free_list");
   561       }
   562       res = new_region_try_secondary_free_list(is_old);
   563       if (res != NULL) {
   564         return res;
   565       }
   566     }
   567   }
   569   res = _hrm.allocate_free_region(is_old);
   571   if (res == NULL) {
   572     if (G1ConcRegionFreeingVerbose) {
   573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   574                              "res == NULL, trying the secondary_free_list");
   575     }
   576     res = new_region_try_secondary_free_list(is_old);
   577   }
   578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   579     // Currently, only attempts to allocate GC alloc regions set
   580     // do_expand to true. So, we should only reach here during a
   581     // safepoint. If this assumption changes we might have to
   582     // reconsider the use of _expand_heap_after_alloc_failure.
   583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   585     ergo_verbose1(ErgoHeapSizing,
   586                   "attempt heap expansion",
   587                   ergo_format_reason("region allocation request failed")
   588                   ergo_format_byte("allocation request"),
   589                   word_size * HeapWordSize);
   590     if (expand(word_size * HeapWordSize)) {
   591       // Given that expand() succeeded in expanding the heap, and we
   592       // always expand the heap by an amount aligned to the heap
   593       // region size, the free list should in theory not be empty.
   594       // In either case allocate_free_region() will check for NULL.
   595       res = _hrm.allocate_free_region(is_old);
   596     } else {
   597       _expand_heap_after_alloc_failure = false;
   598     }
   599   }
   600   return res;
   601 }
   603 HeapWord*
   604 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   605                                                            uint num_regions,
   606                                                            size_t word_size,
   607                                                            AllocationContext_t context) {
   608   assert(first != G1_NO_HRM_INDEX, "pre-condition");
   609   assert(isHumongous(word_size), "word_size should be humongous");
   610   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   612   // Index of last region in the series + 1.
   613   uint last = first + num_regions;
   615   // We need to initialize the region(s) we just discovered. This is
   616   // a bit tricky given that it can happen concurrently with
   617   // refinement threads refining cards on these regions and
   618   // potentially wanting to refine the BOT as they are scanning
   619   // those cards (this can happen shortly after a cleanup; see CR
   620   // 6991377). So we have to set up the region(s) carefully and in
   621   // a specific order.
   623   // The word size sum of all the regions we will allocate.
   624   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   625   assert(word_size <= word_size_sum, "sanity");
   627   // This will be the "starts humongous" region.
   628   HeapRegion* first_hr = region_at(first);
   629   // The header of the new object will be placed at the bottom of
   630   // the first region.
   631   HeapWord* new_obj = first_hr->bottom();
   632   // This will be the new end of the first region in the series that
   633   // should also match the end of the last region in the series.
   634   HeapWord* new_end = new_obj + word_size_sum;
   635   // This will be the new top of the first region that will reflect
   636   // this allocation.
   637   HeapWord* new_top = new_obj + word_size;
   639   // First, we need to zero the header of the space that we will be
   640   // allocating. When we update top further down, some refinement
   641   // threads might try to scan the region. By zeroing the header we
   642   // ensure that any thread that will try to scan the region will
   643   // come across the zero klass word and bail out.
   644   //
   645   // NOTE: It would not have been correct to have used
   646   // CollectedHeap::fill_with_object() and make the space look like
   647   // an int array. The thread that is doing the allocation will
   648   // later update the object header to a potentially different array
   649   // type and, for a very short period of time, the klass and length
   650   // fields will be inconsistent. This could cause a refinement
   651   // thread to calculate the object size incorrectly.
   652   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   654   // We will set up the first region as "starts humongous". This
   655   // will also update the BOT covering all the regions to reflect
   656   // that there is a single object that starts at the bottom of the
   657   // first region.
   658   first_hr->set_startsHumongous(new_top, new_end);
   659   first_hr->set_allocation_context(context);
   660   // Then, if there are any, we will set up the "continues
   661   // humongous" regions.
   662   HeapRegion* hr = NULL;
   663   for (uint i = first + 1; i < last; ++i) {
   664     hr = region_at(i);
   665     hr->set_continuesHumongous(first_hr);
   666     hr->set_allocation_context(context);
   667   }
   668   // If we have "continues humongous" regions (hr != NULL), then the
   669   // end of the last one should match new_end.
   670   assert(hr == NULL || hr->end() == new_end, "sanity");
   672   // Up to this point no concurrent thread would have been able to
   673   // do any scanning on any region in this series. All the top
   674   // fields still point to bottom, so the intersection between
   675   // [bottom,top] and [card_start,card_end] will be empty. Before we
   676   // update the top fields, we'll do a storestore to make sure that
   677   // no thread sees the update to top before the zeroing of the
   678   // object header and the BOT initialization.
   679   OrderAccess::storestore();
   681   // Now that the BOT and the object header have been initialized,
   682   // we can update top of the "starts humongous" region.
   683   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   684          "new_top should be in this region");
   685   first_hr->set_top(new_top);
   686   if (_hr_printer.is_active()) {
   687     HeapWord* bottom = first_hr->bottom();
   688     HeapWord* end = first_hr->orig_end();
   689     if ((first + 1) == last) {
   690       // the series has a single humongous region
   691       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   692     } else {
   693       // the series has more than one humongous regions
   694       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   695     }
   696   }
   698   // Now, we will update the top fields of the "continues humongous"
   699   // regions. The reason we need to do this is that, otherwise,
   700   // these regions would look empty and this will confuse parts of
   701   // G1. For example, the code that looks for a consecutive number
   702   // of empty regions will consider them empty and try to
   703   // re-allocate them. We can extend is_empty() to also include
   704   // !continuesHumongous(), but it is easier to just update the top
   705   // fields here. The way we set top for all regions (i.e., top ==
   706   // end for all regions but the last one, top == new_top for the
   707   // last one) is actually used when we will free up the humongous
   708   // region in free_humongous_region().
   709   hr = NULL;
   710   for (uint i = first + 1; i < last; ++i) {
   711     hr = region_at(i);
   712     if ((i + 1) == last) {
   713       // last continues humongous region
   714       assert(hr->bottom() < new_top && new_top <= hr->end(),
   715              "new_top should fall on this region");
   716       hr->set_top(new_top);
   717       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   718     } else {
   719       // not last one
   720       assert(new_top > hr->end(), "new_top should be above this region");
   721       hr->set_top(hr->end());
   722       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   723     }
   724   }
   725   // If we have continues humongous regions (hr != NULL), then the
   726   // end of the last one should match new_end and its top should
   727   // match new_top.
   728   assert(hr == NULL ||
   729          (hr->end() == new_end && hr->top() == new_top), "sanity");
   730   check_bitmaps("Humongous Region Allocation", first_hr);
   732   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   733   _allocator->increase_used(first_hr->used());
   734   _humongous_set.add(first_hr);
   736   return new_obj;
   737 }
   739 // If could fit into free regions w/o expansion, try.
   740 // Otherwise, if can expand, do so.
   741 // Otherwise, if using ex regions might help, try with ex given back.
   742 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
   743   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   745   verify_region_sets_optional();
   747   uint first = G1_NO_HRM_INDEX;
   748   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   750   if (obj_regions == 1) {
   751     // Only one region to allocate, try to use a fast path by directly allocating
   752     // from the free lists. Do not try to expand here, we will potentially do that
   753     // later.
   754     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   755     if (hr != NULL) {
   756       first = hr->hrm_index();
   757     }
   758   } else {
   759     // We can't allocate humongous regions spanning more than one region while
   760     // cleanupComplete() is running, since some of the regions we find to be
   761     // empty might not yet be added to the free list. It is not straightforward
   762     // to know in which list they are on so that we can remove them. We only
   763     // need to do this if we need to allocate more than one region to satisfy the
   764     // current humongous allocation request. If we are only allocating one region
   765     // we use the one-region region allocation code (see above), that already
   766     // potentially waits for regions from the secondary free list.
   767     wait_while_free_regions_coming();
   768     append_secondary_free_list_if_not_empty_with_lock();
   770     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   771     // are lucky enough to find some.
   772     first = _hrm.find_contiguous_only_empty(obj_regions);
   773     if (first != G1_NO_HRM_INDEX) {
   774       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   775     }
   776   }
   778   if (first == G1_NO_HRM_INDEX) {
   779     // Policy: We could not find enough regions for the humongous object in the
   780     // free list. Look through the heap to find a mix of free and uncommitted regions.
   781     // If so, try expansion.
   782     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
   783     if (first != G1_NO_HRM_INDEX) {
   784       // We found something. Make sure these regions are committed, i.e. expand
   785       // the heap. Alternatively we could do a defragmentation GC.
   786       ergo_verbose1(ErgoHeapSizing,
   787                     "attempt heap expansion",
   788                     ergo_format_reason("humongous allocation request failed")
   789                     ergo_format_byte("allocation request"),
   790                     word_size * HeapWordSize);
   792       _hrm.expand_at(first, obj_regions);
   793       g1_policy()->record_new_heap_size(num_regions());
   795 #ifdef ASSERT
   796       for (uint i = first; i < first + obj_regions; ++i) {
   797         HeapRegion* hr = region_at(i);
   798         assert(hr->is_free(), "sanity");
   799         assert(hr->is_empty(), "sanity");
   800         assert(is_on_master_free_list(hr), "sanity");
   801       }
   802 #endif
   803       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   804     } else {
   805       // Policy: Potentially trigger a defragmentation GC.
   806     }
   807   }
   809   HeapWord* result = NULL;
   810   if (first != G1_NO_HRM_INDEX) {
   811     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
   812                                                        word_size, context);
   813     assert(result != NULL, "it should always return a valid result");
   815     // A successful humongous object allocation changes the used space
   816     // information of the old generation so we need to recalculate the
   817     // sizes and update the jstat counters here.
   818     g1mm()->update_sizes();
   819   }
   821   verify_region_sets_optional();
   823   return result;
   824 }
   826 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   827   assert_heap_not_locked_and_not_at_safepoint();
   828   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   830   uint dummy_gc_count_before;
   831   uint dummy_gclocker_retry_count = 0;
   832   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   833 }
   835 HeapWord*
   836 G1CollectedHeap::mem_allocate(size_t word_size,
   837                               bool*  gc_overhead_limit_was_exceeded) {
   838   assert_heap_not_locked_and_not_at_safepoint();
   840   // Loop until the allocation is satisfied, or unsatisfied after GC.
   841   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   842     uint gc_count_before;
   844     HeapWord* result = NULL;
   845     if (!isHumongous(word_size)) {
   846       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   847     } else {
   848       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   849     }
   850     if (result != NULL) {
   851       return result;
   852     }
   854     // Create the garbage collection operation...
   855     VM_G1CollectForAllocation op(gc_count_before, word_size);
   856     op.set_allocation_context(AllocationContext::current());
   858     // ...and get the VM thread to execute it.
   859     VMThread::execute(&op);
   861     if (op.prologue_succeeded() && op.pause_succeeded()) {
   862       // If the operation was successful we'll return the result even
   863       // if it is NULL. If the allocation attempt failed immediately
   864       // after a Full GC, it's unlikely we'll be able to allocate now.
   865       HeapWord* result = op.result();
   866       if (result != NULL && !isHumongous(word_size)) {
   867         // Allocations that take place on VM operations do not do any
   868         // card dirtying and we have to do it here. We only have to do
   869         // this for non-humongous allocations, though.
   870         dirty_young_block(result, word_size);
   871       }
   872       return result;
   873     } else {
   874       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   875         return NULL;
   876       }
   877       assert(op.result() == NULL,
   878              "the result should be NULL if the VM op did not succeed");
   879     }
   881     // Give a warning if we seem to be looping forever.
   882     if ((QueuedAllocationWarningCount > 0) &&
   883         (try_count % QueuedAllocationWarningCount == 0)) {
   884       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   885     }
   886   }
   888   ShouldNotReachHere();
   889   return NULL;
   890 }
   892 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   893                                                    AllocationContext_t context,
   894                                                    uint* gc_count_before_ret,
   895                                                    uint* gclocker_retry_count_ret) {
   896   // Make sure you read the note in attempt_allocation_humongous().
   898   assert_heap_not_locked_and_not_at_safepoint();
   899   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   900          "be called for humongous allocation requests");
   902   // We should only get here after the first-level allocation attempt
   903   // (attempt_allocation()) failed to allocate.
   905   // We will loop until a) we manage to successfully perform the
   906   // allocation or b) we successfully schedule a collection which
   907   // fails to perform the allocation. b) is the only case when we'll
   908   // return NULL.
   909   HeapWord* result = NULL;
   910   for (int try_count = 1; /* we'll return */; try_count += 1) {
   911     bool should_try_gc;
   912     uint gc_count_before;
   914     {
   915       MutexLockerEx x(Heap_lock);
   916       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
   917                                                                                     false /* bot_updates */);
   918       if (result != NULL) {
   919         return result;
   920       }
   922       // If we reach here, attempt_allocation_locked() above failed to
   923       // allocate a new region. So the mutator alloc region should be NULL.
   924       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
   926       if (GC_locker::is_active_and_needs_gc()) {
   927         if (g1_policy()->can_expand_young_list()) {
   928           // No need for an ergo verbose message here,
   929           // can_expand_young_list() does this when it returns true.
   930           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
   931                                                                                        false /* bot_updates */);
   932           if (result != NULL) {
   933             return result;
   934           }
   935         }
   936         should_try_gc = false;
   937       } else {
   938         // The GCLocker may not be active but the GCLocker initiated
   939         // GC may not yet have been performed (GCLocker::needs_gc()
   940         // returns true). In this case we do not try this GC and
   941         // wait until the GCLocker initiated GC is performed, and
   942         // then retry the allocation.
   943         if (GC_locker::needs_gc()) {
   944           should_try_gc = false;
   945         } else {
   946           // Read the GC count while still holding the Heap_lock.
   947           gc_count_before = total_collections();
   948           should_try_gc = true;
   949         }
   950       }
   951     }
   953     if (should_try_gc) {
   954       bool succeeded;
   955       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   956                                    GCCause::_g1_inc_collection_pause);
   957       if (result != NULL) {
   958         assert(succeeded, "only way to get back a non-NULL result");
   959         return result;
   960       }
   962       if (succeeded) {
   963         // If we get here we successfully scheduled a collection which
   964         // failed to allocate. No point in trying to allocate
   965         // further. We'll just return NULL.
   966         MutexLockerEx x(Heap_lock);
   967         *gc_count_before_ret = total_collections();
   968         return NULL;
   969       }
   970     } else {
   971       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   972         MutexLockerEx x(Heap_lock);
   973         *gc_count_before_ret = total_collections();
   974         return NULL;
   975       }
   976       // The GCLocker is either active or the GCLocker initiated
   977       // GC has not yet been performed. Stall until it is and
   978       // then retry the allocation.
   979       GC_locker::stall_until_clear();
   980       (*gclocker_retry_count_ret) += 1;
   981     }
   983     // We can reach here if we were unsuccessful in scheduling a
   984     // collection (because another thread beat us to it) or if we were
   985     // stalled due to the GC locker. In either can we should retry the
   986     // allocation attempt in case another thread successfully
   987     // performed a collection and reclaimed enough space. We do the
   988     // first attempt (without holding the Heap_lock) here and the
   989     // follow-on attempt will be at the start of the next loop
   990     // iteration (after taking the Heap_lock).
   991     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
   992                                                                            false /* bot_updates */);
   993     if (result != NULL) {
   994       return result;
   995     }
   997     // Give a warning if we seem to be looping forever.
   998     if ((QueuedAllocationWarningCount > 0) &&
   999         (try_count % QueuedAllocationWarningCount == 0)) {
  1000       warning("G1CollectedHeap::attempt_allocation_slow() "
  1001               "retries %d times", try_count);
  1005   ShouldNotReachHere();
  1006   return NULL;
  1009 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1010                                                         uint* gc_count_before_ret,
  1011                                                         uint* gclocker_retry_count_ret) {
  1012   // The structure of this method has a lot of similarities to
  1013   // attempt_allocation_slow(). The reason these two were not merged
  1014   // into a single one is that such a method would require several "if
  1015   // allocation is not humongous do this, otherwise do that"
  1016   // conditional paths which would obscure its flow. In fact, an early
  1017   // version of this code did use a unified method which was harder to
  1018   // follow and, as a result, it had subtle bugs that were hard to
  1019   // track down. So keeping these two methods separate allows each to
  1020   // be more readable. It will be good to keep these two in sync as
  1021   // much as possible.
  1023   assert_heap_not_locked_and_not_at_safepoint();
  1024   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1025          "should only be called for humongous allocations");
  1027   // Humongous objects can exhaust the heap quickly, so we should check if we
  1028   // need to start a marking cycle at each humongous object allocation. We do
  1029   // the check before we do the actual allocation. The reason for doing it
  1030   // before the allocation is that we avoid having to keep track of the newly
  1031   // allocated memory while we do a GC.
  1032   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1033                                            word_size)) {
  1034     collect(GCCause::_g1_humongous_allocation);
  1037   // We will loop until a) we manage to successfully perform the
  1038   // allocation or b) we successfully schedule a collection which
  1039   // fails to perform the allocation. b) is the only case when we'll
  1040   // return NULL.
  1041   HeapWord* result = NULL;
  1042   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1043     bool should_try_gc;
  1044     uint gc_count_before;
  1047       MutexLockerEx x(Heap_lock);
  1049       // Given that humongous objects are not allocated in young
  1050       // regions, we'll first try to do the allocation without doing a
  1051       // collection hoping that there's enough space in the heap.
  1052       result = humongous_obj_allocate(word_size, AllocationContext::current());
  1053       if (result != NULL) {
  1054         return result;
  1057       if (GC_locker::is_active_and_needs_gc()) {
  1058         should_try_gc = false;
  1059       } else {
  1060          // The GCLocker may not be active but the GCLocker initiated
  1061         // GC may not yet have been performed (GCLocker::needs_gc()
  1062         // returns true). In this case we do not try this GC and
  1063         // wait until the GCLocker initiated GC is performed, and
  1064         // then retry the allocation.
  1065         if (GC_locker::needs_gc()) {
  1066           should_try_gc = false;
  1067         } else {
  1068           // Read the GC count while still holding the Heap_lock.
  1069           gc_count_before = total_collections();
  1070           should_try_gc = true;
  1075     if (should_try_gc) {
  1076       // If we failed to allocate the humongous object, we should try to
  1077       // do a collection pause (if we're allowed) in case it reclaims
  1078       // enough space for the allocation to succeed after the pause.
  1080       bool succeeded;
  1081       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1082                                    GCCause::_g1_humongous_allocation);
  1083       if (result != NULL) {
  1084         assert(succeeded, "only way to get back a non-NULL result");
  1085         return result;
  1088       if (succeeded) {
  1089         // If we get here we successfully scheduled a collection which
  1090         // failed to allocate. No point in trying to allocate
  1091         // further. We'll just return NULL.
  1092         MutexLockerEx x(Heap_lock);
  1093         *gc_count_before_ret = total_collections();
  1094         return NULL;
  1096     } else {
  1097       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1098         MutexLockerEx x(Heap_lock);
  1099         *gc_count_before_ret = total_collections();
  1100         return NULL;
  1102       // The GCLocker is either active or the GCLocker initiated
  1103       // GC has not yet been performed. Stall until it is and
  1104       // then retry the allocation.
  1105       GC_locker::stall_until_clear();
  1106       (*gclocker_retry_count_ret) += 1;
  1109     // We can reach here if we were unsuccessful in scheduling a
  1110     // collection (because another thread beat us to it) or if we were
  1111     // stalled due to the GC locker. In either can we should retry the
  1112     // allocation attempt in case another thread successfully
  1113     // performed a collection and reclaimed enough space.  Give a
  1114     // warning if we seem to be looping forever.
  1116     if ((QueuedAllocationWarningCount > 0) &&
  1117         (try_count % QueuedAllocationWarningCount == 0)) {
  1118       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1119               "retries %d times", try_count);
  1123   ShouldNotReachHere();
  1124   return NULL;
  1127 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1128                                                            AllocationContext_t context,
  1129                                                            bool expect_null_mutator_alloc_region) {
  1130   assert_at_safepoint(true /* should_be_vm_thread */);
  1131   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
  1132                                              !expect_null_mutator_alloc_region,
  1133          "the current alloc region was unexpectedly found to be non-NULL");
  1135   if (!isHumongous(word_size)) {
  1136     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
  1137                                                       false /* bot_updates */);
  1138   } else {
  1139     HeapWord* result = humongous_obj_allocate(word_size, context);
  1140     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1141       g1_policy()->set_initiate_conc_mark_if_possible();
  1143     return result;
  1146   ShouldNotReachHere();
  1149 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1150   G1CollectedHeap* _g1h;
  1151   ModRefBarrierSet* _mr_bs;
  1152 public:
  1153   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1154     _g1h(g1h), _mr_bs(mr_bs) {}
  1156   bool doHeapRegion(HeapRegion* r) {
  1157     HeapRegionRemSet* hrrs = r->rem_set();
  1159     if (r->continuesHumongous()) {
  1160       // We'll assert that the strong code root list and RSet is empty
  1161       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1162       assert(hrrs->occupied() == 0, "RSet should be empty");
  1163       return false;
  1166     _g1h->reset_gc_time_stamps(r);
  1167     hrrs->clear();
  1168     // You might think here that we could clear just the cards
  1169     // corresponding to the used region.  But no: if we leave a dirty card
  1170     // in a region we might allocate into, then it would prevent that card
  1171     // from being enqueued, and cause it to be missed.
  1172     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1173     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1175     return false;
  1177 };
  1179 void G1CollectedHeap::clear_rsets_post_compaction() {
  1180   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1181   heap_region_iterate(&rs_clear);
  1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1185   G1CollectedHeap*   _g1h;
  1186   UpdateRSOopClosure _cl;
  1187   int                _worker_i;
  1188 public:
  1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1190     _cl(g1->g1_rem_set(), worker_i),
  1191     _worker_i(worker_i),
  1192     _g1h(g1)
  1193   { }
  1195   bool doHeapRegion(HeapRegion* r) {
  1196     if (!r->continuesHumongous()) {
  1197       _cl.set_from(r);
  1198       r->oop_iterate(&_cl);
  1200     return false;
  1202 };
  1204 class ParRebuildRSTask: public AbstractGangTask {
  1205   G1CollectedHeap* _g1;
  1206 public:
  1207   ParRebuildRSTask(G1CollectedHeap* g1)
  1208     : AbstractGangTask("ParRebuildRSTask"),
  1209       _g1(g1)
  1210   { }
  1212   void work(uint worker_id) {
  1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1215                                           _g1->workers()->active_workers(),
  1216                                          HeapRegion::RebuildRSClaimValue);
  1218 };
  1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1221 private:
  1222   G1HRPrinter* _hr_printer;
  1223 public:
  1224   bool doHeapRegion(HeapRegion* hr) {
  1225     assert(!hr->is_young(), "not expecting to find young regions");
  1226     if (hr->is_free()) {
  1227       // We only generate output for non-empty regions.
