src/share/vm/runtime/thread.cpp

Thu, 05 Sep 2019 18:52:27 +0800

author
aoqi
date
Thu, 05 Sep 2019 18:52:27 +0800
changeset 9703
2fdf635bcf28
parent 9466
0d85d1b001bb
parent 9676
bf1c9a3312a4
child 9852
70aa912cebe5
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/classLoader.hpp"
    33 #include "classfile/javaClasses.hpp"
    34 #include "classfile/systemDictionary.hpp"
    35 #include "classfile/vmSymbols.hpp"
    36 #include "code/scopeDesc.hpp"
    37 #include "compiler/compileBroker.hpp"
    38 #include "interpreter/interpreter.hpp"
    39 #include "interpreter/linkResolver.hpp"
    40 #include "interpreter/oopMapCache.hpp"
    41 #include "jvmtifiles/jvmtiEnv.hpp"
    42 #include "memory/gcLocker.inline.hpp"
    43 #include "memory/metaspaceShared.hpp"
    44 #include "memory/oopFactory.hpp"
    45 #include "memory/universe.inline.hpp"
    46 #include "oops/instanceKlass.hpp"
    47 #include "oops/objArrayOop.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "oops/symbol.hpp"
    50 #include "prims/jvm_misc.hpp"
    51 #include "prims/jvmtiExport.hpp"
    52 #include "prims/jvmtiThreadState.hpp"
    53 #include "prims/privilegedStack.hpp"
    54 #include "runtime/arguments.hpp"
    55 #include "runtime/biasedLocking.hpp"
    56 #include "runtime/deoptimization.hpp"
    57 #include "runtime/fprofiler.hpp"
    58 #include "runtime/frame.inline.hpp"
    59 #include "runtime/init.hpp"
    60 #include "runtime/interfaceSupport.hpp"
    61 #include "runtime/java.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/jniPeriodicChecker.hpp"
    64 #include "runtime/memprofiler.hpp"
    65 #include "runtime/mutexLocker.hpp"
    66 #include "runtime/objectMonitor.hpp"
    67 #include "runtime/orderAccess.inline.hpp"
    68 #include "runtime/osThread.hpp"
    69 #include "runtime/safepoint.hpp"
    70 #include "runtime/sharedRuntime.hpp"
    71 #include "runtime/statSampler.hpp"
    72 #include "runtime/stubRoutines.hpp"
    73 #include "runtime/task.hpp"
    74 #include "runtime/thread.inline.hpp"
    75 #include "runtime/threadCritical.hpp"
    76 #include "runtime/threadLocalStorage.hpp"
    77 #include "runtime/vframe.hpp"
    78 #include "runtime/vframeArray.hpp"
    79 #include "runtime/vframe_hp.hpp"
    80 #include "runtime/vmThread.hpp"
    81 #include "runtime/vm_operations.hpp"
    82 #include "services/attachListener.hpp"
    83 #include "services/management.hpp"
    84 #include "services/memTracker.hpp"
    85 #include "services/threadService.hpp"
    86 #include "trace/tracing.hpp"
    87 #include "trace/traceMacros.hpp"
    88 #include "utilities/defaultStream.hpp"
    89 #include "utilities/dtrace.hpp"
    90 #include "utilities/events.hpp"
    91 #include "utilities/preserveException.hpp"
    92 #include "utilities/macros.hpp"
    93 #ifdef TARGET_OS_FAMILY_linux
    94 # include "os_linux.inline.hpp"
    95 #endif
    96 #ifdef TARGET_OS_FAMILY_solaris
    97 # include "os_solaris.inline.hpp"
    98 #endif
    99 #ifdef TARGET_OS_FAMILY_windows
   100 # include "os_windows.inline.hpp"
   101 #endif
   102 #ifdef TARGET_OS_FAMILY_bsd
   103 # include "os_bsd.inline.hpp"
   104 #endif
   105 #if INCLUDE_ALL_GCS
   106 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   107 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   108 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   109 #endif // INCLUDE_ALL_GCS
   110 #ifdef COMPILER1
   111 #include "c1/c1_Compiler.hpp"
   112 #endif
   113 #ifdef COMPILER2
   114 #include "opto/c2compiler.hpp"
   115 #include "opto/idealGraphPrinter.hpp"
   116 #endif
   117 #if INCLUDE_RTM_OPT
   118 #include "runtime/rtmLocking.hpp"
   119 #endif
   121 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   123 #ifdef DTRACE_ENABLED
   125 // Only bother with this argument setup if dtrace is available
   127 #ifndef USDT2
   128 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   129 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   130 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   131   intptr_t, intptr_t, bool);
   132 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   133   intptr_t, intptr_t, bool);
   135 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   136   {                                                                        \
   137     ResourceMark rm(this);                                                 \
   138     int len = 0;                                                           \
   139     const char* name = (javathread)->get_thread_name();                    \
   140     len = strlen(name);                                                    \
   141     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   142       name, len,                                                           \
   143       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   144       (javathread)->osthread()->thread_id(),                               \
   145       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   146   }
   148 #else /* USDT2 */
   150 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
   151 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
   153 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   154   {                                                                        \
   155     ResourceMark rm(this);                                                 \
   156     int len = 0;                                                           \
   157     const char* name = (javathread)->get_thread_name();                    \
   158     len = strlen(name);                                                    \
   159     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   160       (char *) name, len,                                                           \
   161       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   162       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   163       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   164   }
   166 #endif /* USDT2 */
   168 #else //  ndef DTRACE_ENABLED
   170 #define DTRACE_THREAD_PROBE(probe, javathread)
   172 #endif // ndef DTRACE_ENABLED
   175 // Class hierarchy
   176 // - Thread
   177 //   - VMThread
   178 //   - WatcherThread
   179 //   - ConcurrentMarkSweepThread
   180 //   - JavaThread
   181 //     - CompilerThread
   183 // ======= Thread ========
   184 // Support for forcing alignment of thread objects for biased locking
   185 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   186   if (UseBiasedLocking) {
   187     const int alignment = markOopDesc::biased_lock_alignment;
   188     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   189     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   190                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   191                                               AllocFailStrategy::RETURN_NULL);
   192     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   193     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   194            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   195            "JavaThread alignment code overflowed allocated storage");
   196     if (TraceBiasedLocking) {
   197       if (aligned_addr != real_malloc_addr)
   198         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   199                       real_malloc_addr, aligned_addr);
   200     }
   201     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   202     return aligned_addr;
   203   } else {
   204     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   205                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   206   }
   207 }
   209 void Thread::operator delete(void* p) {
   210   if (UseBiasedLocking) {
   211     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   212     FreeHeap(real_malloc_addr, mtThread);
   213   } else {
   214     FreeHeap(p, mtThread);
   215   }
   216 }
   219 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   220 // JavaThread
   223 Thread::Thread() {
   224   // stack and get_thread
   225   set_stack_base(NULL);
   226   set_stack_size(0);
   227   set_self_raw_id(0);
   228   set_lgrp_id(-1);
   230   // allocated data structures
   231   set_osthread(NULL);
   232   set_resource_area(new (mtThread)ResourceArea());
   233   DEBUG_ONLY(_current_resource_mark = NULL;)
   234   set_handle_area(new (mtThread) HandleArea(NULL));
   235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
   236   set_active_handles(NULL);
   237   set_free_handle_block(NULL);
   238   set_last_handle_mark(NULL);
   240   // This initial value ==> never claimed.