  1228     } else if (hr->startsHumongous()) {
  1229       if (hr->region_num() == 1) {
  1230         // single humongous region
  1231         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1232       } else {
  1233         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1235     } else if (hr->continuesHumongous()) {
  1236       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1237     } else if (hr->is_old()) {
  1238       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1239     } else {
  1240       ShouldNotReachHere();
  1242     return false;
  1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1246     : _hr_printer(hr_printer) { }
  1247 };
  1249 void G1CollectedHeap::print_hrm_post_compaction() {
  1250   PostCompactionPrinterClosure cl(hr_printer());
  1251   heap_region_iterate(&cl);
  1254 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1255                                     bool clear_all_soft_refs,
  1256                                     size_t word_size) {
  1257   assert_at_safepoint(true /* should_be_vm_thread */);
  1259   if (GC_locker::check_active_before_gc()) {
  1260     return false;
  1263   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1264   gc_timer->register_gc_start();
  1266   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1267   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1269   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1270   ResourceMark rm;
  1272   print_heap_before_gc();
  1273   trace_heap_before_gc(gc_tracer);
  1275   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1277   verify_region_sets_optional();
  1279   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1280                            collector_policy()->should_clear_all_soft_refs();
  1282   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1285     IsGCActiveMark x;
  1287     // Timing
  1288     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1289     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1292       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1293       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1294       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1296       double start = os::elapsedTime();
  1297       g1_policy()->record_full_collection_start();
  1299       // Note: When we have a more flexible GC logging framework that
  1300       // allows us to add optional attributes to a GC log record we
  1301       // could consider timing and reporting how long we wait in the
  1302       // following two methods.
  1303       wait_while_free_regions_coming();
  1304       // If we start the compaction before the CM threads finish
  1305       // scanning the root regions we might trip them over as we'll
  1306       // be moving objects / updating references. So let's wait until
  1307       // they are done. By telling them to abort, they should complete
  1308       // early.
  1309       _cm->root_regions()->abort();
  1310       _cm->root_regions()->wait_until_scan_finished();
  1311       append_secondary_free_list_if_not_empty_with_lock();
  1313       gc_prologue(true);
  1314       increment_total_collections(true /* full gc */);
  1315       increment_old_marking_cycles_started();
  1317       assert(used() == recalculate_used(), "Should be equal");
  1319       verify_before_gc();
  1321       check_bitmaps("Full GC Start");
  1322       pre_full_gc_dump(gc_timer);
  1324       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1326       // Disable discovery and empty the discovered lists
  1327       // for the CM ref processor.
  1328       ref_processor_cm()->disable_discovery();
  1329       ref_processor_cm()->abandon_partial_discovery();
  1330       ref_processor_cm()->verify_no_references_recorded();
  1332       // Abandon current iterations of concurrent marking and concurrent
  1333       // refinement, if any are in progress. We have to do this before
  1334       // wait_until_scan_finished() below.
  1335       concurrent_mark()->abort();
  1337       // Make sure we'll choose a new allocation region afterwards.
  1338       _allocator->release_mutator_alloc_region();
  1339       _allocator->abandon_gc_alloc_regions();
  1340       g1_rem_set()->cleanupHRRS();
  1342       // We should call this after we retire any currently active alloc
  1343       // regions so that all the ALLOC / RETIRE events are generated
  1344       // before the start GC event.
  1345       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1347       // We may have added regions to the current incremental collection
  1348       // set between the last GC or pause and now. We need to clear the
  1349       // incremental collection set and then start rebuilding it afresh
  1350       // after this full GC.
  1351       abandon_collection_set(g1_policy()->inc_cset_head());
  1352       g1_policy()->clear_incremental_cset();
  1353       g1_policy()->stop_incremental_cset_building();
  1355       tear_down_region_sets(false /* free_list_only */);
  1356       g1_policy()->set_gcs_are_young(true);
  1358       // See the comments in g1CollectedHeap.hpp and
  1359       // G1CollectedHeap::ref_processing_init() about
  1360       // how reference processing currently works in G1.
  1362       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1363       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1365       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1366       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1368       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1369       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1371       // Do collection work
  1373         HandleMark hm;  // Discard invalid handles created during gc
  1374         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1377       assert(num_free_regions() == 0, "we should not have added any free regions");
  1378       rebuild_region_sets(false /* free_list_only */);
  1380       // Enqueue any discovered reference objects that have
  1381       // not been removed from the discovered lists.
  1382       ref_processor_stw()->enqueue_discovered_references();
  1384       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1386       MemoryService::track_memory_usage();
  1388       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1389       ref_processor_stw()->verify_no_references_recorded();
  1391       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1392       ClassLoaderDataGraph::purge();
  1393       MetaspaceAux::verify_metrics();
  1395       // Note: since we've just done a full GC, concurrent
  1396       // marking is no longer active. Therefore we need not
  1397       // re-enable reference discovery for the CM ref processor.
  1398       // That will be done at the start of the next marking cycle.
  1399       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1400       ref_processor_cm()->verify_no_references_recorded();
  1402       reset_gc_time_stamp();
  1403       // Since everything potentially moved, we will clear all remembered
  1404       // sets, and clear all cards.  Later we will rebuild remembered
  1405       // sets. We will also reset the GC time stamps of the regions.
  1406       clear_rsets_post_compaction();
  1407       check_gc_time_stamps();
  1409       // Resize the heap if necessary.
  1410       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1412       if (_hr_printer.is_active()) {
  1413         // We should do this after we potentially resize the heap so
  1414         // that all the COMMIT / UNCOMMIT events are generated before
  1415         // the end GC event.
  1417         print_hrm_post_compaction();
  1418         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1421       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1422       if (hot_card_cache->use_cache()) {
  1423         hot_card_cache->reset_card_counts();
  1424         hot_card_cache->reset_hot_cache();
  1427       // Rebuild remembered sets of all regions.
  1428       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1429         uint n_workers =
  1430           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1431                                                   workers()->active_workers(),
  1432                                                   Threads::number_of_non_daemon_threads());
  1433         assert(UseDynamicNumberOfGCThreads ||
  1434                n_workers == workers()->total_workers(),
  1435                "If not dynamic should be using all the  workers");
  1436         workers()->set_active_workers(n_workers);
  1437         // Set parallel threads in the heap (_n_par_threads) only
  1438         // before a parallel phase and always reset it to 0 after
  1439         // the phase so that the number of parallel threads does
  1440         // no get carried forward to a serial phase where there
  1441         // may be code that is "possibly_parallel".
  1442         set_par_threads(n_workers);
  1444         ParRebuildRSTask rebuild_rs_task(this);
  1445         assert(check_heap_region_claim_values(
  1446                HeapRegion::InitialClaimValue), "sanity check");
  1447         assert(UseDynamicNumberOfGCThreads ||
  1448                workers()->active_workers() == workers()->total_workers(),
  1449                "Unless dynamic should use total workers");
  1450         // Use the most recent number of  active workers
  1451         assert(workers()->active_workers() > 0,
  1452                "Active workers not properly set");
  1453         set_par_threads(workers()->active_workers());
  1454         workers()->run_task(&rebuild_rs_task);
  1455         set_par_threads(0);
  1456         assert(check_heap_region_claim_values(
  1457                HeapRegion::RebuildRSClaimValue), "sanity check");
  1458         reset_heap_region_claim_values();
  1459       } else {
  1460         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1461         heap_region_iterate(&rebuild_rs);
  1464       // Rebuild the strong code root lists for each region
  1465       rebuild_strong_code_roots();
  1467       if (true) { // FIXME
  1468         MetaspaceGC::compute_new_size();
  1471 #ifdef TRACESPINNING
  1472       ParallelTaskTerminator::print_termination_counts();
  1473 #endif
  1475       // Discard all rset updates
  1476       JavaThread::dirty_card_queue_set().abandon_logs();
  1477       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
  1479       _young_list->reset_sampled_info();
  1480       // At this point there should be no regions in the
  1481       // entire heap tagged as young.
  1482       assert(check_young_list_empty(true /* check_heap */),
  1483              "young list should be empty at this point");
  1485       // Update the number of full collections that have been completed.
  1486       increment_old_marking_cycles_completed(false /* concurrent */);
  1488       _hrm.verify_optional();
  1489       verify_region_sets_optional();
  1491       verify_after_gc();
  1493       // Clear the previous marking bitmap, if needed for bitmap verification.
  1494       // Note we cannot do this when we clear the next marking bitmap in
  1495       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1496       // objects marked during a full GC against the previous bitmap.
  1497       // But we need to clear it before calling check_bitmaps below since
  1498       // the full GC has compacted objects and updated TAMS but not updated
  1499       // the prev bitmap.
  1500       if (G1VerifyBitmaps) {
  1501         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1503       check_bitmaps("Full GC End");
  1505       // Start a new incremental collection set for the next pause
  1506       assert(g1_policy()->collection_set() == NULL, "must be");
  1507       g1_policy()->start_incremental_cset_building();
  1509       clear_cset_fast_test();
  1511       _allocator->init_mutator_alloc_region();
  1513       double end = os::elapsedTime();
  1514       g1_policy()->record_full_collection_end();
  1516       if (G1Log::fine()) {
  1517         g1_policy()->print_heap_transition();
  1520       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1521       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1522       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1523       // before any GC notifications are raised.
  1524       g1mm()->update_sizes();
  1526       gc_epilogue(true);
  1529     if (G1Log::finer()) {
  1530       g1_policy()->print_detailed_heap_transition(true /* full */);
  1533     print_heap_after_gc();
  1534     trace_heap_after_gc(gc_tracer);
  1536     post_full_gc_dump(gc_timer);
  1538     gc_timer->register_gc_end();
  1539     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1542   return true;
  1545 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1546   // do_collection() will return whether it succeeded in performing
  1547   // the GC. Currently, there is no facility on the
  1548   // do_full_collection() API to notify the caller than the collection
  1549   // did not succeed (e.g., because it was locked out by the GC
  1550   // locker). So, right now, we'll ignore the return value.
  1551   bool dummy = do_collection(true,                /* explicit_gc */
  1552                              clear_all_soft_refs,
  1553                              0                    /* word_size */);
  1556 // This code is mostly copied from TenuredGeneration.
  1557 void
  1558 G1CollectedHeap::
  1559 resize_if_necessary_after_full_collection(size_t word_size) {
  1560   // Include the current allocation, if any, and bytes that will be
  1561   // pre-allocated to support collections, as "used".
  1562   const size_t used_after_gc = used();
  1563   const size_t capacity_after_gc = capacity();
  1564   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1566   // This is enforced in arguments.cpp.
  1567   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1568          "otherwise the code below doesn't make sense");
  1570   // We don't have floating point command-line arguments
  1571   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1572   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1573   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1574   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1576   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1577   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1579   // We have to be careful here as these two calculations can overflow
  1580   // 32-bit size_t's.
  1581   double used_after_gc_d = (double) used_after_gc;
  1582   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1583   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1585   // Let's make sure that they are both under the max heap size, which
  1586   // by default will make them fit into a size_t.
  1587   double desired_capacity_upper_bound = (double) max_heap_size;
  1588   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1589                                     desired_capacity_upper_bound);
  1590   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1591                                     desired_capacity_upper_bound);
  1593   // We can now safely turn them into size_t's.
  1594   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1595   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1597   // This assert only makes sense here, before we adjust them
  1598   // with respect to the min and max heap size.
  1599   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1600          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1601                  "maximum_desired_capacity = "SIZE_FORMAT,
  1602                  minimum_desired_capacity, maximum_desired_capacity));
  1604   // Should not be greater than the heap max size. No need to adjust
  1605   // it with respect to the heap min size as it's a lower bound (i.e.,
  1606   // we'll try to make the capacity larger than it, not smaller).
  1607   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1608   // Should not be less than the heap min size. No need to adjust it
  1609   // with respect to the heap max size as it's an upper bound (i.e.,
  1610   // we'll try to make the capacity smaller than it, not greater).
  1611   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1613   if (capacity_after_gc < minimum_desired_capacity) {
  1614     // Don't expand unless it's significant
  1615     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1616     ergo_verbose4(ErgoHeapSizing,
  1617                   "attempt heap expansion",
  1618                   ergo_format_reason("capacity lower than "
  1619                                      "min desired capacity after Full GC")
  1620                   ergo_format_byte("capacity")
  1621                   ergo_format_byte("occupancy")
  1622                   ergo_format_byte_perc("min desired capacity"),
  1623                   capacity_after_gc, used_after_gc,
  1624                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1625     expand(expand_bytes);
  1627     // No expansion, now see if we want to shrink
  1628   } else if (capacity_after_gc > maximum_desired_capacity) {
  1629     // Capacity too large, compute shrinking size
  1630     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1631     ergo_verbose4(ErgoHeapSizing,
  1632                   "attempt heap shrinking",
  1633                   ergo_format_reason("capacity higher than "
  1634                                      "max desired capacity after Full GC")
  1635                   ergo_format_byte("capacity")
  1636                   ergo_format_byte("occupancy")
  1637                   ergo_format_byte_perc("max desired capacity"),
  1638                   capacity_after_gc, used_after_gc,
  1639                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1640     shrink(shrink_bytes);
  1645 HeapWord*
  1646 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1647                                            AllocationContext_t context,
  1648                                            bool* succeeded) {
  1649   assert_at_safepoint(true /* should_be_vm_thread */);
  1651   *succeeded = true;
  1652   // Let's attempt the allocation first.
  1653   HeapWord* result =
  1654     attempt_allocation_at_safepoint(word_size,
  1655                                     context,
  1656                                     false /* expect_null_mutator_alloc_region */);
  1657   if (result != NULL) {
  1658     assert(*succeeded, "sanity");
  1659     return result;
  1662   // In a G1 heap, we're supposed to keep allocation from failing by
  1663   // incremental pauses.  Therefore, at least for now, we'll favor
  1664   // expansion over collection.  (This might change in the future if we can
  1665   // do something smarter than full collection to satisfy a failed alloc.)
  1666   result = expand_and_allocate(word_size, context);
  1667   if (result != NULL) {
  1668     assert(*succeeded, "sanity");
  1669     return result;
  1672   // Expansion didn't work, we'll try to do a Full GC.
  1673   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1674                                     false, /* clear_all_soft_refs */
  1675                                     word_size);
  1676   if (!gc_succeeded) {
  1677     *succeeded = false;
  1678     return NULL;
  1681   // Retry the allocation
  1682   result = attempt_allocation_at_safepoint(word_size,
  1683                                            context,
  1684                                            true /* expect_null_mutator_alloc_region */);
  1685   if (result != NULL) {
  1686     assert(*succeeded, "sanity");
  1687     return result;
  1690   // Then, try a Full GC that will collect all soft references.
  1691   gc_succeeded = do_collection(false, /* explicit_gc */
  1692                                true,  /* clear_all_soft_refs */
  1693                                word_size);
  1694   if (!gc_succeeded) {
  1695     *succeeded = false;
  1696     return NULL;
  1699   // Retry the allocation once more
  1700   result = attempt_allocation_at_safepoint(word_size,
  1701                                            context,
  1702                                            true /* expect_null_mutator_alloc_region */);
  1703   if (result != NULL) {
  1704     assert(*succeeded, "sanity");
  1705     return result;
  1708   assert(!collector_policy()->should_clear_all_soft_refs(),
  1709          "Flag should have been handled and cleared prior to this point");
  1711   // What else?  We might try synchronous finalization later.  If the total
  1712   // space available is large enough for the allocation, then a more
  1713   // complete compaction phase than we've tried so far might be
  1714   // appropriate.
  1715   assert(*succeeded, "sanity");
  1716   return NULL;
  1719 // Attempting to expand the heap sufficiently
  1720 // to support an allocation of the given "word_size".  If
  1721 // successful, perform the allocation and return the address of the
  1722 // allocated block, or else "NULL".
  1724 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
  1725   assert_at_safepoint(true /* should_be_vm_thread */);
  1727   verify_region_sets_optional();
  1729   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1730   ergo_verbose1(ErgoHeapSizing,
  1731                 "attempt heap expansion",
  1732                 ergo_format_reason("allocation request failed")
  1733                 ergo_format_byte("allocation request"),
  1734                 word_size * HeapWordSize);
  1735   if (expand(expand_bytes)) {
  1736     _hrm.verify_optional();
  1737     verify_region_sets_optional();
  1738     return attempt_allocation_at_safepoint(word_size,
  1739                                            context,
  1740                                            false /* expect_null_mutator_alloc_region */);
  1742   return NULL;
  1745 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1746   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1747   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1748                                        HeapRegion::GrainBytes);
  1749   ergo_verbose2(ErgoHeapSizing,
  1750                 "expand the heap",
  1751                 ergo_format_byte("requested expansion amount")
  1752                 ergo_format_byte("attempted expansion amount"),
  1753                 expand_bytes, aligned_expand_bytes);
  1755   if (is_maximal_no_gc()) {
  1756     ergo_verbose0(ErgoHeapSizing,
  1757                       "did not expand the heap",
  1758                       ergo_format_reason("heap already fully expanded"));
  1759     return false;
  1762   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1763   assert(regions_to_expand > 0, "Must expand by at least one region");
  1765   uint expanded_by = _hrm.expand_by(regions_to_expand);
  1767   if (expanded_by > 0) {
  1768     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1769     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1770     g1_policy()->record_new_heap_size(num_regions());
  1771   } else {
  1772     ergo_verbose0(ErgoHeapSizing,
  1773                   "did not expand the heap",
  1774                   ergo_format_reason("heap expansion operation failed"));
  1775     // The expansion of the virtual storage space was unsuccessful.
  1776     // Let's see if it was because we ran out of swap.
  1777     if (G1ExitOnExpansionFailure &&
  1778         _hrm.available() >= regions_to_expand) {
  1779       // We had head room...
  1780       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1783   return regions_to_expand > 0;
  1786 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1787   size_t aligned_shrink_bytes =
  1788     ReservedSpace::page_align_size_down(shrink_bytes);
  1789   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1790                                          HeapRegion::GrainBytes);
  1791   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1793   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  1794   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1796   ergo_verbose3(ErgoHeapSizing,
  1797                 "shrink the heap",
  1798                 ergo_format_byte("requested shrinking amount")
  1799                 ergo_format_byte("aligned shrinking amount")
  1800                 ergo_format_byte("attempted shrinking amount"),
  1801                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1802   if (num_regions_removed > 0) {
  1803     g1_policy()->record_new_heap_size(num_regions());
  1804   } else {
  1805     ergo_verbose0(ErgoHeapSizing,
  1806                   "did not shrink the heap",
  1807                   ergo_format_reason("heap shrinking operation failed"));
  1811 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1812   verify_region_sets_optional();
  1814   // We should only reach here at the end of a Full GC which means we
  1815   // should not not be holding to any GC alloc regions. The method
  1816   // below will make sure of that and do any remaining clean up.
  1817   _allocator->abandon_gc_alloc_regions();
  1819   // Instead of tearing down / rebuilding the free lists here, we
  1820   // could instead use the remove_all_pending() method on free_list to
  1821   // remove only the ones that we need to remove.
  1822   tear_down_region_sets(true /* free_list_only */);
  1823   shrink_helper(shrink_bytes);
  1824   rebuild_region_sets(true /* free_list_only */);
  1826   _hrm.verify_optional();
  1827   verify_region_sets_optional();
  1830 // Public methods.
  1832 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1833 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1834 #endif // _MSC_VER
  1837 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1838   SharedHeap(policy_),
  1839   _g1_policy(policy_),
  1840   _dirty_card_queue_set(false),
  1841   _into_cset_dirty_card_queue_set(false),
  1842   _is_alive_closure_cm(this),
  1843   _is_alive_closure_stw(this),
  1844   _ref_processor_cm(NULL),
  1845   _ref_processor_stw(NULL),
  1846   _bot_shared(NULL),
  1847   _evac_failure_scan_stack(NULL),
  1848   _mark_in_progress(false),
  1849   _cg1r(NULL),
  1850   _g1mm(NULL),
  1851   _refine_cte_cl(NULL),
  1852   _full_collection(false),
  1853   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1854   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1855   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1856   _humongous_is_live(),
  1857   _has_humongous_reclaim_candidates(false),
  1858   _free_regions_coming(false),
  1859   _young_list(new YoungList(this)),
  1860   _gc_time_stamp(0),
  1861   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1862   _old_plab_stats(OldPLABSize, PLABWeight),
  1863   _expand_heap_after_alloc_failure(true),
  1864   _surviving_young_words(NULL),
  1865   _old_marking_cycles_started(0),
  1866   _old_marking_cycles_completed(0),
  1867   _concurrent_cycle_started(false),
  1868   _heap_summary_sent(false),
  1869   _in_cset_fast_test(),
  1870   _dirty_cards_region_list(NULL),
  1871   _worker_cset_start_region(NULL),
  1872   _worker_cset_start_region_time_stamp(NULL),
  1873   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1874   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1875   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1876   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1878   _g1h = this;
  1880   _allocator = G1Allocator::create_allocator(_g1h);
  1881   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1883   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1884   _task_queues = new RefToScanQueueSet(n_queues);
  1886   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1887   assert(n_rem_sets > 0, "Invariant.");
  1889   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1890   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
  1891   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1893   for (int i = 0; i < n_queues; i++) {
  1894     RefToScanQueue* q = new RefToScanQueue();
  1895     q->initialize();
  1896     _task_queues->register_queue(i, q);
  1897     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1899   clear_cset_start_regions();
  1901   // Initialize the G1EvacuationFailureALot counters and flags.
  1902   NOT_PRODUCT(reset_evacuation_should_fail();)
  1904   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1907 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
  1908                                                                  size_t size,
  1909                                                                  size_t translation_factor) {
  1910   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
  1911   // Allocate a new reserved space, preferring to use large pages.
  1912   ReservedSpace rs(size, preferred_page_size);
  1913   G1RegionToSpaceMapper* result  =
  1914     G1RegionToSpaceMapper::create_mapper(rs,
  1915                                          size,
  1916                                          rs.alignment(),
  1917                                          HeapRegion::GrainBytes,
  1918                                          translation_factor,
  1919                                          mtGC);
  1920   if (TracePageSizes) {
  1921     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
  1922                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
  1924   return result;
  1927 jint G1CollectedHeap::initialize() {
  1928   CollectedHeap::pre_initialize();
  1929   os::enable_vtime();
  1931   G1Log::init();
  1933   // Necessary to satisfy locking discipline assertions.
  1935   MutexLocker x(Heap_lock);
  1937   // We have to initialize the printer before committing the heap, as
  1938   // it will be used then.
  1939   _hr_printer.set_active(G1PrintHeapRegions);
  1941   // While there are no constraints in the GC code that HeapWordSize
  1942   // be any particular value, there are multiple other areas in the
  1943   // system which believe this to be true (e.g. oop->object_size in some
  1944   // cases incorrectly returns the size in wordSize units rather than
  1945   // HeapWordSize).
  1946   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1948   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1949   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1950   size_t heap_alignment = collector_policy()->heap_alignment();
  1952   // Ensure that the sizes are properly aligned.
  1953   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1954   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1955   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1957   _refine_cte_cl = new RefineCardTableEntryClosure();
  1959   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1961   // Reserve the maximum.
  1963   // When compressed oops are enabled, the preferred heap base
  1964   // is calculated by subtracting the requested size from the
  1965   // 32Gb boundary and using the result as the base address for
  1966   // heap reservation. If the requested size is not aligned to
  1967   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1968   // into the ReservedHeapSpace constructor) then the actual
  1969   // base of the reserved heap may end up differing from the
  1970   // address that was requested (i.e. the preferred heap base).
  1971   // If this happens then we could end up using a non-optimal
  1972   // compressed oops mode.
  1974   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1975                                                  heap_alignment);
  1977   // It is important to do this in a way such that concurrent readers can't
  1978   // temporarily think something is in the heap.  (I've actually seen this
  1979   // happen in asserts: DLD.)
  1980   _reserved.set_word_size(0);
  1981   _reserved.set_start((HeapWord*)heap_rs.base());
  1982   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1984   // Create the gen rem set (and barrier set) for the entire reserved region.
  1985   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1986   set_barrier_set(rem_set()->bs());
  1987   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1988     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1989     return JNI_ENOMEM;
  1992   // Also create a G1 rem set.
  1993   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1995   // Carve out the G1 part of the heap.
  1997   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  1998   G1RegionToSpaceMapper* heap_storage =
  1999     G1RegionToSpaceMapper::create_mapper(g1_rs,
  2000                                          g1_rs.size(),
  2001                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
  2002                                          HeapRegion::GrainBytes,
  2003                                          1,
  2004                                          mtJavaHeap);
  2005   heap_storage->set_mapping_changed_listener(&_listener);
  2007   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
  2008   G1RegionToSpaceMapper* bot_storage =
  2009     create_aux_memory_mapper("Block offset table",
  2010                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
  2011                              G1BlockOffsetSharedArray::N_bytes);
  2013   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  2014   G1RegionToSpaceMapper* cardtable_storage =
  2015     create_aux_memory_mapper("Card table",
  2016                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
  2017                              G1BlockOffsetSharedArray::N_bytes);
  2019   G1RegionToSpaceMapper* card_counts_storage =
  2020     create_aux_memory_mapper("Card counts table",
  2021                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
  2022                              G1BlockOffsetSharedArray::N_bytes);
  2024   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  2025   G1RegionToSpaceMapper* prev_bitmap_storage =
  2026     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
  2027   G1RegionToSpaceMapper* next_bitmap_storage =
  2028     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
  2030   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  2031   g1_barrier_set()->initialize(cardtable_storage);
  2032    // Do later initialization work for concurrent refinement.
  2033   _cg1r->init(card_counts_storage);
  2035   // 6843694 - ensure that the maximum region index can fit
  2036   // in the remembered set structures.
  2037   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2038   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2040   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2041   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2042   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2043             "too many cards per region");
  2045   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2047   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
  2049   _g1h = this;
  2051   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2052   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2054   // Create the ConcurrentMark data structure and thread.
  2055   // (Must do this late, so that "max_regions" is defined.)
  2056   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  2057   if (_cm == NULL || !_cm->completed_initialization()) {
  2058     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2059     return JNI_ENOMEM;
  2061   _cmThread = _cm->cmThread();
  2063   // Initialize the from_card cache structure of HeapRegionRemSet.
  2064   HeapRegionRemSet::init_heap(max_regions());
  2066   // Now expand into the initial heap size.
  2067   if (!expand(init_byte_size)) {
  2068     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2069     return JNI_ENOMEM;
  2072   // Perform any initialization actions delegated to the policy.
  2073   g1_policy()->init();
  2075   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2076                                                SATB_Q_FL_lock,
  2077                                                G1SATBProcessCompletedThreshold,
  2078                                                Shared_SATB_Q_lock);
  2080   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2081                                                 DirtyCardQ_CBL_mon,
  2082                                                 DirtyCardQ_FL_lock,
  2083                                                 concurrent_g1_refine()->yellow_zone(),
  2084                                                 concurrent_g1_refine()->red_zone(),
  2085                                                 Shared_DirtyCardQ_lock);
  2087   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2088                                     DirtyCardQ_CBL_mon,
  2089                                     DirtyCardQ_FL_lock,
  2090                                     -1, // never trigger processing
  2091                                     -1, // no limit on length
  2092                                     Shared_DirtyCardQ_lock,
  2093                                     &JavaThread::dirty_card_queue_set());
  2095   // Initialize the card queue set used to hold cards containing
  2096   // references into the collection set.
  2097   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2098                                              DirtyCardQ_CBL_mon,
  2099                                              DirtyCardQ_FL_lock,
  2100                                              -1, // never trigger processing
  2101                                              -1, // no limit on length
  2102                                              Shared_DirtyCardQ_lock,
  2103                                              &JavaThread::dirty_card_queue_set());
  2105   // In case we're keeping closure specialization stats, initialize those
  2106   // counts and that mechanism.
  2107   SpecializationStats::clear();
  2109   // Here we allocate the dummy HeapRegion that is required by the
  2110   // G1AllocRegion class.
  2111   HeapRegion* dummy_region = _hrm.get_dummy_region();
  2113   // We'll re-use the same region whether the alloc region will
  2114   // require BOT updates or not and, if it doesn't, then a non-young
  2115   // region will complain that it cannot support allocations without
  2116   // BOT updates. So we'll tag the dummy region as eden to avoid that.
  2117   dummy_region->set_eden();
  2118   // Make sure it's full.
  2119   dummy_region->set_top(dummy_region->end());
  2120   G1AllocRegion::setup(this, dummy_region);
  2122   _allocator->init_mutator_alloc_region();
  2124   // Do create of the monitoring and management support so that
  2125   // values in the heap have been properly initialized.
  2126   _g1mm = new G1MonitoringSupport(this);
  2128   G1StringDedup::initialize();
  2130   return JNI_OK;
  2133 void G1CollectedHeap::stop() {
  2134   // Stop all concurrent threads. We do this to make sure these threads
  2135   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2136   // that are destroyed during shutdown.
  2137   _cg1r->stop();
  2138   _cmThread->stop();
  2139   if (G1StringDedup::is_enabled()) {
  2140     G1StringDedup::stop();
  2144 void G1CollectedHeap::clear_humongous_is_live_table() {
  2145   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  2146   _humongous_is_live.clear();
  2149 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2150   return HeapRegion::max_region_size();
  2153 void G1CollectedHeap::ref_processing_init() {
  2154   // Reference processing in G1 currently works as follows:
  2155   //
  2156   // * There are two reference processor instances. One is
  2157   //   used to record and process discovered references
  2158   //   during concurrent marking; the other is used to
  2159   //   record and process references during STW pauses
  2160   //   (both full and incremental).
  2161   // * Both ref processors need to 'span' the entire heap as
  2162   //   the regions in the collection set may be dotted around.
  2163   //
  2164   // * For the concurrent marking ref processor:
  2165   //   * Reference discovery is enabled at initial marking.
  2166   //   * Reference discovery is disabled and the discovered
  2167   //     references processed etc during remarking.
  2168   //   * Reference discovery is MT (see below).
  2169   //   * Reference discovery requires a barrier (see below).
  2170   //   * Reference processing may or may not be MT
  2171   //     (depending on the value of ParallelRefProcEnabled
  2172   //     and ParallelGCThreads).
  2173   //   * A full GC disables reference discovery by the CM
  2174   //     ref processor and abandons any entries on it's
  2175   //     discovered lists.
  2176   //
  2177   // * For the STW processor:
  2178   //   * Non MT discovery is enabled at the start of a full GC.
  2179   //   * Processing and enqueueing during a full GC is non-MT.
  2180   //   * During a full GC, references are processed after marking.
  2181   //
  2182   //   * Discovery (may or may not be MT) is enabled at the start
  2183   //     of an incremental evacuation pause.
  2184   //   * References are processed near the end of a STW evacuation pause.
  2185   //   * For both types of GC:
  2186   //     * Discovery is atomic - i.e. not concurrent.
  2187   //     * Reference discovery will not need a barrier.
  2189   SharedHeap::ref_processing_init();
  2190   MemRegion mr = reserved_region();
  2192   // Concurrent Mark ref processor
  2193   _ref_processor_cm =
  2194     new ReferenceProcessor(mr,    // span
  2195                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2196                                 // mt processing
  2197                            (int) ParallelGCThreads,
  2198                                 // degree of mt processing
  2199                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2200                                 // mt discovery
  2201                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2202                                 // degree of mt discovery
  2203                            false,
  2204                                 // Reference discovery is not atomic
  2205                            &_is_alive_closure_cm);
  2206                                 // is alive closure
  2207                                 // (for efficiency/performance)
  2209   // STW ref processor
  2210   _ref_processor_stw =
  2211     new ReferenceProcessor(mr,    // span
  2212                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2213                                 // mt processing
  2214                            MAX2((int)ParallelGCThreads, 1),
  2215                                 // degree of mt processing
  2216                            (ParallelGCThreads > 1),
  2217                                 // mt discovery
  2218                            MAX2((int)ParallelGCThreads, 1),
  2219                                 // degree of mt discovery
  2220                            true,
  2221                                 // Reference discovery is atomic
  2222                            &_is_alive_closure_stw);
  2223                                 // is alive closure
  2224                                 // (for efficiency/performance)
  2227 size_t G1CollectedHeap::capacity() const {
  2228   return _hrm.length() * HeapRegion::GrainBytes;
  2231 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2232   assert(!hr->continuesHumongous(), "pre-condition");
  2233   hr->reset_gc_time_stamp();
  2234   if (hr->startsHumongous()) {
  2235     uint first_index = hr->hrm_index() + 1;
  2236     uint last_index = hr->last_hc_index();
  2237     for (uint i = first_index; i < last_index; i += 1) {
  2238       HeapRegion* chr = region_at(i);
  2239       assert(chr->continuesHumongous(), "sanity");
  2240       chr->reset_gc_time_stamp();
  2245 #ifndef PRODUCT
  2246 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2247 private:
  2248   unsigned _gc_time_stamp;
  2249   bool _failures;
  2251 public:
  2252   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2253     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2255   virtual bool doHeapRegion(HeapRegion* hr) {
  2256     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2257     if (_gc_time_stamp != region_gc_time_stamp) {
  2258       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2259                              "expected %d", HR_FORMAT_PARAMS(hr),
  2260                              region_gc_time_stamp, _gc_time_stamp);
  2261       _failures = true;
  2263     return false;
  2266   bool failures() { return _failures; }
  2267 };
  2269 void G1CollectedHeap::check_gc_time_stamps() {
  2270   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2271   heap_region_iterate(&cl);
  2272   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2274 #endif // PRODUCT
  2276 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2277                                                  DirtyCardQueue* into_cset_dcq,
  2278                                                  bool concurrent,
  2279                                                  uint worker_i) {
  2280   // Clean cards in the hot card cache
  2281   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2282   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2284   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2285   size_t n_completed_buffers = 0;
  2286   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2287     n_completed_buffers++;
  2289   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
  2290   dcqs.clear_n_completed_buffers();
  2291   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2295 // Computes the sum of the storage used by the various regions.
  2296 size_t G1CollectedHeap::used() const {
  2297   return _allocator->used();
  2300 size_t G1CollectedHeap::used_unlocked() const {
  2301   return _allocator->used_unlocked();
  2304 class SumUsedClosure: public HeapRegionClosure {
  2305   size_t _used;
  2306 public:
  2307   SumUsedClosure() : _used(0) {}
  2308   bool doHeapRegion(HeapRegion* r) {
  2309     if (!r->continuesHumongous()) {
  2310       _used += r->used();
  2312     return false;
  2314   size_t result() { return _used; }
  2315 };
  2317 size_t G1CollectedHeap::recalculate_used() const {
  2318   double recalculate_used_start = os::elapsedTime();
  2320   SumUsedClosure blk;
  2321   heap_region_iterate(&blk);
  2323   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2324   return blk.result();
  2327 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2328   switch (cause) {
  2329     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2330     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2331     case GCCause::_g1_humongous_allocation: return true;
  2332     case GCCause::_update_allocation_context_stats_inc: return true;
  2333     default:                                return false;
  2337 #ifndef PRODUCT
  2338 void G1CollectedHeap::allocate_dummy_regions() {
  2339   // Let's fill up most of the region
  2340   size_t word_size = HeapRegion::GrainWords - 1024;
  2341   // And as a result the region we'll allocate will be humongous.
  2342   guarantee(isHumongous(word_size), "sanity");
  2344   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2345     // Let's use the existing mechanism for the allocation
  2346     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
  2347                                                  AllocationContext::system());
  2348     if (dummy_obj != NULL) {
  2349       MemRegion mr(dummy_obj, word_size);
  2350       CollectedHeap::fill_with_object(mr);
  2351     } else {
  2352       // If we can't allocate once, we probably cannot allocate
  2353       // again. Let's get out of the loop.
  2354       break;
  2358 #endif // !PRODUCT
  2360 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2361   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2362     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2363     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2364     _old_marking_cycles_started, _old_marking_cycles_completed));
  2366   _old_marking_cycles_started++;
  2369 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2370   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2372   // We assume that if concurrent == true, then the caller is a
  2373   // concurrent thread that was joined the Suspendible Thread
  2374   // Set. If there's ever a cheap way to check this, we should add an
  2375   // assert here.
  2377   // Given that this method is called at the end of a Full GC or of a
  2378   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2379   // interrupt a concurrent cycle), the number of full collections
  2380   // completed should be either one (in the case where there was no
  2381   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2382   // behind the number of full collections started.
  2384   // This is the case for the inner caller, i.e. a Full GC.
  2385   assert(concurrent ||
  2386          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2387          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2388          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2389                  "is inconsistent with _old_marking_cycles_completed = %u",
  2390                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2392   // This is the case for the outer caller, i.e. the concurrent cycle.
  2393   assert(!concurrent ||
  2394          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2395          err_msg("for outer caller (concurrent cycle): "
  2396                  "_old_marking_cycles_started = %u "
  2397                  "is inconsistent with _old_marking_cycles_completed = %u",
  2398                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2400   _old_marking_cycles_completed += 1;
  2402   // We need to clear the "in_progress" flag in the CM thread before
  2403   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2404   // is set) so that if a waiter requests another System.gc() it doesn't
  2405   // incorrectly see that a marking cycle is still in progress.
  2406   if (concurrent) {
  2407     _cmThread->clear_in_progress();
  2410   // This notify_all() will ensure that a thread that called
  2411   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2412   // and it's waiting for a full GC to finish will be woken up. It is
  2413   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2414   FullGCCount_lock->notify_all();
  2417 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2418   _concurrent_cycle_started = true;
  2419   _gc_timer_cm->register_gc_start(start_time);
  2421   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2422   trace_heap_before_gc(_gc_tracer_cm);
  2425 void G1CollectedHeap::register_concurrent_cycle_end() {
  2426   if (_concurrent_cycle_started) {
  2427     if (_cm->has_aborted()) {
  2428       _gc_tracer_cm->report_concurrent_mode_failure();
  2431     _gc_timer_cm->register_gc_end();
  2432     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2434     // Clear state variables to prepare for the next concurrent cycle.
  2435     _concurrent_cycle_started = false;
  2436     _heap_summary_sent = false;
  2440 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2441   if (_concurrent_cycle_started) {
  2442     // This function can be called when:
  2443     //  the cleanup pause is run
  2444     //  the concurrent cycle is aborted before the cleanup pause.
  2445     //  the concurrent cycle is aborted after the cleanup pause,
  2446     //   but before the concurrent cycle end has been registered.
  2447     // Make sure that we only send the heap information once.
  2448     if (!_heap_summary_sent) {
  2449       trace_heap_after_gc(_gc_tracer_cm);
  2450       _heap_summary_sent = true;
  2455 G1YCType G1CollectedHeap::yc_type() {
  2456   bool is_young = g1_policy()->gcs_are_young();
  2457   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2458   bool is_during_mark = mark_in_progress();
  2460   if (is_initial_mark) {
  2461     return InitialMark;
  2462   } else if (is_during_mark) {
  2463     return DuringMark;
  2464   } else if (is_young) {
  2465     return Normal;
  2466   } else {
  2467     return Mixed;
  2471 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2472   assert_heap_not_locked();
  2474   uint gc_count_before;
  2475   uint old_marking_count_before;
  2476   uint full_gc_count_before;
  2477   bool retry_gc;
  2479   do {
  2480     retry_gc = false;
  2483       MutexLocker ml(Heap_lock);
  2485       // Read the GC count while holding the Heap_lock
  2486       gc_count_before = total_collections();
  2487       full_gc_count_before = total_full_collections();
  2488       old_marking_count_before = _old_marking_cycles_started;
  2491     if (should_do_concurrent_full_gc(cause)) {
  2492       // Schedule an initial-mark evacuation pause that will start a
  2493       // concurrent cycle. We're setting word_size to 0 which means that
  2494       // we are not requesting a post-GC allocation.
  2495       VM_G1IncCollectionPause op(gc_count_before,
  2496                                  0,     /* word_size */
  2497                                  true,  /* should_initiate_conc_mark */
  2498                                  g1_policy()->max_pause_time_ms(),
  2499                                  cause);
  2500       op.set_allocation_context(AllocationContext::current());
  2502       VMThread::execute(&op);
  2503       if (!op.pause_succeeded()) {
  2504         if (old_marking_count_before == _old_marking_cycles_started) {
  2505           retry_gc = op.should_retry_gc();
  2506         } else {
  2507           // A Full GC happened while we were trying to schedule the
  2508           // initial-mark GC. No point in starting a new cycle given
  2509           // that the whole heap was collected anyway.
  2512         if (retry_gc) {
  2513           if (GC_locker::is_active_and_needs_gc()) {
  2514             GC_locker::stall_until_clear();
  2518     } else {
  2519       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
  2520           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2522         // Schedule a standard evacuation pause. We're setting word_size
  2523         // to 0 which means that we are not requesting a post-GC allocation.
  2524         VM_G1IncCollectionPause op(gc_count_before,
  2525                                    0,     /* word_size */
  2526                                    false, /* should_initiate_conc_mark */
  2527                                    g1_policy()->max_pause_time_ms(),
  2528                                    cause);
  2529         VMThread::execute(&op);
  2530       } else {
  2531         // Schedule a Full GC.
  2532         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2533         VMThread::execute(&op);
  2536   } while (retry_gc);
  2539 bool G1CollectedHeap::is_in(const void* p) const {
  2540   if (_hrm.reserved().contains(p)) {
  2541     // Given that we know that p is in the reserved space,
  2542     // heap_region_containing_raw() should successfully
  2543     // return the containing region.
  2544     HeapRegion* hr = heap_region_containing_raw(p);
  2545     return hr->is_in(p);
  2546   } else {
  2547     return false;
  2551 #ifdef ASSERT
  2552 bool G1CollectedHeap::is_in_exact(const void* p) const {
  2553   bool contains = reserved_region().contains(p);
  2554   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  2555   if (contains && available) {
  2556     return true;
  2557   } else {
  2558     return false;
  2561 #endif
  2563 // Iteration functions.
  2565 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2567 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2568   ExtendedOopClosure* _cl;
  2569 public:
  2570   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2571   bool doHeapRegion(HeapRegion* r) {
  2572     if (!r->continuesHumongous()) {
  2573       r->oop_iterate(_cl);
  2575     return false;
  2577 };
  2579 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2580   IterateOopClosureRegionClosure blk(cl);
  2581   heap_region_iterate(&blk);
  2584 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2586 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2587   ObjectClosure* _cl;
  2588 public:
  2589   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2590   bool doHeapRegion(HeapRegion* r) {
  2591     if (! r->continuesHumongous()) {
  2592       r->object_iterate(_cl);
  2594     return false;
  2596 };
  2598 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2599   IterateObjectClosureRegionClosure blk(cl);
  2600   heap_region_iterate(&blk);
  2603 // Calls a SpaceClosure on a HeapRegion.
  2605 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2606   SpaceClosure* _cl;
  2607 public:
  2608   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2609   bool doHeapRegion(HeapRegion* r) {
  2610     _cl->do_space(r);
  2611     return false;
  2613 };
  2615 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2616   SpaceClosureRegionClosure blk(cl);
  2617   heap_region_iterate(&blk);
  2620 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2621   _hrm.iterate(cl);
  2624 void
  2625 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2626                                                  uint worker_id,
  2627                                                  uint num_workers,
  2628                                                  jint claim_value) const {
  2629   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
  2632 class ResetClaimValuesClosure: public HeapRegionClosure {
  2633 public:
  2634   bool doHeapRegion(HeapRegion* r) {
  2635     r->set_claim_value(HeapRegion::InitialClaimValue);
  2636     return false;
  2638 };
  2640 void G1CollectedHeap::reset_heap_region_claim_values() {
  2641   ResetClaimValuesClosure blk;
  2642   heap_region_iterate(&blk);
  2645 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2646   ResetClaimValuesClosure blk;
  2647   collection_set_iterate(&blk);
  2650 #ifdef ASSERT
  2651 // This checks whether all regions in the heap have the correct claim
  2652 // value. I also piggy-backed on this a check to ensure that the
  2653 // humongous_start_region() information on "continues humongous"
  2654 // regions is correct.
  2656 class CheckClaimValuesClosure : public HeapRegionClosure {
  2657 private:
  2658   jint _claim_value;
  2659   uint _failures;
  2660   HeapRegion* _sh_region;
  2662 public:
  2663   CheckClaimValuesClosure(jint claim_value) :
  2664     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2665   bool doHeapRegion(HeapRegion* r) {
  2666     if (r->claim_value() != _claim_value) {
  2667       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2668                              "claim value = %d, should be %d",
  2669                              HR_FORMAT_PARAMS(r),
  2670                              r->claim_value(), _claim_value);
  2671       ++_failures;
  2673     if (!r->isHumongous()) {
  2674       _sh_region = NULL;
  2675     } else if (r->startsHumongous()) {
  2676       _sh_region = r;
  2677     } else if (r->continuesHumongous()) {
  2678       if (r->humongous_start_region() != _sh_region) {
  2679         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2680                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2681                                HR_FORMAT_PARAMS(r),
  2682                                r->humongous_start_region(),
  2683                                _sh_region);
  2684         ++_failures;
  2687     return false;
  2689   uint failures() { return _failures; }
  2690 };
  2692 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2693   CheckClaimValuesClosure cl(claim_value);
  2694   heap_region_iterate(&cl);
  2695   return cl.failures() == 0;
  2698 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2699 private:
  2700   jint _claim_value;
  2701   uint _failures;
  2703 public:
  2704   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2705     _claim_value(claim_value), _failures(0) { }
  2707   uint failures() { return _failures; }
  2709   bool doHeapRegion(HeapRegion* hr) {
  2710     assert(hr->in_collection_set(), "how?");
  2711     assert(!hr->isHumongous(), "H-region in CSet");
  2712     if (hr->claim_value() != _claim_value) {
  2713       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2714                              "claim value = %d, should be %d",
  2715                              HR_FORMAT_PARAMS(hr),
  2716                              hr->claim_value(), _claim_value);
  2717       _failures += 1;
  2719     return false;
  2721 };
  2723 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2724   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2725   collection_set_iterate(&cl);
  2726   return cl.failures() == 0;
  2728 #endif // ASSERT
  2730 // Clear the cached CSet starting regions and (more importantly)
  2731 // the time stamps. Called when we reset the GC time stamp.
  2732 void G1CollectedHeap::clear_cset_start_regions() {
  2733   assert(_worker_cset_start_region != NULL, "sanity");
  2734   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2736   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2737   for (int i = 0; i < n_queues; i++) {
  2738     _worker_cset_start_region[i] = NULL;
  2739     _worker_cset_start_region_time_stamp[i] = 0;
  2743 // Given the id of a worker, obtain or calculate a suitable
  2744 // starting region for iterating over the current collection set.
  2745 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2746   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2748   HeapRegion* result = NULL;
  2749   unsigned gc_time_stamp = get_gc_time_stamp();
  2751   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2752     // Cached starting region for current worker was set
  2753     // during the current pause - so it's valid.
  2754     // Note: the cached starting heap region may be NULL
  2755     // (when the collection set is empty).
  2756     result = _worker_cset_start_region[worker_i];
  2757     assert(result == NULL || result->in_collection_set(), "sanity");
  2758     return result;
  2761   // The cached entry was not valid so let's calculate
  2762   // a suitable starting heap region for this worker.
  2764   // We want the parallel threads to start their collection
  2765   // set iteration at different collection set regions to
  2766   // avoid contention.