   241   _oops_do_parity = 0;
   243   _metadata_on_stack_buffer = NULL;
   245   // the handle mark links itself to last_handle_mark
   246   new HandleMark(this);
   248   // plain initialization
   249   debug_only(_owned_locks = NULL;)
   250   debug_only(_allow_allocation_count = 0;)
   251   NOT_PRODUCT(_allow_safepoint_count = 0;)
   252   NOT_PRODUCT(_skip_gcalot = false;)
   253   _jvmti_env_iteration_count = 0;
   254   set_allocated_bytes(0);
   255   _vm_operation_started_count = 0;
   256   _vm_operation_completed_count = 0;
   257   _current_pending_monitor = NULL;
   258   _current_pending_monitor_is_from_java = true;
   259   _current_waiting_monitor = NULL;
   260   _num_nested_signal = 0;
   261   omFreeList = NULL ;
   262   omFreeCount = 0 ;
   263   omFreeProvision = 32 ;
   264   omInUseList = NULL ;
   265   omInUseCount = 0 ;
   267 #ifdef ASSERT
   268   _visited_for_critical_count = false;
   269 #endif
   271   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   272   _suspend_flags = 0;
   274   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   275   _hashStateX = os::random() ;
   276   _hashStateY = 842502087 ;
   277   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   278   _hashStateW = 273326509 ;
   280   _OnTrap   = 0 ;
   281   _schedctl = NULL ;
   282   _Stalled  = 0 ;
   283   _TypeTag  = 0x2BAD ;
   285   // Many of the following fields are effectively final - immutable
   286   // Note that nascent threads can't use the Native Monitor-Mutex
   287   // construct until the _MutexEvent is initialized ...
   288   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   289   // we might instead use a stack of ParkEvents that we could provision on-demand.
   290   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   291   // and ::Release()
   292   _ParkEvent   = ParkEvent::Allocate (this) ;
   293   _SleepEvent  = ParkEvent::Allocate (this) ;
   294   _MutexEvent  = ParkEvent::Allocate (this) ;
   295   _MuxEvent    = ParkEvent::Allocate (this) ;
   297 #ifdef CHECK_UNHANDLED_OOPS
   298   if (CheckUnhandledOops) {
   299     _unhandled_oops = new UnhandledOops(this);
   300   }
   301 #endif // CHECK_UNHANDLED_OOPS
   302 #ifdef ASSERT
   303   if (UseBiasedLocking) {
   304     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   305     assert(this == _real_malloc_address ||
   306            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   307            "bug in forced alignment of thread objects");
   308   }
   309 #endif /* ASSERT */
   310 }
   312 void Thread::initialize_thread_local_storage() {
   313   // Note: Make sure this method only calls
   314   // non-blocking operations. Otherwise, it might not work
   315   // with the thread-startup/safepoint interaction.
   317   // During Java thread startup, safepoint code should allow this
   318   // method to complete because it may need to allocate memory to
   319   // store information for the new thread.
   321   // initialize structure dependent on thread local storage
   322   ThreadLocalStorage::set_thread(this);
   323 }
   325 void Thread::record_stack_base_and_size() {
   326   set_stack_base(os::current_stack_base());
   327   set_stack_size(os::current_stack_size());
   328   if (is_Java_thread()) {
   329     ((JavaThread*) this)->set_stack_overflow_limit();
   330   }
   331   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   332   // in initialize_thread(). Without the adjustment, stack size is
   333   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   334   // So far, only Solaris has real implementation of initialize_thread().
   335   //
   336   // set up any platform-specific state.
   337   os::initialize_thread(this);
   339 #if INCLUDE_NMT
   340   // record thread's native stack, stack grows downward
   341   address stack_low_addr = stack_base() - stack_size();
   342   MemTracker::record_thread_stack(stack_low_addr, stack_size());
   343 #endif // INCLUDE_NMT
   344 }
   347 Thread::~Thread() {
   348   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   349   ObjectSynchronizer::omFlush (this) ;
   351   EVENT_THREAD_DESTRUCT(this);
   353   // stack_base can be NULL if the thread is never started or exited before
   354   // record_stack_base_and_size called. Although, we would like to ensure
   355   // that all started threads do call record_stack_base_and_size(), there is
   356   // not proper way to enforce that.
   357 #if INCLUDE_NMT
   358   if (_stack_base != NULL) {
   359     address low_stack_addr = stack_base() - stack_size();
   360     MemTracker::release_thread_stack(low_stack_addr, stack_size());
   361 #ifdef ASSERT
   362     set_stack_base(NULL);
   363 #endif
   364   }
   365 #endif // INCLUDE_NMT
   367   // deallocate data structures
   368   delete resource_area();
   369   // since the handle marks are using the handle area, we have to deallocated the root
   370   // handle mark before deallocating the thread's handle area,
   371   assert(last_handle_mark() != NULL, "check we have an element");
   372   delete last_handle_mark();
   373   assert(last_handle_mark() == NULL, "check we have reached the end");
   375   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   376   // We NULL out the fields for good hygiene.
   377   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   378   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   379   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   380   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   382   delete handle_area();
   383   delete metadata_handles();
   385   // osthread() can be NULL, if creation of thread failed.
   386   if (osthread() != NULL) os::free_thread(osthread());
   388   delete _SR_lock;
   390   // clear thread local storage if the Thread is deleting itself
   391   if (this == Thread::current()) {
   392     ThreadLocalStorage::set_thread(NULL);
   393   } else {
   394     // In the case where we're not the current thread, invalidate all the
   395     // caches in case some code tries to get the current thread or the
   396     // thread that was destroyed, and gets stale information.
   397     ThreadLocalStorage::invalidate_all();
   398   }
   399   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   400 }
   402 // NOTE: dummy function for assertion purpose.
   403 void Thread::run() {
   404   ShouldNotReachHere();
   405 }
   407 #ifdef ASSERT
   408 // Private method to check for dangling thread pointer
   409 void check_for_dangling_thread_pointer(Thread *thread) {
   410  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   411          "possibility of dangling Thread pointer");
   412 }
   413 #endif
   416 #ifndef PRODUCT
   417 // Tracing method for basic thread operations
   418 void Thread::trace(const char* msg, const Thread* const thread) {
   419   if (!TraceThreadEvents) return;
   420   ResourceMark rm;
   421   ThreadCritical tc;
   422   const char *name = "non-Java thread";
   423   int prio = -1;
   424   if (thread->is_Java_thread()
   425       && !thread->is_Compiler_thread()) {
   426     // The Threads_lock must be held to get information about
   427     // this thread but may not be in some situations when
   428     // tracing  thread events.
   429     bool release_Threads_lock = false;
   430     if (!Threads_lock->owned_by_self()) {
   431       Threads_lock->lock();
   432       release_Threads_lock = true;
   433     }
   434     JavaThread* jt = (JavaThread *)thread;
   435     name = (char *)jt->get_thread_name();
   436     oop thread_oop = jt->threadObj();
   437     if (thread_oop != NULL) {
   438       prio = java_lang_Thread::priority(thread_oop);
   439     }
   440     if (release_Threads_lock) {
   441       Threads_lock->unlock();
   442     }
   443   }
   444   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   445 }
   446 #endif
   449 ThreadPriority Thread::get_priority(const Thread* const thread) {
   450   trace("get priority", thread);
   451   ThreadPriority priority;
   452   // Can return an error!
   453   (void)os::get_priority(thread, priority);
   454   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   455   return priority;
   456 }
   458 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   459   trace("set priority", thread);
   460   debug_only(check_for_dangling_thread_pointer(thread);)
   461   // Can return an error!
   462   (void)os::set_priority(thread, priority);
   463 }
   466 void Thread::start(Thread* thread) {
   467   trace("start", thread);
   468   // Start is different from resume in that its safety is guaranteed by context or
   469   // being called from a Java method synchronized on the Thread object.
   470   if (!DisableStartThread) {
   471     if (thread->is_Java_thread()) {
   472       // Initialize the thread state to RUNNABLE before starting this thread.
   473       // Can not set it after the thread started because we do not know the
   474       // exact thread state at that time. It could be in MONITOR_WAIT or
   475       // in SLEEPING or some other state.
   476       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   477                                           java_lang_Thread::RUNNABLE);
   478     }
   479     os::start_thread(thread);
   480   }
   481 }
   483 // Enqueue a VM_Operation to do the job for us - sometime later
   484 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   485   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   486   VMThread::execute(vm_stop);
   487 }
   490 //
   491 // Check if an external suspend request has completed (or has been
   492 // cancelled). Returns true if the thread is externally suspended and
   493 // false otherwise.
   494 //
   495 // The bits parameter returns information about the code path through
   496 // the routine. Useful for debugging:
   497 //
   498 // set in is_ext_suspend_completed():
   499 // 0x00000001 - routine was entered
   500 // 0x00000010 - routine return false at end
   501 // 0x00000100 - thread exited (return false)
   502 // 0x00000200 - suspend request cancelled (return false)
   503 // 0x00000400 - thread suspended (return true)
   504 // 0x00001000 - thread is in a suspend equivalent state (return true)
   505 // 0x00002000 - thread is native and walkable (return true)
   506 // 0x00004000 - thread is native_trans and walkable (needed retry)
   507 //
   508 // set in wait_for_ext_suspend_completion():
   509 // 0x00010000 - routine was entered
   510 // 0x00020000 - suspend request cancelled before loop (return false)
   511 // 0x00040000 - thread suspended before loop (return true)
   512 // 0x00080000 - suspend request cancelled in loop (return false)
   513 // 0x00100000 - thread suspended in loop (return true)
   514 // 0x00200000 - suspend not completed during retry loop (return false)
   515 //
   517 // Helper class for tracing suspend wait debug bits.
   518 //
   519 // 0x00000100 indicates that the target thread exited before it could
   520 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   521 // 0x00080000 each indicate a cancelled suspend request so they don't
   522 // count as wait failures either.