  2767   // If we have:
  2768   //          n collection set regions
  2769   //          p threads
  2770   // Then thread t will start at region floor ((t * n) / p)
  2772   result = g1_policy()->collection_set();
  2773   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2774     uint cs_size = g1_policy()->cset_region_length();
  2775     uint active_workers = workers()->active_workers();
  2776     assert(UseDynamicNumberOfGCThreads ||
  2777              active_workers == workers()->total_workers(),
  2778              "Unless dynamic should use total workers");
  2780     uint end_ind   = (cs_size * worker_i) / active_workers;
  2781     uint start_ind = 0;
  2783     if (worker_i > 0 &&
  2784         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2785       // Previous workers starting region is valid
  2786       // so let's iterate from there
  2787       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2788       result = _worker_cset_start_region[worker_i - 1];
  2791     for (uint i = start_ind; i < end_ind; i++) {
  2792       result = result->next_in_collection_set();
  2796   // Note: the calculated starting heap region may be NULL
  2797   // (when the collection set is empty).
  2798   assert(result == NULL || result->in_collection_set(), "sanity");
  2799   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2800          "should be updated only once per pause");
  2801   _worker_cset_start_region[worker_i] = result;
  2802   OrderAccess::storestore();
  2803   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2804   return result;
  2807 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2808   HeapRegion* r = g1_policy()->collection_set();
  2809   while (r != NULL) {
  2810     HeapRegion* next = r->next_in_collection_set();
  2811     if (cl->doHeapRegion(r)) {
  2812       cl->incomplete();
  2813       return;
  2815     r = next;
  2819 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2820                                                   HeapRegionClosure *cl) {
  2821   if (r == NULL) {
  2822     // The CSet is empty so there's nothing to do.
  2823     return;
  2826   assert(r->in_collection_set(),
  2827          "Start region must be a member of the collection set.");
  2828   HeapRegion* cur = r;
  2829   while (cur != NULL) {
  2830     HeapRegion* next = cur->next_in_collection_set();
  2831     if (cl->doHeapRegion(cur) && false) {
  2832       cl->incomplete();
  2833       return;
  2835     cur = next;
  2837   cur = g1_policy()->collection_set();
  2838   while (cur != r) {
  2839     HeapRegion* next = cur->next_in_collection_set();
  2840     if (cl->doHeapRegion(cur) && false) {
  2841       cl->incomplete();
  2842       return;
  2844     cur = next;
  2848 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2849   HeapRegion* result = _hrm.next_region_in_heap(from);
  2850   while (result != NULL && result->isHumongous()) {
  2851     result = _hrm.next_region_in_heap(result);
  2853   return result;
  2856 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2857   return heap_region_containing(addr);
  2860 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2861   Space* sp = space_containing(addr);
  2862   return sp->block_start(addr);
  2865 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2866   Space* sp = space_containing(addr);
  2867   return sp->block_size(addr);
  2870 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2871   Space* sp = space_containing(addr);
  2872   return sp->block_is_obj(addr);
  2875 bool G1CollectedHeap::supports_tlab_allocation() const {
  2876   return true;
  2879 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2880   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2883 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2884   return young_list()->eden_used_bytes();
  2887 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2888 // must be smaller than the humongous object limit.
  2889 size_t G1CollectedHeap::max_tlab_size() const {
  2890   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2893 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2894   // Return the remaining space in the cur alloc region, but not less than
  2895   // the min TLAB size.
  2897   // Also, this value can be at most the humongous object threshold,
  2898   // since we can't allow tlabs to grow big enough to accommodate
  2899   // humongous objects.
  2901   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
  2902   size_t max_tlab = max_tlab_size() * wordSize;
  2903   if (hr == NULL) {
  2904     return max_tlab;
  2905   } else {
  2906     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2910 size_t G1CollectedHeap::max_capacity() const {
  2911   return _hrm.reserved().byte_size();
  2914 jlong G1CollectedHeap::millis_since_last_gc() {
  2915   // assert(false, "NYI");
  2916   return 0;
  2919 void G1CollectedHeap::prepare_for_verify() {
  2920   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2921     ensure_parsability(false);
  2923   g1_rem_set()->prepare_for_verify();
  2926 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2927                                               VerifyOption vo) {
  2928   switch (vo) {
  2929   case VerifyOption_G1UsePrevMarking:
  2930     return hr->obj_allocated_since_prev_marking(obj);
  2931   case VerifyOption_G1UseNextMarking:
  2932     return hr->obj_allocated_since_next_marking(obj);
  2933   case VerifyOption_G1UseMarkWord:
  2934     return false;
  2935   default:
  2936     ShouldNotReachHere();
  2938   return false; // keep some compilers happy
  2941 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2942   switch (vo) {
  2943   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2944   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2945   case VerifyOption_G1UseMarkWord:    return NULL;
  2946   default:                            ShouldNotReachHere();
  2948   return NULL; // keep some compilers happy
  2951 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2952   switch (vo) {
  2953   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2954   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2955   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2956   default:                            ShouldNotReachHere();
  2958   return false; // keep some compilers happy
  2961 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2962   switch (vo) {
  2963   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2964   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2965   case VerifyOption_G1UseMarkWord:    return "NONE";
  2966   default:                            ShouldNotReachHere();
  2968   return NULL; // keep some compilers happy
  2971 class VerifyRootsClosure: public OopClosure {
  2972 private:
  2973   G1CollectedHeap* _g1h;
  2974   VerifyOption     _vo;
  2975   bool             _failures;
  2976 public:
  2977   // _vo == UsePrevMarking -> use "prev" marking information,
  2978   // _vo == UseNextMarking -> use "next" marking information,
  2979   // _vo == UseMarkWord    -> use mark word from object header.
  2980   VerifyRootsClosure(VerifyOption vo) :
  2981     _g1h(G1CollectedHeap::heap()),
  2982     _vo(vo),
  2983     _failures(false) { }
  2985   bool failures() { return _failures; }
  2987   template <class T> void do_oop_nv(T* p) {
  2988     T heap_oop = oopDesc::load_heap_oop(p);
  2989     if (!oopDesc::is_null(heap_oop)) {
  2990       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2991       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2992         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2993                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2994         if (_vo == VerifyOption_G1UseMarkWord) {
  2995           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2997         obj->print_on(gclog_or_tty);
  2998         _failures = true;
  3003   void do_oop(oop* p)       { do_oop_nv(p); }
  3004   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3005 };
  3007 class G1VerifyCodeRootOopClosure: public OopClosure {
  3008   G1CollectedHeap* _g1h;
  3009   OopClosure* _root_cl;
  3010   nmethod* _nm;
  3011   VerifyOption _vo;
  3012   bool _failures;
  3014   template <class T> void do_oop_work(T* p) {
  3015     // First verify that this root is live
  3016     _root_cl->do_oop(p);
  3018     if (!G1VerifyHeapRegionCodeRoots) {
  3019       // We're not verifying the code roots attached to heap region.
  3020       return;
  3023     // Don't check the code roots during marking verification in a full GC
  3024     if (_vo == VerifyOption_G1UseMarkWord) {
  3025       return;
  3028     // Now verify that the current nmethod (which contains p) is
  3029     // in the code root list of the heap region containing the
  3030     // object referenced by p.
  3032     T heap_oop = oopDesc::load_heap_oop(p);
  3033     if (!oopDesc::is_null(heap_oop)) {
  3034       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3036       // Now fetch the region containing the object
  3037       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3038       HeapRegionRemSet* hrrs = hr->rem_set();
  3039       // Verify that the strong code root list for this region
  3040       // contains the nmethod
  3041       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3042         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3043                               "from nmethod "PTR_FORMAT" not in strong "
  3044                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3045                               p, _nm, hr->bottom(), hr->end());
  3046         _failures = true;
  3051 public:
  3052   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3053     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3055   void do_oop(oop* p) { do_oop_work(p); }
  3056   void do_oop(narrowOop* p) { do_oop_work(p); }
  3058   void set_nmethod(nmethod* nm) { _nm = nm; }
  3059   bool failures() { return _failures; }
  3060 };
  3062 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3063   G1VerifyCodeRootOopClosure* _oop_cl;
  3065 public:
  3066   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3067     _oop_cl(oop_cl) {}
  3069   void do_code_blob(CodeBlob* cb) {
  3070     nmethod* nm = cb->as_nmethod_or_null();
  3071     if (nm != NULL) {
  3072       _oop_cl->set_nmethod(nm);
  3073       nm->oops_do(_oop_cl);
  3076 };
  3078 class YoungRefCounterClosure : public OopClosure {
  3079   G1CollectedHeap* _g1h;
  3080   int              _count;
  3081  public:
  3082   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3083   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3084   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3086   int count() { return _count; }
  3087   void reset_count() { _count = 0; };
  3088 };
  3090 class VerifyKlassClosure: public KlassClosure {
  3091   YoungRefCounterClosure _young_ref_counter_closure;
  3092   OopClosure *_oop_closure;
  3093  public:
  3094   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3095   void do_klass(Klass* k) {
  3096     k->oops_do(_oop_closure);
  3098     _young_ref_counter_closure.reset_count();
  3099     k->oops_do(&_young_ref_counter_closure);
  3100     if (_young_ref_counter_closure.count() > 0) {
  3101       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3104 };
  3106 class VerifyLivenessOopClosure: public OopClosure {
  3107   G1CollectedHeap* _g1h;
  3108   VerifyOption _vo;
  3109 public:
  3110   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3111     _g1h(g1h), _vo(vo)
  3112   { }
  3113   void do_oop(narrowOop *p) { do_oop_work(p); }
  3114   void do_oop(      oop *p) { do_oop_work(p); }
  3116   template <class T> void do_oop_work(T *p) {
  3117     oop obj = oopDesc::load_decode_heap_oop(p);
  3118     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3119               "Dead object referenced by a not dead object");
  3121 };
  3123 class VerifyObjsInRegionClosure: public ObjectClosure {
  3124 private:
  3125   G1CollectedHeap* _g1h;
  3126   size_t _live_bytes;
  3127   HeapRegion *_hr;
  3128   VerifyOption _vo;
  3129 public:
  3130   // _vo == UsePrevMarking -> use "prev" marking information,
  3131   // _vo == UseNextMarking -> use "next" marking information,
  3132   // _vo == UseMarkWord    -> use mark word from object header.
  3133   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3134     : _live_bytes(0), _hr(hr), _vo(vo) {
  3135     _g1h = G1CollectedHeap::heap();
  3137   void do_object(oop o) {
  3138     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3139     assert(o != NULL, "Huh?");
  3140     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3141       // If the object is alive according to the mark word,
  3142       // then verify that the marking information agrees.
  3143       // Note we can't verify the contra-positive of the
  3144       // above: if the object is dead (according to the mark
  3145       // word), it may not be marked, or may have been marked
  3146       // but has since became dead, or may have been allocated
  3147       // since the last marking.
  3148       if (_vo == VerifyOption_G1UseMarkWord) {
  3149         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3152       o->oop_iterate_no_header(&isLive);
  3153       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3154         size_t obj_size = o->size();    // Make sure we don't overflow
  3155         _live_bytes += (obj_size * HeapWordSize);
  3159   size_t live_bytes() { return _live_bytes; }
  3160 };
  3162 class PrintObjsInRegionClosure : public ObjectClosure {
  3163   HeapRegion *_hr;
  3164   G1CollectedHeap *_g1;
  3165 public:
  3166   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3167     _g1 = G1CollectedHeap::heap();
  3168   };
  3170   void do_object(oop o) {
  3171     if (o != NULL) {
  3172       HeapWord *start = (HeapWord *) o;
  3173       size_t word_sz = o->size();
  3174       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3175                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3176                           (void*) o, word_sz,
  3177                           _g1->isMarkedPrev(o),
  3178                           _g1->isMarkedNext(o),
  3179                           _hr->obj_allocated_since_prev_marking(o));
  3180       HeapWord *end = start + word_sz;
  3181       HeapWord *cur;
  3182       int *val;
  3183       for (cur = start; cur < end; cur++) {
  3184         val = (int *) cur;
  3185         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3189 };
  3191 class VerifyRegionClosure: public HeapRegionClosure {
  3192 private:
  3193   bool             _par;
  3194   VerifyOption     _vo;
  3195   bool             _failures;
  3196 public:
  3197   // _vo == UsePrevMarking -> use "prev" marking information,
  3198   // _vo == UseNextMarking -> use "next" marking information,
  3199   // _vo == UseMarkWord    -> use mark word from object header.
  3200   VerifyRegionClosure(bool par, VerifyOption vo)
  3201     : _par(par),
  3202       _vo(vo),
  3203       _failures(false) {}
  3205   bool failures() {
  3206     return _failures;
  3209   bool doHeapRegion(HeapRegion* r) {
  3210     if (!r->continuesHumongous()) {
  3211       bool failures = false;
  3212       r->verify(_vo, &failures);
  3213       if (failures) {
  3214         _failures = true;
  3215       } else {
  3216         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3217         r->object_iterate(&not_dead_yet_cl);
  3218         if (_vo != VerifyOption_G1UseNextMarking) {
  3219           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3220             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3221                                    "max_live_bytes "SIZE_FORMAT" "
  3222                                    "< calculated "SIZE_FORMAT,
  3223                                    r->bottom(), r->end(),
  3224                                    r->max_live_bytes(),
  3225                                  not_dead_yet_cl.live_bytes());
  3226             _failures = true;
  3228         } else {
  3229           // When vo == UseNextMarking we cannot currently do a sanity
  3230           // check on the live bytes as the calculation has not been
  3231           // finalized yet.
  3235     return false; // stop the region iteration if we hit a failure
  3237 };
  3239 // This is the task used for parallel verification of the heap regions
  3241 class G1ParVerifyTask: public AbstractGangTask {
  3242 private:
  3243   G1CollectedHeap* _g1h;
  3244   VerifyOption     _vo;
  3245   bool             _failures;
  3247 public:
  3248   // _vo == UsePrevMarking -> use "prev" marking information,
  3249   // _vo == UseNextMarking -> use "next" marking information,
  3250   // _vo == UseMarkWord    -> use mark word from object header.
  3251   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3252     AbstractGangTask("Parallel verify task"),
  3253     _g1h(g1h),
  3254     _vo(vo),
  3255     _failures(false) { }
  3257   bool failures() {
  3258     return _failures;
  3261   void work(uint worker_id) {
  3262     HandleMark hm;
  3263     VerifyRegionClosure blk(true, _vo);
  3264     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3265                                           _g1h->workers()->active_workers(),
  3266                                           HeapRegion::ParVerifyClaimValue);
  3267     if (blk.failures()) {
  3268       _failures = true;
  3271 };
  3273 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3274   if (SafepointSynchronize::is_at_safepoint()) {
  3275     assert(Thread::current()->is_VM_thread(),
  3276            "Expected to be executed serially by the VM thread at this point");
  3278     if (!silent) { gclog_or_tty->print("Roots "); }
  3279     VerifyRootsClosure rootsCl(vo);
  3280     VerifyKlassClosure klassCl(this, &rootsCl);
  3281     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3283     // We apply the relevant closures to all the oops in the
  3284     // system dictionary, class loader data graph, the string table
  3285     // and the nmethods in the code cache.
  3286     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3287     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3290       G1RootProcessor root_processor(this);
  3291       root_processor.process_all_roots(&rootsCl,
  3292                                        &cldCl,
  3293                                        &blobsCl);
  3296     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3298     if (vo != VerifyOption_G1UseMarkWord) {
  3299       // If we're verifying during a full GC then the region sets
  3300       // will have been torn down at the start of the GC. Therefore
  3301       // verifying the region sets will fail. So we only verify
  3302       // the region sets when not in a full GC.
  3303       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3304       verify_region_sets();
  3307     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3308     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3309       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3310              "sanity check");
  3312       G1ParVerifyTask task(this, vo);
  3313       assert(UseDynamicNumberOfGCThreads ||
  3314         workers()->active_workers() == workers()->total_workers(),
  3315         "If not dynamic should be using all the workers");
  3316       int n_workers = workers()->active_workers();
  3317       set_par_threads(n_workers);
  3318       workers()->run_task(&task);
  3319       set_par_threads(0);
  3320       if (task.failures()) {
  3321         failures = true;
  3324       // Checks that the expected amount of parallel work was done.
  3325       // The implication is that n_workers is > 0.
  3326       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3327              "sanity check");
  3329       reset_heap_region_claim_values();
  3331       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3332              "sanity check");
  3333     } else {
  3334       VerifyRegionClosure blk(false, vo);
  3335       heap_region_iterate(&blk);
  3336       if (blk.failures()) {
  3337         failures = true;
  3340     if (!silent) gclog_or_tty->print("RemSet ");
  3341     rem_set()->verify();
  3343     if (G1StringDedup::is_enabled()) {
  3344       if (!silent) gclog_or_tty->print("StrDedup ");
  3345       G1StringDedup::verify();
  3348     if (failures) {
  3349       gclog_or_tty->print_cr("Heap:");
  3350       // It helps to have the per-region information in the output to
  3351       // help us track down what went wrong. This is why we call
  3352       // print_extended_on() instead of print_on().
  3353       print_extended_on(gclog_or_tty);
  3354       gclog_or_tty->cr();
  3355 #ifndef PRODUCT
  3356       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3357         concurrent_mark()->print_reachable("at-verification-failure",
  3358                                            vo, false /* all */);
  3360 #endif
  3361       gclog_or_tty->flush();
  3363     guarantee(!failures, "there should not have been any failures");
  3364   } else {
  3365     if (!silent) {
  3366       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3367       if (G1StringDedup::is_enabled()) {
  3368         gclog_or_tty->print(", StrDedup");
  3370       gclog_or_tty->print(") ");
  3375 void G1CollectedHeap::verify(bool silent) {
  3376   verify(silent, VerifyOption_G1UsePrevMarking);
  3379 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3380   double verify_time_ms = 0.0;
  3382   if (guard && total_collections() >= VerifyGCStartAt) {
  3383     double verify_start = os::elapsedTime();
  3384     HandleMark hm;  // Discard invalid handles created during verification
  3385     prepare_for_verify();
  3386     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3387     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3390   return verify_time_ms;
  3393 void G1CollectedHeap::verify_before_gc() {
  3394   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3395   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3398 void G1CollectedHeap::verify_after_gc() {
  3399   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3400   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3403 class PrintRegionClosure: public HeapRegionClosure {
  3404   outputStream* _st;
  3405 public:
  3406   PrintRegionClosure(outputStream* st) : _st(st) {}
  3407   bool doHeapRegion(HeapRegion* r) {
  3408     r->print_on(_st);
  3409     return false;
  3411 };
  3413 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3414                                        const HeapRegion* hr,
  3415                                        const VerifyOption vo) const {
  3416   switch (vo) {
  3417   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3418   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3419   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3420   default:                            ShouldNotReachHere();
  3422   return false; // keep some compilers happy
  3425 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3426                                        const VerifyOption vo) const {
  3427   switch (vo) {
  3428   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3429   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3430   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3431   default:                            ShouldNotReachHere();
  3433   return false; // keep some compilers happy
  3436 void G1CollectedHeap::print_on(outputStream* st) const {
  3437   st->print(" %-20s", "garbage-first heap");
  3438   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3439             capacity()/K, used_unlocked()/K);
  3440   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3441             _hrm.reserved().start(),
  3442             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
  3443             _hrm.reserved().end());
  3444   st->cr();
  3445   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3446   uint young_regions = _young_list->length();
  3447   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3448             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3449   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3450   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3451             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3452   st->cr();
  3453   MetaspaceAux::print_on(st);
  3456 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3457   print_on(st);
  3459   // Print the per-region information.
  3460   st->cr();
  3461   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3462                "HS=humongous(starts), HC=humongous(continues), "
  3463                "CS=collection set, F=free, TS=gc time stamp, "
  3464                "PTAMS=previous top-at-mark-start, "
  3465                "NTAMS=next top-at-mark-start)");
  3466   PrintRegionClosure blk(st);
  3467   heap_region_iterate(&blk);
  3470 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3471   this->CollectedHeap::print_on_error(st);
  3473   if (_cm != NULL) {
  3474     st->cr();
  3475     _cm->print_on_error(st);
  3479 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3480   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3481     workers()->print_worker_threads_on(st);
  3483   _cmThread->print_on(st);
  3484   st->cr();
  3485   _cm->print_worker_threads_on(st);
  3486   _cg1r->print_worker_threads_on(st);
  3487   if (G1StringDedup::is_enabled()) {
  3488     G1StringDedup::print_worker_threads_on(st);
  3492 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3493   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3494     workers()->threads_do(tc);
  3496   tc->do_thread(_cmThread);
  3497   _cg1r->threads_do(tc);
  3498   if (G1StringDedup::is_enabled()) {
  3499     G1StringDedup::threads_do(tc);
  3503 void G1CollectedHeap::print_tracing_info() const {
  3504   // We'll overload this to mean "trace GC pause statistics."
  3505   if (TraceGen0Time || TraceGen1Time) {
  3506     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3507     // to that.
  3508     g1_policy()->print_tracing_info();
  3510   if (G1SummarizeRSetStats) {
  3511     g1_rem_set()->print_summary_info();
  3513   if (G1SummarizeConcMark) {
  3514     concurrent_mark()->print_summary_info();
  3516   g1_policy()->print_yg_surv_rate_info();
  3517   SpecializationStats::print();
  3520 #ifndef PRODUCT
  3521 // Helpful for debugging RSet issues.
  3523 class PrintRSetsClosure : public HeapRegionClosure {
  3524 private:
  3525   const char* _msg;
  3526   size_t _occupied_sum;
  3528 public:
  3529   bool doHeapRegion(HeapRegion* r) {
  3530     HeapRegionRemSet* hrrs = r->rem_set();
  3531     size_t occupied = hrrs->occupied();
  3532     _occupied_sum += occupied;
  3534     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3535                            HR_FORMAT_PARAMS(r));
  3536     if (occupied == 0) {
  3537       gclog_or_tty->print_cr("  RSet is empty");
  3538     } else {
  3539       hrrs->print();
  3541     gclog_or_tty->print_cr("----------");
  3542     return false;
  3545   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3546     gclog_or_tty->cr();
  3547     gclog_or_tty->print_cr("========================================");
  3548     gclog_or_tty->print_cr("%s", msg);
  3549     gclog_or_tty->cr();
  3552   ~PrintRSetsClosure() {
  3553     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3554     gclog_or_tty->print_cr("========================================");
  3555     gclog_or_tty->cr();
  3557 };
  3559 void G1CollectedHeap::print_cset_rsets() {
  3560   PrintRSetsClosure cl("Printing CSet RSets");
  3561   collection_set_iterate(&cl);
  3564 void G1CollectedHeap::print_all_rsets() {
  3565   PrintRSetsClosure cl("Printing All RSets");;
  3566   heap_region_iterate(&cl);
  3568 #endif // PRODUCT
  3570 G1CollectedHeap* G1CollectedHeap::heap() {
  3571   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3572          "not a garbage-first heap");
  3573   return _g1h;
  3576 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3577   // always_do_update_barrier = false;
  3578   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3579   // Fill TLAB's and such
  3580   accumulate_statistics_all_tlabs();
  3581   ensure_parsability(true);
  3583   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3584       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3585     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3589 void G1CollectedHeap::gc_epilogue(bool full) {
  3591   if (G1SummarizeRSetStats &&
  3592       (G1SummarizeRSetStatsPeriod > 0) &&
  3593       // we are at the end of the GC. Total collections has already been increased.
  3594       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3595     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3598   // FIXME: what is this about?
  3599   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3600   // is set.