   523 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   525 class TraceSuspendDebugBits : public StackObj {
   526  private:
   527   JavaThread * jt;
   528   bool         is_wait;
   529   bool         called_by_wait;  // meaningful when !is_wait
   530   uint32_t *   bits;
   532  public:
   533   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   534                         uint32_t *_bits) {
   535     jt             = _jt;
   536     is_wait        = _is_wait;
   537     called_by_wait = _called_by_wait;
   538     bits           = _bits;
   539   }
   541   ~TraceSuspendDebugBits() {
   542     if (!is_wait) {
   543 #if 1
   544       // By default, don't trace bits for is_ext_suspend_completed() calls.
   545       // That trace is very chatty.
   546       return;
   547 #else
   548       if (!called_by_wait) {
   549         // If tracing for is_ext_suspend_completed() is enabled, then only
   550         // trace calls to it from wait_for_ext_suspend_completion()
   551         return;
   552       }
   553 #endif
   554     }
   556     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   557       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   558         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   559         ResourceMark rm;
   561         tty->print_cr(
   562             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   563             jt->get_thread_name(), *bits);
   565         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   566       }
   567     }
   568   }
   569 };
   570 #undef DEBUG_FALSE_BITS
   573 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   574   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   576   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   577   bool do_trans_retry;           // flag to force the retry
   579   *bits |= 0x00000001;
   581   do {
   582     do_trans_retry = false;
   584     if (is_exiting()) {
   585       // Thread is in the process of exiting. This is always checked
   586       // first to reduce the risk of dereferencing a freed JavaThread.
   587       *bits |= 0x00000100;
   588       return false;
   589     }
   591     if (!is_external_suspend()) {
   592       // Suspend request is cancelled. This is always checked before
   593       // is_ext_suspended() to reduce the risk of a rogue resume
   594       // confusing the thread that made the suspend request.
   595       *bits |= 0x00000200;
   596       return false;
   597     }
   599     if (is_ext_suspended()) {
   600       // thread is suspended
   601       *bits |= 0x00000400;
   602       return true;
   603     }
   605     // Now that we no longer do hard suspends of threads running
   606     // native code, the target thread can be changing thread state
   607     // while we are in this routine:
   608     //
   609     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   610     //
   611     // We save a copy of the thread state as observed at this moment
   612     // and make our decision about suspend completeness based on the
   613     // copy. This closes the race where the thread state is seen as
   614     // _thread_in_native_trans in the if-thread_blocked check, but is
   615     // seen as _thread_blocked in if-thread_in_native_trans check.
   616     JavaThreadState save_state = thread_state();
   618     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   619       // If the thread's state is _thread_blocked and this blocking
   620       // condition is known to be equivalent to a suspend, then we can
   621       // consider the thread to be externally suspended. This means that
   622       // the code that sets _thread_blocked has been modified to do
   623       // self-suspension if the blocking condition releases. We also
   624       // used to check for CONDVAR_WAIT here, but that is now covered by
   625       // the _thread_blocked with self-suspension check.
   626       //
   627       // Return true since we wouldn't be here unless there was still an
   628       // external suspend request.
   629       *bits |= 0x00001000;
   630       return true;
   631     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   632       // Threads running native code will self-suspend on native==>VM/Java
   633       // transitions. If its stack is walkable (should always be the case
   634       // unless this function is called before the actual java_suspend()
   635       // call), then the wait is done.
   636       *bits |= 0x00002000;
   637       return true;
   638     } else if (!called_by_wait && !did_trans_retry &&
   639                save_state == _thread_in_native_trans &&
   640                frame_anchor()->walkable()) {
   641       // The thread is transitioning from thread_in_native to another
   642       // thread state. check_safepoint_and_suspend_for_native_trans()
   643       // will force the thread to self-suspend. If it hasn't gotten
   644       // there yet we may have caught the thread in-between the native
   645       // code check above and the self-suspend. Lucky us. If we were
   646       // called by wait_for_ext_suspend_completion(), then it
   647       // will be doing the retries so we don't have to.
   648       //
   649       // Since we use the saved thread state in the if-statement above,
   650       // there is a chance that the thread has already transitioned to
   651       // _thread_blocked by the time we get here. In that case, we will
   652       // make a single unnecessary pass through the logic below. This
   653       // doesn't hurt anything since we still do the trans retry.
   655       *bits |= 0x00004000;
   657       // Once the thread leaves thread_in_native_trans for another
   658       // thread state, we break out of this retry loop. We shouldn't
   659       // need this flag to prevent us from getting back here, but
   660       // sometimes paranoia is good.
   661       did_trans_retry = true;
   663       // We wait for the thread to transition to a more usable state.
   664       for (int i = 1; i <= SuspendRetryCount; i++) {
   665         // We used to do an "os::yield_all(i)" call here with the intention
   666         // that yielding would increase on each retry. However, the parameter
   667         // is ignored on Linux which means the yield didn't scale up. Waiting
   668         // on the SR_lock below provides a much more predictable scale up for
   669         // the delay. It also provides a simple/direct point to check for any
   670         // safepoint requests from the VMThread
   672         // temporarily drops SR_lock while doing wait with safepoint check
   673         // (if we're a JavaThread - the WatcherThread can also call this)
   674         // and increase delay with each retry
   675         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   677         // check the actual thread state instead of what we saved above
   678         if (thread_state() != _thread_in_native_trans) {
   679           // the thread has transitioned to another thread state so
   680           // try all the checks (except this one) one more time.
   681           do_trans_retry = true;
   682           break;
   683         }
   684       } // end retry loop
   687     }
   688   } while (do_trans_retry);
   690   *bits |= 0x00000010;
   691   return false;
   692 }
   694 //
   695 // Wait for an external suspend request to complete (or be cancelled).
   696 // Returns true if the thread is externally suspended and false otherwise.
   697 //
   698 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   699        uint32_t *bits) {
   700   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   701                              false /* !called_by_wait */, bits);
   703   // local flag copies to minimize SR_lock hold time
   704   bool is_suspended;
   705   bool pending;
   706   uint32_t reset_bits;
   708   // set a marker so is_ext_suspend_completed() knows we are the caller
   709   *bits |= 0x00010000;
   711   // We use reset_bits to reinitialize the bits value at the top of
   712   // each retry loop. This allows the caller to make use of any
   713   // unused bits for their own marking purposes.
   714   reset_bits = *bits;
   716   {
   717     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   718     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   719                                             delay, bits);
   720     pending = is_external_suspend();
   721   }
   722   // must release SR_lock to allow suspension to complete
   724   if (!pending) {
   725     // A cancelled suspend request is the only false return from
   726     // is_ext_suspend_completed() that keeps us from entering the
   727     // retry loop.
   728     *bits |= 0x00020000;
   729     return false;
   730   }
   732   if (is_suspended) {
   733     *bits |= 0x00040000;
   734     return true;
   735   }
   737   for (int i = 1; i <= retries; i++) {
   738     *bits = reset_bits;  // reinit to only track last retry
   740     // We used to do an "os::yield_all(i)" call here with the intention
   741     // that yielding would increase on each retry. However, the parameter
   742     // is ignored on Linux which means the yield didn't scale up. Waiting
   743     // on the SR_lock below provides a much more predictable scale up for
   744     // the delay. It also provides a simple/direct point to check for any
   745     // safepoint requests from the VMThread
   747     {
   748       MutexLocker ml(SR_lock());
   749       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   750       // can also call this)  and increase delay with each retry
   751       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   753       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   754                                               delay, bits);
   756       // It is possible for the external suspend request to be cancelled
   757       // (by a resume) before the actual suspend operation is completed.
   758       // Refresh our local copy to see if we still need to wait.
   759       pending = is_external_suspend();
   760     }
   762     if (!pending) {
   763       // A cancelled suspend request is the only false return from
   764       // is_ext_suspend_completed() that keeps us from staying in the
   765       // retry loop.
   766       *bits |= 0x00080000;
   767       return false;
   768     }
   770     if (is_suspended) {
   771       *bits |= 0x00100000;
   772       return true;
   773     }
   774   } // end retry loop
   776   // thread did not suspend after all our retries
   777   *bits |= 0x00200000;
   778   return false;
   779 }
   781 #ifndef PRODUCT
   782 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   784   // This should not need to be atomic as the only way for simultaneous
   785   // updates is via interrupts. Even then this should be rare or non-existant
   786   // and we don't care that much anyway.
   788   int index = _jmp_ring_index;
   789   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   790   _jmp_ring[index]._target = (intptr_t) target;
   791   _jmp_ring[index]._instruction = (intptr_t) instr;
   792   _jmp_ring[index]._file = file;
   793   _jmp_ring[index]._line = line;
   794 }
   795 #endif /* PRODUCT */
   797 // Called by flat profiler
   798 // Callers have already called wait_for_ext_suspend_completion
   799 // The assertion for that is currently too complex to put here:
   800 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   801   bool gotframe = false;
   802   // self suspension saves needed state.
   803   if (has_last_Java_frame() && _anchor.walkable()) {
   804      *_fr = pd_last_frame();
   805      gotframe = true;
   806   }
   807   return gotframe;
   808 }
   810 void Thread::interrupt(Thread* thread) {
   811   trace("interrupt", thread);
   812   debug_only(check_for_dangling_thread_pointer(thread);)
   813   os::interrupt(thread);
   814 }
   816 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   817   trace("is_interrupted", thread);
   818   debug_only(check_for_dangling_thread_pointer(thread);)
   819   // Note:  If clear_interrupted==false, this simply fetches and
   820   // returns the value of the field osthread()->interrupted().
   821   return os::is_interrupted(thread, clear_interrupted);
   822 }
   825 // GC Support
   826 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   827   jint thread_parity = _oops_do_parity;
   828   if (thread_parity != strong_roots_parity) {
   829     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   830     if (res == thread_parity) {
   831       return true;
   832     } else {
   833       guarantee(res == strong_roots_parity, "Or else what?");
   834       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   835          "Should only fail when parallel.");
   836       return false;
   837     }
   838   }
   839   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   840          "Should only fail when parallel.");
   841   return false;
   842 }
   844 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
   845   active_handles()->oops_do(f);
   846   // Do oop for ThreadShadow
   847   f->do_oop((oop*)&_pending_exception);
   848   handle_area()->oops_do(f);
   849 }
   851 void Thread::nmethods_do(CodeBlobClosure* cf) {
   852   // no nmethods in a generic thread...
   853 }
   855 void Thread::metadata_do(void f(Metadata*)) {
   856   if (metadata_handles() != NULL) {
   857     for (int i = 0; i< metadata_handles()->length(); i++) {
   858       f(metadata_handles()->at(i));
   859     }
   860   }
   861 }
   863 void Thread::print_on(outputStream* st) const {
   864   // get_priority assumes osthread initialized
   865   if (osthread() != NULL) {
   866     int os_prio;
   867     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   868       st->print("os_prio=%d ", os_prio);
   869     }
   870     st->print("tid=" INTPTR_FORMAT " ", this);
   871     ext().print_on(st);
   872     osthread()->print_on(st);
   873   }
   874   debug_only(if (WizardMode) print_owned_locks_on(st);)
   875 }
   877 // Thread::print_on_error() is called by fatal error handler. Don't use
   878 // any lock or allocate memory.