  3601   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3602                         "derived pointer present"));
  3603   // always_do_update_barrier = true;
  3605   resize_all_tlabs();
  3606   allocation_context_stats().update(full);
  3608   // We have just completed a GC. Update the soft reference
  3609   // policy with the new heap occupancy
  3610   Universe::update_heap_info_at_gc();
  3613 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3614                                                uint gc_count_before,
  3615                                                bool* succeeded,
  3616                                                GCCause::Cause gc_cause) {
  3617   assert_heap_not_locked_and_not_at_safepoint();
  3618   g1_policy()->record_stop_world_start();
  3619   VM_G1IncCollectionPause op(gc_count_before,
  3620                              word_size,
  3621                              false, /* should_initiate_conc_mark */
  3622                              g1_policy()->max_pause_time_ms(),
  3623                              gc_cause);
  3625   op.set_allocation_context(AllocationContext::current());
  3626   VMThread::execute(&op);
  3628   HeapWord* result = op.result();
  3629   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3630   assert(result == NULL || ret_succeeded,
  3631          "the result should be NULL if the VM did not succeed");
  3632   *succeeded = ret_succeeded;
  3634   assert_heap_not_locked();
  3635   return result;
  3638 void
  3639 G1CollectedHeap::doConcurrentMark() {
  3640   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3641   if (!_cmThread->in_progress()) {
  3642     _cmThread->set_started();
  3643     CGC_lock->notify();
  3647 size_t G1CollectedHeap::pending_card_num() {
  3648   size_t extra_cards = 0;
  3649   JavaThread *curr = Threads::first();
  3650   while (curr != NULL) {
  3651     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3652     extra_cards += dcq.size();
  3653     curr = curr->next();
  3655   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3656   size_t buffer_size = dcqs.buffer_size();
  3657   size_t buffer_num = dcqs.completed_buffers_num();
  3659   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3660   // in bytes - not the number of 'entries'. We need to convert
  3661   // into a number of cards.
  3662   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3665 size_t G1CollectedHeap::cards_scanned() {
  3666   return g1_rem_set()->cardsScanned();
  3669 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  3670   HeapRegion* region = region_at(index);
  3671   assert(region->startsHumongous(), "Must start a humongous object");
  3672   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
  3675 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3676  private:
  3677   size_t _total_humongous;
  3678   size_t _candidate_humongous;
  3679  public:
  3680   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  3683   virtual bool doHeapRegion(HeapRegion* r) {
  3684     if (!r->startsHumongous()) {
  3685       return false;
  3687     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3689     uint region_idx = r->hrm_index();
  3690     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
  3691     // Is_candidate already filters out humongous regions with some remembered set.
  3692     // This will not lead to humongous object that we mistakenly keep alive because
  3693     // during young collection the remembered sets will only be added to.
  3694     if (is_candidate) {
  3695       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
  3696       _candidate_humongous++;
  3698     _total_humongous++;
  3700     return false;
  3703   size_t total_humongous() const { return _total_humongous; }
  3704   size_t candidate_humongous() const { return _candidate_humongous; }
  3705 };
  3707 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3708   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
  3709     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
  3710     return;
  3713   RegisterHumongousWithInCSetFastTestClosure cl;
  3714   heap_region_iterate(&cl);
  3715   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
  3716                                                                   cl.candidate_humongous());
  3717   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3719   if (_has_humongous_reclaim_candidates || G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  3720     clear_humongous_is_live_table();
  3724 void
  3725 G1CollectedHeap::setup_surviving_young_words() {
  3726   assert(_surviving_young_words == NULL, "pre-condition");
  3727   uint array_length = g1_policy()->young_cset_region_length();
  3728   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3729   if (_surviving_young_words == NULL) {
  3730     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3731                           "Not enough space for young surv words summary.");
  3733   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3734 #ifdef ASSERT
  3735   for (uint i = 0;  i < array_length; ++i) {
  3736     assert( _surviving_young_words[i] == 0, "memset above" );
  3738 #endif // !ASSERT
  3741 void
  3742 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3743   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3744   uint array_length = g1_policy()->young_cset_region_length();
  3745   for (uint i = 0; i < array_length; ++i) {
  3746     _surviving_young_words[i] += surv_young_words[i];
  3750 void
  3751 G1CollectedHeap::cleanup_surviving_young_words() {
  3752   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3753   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3754   _surviving_young_words = NULL;
  3757 #ifdef ASSERT
  3758 class VerifyCSetClosure: public HeapRegionClosure {
  3759 public:
  3760   bool doHeapRegion(HeapRegion* hr) {
  3761     // Here we check that the CSet region's RSet is ready for parallel
  3762     // iteration. The fields that we'll verify are only manipulated
  3763     // when the region is part of a CSet and is collected. Afterwards,
  3764     // we reset these fields when we clear the region's RSet (when the
  3765     // region is freed) so they are ready when the region is
  3766     // re-allocated. The only exception to this is if there's an
  3767     // evacuation failure and instead of freeing the region we leave
  3768     // it in the heap. In that case, we reset these fields during
  3769     // evacuation failure handling.
  3770     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3772     // Here's a good place to add any other checks we'd like to
  3773     // perform on CSet regions.
  3774     return false;
  3776 };
  3777 #endif // ASSERT
  3779 #if TASKQUEUE_STATS
  3780 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3781   st->print_raw_cr("GC Task Stats");
  3782   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3783   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3786 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3787   print_taskqueue_stats_hdr(st);
  3789   TaskQueueStats totals;
  3790   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3791   for (int i = 0; i < n; ++i) {
  3792     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3793     totals += task_queue(i)->stats;
  3795   st->print_raw("tot "); totals.print(st); st->cr();
  3797   DEBUG_ONLY(totals.verify());
  3800 void G1CollectedHeap::reset_taskqueue_stats() {
  3801   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3802   for (int i = 0; i < n; ++i) {
  3803     task_queue(i)->stats.reset();
  3806 #endif // TASKQUEUE_STATS
  3808 void G1CollectedHeap::log_gc_header() {
  3809   if (!G1Log::fine()) {
  3810     return;
  3813   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3815   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3816     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3817     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3819   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3822 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3823   if (!G1Log::fine()) {
  3824     return;
  3827   if (G1Log::finer()) {
  3828     if (evacuation_failed()) {
  3829       gclog_or_tty->print(" (to-space exhausted)");
  3831     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3832     g1_policy()->phase_times()->note_gc_end();
  3833     g1_policy()->phase_times()->print(pause_time_sec);
  3834     g1_policy()->print_detailed_heap_transition();
  3835   } else {
  3836     if (evacuation_failed()) {
  3837       gclog_or_tty->print("--");
  3839     g1_policy()->print_heap_transition();
  3840     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3842   gclog_or_tty->flush();
  3845 bool
  3846 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3847   assert_at_safepoint(true /* should_be_vm_thread */);
  3848   guarantee(!is_gc_active(), "collection is not reentrant");
  3850   if (GC_locker::check_active_before_gc()) {
  3851     return false;
  3854   _gc_timer_stw->register_gc_start();
  3856   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3858   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3859   ResourceMark rm;
  3861   print_heap_before_gc();
  3862   trace_heap_before_gc(_gc_tracer_stw);
  3864   verify_region_sets_optional();
  3865   verify_dirty_young_regions();
  3867   // This call will decide whether this pause is an initial-mark
  3868   // pause. If it is, during_initial_mark_pause() will return true
  3869   // for the duration of this pause.
  3870   g1_policy()->decide_on_conc_mark_initiation();
  3872   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3873   assert(!g1_policy()->during_initial_mark_pause() ||
  3874           g1_policy()->gcs_are_young(), "sanity");
  3876   // We also do not allow mixed GCs during marking.
  3877   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3879   // Record whether this pause is an initial mark. When the current
  3880   // thread has completed its logging output and it's safe to signal
  3881   // the CM thread, the flag's value in the policy has been reset.
  3882   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3884   // Inner scope for scope based logging, timers, and stats collection
  3886     EvacuationInfo evacuation_info;
  3888     if (g1_policy()->during_initial_mark_pause()) {
  3889       // We are about to start a marking cycle, so we increment the
  3890       // full collection counter.
  3891       increment_old_marking_cycles_started();
  3892       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3895     _gc_tracer_stw->report_yc_type(yc_type());
  3897     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3899     uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3900                                 workers()->active_workers() : 1);
  3901     double pause_start_sec = os::elapsedTime();
  3902     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
  3903     log_gc_header();
  3905     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3906     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3908     // If the secondary_free_list is not empty, append it to the
  3909     // free_list. No need to wait for the cleanup operation to finish;
  3910     // the region allocation code will check the secondary_free_list
  3911     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3912     // set, skip this step so that the region allocation code has to
  3913     // get entries from the secondary_free_list.
  3914     if (!G1StressConcRegionFreeing) {
  3915       append_secondary_free_list_if_not_empty_with_lock();
  3918     assert(check_young_list_well_formed(), "young list should be well formed");
  3919     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3920            "sanity check");
  3922     // Don't dynamically change the number of GC threads this early.  A value of
  3923     // 0 is used to indicate serial work.  When parallel work is done,
  3924     // it will be set.
  3926     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3927       IsGCActiveMark x;
  3929       gc_prologue(false);
  3930       increment_total_collections(false /* full gc */);
  3931       increment_gc_time_stamp();
  3933       verify_before_gc();
  3934       check_bitmaps("GC Start");
  3936       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3938       // Please see comment in g1CollectedHeap.hpp and
  3939       // G1CollectedHeap::ref_processing_init() to see how
  3940       // reference processing currently works in G1.
  3942       // Enable discovery in the STW reference processor
  3943       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3944                                             true /*verify_no_refs*/);
  3947         // We want to temporarily turn off discovery by the
  3948         // CM ref processor, if necessary, and turn it back on
  3949         // on again later if we do. Using a scoped
  3950         // NoRefDiscovery object will do this.
  3951         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3953         // Forget the current alloc region (we might even choose it to be part
  3954         // of the collection set!).
  3955         _allocator->release_mutator_alloc_region();
  3957         // We should call this after we retire the mutator alloc
  3958         // region(s) so that all the ALLOC / RETIRE events are generated
  3959         // before the start GC event.
  3960         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3962         // This timing is only used by the ergonomics to handle our pause target.
  3963         // It is unclear why this should not include the full pause. We will
  3964         // investigate this in CR 7178365.
  3965         //
  3966         // Preserving the old comment here if that helps the investigation:
  3967         //
  3968         // The elapsed time induced by the start time below deliberately elides
  3969         // the possible verification above.
  3970         double sample_start_time_sec = os::elapsedTime();
  3972 #if YOUNG_LIST_VERBOSE
  3973         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3974         _young_list->print();
  3975         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3976 #endif // YOUNG_LIST_VERBOSE
  3978         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3980         double scan_wait_start = os::elapsedTime();
  3981         // We have to wait until the CM threads finish scanning the
  3982         // root regions as it's the only way to ensure that all the
  3983         // objects on them have been correctly scanned before we start
  3984         // moving them during the GC.
  3985         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3986         double wait_time_ms = 0.0;
  3987         if (waited) {
  3988           double scan_wait_end = os::elapsedTime();
  3989           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3991         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3993 #if YOUNG_LIST_VERBOSE
  3994         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3995         _young_list->print();
  3996 #endif // YOUNG_LIST_VERBOSE
  3998         if (g1_policy()->during_initial_mark_pause()) {
  3999           concurrent_mark()->checkpointRootsInitialPre();
  4002 #if YOUNG_LIST_VERBOSE
  4003         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4004         _young_list->print();
  4005         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4006 #endif // YOUNG_LIST_VERBOSE
  4008         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4010         register_humongous_regions_with_in_cset_fast_test();
  4012         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
  4014         _cm->note_start_of_gc();
  4015         // We should not verify the per-thread SATB buffers given that
  4016         // we have not filtered them yet (we'll do so during the
  4017         // GC). We also call this after finalize_cset() to
  4018         // ensure that the CSet has been finalized.
  4019         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4020                                  true  /* verify_enqueued_buffers */,
  4021                                  false /* verify_thread_buffers */,
  4022                                  true  /* verify_fingers */);
  4024         if (_hr_printer.is_active()) {
  4025           HeapRegion* hr = g1_policy()->collection_set();
  4026           while (hr != NULL) {
  4027             _hr_printer.cset(hr);
  4028             hr = hr->next_in_collection_set();
  4032 #ifdef ASSERT
  4033         VerifyCSetClosure cl;
  4034         collection_set_iterate(&cl);
  4035 #endif // ASSERT
  4037         setup_surviving_young_words();
  4039         // Initialize the GC alloc regions.
  4040         _allocator->init_gc_alloc_regions(evacuation_info);
  4042         // Actually do the work...
  4043         evacuate_collection_set(evacuation_info);
  4045         // We do this to mainly verify the per-thread SATB buffers
  4046         // (which have been filtered by now) since we didn't verify
  4047         // them earlier. No point in re-checking the stacks / enqueued
  4048         // buffers given that the CSet has not changed since last time
  4049         // we checked.
  4050         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4051                                  false /* verify_enqueued_buffers */,
  4052                                  true  /* verify_thread_buffers */,
  4053                                  true  /* verify_fingers */);
  4055         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4057         eagerly_reclaim_humongous_regions();
  4059         g1_policy()->clear_collection_set();
  4061         cleanup_surviving_young_words();
  4063         // Start a new incremental collection set for the next pause.
  4064         g1_policy()->start_incremental_cset_building();
  4066         clear_cset_fast_test();
  4068         _young_list->reset_sampled_info();
  4070         // Don't check the whole heap at this point as the
  4071         // GC alloc regions from this pause have been tagged
  4072         // as survivors and moved on to the survivor list.
  4073         // Survivor regions will fail the !is_young() check.
  4074         assert(check_young_list_empty(false /* check_heap */),
  4075           "young list should be empty");
  4077 #if YOUNG_LIST_VERBOSE
  4078         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4079         _young_list->print();
  4080 #endif // YOUNG_LIST_VERBOSE
  4082         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4083                                              _young_list->first_survivor_region(),
  4084                                              _young_list->last_survivor_region());
  4086         _young_list->reset_auxilary_lists();
  4088         if (evacuation_failed()) {
  4089           _allocator->set_used(recalculate_used());
  4090           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4091           for (uint i = 0; i < n_queues; i++) {
  4092             if (_evacuation_failed_info_array[i].has_failed()) {
  4093               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4096         } else {
  4097           // The "used" of the the collection set have already been subtracted
  4098           // when they were freed.  Add in the bytes evacuated.
  4099           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
  4102         if (g1_policy()->during_initial_mark_pause()) {
  4103           // We have to do this before we notify the CM threads that
  4104           // they can start working to make sure that all the
  4105           // appropriate initialization is done on the CM object.
  4106           concurrent_mark()->checkpointRootsInitialPost();
  4107           set_marking_started();
  4108           // Note that we don't actually trigger the CM thread at
  4109           // this point. We do that later when we're sure that
  4110           // the current thread has completed its logging output.
  4113         allocate_dummy_regions();
  4115 #if YOUNG_LIST_VERBOSE
  4116         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4117         _young_list->print();
  4118         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4119 #endif // YOUNG_LIST_VERBOSE
  4121         _allocator->init_mutator_alloc_region();
  4124           size_t expand_bytes = g1_policy()->expansion_amount();
  4125           if (expand_bytes > 0) {
  4126             size_t bytes_before = capacity();
  4127             // No need for an ergo verbose message here,
  4128             // expansion_amount() does this when it returns a value > 0.
  4129             if (!expand(expand_bytes)) {
  4130               // We failed to expand the heap. Cannot do anything about it.
  4135         // We redo the verification but now wrt to the new CSet which
  4136         // has just got initialized after the previous CSet was freed.
  4137         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4138                                  true  /* verify_enqueued_buffers */,
  4139                                  true  /* verify_thread_buffers */,
  4140                                  true  /* verify_fingers */);
  4141         _cm->note_end_of_gc();
  4143         // This timing is only used by the ergonomics to handle our pause target.
  4144         // It is unclear why this should not include the full pause. We will
  4145         // investigate this in CR 7178365.
  4146         double sample_end_time_sec = os::elapsedTime();
  4147         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4148         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4150         MemoryService::track_memory_usage();
  4152         // In prepare_for_verify() below we'll need to scan the deferred
  4153         // update buffers to bring the RSets up-to-date if
  4154         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4155         // the update buffers we'll probably need to scan cards on the
  4156         // regions we just allocated to (i.e., the GC alloc
  4157         // regions). However, during the last GC we called
  4158         // set_saved_mark() on all the GC alloc regions, so card
  4159         // scanning might skip the [saved_mark_word()...top()] area of
  4160         // those regions (i.e., the area we allocated objects into
  4161         // during the last GC). But it shouldn't. Given that
  4162         // saved_mark_word() is conditional on whether the GC time stamp
  4163         // on the region is current or not, by incrementing the GC time
  4164         // stamp here we invalidate all the GC time stamps on all the
  4165         // regions and saved_mark_word() will simply return top() for
  4166         // all the regions. This is a nicer way of ensuring this rather
  4167         // than iterating over the regions and fixing them. In fact, the
  4168         // GC time stamp increment here also ensures that
  4169         // saved_mark_word() will return top() between pauses, i.e.,
  4170         // during concurrent refinement. So we don't need the
  4171         // is_gc_active() check to decided which top to use when
  4172         // scanning cards (see CR 7039627).
  4173         increment_gc_time_stamp();
  4175         verify_after_gc();
  4176         check_bitmaps("GC End");
  4178         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4179         ref_processor_stw()->verify_no_references_recorded();
  4181         // CM reference discovery will be re-enabled if necessary.
  4184       // We should do this after we potentially expand the heap so
  4185       // that all the COMMIT events are generated before the end GC
  4186       // event, and after we retire the GC alloc regions so that all
  4187       // RETIRE events are generated before the end GC event.
  4188       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4190 #ifdef TRACESPINNING
  4191       ParallelTaskTerminator::print_termination_counts();
  4192 #endif
  4194       gc_epilogue(false);
  4197     // Print the remainder of the GC log output.
  4198     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4200     // It is not yet to safe to tell the concurrent mark to
  4201     // start as we have some optional output below. We don't want the
  4202     // output from the concurrent mark thread interfering with this
  4203     // logging output either.
  4205     _hrm.verify_optional();
  4206     verify_region_sets_optional();
  4208     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4209     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4211     print_heap_after_gc();
  4212     trace_heap_after_gc(_gc_tracer_stw);
  4214     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4215     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4216     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4217     // before any GC notifications are raised.
  4218     g1mm()->update_sizes();
  4220     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4221     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4222     _gc_timer_stw->register_gc_end();
  4223     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4225   // It should now be safe to tell the concurrent mark thread to start
  4226   // without its logging output interfering with the logging output
  4227   // that came from the pause.
  4229   if (should_start_conc_mark) {
  4230     // CAUTION: after the doConcurrentMark() call below,
  4231     // the concurrent marking thread(s) could be running
  4232     // concurrently with us. Make sure that anything after
  4233     // this point does not assume that we are the only GC thread
  4234     // running. Note: of course, the actual marking work will
  4235     // not start until the safepoint itself is released in
  4236     // SuspendibleThreadSet::desynchronize().
  4237     doConcurrentMark();
  4240   return true;
  4243 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4244   _drain_in_progress = false;
  4245   set_evac_failure_closure(cl);
  4246   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4249 void G1CollectedHeap::finalize_for_evac_failure() {
  4250   assert(_evac_failure_scan_stack != NULL &&
  4251          _evac_failure_scan_stack->length() == 0,
  4252          "Postcondition");
  4253   assert(!_drain_in_progress, "Postcondition");
  4254   delete _evac_failure_scan_stack;
  4255   _evac_failure_scan_stack = NULL;
  4258 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4259   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4261   double remove_self_forwards_start = os::elapsedTime();
  4263   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4265   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4266     set_par_threads();
  4267     workers()->run_task(&rsfp_task);
  4268     set_par_threads(0);
  4269   } else {
  4270     rsfp_task.work(0);
  4273   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4275   // Reset the claim values in the regions in the collection set.
  4276   reset_cset_heap_region_claim_values();
  4278   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4280   // Now restore saved marks, if any.
  4281   assert(_objs_with_preserved_marks.size() ==
  4282             _preserved_marks_of_objs.size(), "Both or none.");
  4283   while (!_objs_with_preserved_marks.is_empty()) {
  4284     oop obj = _objs_with_preserved_marks.pop();
  4285     markOop m = _preserved_marks_of_objs.pop();
  4286     obj->set_mark(m);
  4288   _objs_with_preserved_marks.clear(true);
  4289   _preserved_marks_of_objs.clear(true);
  4291   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4294 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4295   _evac_failure_scan_stack->push(obj);
  4298 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4299   assert(_evac_failure_scan_stack != NULL, "precondition");
  4301   while (_evac_failure_scan_stack->length() > 0) {
  4302      oop obj = _evac_failure_scan_stack->pop();
  4303      _evac_failure_closure->set_region(heap_region_containing(obj));
  4304      obj->oop_iterate_backwards(_evac_failure_closure);
  4308 oop
  4309 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4310                                                oop old) {
  4311   assert(obj_in_cs(old),
  4312          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4313                  (HeapWord*) old));
  4314   markOop m = old->mark();
  4315   oop forward_ptr = old->forward_to_atomic(old);
  4316   if (forward_ptr == NULL) {
  4317     // Forward-to-self succeeded.
  4318     assert(_par_scan_state != NULL, "par scan state");
  4319     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4320     uint queue_num = _par_scan_state->queue_num();
  4322     _evacuation_failed = true;
  4323     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4324     if (_evac_failure_closure != cl) {
  4325       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4326       assert(!_drain_in_progress,
  4327              "Should only be true while someone holds the lock.");
  4328       // Set the global evac-failure closure to the current thread's.
  4329       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4330       set_evac_failure_closure(cl);
  4331       // Now do the common part.
  4332       handle_evacuation_failure_common(old, m);
  4333       // Reset to NULL.
  4334       set_evac_failure_closure(NULL);
  4335     } else {
  4336       // The lock is already held, and this is recursive.
  4337       assert(_drain_in_progress, "This should only be the recursive case.");
  4338       handle_evacuation_failure_common(old, m);
  4340     return old;
  4341   } else {
  4342     // Forward-to-self failed. Either someone else managed to allocate
  4343     // space for this object (old != forward_ptr) or they beat us in
  4344     // self-forwarding it (old == forward_ptr).
  4345     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4346            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4347                    "should not be in the CSet",
  4348                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4349     return forward_ptr;
  4353 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4354   preserve_mark_if_necessary(old, m);
  4356   HeapRegion* r = heap_region_containing(old);
  4357   if (!r->evacuation_failed()) {
  4358     r->set_evacuation_failed(true);
  4359     _hr_printer.evac_failure(r);
  4362   push_on_evac_failure_scan_stack(old);
  4364   if (!_drain_in_progress) {
  4365     // prevent recursion in copy_to_survivor_space()
  4366     _drain_in_progress = true;
  4367     drain_evac_failure_scan_stack();
  4368     _drain_in_progress = false;
  4372 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4373   assert(evacuation_failed(), "Oversaving!");
  4374   // We want to call the "for_promotion_failure" version only in the
  4375   // case of a promotion failure.
  4376   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4377     _objs_with_preserved_marks.push(obj);
  4378     _preserved_marks_of_objs.push(m);
  4382 void G1ParCopyHelper::mark_object(oop obj) {
  4383   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4385   // We know that the object is not moving so it's safe to read its size.
  4386   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4389 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4390   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4391   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4392   assert(from_obj != to_obj, "should not be self-forwarded");
  4394   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4395   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4397   // The object might be in the process of being copied by another
  4398   // worker so we cannot trust that its to-space image is
  4399   // well-formed. So we have to read its size from its from-space
  4400   // image which we know should not be changing.