   879 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   880   if      (is_VM_thread())                  st->print("VMThread");
   881   else if (is_Compiler_thread())            st->print("CompilerThread");
   882   else if (is_Java_thread())                st->print("JavaThread");
   883   else if (is_GC_task_thread())             st->print("GCTaskThread");
   884   else if (is_Watcher_thread())             st->print("WatcherThread");
   885   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   886   else st->print("Thread");
   888   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   889             _stack_base - _stack_size, _stack_base);
   891   if (osthread()) {
   892     st->print(" [id=%d]", osthread()->thread_id());
   893   }
   894 }
   896 #ifdef ASSERT
   897 void Thread::print_owned_locks_on(outputStream* st) const {
   898   Monitor *cur = _owned_locks;
   899   if (cur == NULL) {
   900     st->print(" (no locks) ");
   901   } else {
   902     st->print_cr(" Locks owned:");
   903     while(cur) {
   904       cur->print_on(st);
   905       cur = cur->next();
   906     }
   907   }
   908 }
   910 static int ref_use_count  = 0;
   912 bool Thread::owns_locks_but_compiled_lock() const {
   913   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   914     if (cur != Compile_lock) return true;
   915   }
   916   return false;
   917 }
   920 #endif
   922 #ifndef PRODUCT
   924 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   925 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   926 // no threads which allow_vm_block's are held
   927 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   928     // Check if current thread is allowed to block at a safepoint
   929     if (!(_allow_safepoint_count == 0))
   930       fatal("Possible safepoint reached by thread that does not allow it");
   931     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   932       fatal("LEAF method calling lock?");
   933     }
   935 #ifdef ASSERT
   936     if (potential_vm_operation && is_Java_thread()
   937         && !Universe::is_bootstrapping()) {
   938       // Make sure we do not hold any locks that the VM thread also uses.
   939       // This could potentially lead to deadlocks
   940       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   941         // Threads_lock is special, since the safepoint synchronization will not start before this is
   942         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   943         // since it is used to transfer control between JavaThreads and the VMThread
   944         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   945         if ( (cur->allow_vm_block() &&
   946               cur != Threads_lock &&
   947               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   948               cur != VMOperationRequest_lock &&
   949               cur != VMOperationQueue_lock) ||
   950               cur->rank() == Mutex::special) {
   951           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
   952         }
   953       }
   954     }
   956     if (GCALotAtAllSafepoints) {
   957       // We could enter a safepoint here and thus have a gc
   958       InterfaceSupport::check_gc_alot();
   959     }
   960 #endif
   961 }
   962 #endif
   964 bool Thread::is_in_stack(address adr) const {
   965   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   966   address end = os::current_stack_pointer();
   967   // Allow non Java threads to call this without stack_base
   968   if (_stack_base == NULL) return true;
   969   if (stack_base() >= adr && adr >= end) return true;
   971   return false;
   972 }
   975 bool Thread::is_in_usable_stack(address adr) const {
   976   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
   977   size_t usable_stack_size = _stack_size - stack_guard_size;
   979   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
   980 }
   983 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   984 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   985 // used for compilation in the future. If that change is made, the need for these methods
   986 // should be revisited, and they should be removed if possible.
   988 bool Thread::is_lock_owned(address adr) const {
   989   return on_local_stack(adr);
   990 }
   992 bool Thread::set_as_starting_thread() {
   993  // NOTE: this must be called inside the main thread.
   994   return os::create_main_thread((JavaThread*)this);
   995 }
   997 static void initialize_class(Symbol* class_name, TRAPS) {
   998   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   999   InstanceKlass::cast(klass)->initialize(CHECK);
  1003 // Creates the initial ThreadGroup
  1004 static Handle create_initial_thread_group(TRAPS) {
  1005   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
  1006   instanceKlassHandle klass (THREAD, k);
  1008   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
  1010     JavaValue result(T_VOID);
  1011     JavaCalls::call_special(&result,
  1012                             system_instance,
  1013                             klass,
  1014                             vmSymbols::object_initializer_name(),
  1015                             vmSymbols::void_method_signature(),
  1016                             CHECK_NH);
  1018   Universe::set_system_thread_group(system_instance());
  1020   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  1022     JavaValue result(T_VOID);
  1023     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1024     JavaCalls::call_special(&result,
  1025                             main_instance,
  1026                             klass,
  1027                             vmSymbols::object_initializer_name(),
  1028                             vmSymbols::threadgroup_string_void_signature(),
  1029                             system_instance,
  1030                             string,
  1031                             CHECK_NH);
  1033   return main_instance;
  1036 // Creates the initial Thread
  1037 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1038   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1039   instanceKlassHandle klass (THREAD, k);
  1040   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1042   java_lang_Thread::set_thread(thread_oop(), thread);
  1043   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1044   thread->set_threadObj(thread_oop());
  1046   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1048   JavaValue result(T_VOID);
  1049   JavaCalls::call_special(&result, thread_oop,
  1050                                    klass,
  1051                                    vmSymbols::object_initializer_name(),
  1052                                    vmSymbols::threadgroup_string_void_signature(),
  1053                                    thread_group,
  1054                                    string,
  1055                                    CHECK_NULL);
  1056   return thread_oop();
  1059 static void call_initializeSystemClass(TRAPS) {
  1060   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1061   instanceKlassHandle klass (THREAD, k);
  1063   JavaValue result(T_VOID);
  1064   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1065                                          vmSymbols::void_method_signature(), CHECK);
  1068 char java_runtime_name[128] = "";
  1069 char java_runtime_version[128] = "";
  1071 // extract the JRE name from sun.misc.Version.java_runtime_name
  1072 static const char* get_java_runtime_name(TRAPS) {
  1073   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1074                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1075   fieldDescriptor fd;
  1076   bool found = k != NULL &&
  1077                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1078                                                         vmSymbols::string_signature(), &fd);
  1079   if (found) {
  1080     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1081     if (name_oop == NULL)
  1082       return NULL;
  1083     const char* name = java_lang_String::as_utf8_string(name_oop,
  1084                                                         java_runtime_name,
  1085                                                         sizeof(java_runtime_name));
  1086     return name;
  1087   } else {
  1088     return NULL;
  1092 // extract the JRE version from sun.misc.Version.java_runtime_version
  1093 static const char* get_java_runtime_version(TRAPS) {
  1094   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1095                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1096   fieldDescriptor fd;
  1097   bool found = k != NULL &&
  1098                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1099                                                         vmSymbols::string_signature(), &fd);
  1100   if (found) {
  1101     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1102     if (name_oop == NULL)
  1103       return NULL;
  1104     const char* name = java_lang_String::as_utf8_string(name_oop,
  1105                                                         java_runtime_version,
  1106                                                         sizeof(java_runtime_version));
  1107     return name;
  1108   } else {
  1109     return NULL;
  1113 // General purpose hook into Java code, run once when the VM is initialized.
  1114 // The Java library method itself may be changed independently from the VM.
  1115 static void call_postVMInitHook(TRAPS) {
  1116   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  1117   instanceKlassHandle klass (THREAD, k);
  1118   if (klass.not_null()) {
  1119     JavaValue result(T_VOID);
  1120     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1121                                            vmSymbols::void_method_signature(),
  1122                                            CHECK);
  1126 static void reset_vm_info_property(TRAPS) {
  1127   // the vm info string
  1128   ResourceMark rm(THREAD);
  1129   const char *vm_info = VM_Version::vm_info_string();
  1131   // java.lang.System class
  1132   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1133   instanceKlassHandle klass (THREAD, k);
  1135   // setProperty arguments
  1136   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1137   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1139   // return value
  1140   JavaValue r(T_OBJECT);
  1142   // public static String setProperty(String key, String value);
  1143   JavaCalls::call_static(&r,
  1144                          klass,
  1145                          vmSymbols::setProperty_name(),
  1146                          vmSymbols::string_string_string_signature(),
  1147                          key_str,
  1148                          value_str,
  1149                          CHECK);
  1153 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1154   assert(thread_group.not_null(), "thread group should be specified");
  1155   assert(threadObj() == NULL, "should only create Java thread object once");
  1157   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1158   instanceKlassHandle klass (THREAD, k);
  1159   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1161   java_lang_Thread::set_thread(thread_oop(), this);
  1162   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1163   set_threadObj(thread_oop());
  1165   JavaValue result(T_VOID);
  1166   if (thread_name != NULL) {
  1167     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1168     // Thread gets assigned specified name and null target
  1169     JavaCalls::call_special(&result,
  1170                             thread_oop,
  1171                             klass,
  1172                             vmSymbols::object_initializer_name(),
  1173                             vmSymbols::threadgroup_string_void_signature(),
  1174                             thread_group, // Argument 1
  1175                             name,         // Argument 2
  1176                             THREAD);
  1177   } else {
  1178     // Thread gets assigned name "Thread-nnn" and null target
  1179     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1180     JavaCalls::call_special(&result,
  1181                             thread_oop,
  1182                             klass,
  1183                             vmSymbols::object_initializer_name(),
  1184                             vmSymbols::threadgroup_runnable_void_signature(),
  1185                             thread_group, // Argument 1
  1186                             Handle(),     // Argument 2
  1187                             THREAD);
  1191   if (daemon) {
  1192       java_lang_Thread::set_daemon(thread_oop());
  1195   if (HAS_PENDING_EXCEPTION) {
  1196     return;
  1199   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1200   Handle threadObj(this, this->threadObj());
  1202   JavaCalls::call_special(&result,
  1203                          thread_group,
  1204                          group,
  1205                          vmSymbols::add_method_name(),
  1206                          vmSymbols::thread_void_signature(),
  1207                          threadObj,          // Arg 1
  1208                          THREAD);
  1213 // NamedThread --  non-JavaThread subclasses with multiple
  1214 // uniquely named instances should derive from this.
  1215 NamedThread::NamedThread() : Thread() {
  1216   _name = NULL;
  1217   _processed_thread = NULL;
  1220 NamedThread::~NamedThread() {
  1221   if (_name != NULL) {
  1222     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1223     _name = NULL;
  1227 void NamedThread::set_name(const char* format, ...) {
  1228   guarantee(_name == NULL, "Only get to set name once.");
  1229   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1230   guarantee(_name != NULL, "alloc failure");
  1231   va_list ap;
  1232   va_start(ap, format);
  1233   jio_vsnprintf(_name, max_name_len, format, ap);
  1234   va_end(ap);
  1237 // ======= WatcherThread ========
  1239 // The watcher thread exists to simulate timer interrupts.  It should
  1240 // be replaced by an abstraction over whatever native support for
  1241 // timer interrupts exists on the platform.
  1243 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1244 bool WatcherThread::_startable = false;
  1245 volatile bool  WatcherThread::_should_terminate = false;
  1247 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  1248   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1249   if (os::create_thread(this, os::watcher_thread)) {
  1250     _watcher_thread = this;
  1252     // Set the watcher thread to the highest OS priority which should not be
  1253     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1254     // is created. The only normal thread using this priority is the reference
  1255     // handler thread, which runs for very short intervals only.
  1256     // If the VMThread's priority is not lower than the WatcherThread profiling
  1257     // will be inaccurate.