  4401   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4404 template <class T>
  4405 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4406   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4407     _scanned_klass->record_modified_oops();
  4411 template <G1Barrier barrier, G1Mark do_mark_object>
  4412 template <class T>
  4413 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4414   T heap_oop = oopDesc::load_heap_oop(p);
  4416   if (oopDesc::is_null(heap_oop)) {
  4417     return;
  4420   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4422   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4424   const InCSetState state = _g1->in_cset_state(obj);
  4425   if (state.is_in_cset()) {
  4426     oop forwardee;
  4427     markOop m = obj->mark();
  4428     if (m->is_marked()) {
  4429       forwardee = (oop) m->decode_pointer();
  4430     } else {
  4431       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
  4433     assert(forwardee != NULL, "forwardee should not be NULL");
  4434     oopDesc::encode_store_heap_oop(p, forwardee);
  4435     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4436       // If the object is self-forwarded we don't need to explicitly
  4437       // mark it, the evacuation failure protocol will do so.
  4438       mark_forwarded_object(obj, forwardee);
  4441     if (barrier == G1BarrierKlass) {
  4442       do_klass_barrier(p, forwardee);
  4444   } else {
  4445     if (state.is_humongous()) {
  4446       _g1->set_humongous_is_live(obj);
  4448     // The object is not in collection set. If we're a root scanning
  4449     // closure during an initial mark pause then attempt to mark the object.
  4450     if (do_mark_object == G1MarkFromRoot) {
  4451       mark_object(obj);
  4455   if (barrier == G1BarrierEvac) {
  4456     _par_scan_state->update_rs(_from, p, _worker_id);
  4460 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4461 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4463 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4464 protected:
  4465   G1CollectedHeap*              _g1h;
  4466   G1ParScanThreadState*         _par_scan_state;
  4467   RefToScanQueueSet*            _queues;
  4468   ParallelTaskTerminator*       _terminator;
  4470   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4471   RefToScanQueueSet*      queues()         { return _queues; }
  4472   ParallelTaskTerminator* terminator()     { return _terminator; }
  4474 public:
  4475   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4476                                 G1ParScanThreadState* par_scan_state,
  4477                                 RefToScanQueueSet* queues,
  4478                                 ParallelTaskTerminator* terminator)
  4479     : _g1h(g1h), _par_scan_state(par_scan_state),
  4480       _queues(queues), _terminator(terminator) {}
  4482   void do_void();
  4484 private:
  4485   inline bool offer_termination();
  4486 };
  4488 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4489   G1ParScanThreadState* const pss = par_scan_state();
  4490   pss->start_term_time();
  4491   const bool res = terminator()->offer_termination();
  4492   pss->end_term_time();
  4493   return res;
  4496 void G1ParEvacuateFollowersClosure::do_void() {
  4497   G1ParScanThreadState* const pss = par_scan_state();
  4498   pss->trim_queue();
  4499   do {
  4500     pss->steal_and_trim_queue(queues());
  4501   } while (!offer_termination());
  4504 class G1KlassScanClosure : public KlassClosure {
  4505  G1ParCopyHelper* _closure;
  4506  bool             _process_only_dirty;
  4507  int              _count;
  4508  public:
  4509   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4510       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4511   void do_klass(Klass* klass) {
  4512     // If the klass has not been dirtied we know that there's
  4513     // no references into  the young gen and we can skip it.
  4514    if (!_process_only_dirty || klass->has_modified_oops()) {
  4515       // Clean the klass since we're going to scavenge all the metadata.
  4516       klass->clear_modified_oops();
  4518       // Tell the closure that this klass is the Klass to scavenge
  4519       // and is the one to dirty if oops are left pointing into the young gen.
  4520       _closure->set_scanned_klass(klass);
  4522       klass->oops_do(_closure);
  4524       _closure->set_scanned_klass(NULL);
  4526     _count++;
  4528 };
  4530 class G1ParTask : public AbstractGangTask {
  4531 protected:
  4532   G1CollectedHeap*       _g1h;
  4533   RefToScanQueueSet      *_queues;
  4534   G1RootProcessor*       _root_processor;
  4535   ParallelTaskTerminator _terminator;
  4536   uint _n_workers;
  4538   Mutex _stats_lock;
  4539   Mutex* stats_lock() { return &_stats_lock; }
  4541 public:
  4542   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
  4543     : AbstractGangTask("G1 collection"),
  4544       _g1h(g1h),
  4545       _queues(task_queues),
  4546       _root_processor(root_processor),
  4547       _terminator(0, _queues),
  4548       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4549   {}
  4551   RefToScanQueueSet* queues() { return _queues; }
  4553   RefToScanQueue *work_queue(int i) {
  4554     return queues()->queue(i);
  4557   ParallelTaskTerminator* terminator() { return &_terminator; }
  4559   virtual void set_for_termination(int active_workers) {
  4560     _root_processor->set_num_workers(active_workers);
  4561     terminator()->reset_for_reuse(active_workers);
  4562     _n_workers = active_workers;
  4565   // Helps out with CLD processing.
  4566   //
  4567   // During InitialMark we need to:
  4568   // 1) Scavenge all CLDs for the young GC.
  4569   // 2) Mark all objects directly reachable from strong CLDs.
  4570   template <G1Mark do_mark_object>
  4571   class G1CLDClosure : public CLDClosure {
  4572     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4573     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4574     G1KlassScanClosure                                _klass_in_cld_closure;
  4575     bool                                              _claim;
  4577    public:
  4578     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4579                  bool only_young, bool claim)
  4580         : _oop_closure(oop_closure),
  4581           _oop_in_klass_closure(oop_closure->g1(),
  4582                                 oop_closure->pss(),
  4583                                 oop_closure->rp()),
  4584           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4585           _claim(claim) {
  4589     void do_cld(ClassLoaderData* cld) {
  4590       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4592   };
  4594   void work(uint worker_id) {
  4595     if (worker_id >= _n_workers) return;  // no work needed this round
  4597     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
  4600       ResourceMark rm;
  4601       HandleMark   hm;
  4603       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4605       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4606       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4608       pss.set_evac_failure_closure(&evac_failure_cl);
  4610       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4612       // Non-IM young GC.
  4613       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4614       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4615                                                                                only_young, // Only process dirty klasses.
  4616                                                                                false);     // No need to claim CLDs.
  4617       // IM young GC.
  4618       //    Strong roots closures.
  4619       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4620       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4621                                                                                false, // Process all klasses.
  4622                                                                                true); // Need to claim CLDs.
  4623       //    Weak roots closures.
  4624       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4625       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4626                                                                                     false, // Process all klasses.
  4627                                                                                     true); // Need to claim CLDs.
  4629       OopClosure* strong_root_cl;
  4630       OopClosure* weak_root_cl;
  4631       CLDClosure* strong_cld_cl;
  4632       CLDClosure* weak_cld_cl;
  4634       bool trace_metadata = false;
  4636       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4637         // We also need to mark copied objects.
  4638         strong_root_cl = &scan_mark_root_cl;
  4639         strong_cld_cl  = &scan_mark_cld_cl;
  4640         if (ClassUnloadingWithConcurrentMark) {
  4641           weak_root_cl = &scan_mark_weak_root_cl;
  4642           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4643           trace_metadata = true;
  4644         } else {
  4645           weak_root_cl = &scan_mark_root_cl;
  4646           weak_cld_cl  = &scan_mark_cld_cl;
  4648       } else {
  4649         strong_root_cl = &scan_only_root_cl;
  4650         weak_root_cl   = &scan_only_root_cl;
  4651         strong_cld_cl  = &scan_only_cld_cl;
  4652         weak_cld_cl    = &scan_only_cld_cl;
  4655       pss.start_strong_roots();
  4657       _root_processor->evacuate_roots(strong_root_cl,
  4658                                       weak_root_cl,
  4659                                       strong_cld_cl,
  4660                                       weak_cld_cl,
  4661                                       trace_metadata,
  4662                                       worker_id);
  4664       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
  4665       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
  4666                                             weak_root_cl,
  4667                                             worker_id);
  4668       pss.end_strong_roots();
  4671         double start = os::elapsedTime();
  4672         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4673         evac.do_void();
  4674         double elapsed_sec = os::elapsedTime() - start;
  4675         double term_sec = pss.term_time();
  4676         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
  4677         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
  4678         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
  4680       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4681       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4683       if (ParallelGCVerbose) {
  4684         MutexLocker x(stats_lock());
  4685         pss.print_termination_stats(worker_id);
  4688       assert(pss.queue_is_empty(), "should be empty");
  4690       // Close the inner scope so that the ResourceMark and HandleMark
  4691       // destructors are executed here and are included as part of the
  4692       // "GC Worker Time".
  4694     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
  4696 };
  4698 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4699 private:
  4700   BoolObjectClosure* _is_alive;
  4701   int _initial_string_table_size;
  4702   int _initial_symbol_table_size;
  4704   bool  _process_strings;
  4705   int _strings_processed;
  4706   int _strings_removed;
  4708   bool  _process_symbols;
  4709   int _symbols_processed;
  4710   int _symbols_removed;
  4712   bool _do_in_parallel;
  4713 public:
  4714   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4715     AbstractGangTask("String/Symbol Unlinking"),
  4716     _is_alive(is_alive),
  4717     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4718     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4719     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4721     _initial_string_table_size = StringTable::the_table()->table_size();
  4722     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4723     if (process_strings) {
  4724       StringTable::clear_parallel_claimed_index();
  4726     if (process_symbols) {
  4727       SymbolTable::clear_parallel_claimed_index();
  4731   ~G1StringSymbolTableUnlinkTask() {
  4732     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4733               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4734                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4735     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4736               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4737                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4739     if (G1TraceStringSymbolTableScrubbing) {
  4740       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4741                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  4742                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  4743                              strings_processed(), strings_removed(),
  4744                              symbols_processed(), symbols_removed());
  4748   void work(uint worker_id) {
  4749     if (_do_in_parallel) {
  4750       int strings_processed = 0;
  4751       int strings_removed = 0;
  4752       int symbols_processed = 0;
  4753       int symbols_removed = 0;
  4754       if (_process_strings) {
  4755         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4756         Atomic::add(strings_processed, &_strings_processed);
  4757         Atomic::add(strings_removed, &_strings_removed);
  4759       if (_process_symbols) {
  4760         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4761         Atomic::add(symbols_processed, &_symbols_processed);
  4762         Atomic::add(symbols_removed, &_symbols_removed);
  4764     } else {
  4765       if (_process_strings) {
  4766         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  4768       if (_process_symbols) {
  4769         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  4774   size_t strings_processed() const { return (size_t)_strings_processed; }
  4775   size_t strings_removed()   const { return (size_t)_strings_removed; }
  4777   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  4778   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  4779 };
  4781 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  4782 private:
  4783   static Monitor* _lock;
  4785   BoolObjectClosure* const _is_alive;
  4786   const bool               _unloading_occurred;
  4787   const uint               _num_workers;
  4789   // Variables used to claim nmethods.
  4790   nmethod* _first_nmethod;
  4791   volatile nmethod* _claimed_nmethod;
  4793   // The list of nmethods that need to be processed by the second pass.
  4794   volatile nmethod* _postponed_list;
  4795   volatile uint     _num_entered_barrier;
  4797  public:
  4798   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  4799       _is_alive(is_alive),
  4800       _unloading_occurred(unloading_occurred),
  4801       _num_workers(num_workers),
  4802       _first_nmethod(NULL),
  4803       _claimed_nmethod(NULL),
  4804       _postponed_list(NULL),
  4805       _num_entered_barrier(0)
  4807     nmethod::increase_unloading_clock();
  4808     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  4809     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  4812   ~G1CodeCacheUnloadingTask() {
  4813     CodeCache::verify_clean_inline_caches();
  4815     CodeCache::set_needs_cache_clean(false);
  4816     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  4818     CodeCache::verify_icholder_relocations();
  4821  private:
  4822   void add_to_postponed_list(nmethod* nm) {
  4823       nmethod* old;
  4824       do {
  4825         old = (nmethod*)_postponed_list;
  4826         nm->set_unloading_next(old);
  4827       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  4830   void clean_nmethod(nmethod* nm) {
  4831     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  4833     if (postponed) {
  4834       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  4835       add_to_postponed_list(nm);
  4838     // Mark that this thread has been cleaned/unloaded.
  4839     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  4840     nm->set_unloading_clock(nmethod::global_unloading_clock());
  4843   void clean_nmethod_postponed(nmethod* nm) {
  4844     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  4847   static const int MaxClaimNmethods = 16;
  4849   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  4850     nmethod* first;
  4851     nmethod* last;
  4853     do {
  4854       *num_claimed_nmethods = 0;
  4856       first = last = (nmethod*)_claimed_nmethod;
  4858       if (first != NULL) {
  4859         for (int i = 0; i < MaxClaimNmethods; i++) {
  4860           last = CodeCache::alive_nmethod(CodeCache::next(last));
  4862           if (last == NULL) {
  4863             break;
  4866           claimed_nmethods[i] = last;
  4867           (*num_claimed_nmethods)++;
  4871     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  4874   nmethod* claim_postponed_nmethod() {
  4875     nmethod* claim;
  4876     nmethod* next;
  4878     do {
  4879       claim = (nmethod*)_postponed_list;
  4880       if (claim == NULL) {
  4881         return NULL;
  4884       next = claim->unloading_next();
  4886     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  4888     return claim;
  4891  public:
  4892   // Mark that we're done with the first pass of nmethod cleaning.
  4893   void barrier_mark(uint worker_id) {
  4894     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  4895     _num_entered_barrier++;
  4896     if (_num_entered_barrier == _num_workers) {
  4897       ml.notify_all();
  4901   // See if we have to wait for the other workers to
  4902   // finish their first-pass nmethod cleaning work.
  4903   void barrier_wait(uint worker_id) {
  4904     if (_num_entered_barrier < _num_workers) {
  4905       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  4906       while (_num_entered_barrier < _num_workers) {
  4907           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  4912   // Cleaning and unloading of nmethods. Some work has to be postponed
  4913   // to the second pass, when we know which nmethods survive.
  4914   void work_first_pass(uint worker_id) {
  4915     // The first nmethods is claimed by the first worker.
  4916     if (worker_id == 0 && _first_nmethod != NULL) {
  4917       clean_nmethod(_first_nmethod);
  4918       _first_nmethod = NULL;
  4921     int num_claimed_nmethods;
  4922     nmethod* claimed_nmethods[MaxClaimNmethods];
  4924     while (true) {
  4925       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  4927       if (num_claimed_nmethods == 0) {
  4928         break;
  4931       for (int i = 0; i < num_claimed_nmethods; i++) {
  4932         clean_nmethod(claimed_nmethods[i]);
  4936     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
  4937     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
  4938     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
  4941   void work_second_pass(uint worker_id) {
  4942     nmethod* nm;
  4943     // Take care of postponed nmethods.
  4944     while ((nm = claim_postponed_nmethod()) != NULL) {
  4945       clean_nmethod_postponed(nm);
  4948 };
  4950 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  4952 class G1KlassCleaningTask : public StackObj {
  4953   BoolObjectClosure*                      _is_alive;
  4954   volatile jint                           _clean_klass_tree_claimed;
  4955   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  4957  public:
  4958   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  4959       _is_alive(is_alive),
  4960       _clean_klass_tree_claimed(0),
  4961       _klass_iterator() {
  4964  private:
  4965   bool claim_clean_klass_tree_task() {
  4966     if (_clean_klass_tree_claimed) {
  4967       return false;
  4970     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  4973   InstanceKlass* claim_next_klass() {
  4974     Klass* klass;
  4975     do {
  4976       klass =_klass_iterator.next_klass();
  4977     } while (klass != NULL && !klass->oop_is_instance());
  4979     return (InstanceKlass*)klass;
  4982 public:
  4984   void clean_klass(InstanceKlass* ik) {
  4985     ik->clean_implementors_list(_is_alive);
  4986     ik->clean_method_data(_is_alive);
  4988     // G1 specific cleanup work that has
  4989     // been moved here to be done in parallel.
  4990     ik->clean_dependent_nmethods();
  4991     if (JvmtiExport::has_redefined_a_class()) {
  4992       InstanceKlass::purge_previous_versions(ik);
  4996   void work() {
  4997     ResourceMark rm;
  4999     // One worker will clean the subklass/sibling klass tree.
  5000     if (claim_clean_klass_tree_task()) {
  5001       Klass::clean_subklass_tree(_is_alive);
  5004     // All workers will help cleaning the classes,
  5005     InstanceKlass* klass;
  5006     while ((klass = claim_next_klass()) != NULL) {
  5007       clean_klass(klass);
  5010 };
  5012 // To minimize the remark pause times, the tasks below are done in parallel.
  5013 class G1ParallelCleaningTask : public AbstractGangTask {
  5014 private:
  5015   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5016   G1CodeCacheUnloadingTask      _code_cache_task;
  5017   G1KlassCleaningTask           _klass_cleaning_task;
  5019 public:
  5020   // The constructor is run in the VMThread.
  5021   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5022       AbstractGangTask("Parallel Cleaning"),
  5023       _string_symbol_task(is_alive, process_strings, process_symbols),
  5024       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5025       _klass_cleaning_task(is_alive) {
  5028   void pre_work_verification() {
  5029     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
  5030     assert(Thread::current()->is_VM_thread()
  5031            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5034   void post_work_verification() {
  5035     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5038   // The parallel work done by all worker threads.
  5039   void work(uint worker_id) {
  5040     pre_work_verification();
  5042     // Do first pass of code cache cleaning.
  5043     _code_cache_task.work_first_pass(worker_id);
  5045     // Let the threads mark that the first pass is done.
  5046     _code_cache_task.barrier_mark(worker_id);
  5048     // Clean the Strings and Symbols.
  5049     _string_symbol_task.work(worker_id);
  5051     // Wait for all workers to finish the first code cache cleaning pass.
  5052     _code_cache_task.barrier_wait(worker_id);
  5054     // Do the second code cache cleaning work, which realize on
  5055     // the liveness information gathered during the first pass.
  5056     _code_cache_task.work_second_pass(worker_id);
  5058     // Clean all klasses that were not unloaded.
  5059     _klass_cleaning_task.work();
  5061     post_work_verification();
  5063 };
  5066 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5067                                         bool process_strings,
  5068                                         bool process_symbols,
  5069                                         bool class_unloading_occurred) {
  5070   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5071                     workers()->active_workers() : 1);
  5073   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5074                                         n_workers, class_unloading_occurred);
  5075   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5076     set_par_threads(n_workers);
  5077     workers()->run_task(&g1_unlink_task);
  5078     set_par_threads(0);
  5079   } else {
  5080     g1_unlink_task.work(0);
  5084 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5085                                                      bool process_strings, bool process_symbols) {
  5087     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5088                      _g1h->workers()->active_workers() : 1);
  5089     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5090     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5091       set_par_threads(n_workers);
  5092       workers()->run_task(&g1_unlink_task);
  5093       set_par_threads(0);
  5094     } else {
  5095       g1_unlink_task.work(0);
  5099   if (G1StringDedup::is_enabled()) {
  5100     G1StringDedup::unlink(is_alive);
  5104 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5105  private:
  5106   DirtyCardQueueSet* _queue;
  5107  public:
  5108   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5110   virtual void work(uint worker_id) {
  5111     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5112     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
  5114     RedirtyLoggedCardTableEntryClosure cl;
  5115     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5116       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5117     } else {
  5118       _queue->apply_closure_to_all_completed_buffers(&cl);
  5121     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
  5123 };
  5125 void G1CollectedHeap::redirty_logged_cards() {
  5126   double redirty_logged_cards_start = os::elapsedTime();
  5128   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5129                    _g1h->workers()->active_workers() : 1);
  5131   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5132   dirty_card_queue_set().reset_for_par_iteration();
  5133   if (use_parallel_gc_threads()) {
  5134     set_par_threads(n_workers);
  5135     workers()->run_task(&redirty_task);
  5136     set_par_threads(0);
  5137   } else {
  5138     redirty_task.work(0);
  5141   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5142   dcq.merge_bufferlists(&dirty_card_queue_set());
  5143   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5145   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5148 // Weak Reference Processing support
  5150 // An always "is_alive" closure that is used to preserve referents.
  5151 // If the object is non-null then it's alive.  Used in the preservation
  5152 // of referent objects that are pointed to by reference objects
  5153 // discovered by the CM ref processor.
  5154 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5155   G1CollectedHeap* _g1;
  5156 public:
  5157   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5158   bool do_object_b(oop p) {
  5159     if (p != NULL) {
  5160       return true;
  5162     return false;
  5164 };
  5166 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5167   // An object is reachable if it is outside the collection set,
  5168   // or is inside and copied.
  5169   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5172 // Non Copying Keep Alive closure
  5173 class G1KeepAliveClosure: public OopClosure {
  5174   G1CollectedHeap* _g1;
  5175 public:
  5176   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5177   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5178   void do_oop(oop* p) {
  5179     oop obj = *p;
  5180     assert(obj != NULL, "the caller should have filtered out NULL values");
  5182     const InCSetState cset_state = _g1->in_cset_state(obj);
  5183     if (!cset_state.is_in_cset_or_humongous()) {
  5184       return;
  5186     if (cset_state.is_in_cset()) {
  5187       assert( obj->is_forwarded(), "invariant" );
  5188       *p = obj->forwardee();
  5189     } else {
  5190       assert(!obj->is_forwarded(), "invariant" );
  5191       assert(cset_state.is_humongous(),
  5192              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
  5193       _g1->set_humongous_is_live(obj);
  5196 };
  5198 // Copying Keep Alive closure - can be called from both
  5199 // serial and parallel code as long as different worker
  5200 // threads utilize different G1ParScanThreadState instances
  5201 // and different queues.
  5203 class G1CopyingKeepAliveClosure: public OopClosure {
  5204   G1CollectedHeap*         _g1h;
  5205   OopClosure*              _copy_non_heap_obj_cl;
  5206   G1ParScanThreadState*    _par_scan_state;
  5208 public:
  5209   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5210                             OopClosure* non_heap_obj_cl,
  5211                             G1ParScanThreadState* pss):
  5212     _g1h(g1h),
  5213     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5214     _par_scan_state(pss)
  5215   {}
  5217   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5218   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5220   template <class T> void do_oop_work(T* p) {
  5221     oop obj = oopDesc::load_decode_heap_oop(p);
  5223     if (_g1h->is_in_cset_or_humongous(obj)) {
  5224       // If the referent object has been forwarded (either copied
  5225       // to a new location or to itself in the event of an
  5226       // evacuation failure) then we need to update the reference
  5227       // field and, if both reference and referent are in the G1
  5228       // heap, update the RSet for the referent.
  5229       //
  5230       // If the referent has not been forwarded then we have to keep
  5231       // it alive by policy. Therefore we have copy the referent.
  5232       //
  5233       // If the reference field is in the G1 heap then we can push
  5234       // on the PSS queue. When the queue is drained (after each
  5235       // phase of reference processing) the object and it's followers
  5236       // will be copied, the reference field set to point to the
  5237       // new location, and the RSet updated. Otherwise we need to
  5238       // use the the non-heap or metadata closures directly to copy
  5239       // the referent object and update the pointer, while avoiding
  5240       // updating the RSet.
  5242       if (_g1h->is_in_g1_reserved(p)) {
  5243         _par_scan_state->push_on_queue(p);
  5244       } else {
  5245         assert(!Metaspace::contains((const void*)p),
  5246                err_msg("Unexpectedly found a pointer from metadata: "
  5247                               PTR_FORMAT, p));
  5248         _copy_non_heap_obj_cl->do_oop(p);
  5252 };
  5254 // Serial drain queue closure. Called as the 'complete_gc'
  5255 // closure for each discovered list in some of the
  5256 // reference processing phases.
  5258 class G1STWDrainQueueClosure: public VoidClosure {
  5259 protected:
  5260   G1CollectedHeap* _g1h;
  5261   G1ParScanThreadState* _par_scan_state;
  5263   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5265 public:
  5266   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5267     _g1h(g1h),
  5268     _par_scan_state(pss)
  5269   { }
  5271   void do_void() {
  5272     G1ParScanThreadState* const pss = par_scan_state();
  5273     pss->trim_queue();
  5275 };
  5277 // Parallel Reference Processing closures
  5279 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5280 // processing during G1 evacuation pauses.
  5282 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5283 private:
  5284   G1CollectedHeap*   _g1h;
  5285   RefToScanQueueSet* _queues;
  5286   FlexibleWorkGang*  _workers;
  5287   int                _active_workers;
  5289 public:
  5290   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5291                         FlexibleWorkGang* workers,
  5292                         RefToScanQueueSet *task_queues,
  5293                         int n_workers) :
  5294     _g1h(g1h),
  5295     _queues(task_queues),
  5296     _workers(workers),
  5297     _active_workers(n_workers)
  5299     assert(n_workers > 0, "shouldn't call this otherwise");
  5302   // Executes the given task using concurrent marking worker threads.
  5303   virtual void execute(ProcessTask& task);
  5304   virtual void execute(EnqueueTask& task);
  5305 };
  5307 // Gang task for possibly parallel reference processing
  5309 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5310   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5311   ProcessTask&     _proc_task;
  5312   G1CollectedHeap* _g1h;
  5313   RefToScanQueueSet *_task_queues;
  5314   ParallelTaskTerminator* _terminator;
  5316 public:
  5317   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5318                      G1CollectedHeap* g1h,
  5319                      RefToScanQueueSet *task_queues,
  5320                      ParallelTaskTerminator* terminator) :
  5321     AbstractGangTask("Process reference objects in parallel"),
  5322     _proc_task(proc_task),
  5323     _g1h(g1h),
  5324     _task_queues(task_queues),
  5325     _terminator(terminator)
  5326   {}
  5328   virtual void work(uint worker_id) {
  5329     // The reference processing task executed by a single worker.
  5330     ResourceMark rm;
  5331     HandleMark   hm;
  5333     G1STWIsAliveClosure is_alive(_g1h);
  5335     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5336     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5338     pss.set_evac_failure_closure(&evac_failure_cl);
  5340     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5342     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5344     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5346     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5347       // We also need to mark copied objects.
  5348       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5351     // Keep alive closure.
  5352     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5354     // Complete GC closure
  5355     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5357     // Call the reference processing task's work routine.
  5358     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5360     // Note we cannot assert that the refs array is empty here as not all
  5361     // of the processing tasks (specifically phase2 - pp2_work) execute
  5362     // the complete_gc closure (which ordinarily would drain the queue) so
  5363     // the queue may not be empty.
  5365 };
  5367 // Driver routine for parallel reference processing.
  5368 // Creates an instance of the ref processing gang
  5369 // task and has the worker threads execute it.
  5370 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5371   assert(_workers != NULL, "Need parallel worker threads.");
  5373   ParallelTaskTerminator terminator(_active_workers, _queues);
  5374   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5376   _g1h->set_par_threads(_active_workers);
  5377   _workers->run_task(&proc_task_proxy);
  5378   _g1h->set_par_threads(0);
  5381 // Gang task for parallel reference enqueueing.
  5383 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5384   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5385   EnqueueTask& _enq_task;
  5387 public:
  5388   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5389     AbstractGangTask("Enqueue reference objects in parallel"),
  5390     _enq_task(enq_task)
  5391   { }
  5393   virtual void work(uint worker_id) {
  5394     _enq_task.work(worker_id);
  5396 };
  5398 // Driver routine for parallel reference enqueueing.
  5399 // Creates an instance of the ref enqueueing gang
  5400 // task and has the worker threads execute it.
  5402 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5403   assert(_workers != NULL, "Need parallel worker threads.");
  5405   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5407   _g1h->set_par_threads(_active_workers);
  5408   _workers->run_task(&enq_task_proxy);
  5409   _g1h->set_par_threads(0);
  5412 // End of weak reference support closures
  5414 // Abstract task used to preserve (i.e. copy) any referent objects
  5415 // that are in the collection set and are pointed to by reference
  5416 // objects discovered by the CM ref processor.
  5418 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5419 protected:
  5420   G1CollectedHeap* _g1h;
  5421   RefToScanQueueSet      *_queues;
  5422   ParallelTaskTerminator _terminator;
  5423   uint _n_workers;
  5425 public:
  5426   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5427     AbstractGangTask("ParPreserveCMReferents"),
  5428     _g1h(g1h),
  5429     _queues(task_queues),
  5430     _terminator(workers, _queues),
  5431     _n_workers(workers)
  5432   { }
  5434   void work(uint worker_id) {
  5435     ResourceMark rm;
  5436     HandleMark   hm;
  5438     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5439     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5441     pss.set_evac_failure_closure(&evac_failure_cl);
  5443     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5445     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5447     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5449     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5451     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5452       // We also need to mark copied objects.
  5453       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5456     // Is alive closure
  5457     G1AlwaysAliveClosure always_alive(_g1h);
  5459     // Copying keep alive closure. Applied to referent objects that need
  5460     // to be copied.
  5461     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5463     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5465     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5466     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5468     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5469     // So this must be true - but assert just in case someone decides to
  5470     // change the worker ids.
  5471     assert(0 <= worker_id && worker_id < limit, "sanity");
  5472     assert(!rp->discovery_is_atomic(), "check this code");
  5474     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5475     for (uint idx = worker_id; idx < limit; idx += stride) {
  5476       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5478       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5479       while (iter.has_next()) {
  5480         // Since discovery is not atomic for the CM ref processor, we
  5481         // can see some null referent objects.
  5482         iter.load_ptrs(DEBUG_ONLY(true));
  5483         oop ref = iter.obj();
  5485         // This will filter nulls.
  5486         if (iter.is_referent_alive()) {
  5487           iter.make_referent_alive();
  5489         iter.move_to_next();
  5493     // Drain the queue - which may cause stealing
  5494     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5495     drain_queue.do_void();
  5496     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5497     assert(pss.queue_is_empty(), "should be");
  5499 };
  5501 // Weak Reference processing during an evacuation pause (part 1).
  5502 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5503   double ref_proc_start = os::elapsedTime();
  5505   ReferenceProcessor* rp = _ref_processor_stw;
  5506   assert(rp->discovery_enabled(), "should have been enabled");
  5508   // Any reference objects, in the collection set, that were 'discovered'
  5509   // by the CM ref processor should have already been copied (either by
  5510   // applying the external root copy closure to the discovered lists, or
  5511   // by following an RSet entry).
  5512   //
  5513   // But some of the referents, that are in the collection set, that these
  5514   // reference objects point to may not have been copied: the STW ref
  5515   // processor would have seen that the reference object had already
  5516   // been 'discovered' and would have skipped discovering the reference,
  5517   // but would not have treated the reference object as a regular oop.
  5518   // As a result the copy closure would not have been applied to the
  5519   // referent object.
  5520   //
  5521   // We need to explicitly copy these referent objects - the references
  5522   // will be processed at the end of remarking.
  5523   //
  5524   // We also need to do this copying before we process the reference
  5525   // objects discovered by the STW ref processor in case one of these
  5526   // referents points to another object which is also referenced by an
  5527   // object discovered by the STW ref processor.
  5529   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5530            no_of_gc_workers == workers()->active_workers(),
  5531            "Need to reset active GC workers");
  5533   set_par_threads(no_of_gc_workers);
  5534   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5535                                                  no_of_gc_workers,
  5536                                                  _task_queues);
  5538   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5539     workers()->run_task(&keep_cm_referents);
  5540   } else {
  5541     keep_cm_referents.work(0);
  5544   set_par_threads(0);
  5546   // Closure to test whether a referent is alive.
  5547   G1STWIsAliveClosure is_alive(this);
  5549   // Even when parallel reference processing is enabled, the processing
  5550   // of JNI refs is serial and performed serially by the current thread
  5551   // rather than by a worker. The following PSS will be used for processing
  5552   // JNI refs.
  5554   // Use only a single queue for this PSS.
  5555   G1ParScanThreadState            pss(this, 0, NULL);
  5557   // We do not embed a reference processor in the copying/scanning
  5558   // closures while we're actually processing the discovered
  5559   // reference objects.
  5560   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5562   pss.set_evac_failure_closure(&evac_failure_cl);
  5564   assert(pss.queue_is_empty(), "pre-condition");
  5566   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5568   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5570   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5572   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5573     // We also need to mark copied objects.
  5574     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5577   // Keep alive closure.
  5578   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5580   // Serial Complete GC closure
  5581   G1STWDrainQueueClosure drain_queue(this, &pss);
  5583   // Setup the soft refs policy...
  5584   rp->setup_policy(false);
  5586   ReferenceProcessorStats stats;
  5587   if (!rp->processing_is_mt()) {
  5588     // Serial reference processing...
  5589     stats = rp->process_discovered_references(&is_alive,
  5590                                               &keep_alive,
  5591                                               &drain_queue,
  5592                                               NULL,
  5593                                               _gc_timer_stw,
  5594                                               _gc_tracer_stw->gc_id());
  5595   } else {
  5596     // Parallel reference processing
  5597     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5598     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5600     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5601     stats = rp->process_discovered_references(&is_alive,
  5602                                               &keep_alive,
  5603                                               &drain_queue,
  5604                                               &par_task_executor,
  5605                                               _gc_timer_stw,
  5606                                               _gc_tracer_stw->gc_id());
  5609   _gc_tracer_stw->report_gc_reference_stats(stats);
  5611   // We have completed copying any necessary live referent objects.
  5612   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5614   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5615   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5618 // Weak Reference processing during an evacuation pause (part 2).
  5619 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5620   double ref_enq_start = os::elapsedTime();
  5622   ReferenceProcessor* rp = _ref_processor_stw;
  5623   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5625   // Now enqueue any remaining on the discovered lists on to
  5626   // the pending list.
  5627   if (!rp->processing_is_mt()) {
  5628     // Serial reference processing...
  5629     rp->enqueue_discovered_references();
  5630   } else {
  5631     // Parallel reference enqueueing
  5633     assert(no_of_gc_workers == workers()->active_workers(),
  5634            "Need to reset active workers");
  5635     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5636     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5638     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5639     rp->enqueue_discovered_references(&par_task_executor);
  5642   rp->verify_no_references_recorded();
  5643   assert(!rp->discovery_enabled(), "should have been disabled");
  5645   // FIXME
  5646   // CM's reference processing also cleans up the string and symbol tables.
  5647   // Should we do that here also? We could, but it is a serial operation
  5648   // and could significantly increase the pause time.
  5650   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5651   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5654 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5655   _expand_heap_after_alloc_failure = true;
  5656   _evacuation_failed = false;
  5658   // Should G1EvacuationFailureALot be in effect for this GC?
  5659   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5661   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5663   // Disable the hot card cache.
  5664   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5665   hot_card_cache->reset_hot_cache_claimed_index();
  5666   hot_card_cache->set_use_cache(false);
  5668   uint n_workers;
  5669   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5670     n_workers =
  5671       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5672                                      workers()->active_workers(),
  5673                                      Threads::number_of_non_daemon_threads());
  5674     assert(UseDynamicNumberOfGCThreads ||
  5675            n_workers == workers()->total_workers(),
  5676            "If not dynamic should be using all the  workers");
  5677     workers()->set_active_workers(n_workers);
  5678     set_par_threads(n_workers);
  5679   } else {
  5680     assert(n_par_threads() == 0,
  5681            "Should be the original non-parallel value");
  5682     n_workers = 1;
  5686   init_for_evac_failure(NULL);
  5688   rem_set()->prepare_for_younger_refs_iterate(true);
  5690   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5691   double start_par_time_sec = os::elapsedTime();
  5692   double end_par_time_sec;
  5695     G1RootProcessor root_processor(this);
  5696     G1ParTask g1_par_task(this, _task_queues, &root_processor);
  5697     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5698     if (g1_policy()->during_initial_mark_pause()) {
  5699       ClassLoaderDataGraph::clear_claimed_marks();
  5702     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5703       // The individual threads will set their evac-failure closures.
  5704       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5705       // These tasks use ShareHeap::_process_strong_tasks
  5706       assert(UseDynamicNumberOfGCThreads ||
  5707              workers()->active_workers() == workers()->total_workers(),
  5708              "If not dynamic should be using all the  workers");
  5709       workers()->run_task(&g1_par_task);
  5710     } else {
  5711       g1_par_task.set_for_termination(n_workers);
  5712       g1_par_task.work(0);
  5714     end_par_time_sec = os::elapsedTime();
  5716     // Closing the inner scope will execute the destructor
  5717     // for the G1RootProcessor object. We record the current
  5718     // elapsed time before closing the scope so that time
  5719     // taken for the destructor is NOT included in the
  5720     // reported parallel time.
  5723   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
  5725   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5726   phase_times->record_par_time(par_time_ms);
  5728   double code_root_fixup_time_ms =
  5729         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5730   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
  5732   set_par_threads(0);
  5734   // Process any discovered reference objects - we have
  5735   // to do this _before_ we retire the GC alloc regions
  5736   // as we may have to copy some 'reachable' referent
  5737   // objects (and their reachable sub-graphs) that were
  5738   // not copied during the pause.
  5739   process_discovered_references(n_workers);
  5741   if (G1StringDedup::is_enabled()) {
  5742     double fixup_start = os::elapsedTime();
  5744     G1STWIsAliveClosure is_alive(this);
  5745     G1KeepAliveClosure keep_alive(this);
  5746     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
  5748     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
  5749     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
  5752   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
  5753   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5755   // Reset and re-enable the hot card cache.
  5756   // Note the counts for the cards in the regions in the
  5757   // collection set are reset when the collection set is freed.
  5758   hot_card_cache->reset_hot_cache();
  5759   hot_card_cache->set_use_cache(true);
  5761   purge_code_root_memory();
  5763   if (g1_policy()->during_initial_mark_pause()) {
  5764     // Reset the claim values set during marking the strong code roots
  5765     reset_heap_region_claim_values();
  5768   finalize_for_evac_failure();
  5770   if (evacuation_failed()) {
  5771     remove_self_forwarding_pointers();
  5773     // Reset the G1EvacuationFailureALot counters and flags
  5774     // Note: the values are reset only when an actual
  5775     // evacuation failure occurs.
  5776     NOT_PRODUCT(reset_evacuation_should_fail();)
  5779   // Enqueue any remaining references remaining on the STW
  5780   // reference processor's discovered lists. We need to do
  5781   // this after the card table is cleaned (and verified) as
  5782   // the act of enqueueing entries on to the pending list
  5783   // will log these updates (and dirty their associated
  5784   // cards). We need these updates logged to update any
  5785   // RSets.
  5786   enqueue_discovered_references(n_workers);
  5788   redirty_logged_cards();
  5789   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5792 void G1CollectedHeap::free_region(HeapRegion* hr,
  5793                                   FreeRegionList* free_list,
  5794                                   bool par,
  5795                                   bool locked) {
  5796   assert(!hr->is_free(), "the region should not be free");
  5797   assert(!hr->is_empty(), "the region should not be empty");
  5798   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  5799   assert(free_list != NULL, "pre-condition");
  5801   if (G1VerifyBitmaps) {
  5802     MemRegion mr(hr->bottom(), hr->end());
  5803     concurrent_mark()->clearRangePrevBitmap(mr);
  5806   // Clear the card counts for this region.
  5807   // Note: we only need to do this if the region is not young
  5808   // (since we don't refine cards in young regions).
  5809   if (!hr->is_young()) {
  5810     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5812   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5813   free_list->add_ordered(hr);
  5816 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5817                                      FreeRegionList* free_list,
  5818                                      bool par) {
  5819   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5820   assert(free_list != NULL, "pre-condition");
  5822   size_t hr_capacity = hr->capacity();
  5823   // We need to read this before we make the region non-humongous,
  5824   // otherwise the information will be gone.
  5825   uint last_index = hr->last_hc_index();
  5826   hr->clear_humongous();
  5827   free_region(hr, free_list, par);
  5829   uint i = hr->hrm_index() + 1;
  5830   while (i < last_index) {
  5831     HeapRegion* curr_hr = region_at(i);
  5832     assert(curr_hr->continuesHumongous(), "invariant");
  5833     curr_hr->clear_humongous();
  5834     free_region(curr_hr, free_list, par);
  5835     i += 1;
  5839 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  5840                                        const HeapRegionSetCount& humongous_regions_removed) {
  5841   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  5842     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5843     _old_set.bulk_remove(old_regions_removed);
  5844     _humongous_set.bulk_remove(humongous_regions_removed);
  5849 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  5850   assert(list != NULL, "list can't be null");
  5851   if (!list->is_empty()) {
  5852     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5853     _hrm.insert_list_into_free_list(list);
  5857 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  5858   _allocator->decrease_used(bytes);
  5861 class G1ParCleanupCTTask : public AbstractGangTask {
  5862   G1SATBCardTableModRefBS* _ct_bs;
  5863   G1CollectedHeap* _g1h;
  5864   HeapRegion* volatile _su_head;
  5865 public:
  5866   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  5867                      G1CollectedHeap* g1h) :
  5868     AbstractGangTask("G1 Par Cleanup CT Task"),
  5869     _ct_bs(ct_bs), _g1h(g1h) { }
  5871   void work(uint worker_id) {
  5872     HeapRegion* r;
  5873     while (r = _g1h->pop_dirty_cards_region()) {
  5874       clear_cards(r);
  5878   void clear_cards(HeapRegion* r) {
  5879     // Cards of the survivors should have already been dirtied.
  5880     if (!r->is_survivor()) {
  5881       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5884 };
  5886 #ifndef PRODUCT
  5887 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5888   G1CollectedHeap* _g1h;
  5889   G1SATBCardTableModRefBS* _ct_bs;
  5890 public:
  5891   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  5892     : _g1h(g1h), _ct_bs(ct_bs) { }
  5893   virtual bool doHeapRegion(HeapRegion* r) {
  5894     if (r->is_survivor()) {
  5895       _g1h->verify_dirty_region(r);
  5896     } else {
  5897       _g1h->verify_not_dirty_region(r);
  5899     return false;
  5901 };
  5903 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5904   // All of the region should be clean.
  5905   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5906   MemRegion mr(hr->bottom(), hr->end());
  5907   ct_bs->verify_not_dirty_region(mr);
  5910 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5911   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5912   // dirty allocated blocks as they allocate them. The thread that
  5913   // retires each region and replaces it with a new one will do a
  5914   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5915   // not dirty that area (one less thing to have to do while holding
  5916   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5917   // is dirty.
  5918   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5919   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5920   if (hr->is_young()) {
  5921     ct_bs->verify_g1_young_region(mr);
  5922   } else {
  5923     ct_bs->verify_dirty_region(mr);
  5927 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5928   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5929   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5930     verify_dirty_region(hr);
  5934 void G1CollectedHeap::verify_dirty_young_regions() {
  5935   verify_dirty_young_list(_young_list->first_region());
  5938 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  5939                                                HeapWord* tams, HeapWord* end) {
  5940   guarantee(tams <= end,
  5941             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  5942   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  5943   if (result < end) {
  5944     gclog_or_tty->cr();
  5945     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  5946                            bitmap_name, result);
  5947     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  5948                            bitmap_name, tams, end);
  5949     return false;
  5951   return true;
  5954 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  5955   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  5956   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  5958   HeapWord* bottom = hr->bottom();
  5959   HeapWord* ptams  = hr->prev_top_at_mark_start();
  5960   HeapWord* ntams  = hr->next_top_at_mark_start();
  5961   HeapWord* end    = hr->end();
  5963   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  5965   bool res_n = true;
  5966   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  5967   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  5968   // if we happen to be in that state.
  5969   if (mark_in_progress() || !_cmThread->in_progress()) {
  5970     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  5972   if (!res_p || !res_n) {
  5973     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  5974                            HR_FORMAT_PARAMS(hr));
  5975     gclog_or_tty->print_cr("#### Caller: %s", caller);
  5976     return false;
  5978   return true;
  5981 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  5982   if (!G1VerifyBitmaps) return;
  5984   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  5987 class G1VerifyBitmapClosure : public HeapRegionClosure {
  5988 private:
  5989   const char* _caller;
  5990   G1CollectedHeap* _g1h;
  5991   bool _failures;
  5993 public:
  5994   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  5995     _caller(caller), _g1h(g1h), _failures(false) { }
  5997   bool failures() { return _failures; }
  5999   virtual bool doHeapRegion(HeapRegion* hr) {
  6000     if (hr->continuesHumongous()) return false;
  6002     bool result = _g1h->verify_bitmaps(_caller, hr);
  6003     if (!result) {
  6004       _failures = true;
  6006     return false;
  6008 };
  6010 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6011   if (!G1VerifyBitmaps) return;
  6013   G1VerifyBitmapClosure cl(caller, this);
  6014   heap_region_iterate(&cl);
  6015   guarantee(!cl.failures(), "bitmap verification");
  6018 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
  6019  private:
  6020   bool _failures;
  6021  public:
  6022   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
  6024   virtual bool doHeapRegion(HeapRegion* hr) {
  6025     uint i = hr->hrm_index();
  6026     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
  6027     if (hr->isHumongous()) {
  6028       if (hr->in_collection_set()) {
  6029         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
  6030         _failures = true;
  6031         return true;
  6033       if (cset_state.is_in_cset()) {
  6034         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
  6035         _failures = true;
  6036         return true;
  6038       if (hr->continuesHumongous() && cset_state.is_humongous()) {
  6039         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
  6040         _failures = true;
  6041         return true;
  6043     } else {
  6044       if (cset_state.is_humongous()) {
  6045         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
  6046         _failures = true;
  6047         return true;
  6049       if (hr->in_collection_set() != cset_state.is_in_cset()) {
  6050         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
  6051                                hr->in_collection_set(), cset_state.value(), i);
  6052        _failures = true;
  6053        return true;
  6055       if (cset_state.is_in_cset()) {
  6056         if (hr->is_young() != (cset_state.is_young())) {
  6057           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
  6058                                  hr->is_young(), cset_state.value(), i);
  6059           _failures = true;
  6060           return true;
  6062         if (hr->is_old() != (cset_state.is_old())) {
  6063           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
  6064                                  hr->is_old(), cset_state.value(), i);
  6065           _failures = true;
  6066           return true;
  6070     return false;
  6073   bool failures() const { return _failures; }
  6074 };
  6076 bool G1CollectedHeap::check_cset_fast_test() {
  6077   G1CheckCSetFastTableClosure cl;
  6078   _hrm.iterate(&cl);
  6079   return !cl.failures();
  6081 #endif // PRODUCT
  6083 void G1CollectedHeap::cleanUpCardTable() {
  6084   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6085   double start = os::elapsedTime();
  6088     // Iterate over the dirty cards region list.
  6089     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6091     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6092       set_par_threads();
  6093       workers()->run_task(&cleanup_task);
  6094       set_par_threads(0);
  6095     } else {
  6096       while (_dirty_cards_region_list) {
  6097         HeapRegion* r = _dirty_cards_region_list;
  6098         cleanup_task.clear_cards(r);
  6099         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6100         if (_dirty_cards_region_list == r) {
  6101           // The last region.
  6102           _dirty_cards_region_list = NULL;
  6104         r->set_next_dirty_cards_region(NULL);
  6107 #ifndef PRODUCT
  6108     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6109       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6110       heap_region_iterate(&cleanup_verifier);
  6112 #endif
  6115   double elapsed = os::elapsedTime() - start;
  6116   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6119 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6120   size_t pre_used = 0;
  6121   FreeRegionList local_free_list("Local List for CSet Freeing");
  6123   double young_time_ms     = 0.0;
  6124   double non_young_time_ms = 0.0;
  6126   // Since the collection set is a superset of the the young list,
  6127   // all we need to do to clear the young list is clear its
  6128   // head and length, and unlink any young regions in the code below
  6129   _young_list->clear();
  6131   G1CollectorPolicy* policy = g1_policy();
  6133   double start_sec = os::elapsedTime();
  6134   bool non_young = true;
  6136   HeapRegion* cur = cs_head;
  6137   int age_bound = -1;
  6138   size_t rs_lengths = 0;
  6140   while (cur != NULL) {
  6141     assert(!is_on_master_free_list(cur), "sanity");
  6142     if (non_young) {
  6143       if (cur->is_young()) {
  6144         double end_sec = os::elapsedTime();
  6145         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6146         non_young_time_ms += elapsed_ms;
  6148         start_sec = os::elapsedTime();
  6149         non_young = false;
  6151     } else {
  6152       if (!cur->is_young()) {
  6153         double end_sec = os::elapsedTime();
  6154         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6155         young_time_ms += elapsed_ms;
  6157         start_sec = os::elapsedTime();
  6158         non_young = true;
  6162     rs_lengths += cur->rem_set()->occupied_locked();
  6164     HeapRegion* next = cur->next_in_collection_set();
  6165     assert(cur->in_collection_set(), "bad CS");
  6166     cur->set_next_in_collection_set(NULL);
  6167     cur->set_in_collection_set(false);
  6169     if (cur->is_young()) {
  6170       int index = cur->young_index_in_cset();
  6171       assert(index != -1, "invariant");
  6172       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6173       size_t words_survived = _surviving_young_words[index];
  6174       cur->record_surv_words_in_group(words_survived);
  6176       // At this point the we have 'popped' cur from the collection set
  6177       // (linked via next_in_collection_set()) but it is still in the
  6178       // young list (linked via next_young_region()). Clear the
  6179       // _next_young_region field.
  6180       cur->set_next_young_region(NULL);
  6181     } else {
  6182       int index = cur->young_index_in_cset();
  6183       assert(index == -1, "invariant");
  6186     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6187             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6188             "invariant" );
  6190     if (!cur->evacuation_failed()) {
  6191       MemRegion used_mr = cur->used_region();
  6193       // And the region is empty.
  6194       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6195       pre_used += cur->used();
  6196       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6197     } else {
  6198       cur->uninstall_surv_rate_group();
  6199       if (cur->is_young()) {
  6200         cur->set_young_index_in_cset(-1);
  6202       cur->set_evacuation_failed(false);
  6203       // The region is now considered to be old.
  6204       cur->set_old();
  6205       _old_set.add(cur);
  6206       evacuation_info.increment_collectionset_used_after(cur->used());
  6208     cur = next;
  6211   evacuation_info.set_regions_freed(local_free_list.length());
  6212   policy->record_max_rs_lengths(rs_lengths);
  6213   policy->cset_regions_freed();
  6215   double end_sec = os::elapsedTime();
  6216   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6218   if (non_young) {
  6219     non_young_time_ms += elapsed_ms;
  6220   } else {
  6221     young_time_ms += elapsed_ms;
  6224   prepend_to_freelist(&local_free_list);
  6225   decrement_summary_bytes(pre_used);
  6226   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6227   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6230 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6231  private:
  6232   FreeRegionList* _free_region_list;
  6233   HeapRegionSet* _proxy_set;
  6234   HeapRegionSetCount _humongous_regions_removed;
  6235   size_t _freed_bytes;
  6236  public:
  6238   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6239     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6242   virtual bool doHeapRegion(HeapRegion* r) {
  6243     if (!r->startsHumongous()) {
  6244       return false;
  6247     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6249     oop obj = (oop)r->bottom();
  6250     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6252     // The following checks whether the humongous object is live are sufficient.
  6253     // The main additional check (in addition to having a reference from the roots
  6254     // or the young gen) is whether the humongous object has a remembered set entry.
  6255     //
  6256     // A humongous object cannot be live if there is no remembered set for it
  6257     // because:
  6258     // - there can be no references from within humongous starts regions referencing
  6259     // the object because we never allocate other objects into them.
  6260     // (I.e. there are no intra-region references that may be missed by the
  6261     // remembered set)
  6262     // - as soon there is a remembered set entry to the humongous starts region
  6263     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6264     // until the end of a concurrent mark.
  6265     //
  6266     // It is not required to check whether the object has been found dead by marking
  6267     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6268     // all objects allocated during that time are considered live.
  6269     // SATB marking is even more conservative than the remembered set.
  6270     // So if at this point in the collection there is no remembered set entry,
  6271     // nobody has a reference to it.
  6272     // At the start of collection we flush all refinement logs, and remembered sets
  6273     // are completely up-to-date wrt to references to the humongous object.
  6274     //
  6275     // Other implementation considerations:
  6276     // - never consider object arrays: while they are a valid target, they have not
  6277     // been observed to be used as temporary objects.
  6278     // - they would also pose considerable effort for cleaning up the the remembered
  6279     // sets.
  6280     // While this cleanup is not strictly necessary to be done (or done instantly),
  6281     // given that their occurrence is very low, this saves us this additional
  6282     // complexity.
  6283     uint region_idx = r->hrm_index();
  6284     if (g1h->humongous_is_live(region_idx) ||
  6285         g1h->humongous_region_is_always_live(region_idx)) {
  6287       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6288         gclog_or_tty->print_cr("Live humongous %d region %d size "SIZE_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6289                                r->isHumongous(),
  6290                                region_idx,
  6291                                obj->size()*HeapWordSize,
  6292                                r->rem_set()->occupied(),
  6293                                r->rem_set()->strong_code_roots_list_length(),
  6294                                next_bitmap->isMarked(r->bottom()),
  6295                                g1h->humongous_is_live(region_idx),
  6296                                obj->is_objArray()
  6297                               );
  6300       return false;
  6303     guarantee(!obj->is_objArray(),
  6304               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
  6305                       r->bottom()));
  6307     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6308       gclog_or_tty->print_cr("Reclaim humongous region %d size "SIZE_FORMAT" start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other ",
  6309                              r->isHumongous(),
  6310                              obj->size()*HeapWordSize,
  6311                              r->bottom(),
  6312                              region_idx,
  6313                              r->region_num(),
  6314                              r->rem_set()->occupied(),
  6315                              r->rem_set()->strong_code_roots_list_length(),
  6316                              next_bitmap->isMarked(r->bottom()),
  6317                              g1h->humongous_is_live(region_idx),
  6318                              obj->is_objArray()
  6319                             );
  6321     // Need to clear mark bit of the humongous object if already set.
  6322     if (next_bitmap->isMarked(r->bottom())) {
  6323       next_bitmap->clear(r->bottom());
  6325     _freed_bytes += r->used();
  6326     r->set_containing_set(NULL);
  6327     _humongous_regions_removed.increment(1u, r->capacity());
  6328     g1h->free_humongous_region(r, _free_region_list, false);
  6330     return false;
  6333   HeapRegionSetCount& humongous_free_count() {
  6334     return _humongous_regions_removed;
  6337   size_t bytes_freed() const {
  6338     return _freed_bytes;
  6341   size_t humongous_reclaimed() const {
  6342     return _humongous_regions_removed.length();
  6344 };
  6346 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6347   assert_at_safepoint(true);
  6349   if (!G1ReclaimDeadHumongousObjectsAtYoungGC ||
  6350       (!_has_humongous_reclaim_candidates && !G1TraceReclaimDeadHumongousObjectsAtYoungGC)) {
  6351     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6352     return;
  6355   double start_time = os::elapsedTime();
  6357   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6359   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6360   heap_region_iterate(&cl);
  6362   HeapRegionSetCount empty_set;
  6363   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6365   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6366   if (hr_printer->is_active()) {
  6367     FreeRegionListIterator iter(&local_cleanup_list);
  6368     while (iter.more_available()) {
  6369       HeapRegion* hr = iter.get_next();
  6370       hr_printer->cleanup(hr);
  6374   prepend_to_freelist(&local_cleanup_list);
  6375   decrement_summary_bytes(cl.bytes_freed());
  6377   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6378                                                                     cl.humongous_reclaimed());
  6381 // This routine is similar to the above but does not record
  6382 // any policy statistics or update free lists; we are abandoning
  6383 // the current incremental collection set in preparation of a
  6384 // full collection. After the full GC we will start to build up
  6385 // the incremental collection set again.
  6386 // This is only called when we're doing a full collection
  6387 // and is immediately followed by the tearing down of the young list.
  6389 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6390   HeapRegion* cur = cs_head;
  6392   while (cur != NULL) {
  6393     HeapRegion* next = cur->next_in_collection_set();
  6394     assert(cur->in_collection_set(), "bad CS");
  6395     cur->set_next_in_collection_set(NULL);
  6396     cur->set_in_collection_set(false);
  6397     cur->set_young_index_in_cset(-1);
  6398     cur = next;
  6402 void G1CollectedHeap::set_free_regions_coming() {
  6403   if (G1ConcRegionFreeingVerbose) {
  6404     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6405                            "setting free regions coming");
  6408   assert(!free_regions_coming(), "pre-condition");
  6409   _free_regions_coming = true;
  6412 void G1CollectedHeap::reset_free_regions_coming() {
  6413   assert(free_regions_coming(), "pre-condition");
  6416     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6417     _free_regions_coming = false;
  6418     SecondaryFreeList_lock->notify_all();
  6421   if (G1ConcRegionFreeingVerbose) {
  6422     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6423                            "reset free regions coming");
  6427 void G1CollectedHeap::wait_while_free_regions_coming() {
  6428   // Most of the time we won't have to wait, so let's do a quick test
  6429   // first before we take the lock.
  6430   if (!free_regions_coming()) {
  6431     return;
  6434   if (G1ConcRegionFreeingVerbose) {
  6435     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6436                            "waiting for free regions");
  6440     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6441     while (free_regions_coming()) {
  6442       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6446   if (G1ConcRegionFreeingVerbose) {
  6447     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6448                            "done waiting for free regions");
  6452 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6453   assert(heap_lock_held_for_gc(),
  6454               "the heap lock should already be held by or for this thread");
  6455   _young_list->push_region(hr);
  6458 class NoYoungRegionsClosure: public HeapRegionClosure {
  6459 private:
  6460   bool _success;
  6461 public:
  6462   NoYoungRegionsClosure() : _success(true) { }
  6463   bool doHeapRegion(HeapRegion* r) {
  6464     if (r->is_young()) {
  6465       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6466                              r->bottom(), r->end());
  6467       _success = false;
  6469     return false;
  6471   bool success() { return _success; }
  6472 };
  6474 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6475   bool ret = _young_list->check_list_empty(check_sample);
  6477   if (check_heap) {
  6478     NoYoungRegionsClosure closure;
  6479     heap_region_iterate(&closure);
  6480     ret = ret && closure.success();
  6483   return ret;
  6486 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6487 private:
  6488   HeapRegionSet *_old_set;
  6490 public:
  6491   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6493   bool doHeapRegion(HeapRegion* r) {
  6494     if (r->is_old()) {
  6495       _old_set->remove(r);
  6496     } else {
  6497       // We ignore free regions, we'll empty the free list afterwards.
  6498       // We ignore young regions, we'll empty the young list afterwards.
  6499       // We ignore humongous regions, we're not tearing down the
  6500       // humongous regions set.
  6501       assert(r->is_free() || r->is_young() || r->isHumongous(),
  6502              "it cannot be another type");
  6504     return false;
  6507   ~TearDownRegionSetsClosure() {
  6508     assert(_old_set->is_empty(), "post-condition");
  6510 };
  6512 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6513   assert_at_safepoint(true /* should_be_vm_thread */);
  6515   if (!free_list_only) {
  6516     TearDownRegionSetsClosure cl(&_old_set);
  6517     heap_region_iterate(&cl);
  6519     // Note that emptying the _young_list is postponed and instead done as
  6520     // the first step when rebuilding the regions sets again. The reason for
  6521     // this is that during a full GC string deduplication needs to know if
  6522     // a collected region was young or old when the full GC was initiated.
  6524   _hrm.remove_all_free_regions();
  6527 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6528 private:
  6529   bool            _free_list_only;
  6530   HeapRegionSet*   _old_set;
  6531   HeapRegionManager*   _hrm;
  6532   size_t          _total_used;
  6534 public:
  6535   RebuildRegionSetsClosure(bool free_list_only,
  6536                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
  6537     _free_list_only(free_list_only),
  6538     _old_set(old_set), _hrm(hrm), _total_used(0) {
  6539     assert(_hrm->num_free_regions() == 0, "pre-condition");
  6540     if (!free_list_only) {
  6541       assert(_old_set->is_empty(), "pre-condition");
  6545   bool doHeapRegion(HeapRegion* r) {
  6546     if (r->continuesHumongous()) {
  6547       return false;
  6550     if (r->is_empty()) {
  6551       // Add free regions to the free list
  6552       r->set_free();
  6553       r->set_allocation_context(AllocationContext::system());
  6554       _hrm->insert_into_free_list(r);
  6555     } else if (!_free_list_only) {
  6556       assert(!r->is_young(), "we should not come across young regions");
  6558       if (r->isHumongous()) {
  6559         // We ignore humongous regions, we left the humongous set unchanged
  6560       } else {
  6561         // Objects that were compacted would have ended up on regions
  6562         // that were previously old or free.
  6563         assert(r->is_free() || r->is_old(), "invariant");
  6564         // We now consider them old, so register as such.
  6565         r->set_old();
  6566         _old_set->add(r);
  6568       _total_used += r->used();
  6571     return false;
  6574   size_t total_used() {
  6575     return _total_used;
  6577 };
  6579 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6580   assert_at_safepoint(true /* should_be_vm_thread */);
  6582   if (!free_list_only) {
  6583     _young_list->empty_list();
  6586   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  6587   heap_region_iterate(&cl);
  6589   if (!free_list_only) {
  6590     _allocator->set_used(cl.total_used());
  6592   assert(_allocator->used_unlocked() == recalculate_used(),
  6593          err_msg("inconsistent _allocator->used_unlocked(), "
  6594                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6595                  _allocator->used_unlocked(), recalculate_used()));
  6598 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6599   _refine_cte_cl->set_concurrent(concurrent);
  6602 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6603   HeapRegion* hr = heap_region_containing(p);
  6604   return hr->is_in(p);
  6607 // Methods for the mutator alloc region
  6609 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6610                                                       bool force) {
  6611   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6612   assert(!force || g1_policy()->can_expand_young_list(),
  6613          "if force is true we should be able to expand the young list");
  6614   bool young_list_full = g1_policy()->is_young_list_full();
  6615   if (force || !young_list_full) {
  6616     HeapRegion* new_alloc_region = new_region(word_size,
  6617                                               false /* is_old */,
  6618                                               false /* do_expand */);
  6619     if (new_alloc_region != NULL) {
  6620       set_region_short_lived_locked(new_alloc_region);
  6621       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6622       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6623       return new_alloc_region;
  6626   return NULL;
  6629 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6630                                                   size_t allocated_bytes) {
  6631   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6632   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
  6634   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6635   _allocator->increase_used(allocated_bytes);
  6636   _hr_printer.retire(alloc_region);
  6637   // We update the eden sizes here, when the region is retired,
  6638   // instead of when it's allocated, since this is the point that its
  6639   // used space has been recored in _summary_bytes_used.
  6640   g1mm()->update_eden_size();
  6643 void G1CollectedHeap::set_par_threads() {
  6644   // Don't change the number of workers.  Use the value previously set
  6645   // in the workgroup.
  6646   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6647   uint n_workers = workers()->active_workers();
  6648   assert(UseDynamicNumberOfGCThreads ||
  6649            n_workers == workers()->total_workers(),
  6650       "Otherwise should be using the total number of workers");
  6651   if (n_workers == 0) {
  6652     assert(false, "Should have been set in prior evacuation pause.");
  6653     n_workers = ParallelGCThreads;
  6654     workers()->set_active_workers(n_workers);
  6656   set_par_threads(n_workers);
  6659 // Methods for the GC alloc regions
  6661 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6662                                                  uint count,
  6663                                                  InCSetState dest) {
  6664   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6666   if (count < g1_policy()->max_regions(dest)) {
  6667     const bool is_survivor = (dest.is_young());
  6668     HeapRegion* new_alloc_region = new_region(word_size,
  6669                                               !is_survivor,
  6670                                               true /* do_expand */);
  6671     if (new_alloc_region != NULL) {
  6672       // We really only need to do this for old regions given that we
  6673       // should never scan survivors. But it doesn't hurt to do it
  6674       // for survivors too.
  6675       new_alloc_region->record_timestamp();
  6676       if (is_survivor) {
  6677         new_alloc_region->set_survivor();
  6678         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6679         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6680       } else {
  6681         new_alloc_region->set_old();
  6682         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6683         check_bitmaps("Old Region Allocation", new_alloc_region);
  6685       bool during_im = g1_policy()->during_initial_mark_pause();
  6686       new_alloc_region->note_start_of_copying(during_im);
  6687       return new_alloc_region;
  6690   return NULL;
  6693 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6694                                              size_t allocated_bytes,
  6695                                              InCSetState dest) {
  6696   bool during_im = g1_policy()->during_initial_mark_pause();
  6697   alloc_region->note_end_of_copying(during_im);
  6698   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6699   if (dest.is_young()) {
  6700     young_list()->add_survivor_region(alloc_region);
  6701   } else {
  6702     _old_set.add(alloc_region);
  6704   _hr_printer.retire(alloc_region);
  6707 // Heap region set verification
  6709 class VerifyRegionListsClosure : public HeapRegionClosure {
  6710 private:
  6711   HeapRegionSet*   _old_set;
  6712   HeapRegionSet*   _humongous_set;
  6713   HeapRegionManager*   _hrm;
  6715 public:
  6716   HeapRegionSetCount _old_count;
  6717   HeapRegionSetCount _humongous_count;
  6718   HeapRegionSetCount _free_count;
  6720   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6721                            HeapRegionSet* humongous_set,
  6722                            HeapRegionManager* hrm) :
  6723     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
  6724     _old_count(), _humongous_count(), _free_count(){ }
  6726   bool doHeapRegion(HeapRegion* hr) {
  6727     if (hr->continuesHumongous()) {
  6728       return false;
  6731     if (hr->is_young()) {
  6732       // TODO
  6733     } else if (hr->startsHumongous()) {
  6734       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
  6735       _humongous_count.increment(1u, hr->capacity());
  6736     } else if (hr->is_empty()) {
  6737       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
  6738       _free_count.increment(1u, hr->capacity());
  6739     } else if (hr->is_old()) {
  6740       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
  6741       _old_count.increment(1u, hr->capacity());
  6742     } else {
  6743       ShouldNotReachHere();
  6745     return false;
  6748   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
  6749     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6750     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6751         old_set->total_capacity_bytes(), _old_count.capacity()));
  6753     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6754     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6755         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6757     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6758     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6759         free_list->total_capacity_bytes(), _free_count.capacity()));
  6761 };
  6763 void G1CollectedHeap::verify_region_sets() {
  6764   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6766   // First, check the explicit lists.
  6767   _hrm.verify();
  6769     // Given that a concurrent operation might be adding regions to
  6770     // the secondary free list we have to take the lock before
  6771     // verifying it.
  6772     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6773     _secondary_free_list.verify_list();
  6776   // If a concurrent region freeing operation is in progress it will
  6777   // be difficult to correctly attributed any free regions we come
  6778   // across to the correct free list given that they might belong to
  6779   // one of several (free_list, secondary_free_list, any local lists,
  6780   // etc.). So, if that's the case we will skip the rest of the
  6781   // verification operation. Alternatively, waiting for the concurrent
  6782   // operation to complete will have a non-trivial effect on the GC's
  6783   // operation (no concurrent operation will last longer than the
  6784   // interval between two calls to verification) and it might hide
  6785   // any issues that we would like to catch during testing.
  6786   if (free_regions_coming()) {
  6787     return;
  6790   // Make sure we append the secondary_free_list on the free_list so
  6791   // that all free regions we will come across can be safely
  6792   // attributed to the free_list.
  6793   append_secondary_free_list_if_not_empty_with_lock();
  6795   // Finally, make sure that the region accounting in the lists is
  6796   // consistent with what we see in the heap.
  6798   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  6799   heap_region_iterate(&cl);
  6800   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
  6803 // Optimized nmethod scanning
  6805 class RegisterNMethodOopClosure: public OopClosure {
  6806   G1CollectedHeap* _g1h;
  6807   nmethod* _nm;
  6809   template <class T> void do_oop_work(T* p) {
  6810     T heap_oop = oopDesc::load_heap_oop(p);
  6811     if (!oopDesc::is_null(heap_oop)) {
  6812       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6813       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6814       assert(!hr->continuesHumongous(),
  6815              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6816                      " starting at "HR_FORMAT,
  6817                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6819       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
  6820       hr->add_strong_code_root_locked(_nm);
  6824 public:
  6825   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6826     _g1h(g1h), _nm(nm) {}
  6828   void do_oop(oop* p)       { do_oop_work(p); }
  6829   void do_oop(narrowOop* p) { do_oop_work(p); }
  6830 };
  6832 class UnregisterNMethodOopClosure: public OopClosure {
  6833   G1CollectedHeap* _g1h;
  6834   nmethod* _nm;
  6836   template <class T> void do_oop_work(T* p) {
  6837     T heap_oop = oopDesc::load_heap_oop(p);
  6838     if (!oopDesc::is_null(heap_oop)) {
  6839       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6840       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6841       assert(!hr->continuesHumongous(),
  6842              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6843                      " starting at "HR_FORMAT,
  6844                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6846       hr->remove_strong_code_root(_nm);
  6850 public:
  6851   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6852     _g1h(g1h), _nm(nm) {}
  6854   void do_oop(oop* p)       { do_oop_work(p); }
  6855   void do_oop(narrowOop* p) { do_oop_work(p); }
  6856 };
  6858 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6859   CollectedHeap::register_nmethod(nm);
  6861   guarantee(nm != NULL, "sanity");
  6862   RegisterNMethodOopClosure reg_cl(this, nm);
  6863   nm->oops_do(&reg_cl);
  6866 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6867   CollectedHeap::unregister_nmethod(nm);
  6869   guarantee(nm != NULL, "sanity");
  6870   UnregisterNMethodOopClosure reg_cl(this, nm);
  6871   nm->oops_do(&reg_cl, true);
  6874 void G1CollectedHeap::purge_code_root_memory() {
  6875   double purge_start = os::elapsedTime();
  6876   G1CodeRootSet::purge();
  6877   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  6878   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  6881 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  6882   G1CollectedHeap* _g1h;
  6884 public:
  6885   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  6886     _g1h(g1h) {}
  6888   void do_code_blob(CodeBlob* cb) {
  6889     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  6890     if (nm == NULL) {
  6891       return;
  6894     if (ScavengeRootsInCode) {
  6895       _g1h->register_nmethod(nm);
  6898 };
  6900 void G1CollectedHeap::rebuild_strong_code_roots() {
  6901   RebuildStrongCodeRootClosure blob_cl(this);
  6902   CodeCache::blobs_do(&blob_cl);

mercurial