  1258     os::set_priority(this, MaxPriority);
  1259     if (!DisableStartThread) {
  1260       os::start_thread(this);
  1265 int WatcherThread::sleep() const {
  1266   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1268   // remaining will be zero if there are no tasks,
  1269   // causing the WatcherThread to sleep until a task is
  1270   // enrolled
  1271   int remaining = PeriodicTask::time_to_wait();
  1272   int time_slept = 0;
  1274   // we expect this to timeout - we only ever get unparked when
  1275   // we should terminate or when a new task has been enrolled
  1276   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1278   jlong time_before_loop = os::javaTimeNanos();
  1280   for (;;) {
  1281     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1282     jlong now = os::javaTimeNanos();
  1284     if (remaining == 0) {
  1285         // if we didn't have any tasks we could have waited for a long time
  1286         // consider the time_slept zero and reset time_before_loop
  1287         time_slept = 0;
  1288         time_before_loop = now;
  1289     } else {
  1290         // need to recalulate since we might have new tasks in _tasks
  1291         time_slept = (int) ((now - time_before_loop) / 1000000);
  1294     // Change to task list or spurious wakeup of some kind
  1295     if (timedout || _should_terminate) {
  1296         break;
  1299     remaining = PeriodicTask::time_to_wait();
  1300     if (remaining == 0) {
  1301         // Last task was just disenrolled so loop around and wait until
  1302         // another task gets enrolled
  1303         continue;
  1306     remaining -= time_slept;
  1307     if (remaining <= 0)
  1308       break;
  1311   return time_slept;
  1314 void WatcherThread::run() {
  1315   assert(this == watcher_thread(), "just checking");
  1317   this->record_stack_base_and_size();
  1318   this->initialize_thread_local_storage();
  1319   this->set_native_thread_name(this->name());
  1320   this->set_active_handles(JNIHandleBlock::allocate_block());
  1321   while(!_should_terminate) {
  1322     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1323     assert(watcher_thread() == this,  "thread consistency check");
  1325     // Calculate how long it'll be until the next PeriodicTask work
  1326     // should be done, and sleep that amount of time.
  1327     int time_waited = sleep();
  1329     if (is_error_reported()) {
  1330       // A fatal error has happened, the error handler(VMError::report_and_die)
  1331       // should abort JVM after creating an error log file. However in some
  1332       // rare cases, the error handler itself might deadlock. Here we try to
  1333       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1334       //
  1335       // This code is in WatcherThread because WatcherThread wakes up
  1336       // periodically so the fatal error handler doesn't need to do anything;
  1337       // also because the WatcherThread is less likely to crash than other
  1338       // threads.
  1340       for (;;) {
  1341         if (!ShowMessageBoxOnError
  1342          && (OnError == NULL || OnError[0] == '\0')
  1343          && Arguments::abort_hook() == NULL) {
  1344              os::sleep(this, 2 * 60 * 1000, false);
  1345              fdStream err(defaultStream::output_fd());
  1346              err.print_raw_cr("# [ timer expired, abort... ]");
  1347              // skip atexit/vm_exit/vm_abort hooks
  1348              os::die();
  1351         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1352         // ShowMessageBoxOnError when it is ready to abort.
  1353         os::sleep(this, 5 * 1000, false);
  1357     PeriodicTask::real_time_tick(time_waited);
  1360   // Signal that it is terminated
  1362     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1363     _watcher_thread = NULL;
  1364     Terminator_lock->notify();
  1367   // Thread destructor usually does this..
  1368   ThreadLocalStorage::set_thread(NULL);
  1371 void WatcherThread::start() {
  1372   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1374   if (watcher_thread() == NULL && _startable) {
  1375     _should_terminate = false;
  1376     // Create the single instance of WatcherThread
  1377     new WatcherThread();
  1381 void WatcherThread::make_startable() {
  1382   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1383   _startable = true;
  1386 void WatcherThread::stop() {
  1388     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1389     _should_terminate = true;
  1390     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1392     WatcherThread* watcher = watcher_thread();
  1393     if (watcher != NULL)
  1394       watcher->unpark();
  1397   // it is ok to take late safepoints here, if needed
  1398   MutexLocker mu(Terminator_lock);
  1400   while(watcher_thread() != NULL) {
  1401     // This wait should make safepoint checks, wait without a timeout,
  1402     // and wait as a suspend-equivalent condition.
  1403     //
  1404     // Note: If the FlatProfiler is running, then this thread is waiting
  1405     // for the WatcherThread to terminate and the WatcherThread, via the
  1406     // FlatProfiler task, is waiting for the external suspend request on
  1407     // this thread to complete. wait_for_ext_suspend_completion() will
  1408     // eventually timeout, but that takes time. Making this wait a
  1409     // suspend-equivalent condition solves that timeout problem.
  1410     //
  1411     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1412                           Mutex::_as_suspend_equivalent_flag);
  1416 void WatcherThread::unpark() {
  1417   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1418   PeriodicTask_lock->notify();
  1421 void WatcherThread::print_on(outputStream* st) const {
  1422   st->print("\"%s\" ", name());
  1423   Thread::print_on(st);
  1424   st->cr();
  1427 // ======= JavaThread ========
  1429 // A JavaThread is a normal Java thread
  1431 void JavaThread::initialize() {
  1432   // Initialize fields
  1434   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
  1435   set_claimed_par_id(UINT_MAX);
  1437   set_saved_exception_pc(NULL);
  1438   set_threadObj(NULL);
  1439   _anchor.clear();
  1440   set_entry_point(NULL);
  1441   set_jni_functions(jni_functions());
  1442   set_callee_target(NULL);
  1443   set_vm_result(NULL);
  1444   set_vm_result_2(NULL);
  1445   set_vframe_array_head(NULL);
  1446   set_vframe_array_last(NULL);
  1447   set_deferred_locals(NULL);
  1448   set_deopt_mark(NULL);
  1449   set_deopt_nmethod(NULL);
  1450   clear_must_deopt_id();
  1451   set_monitor_chunks(NULL);
  1452   set_next(NULL);
  1453   set_thread_state(_thread_new);
  1454   _terminated = _not_terminated;
  1455   _privileged_stack_top = NULL;
  1456   _array_for_gc = NULL;
  1457   _suspend_equivalent = false;
  1458   _in_deopt_handler = 0;
  1459   _doing_unsafe_access = false;
  1460   _stack_guard_state = stack_guard_unused;
  1461   (void)const_cast<oop&>(_exception_oop = oop(NULL));
  1462   _exception_pc  = 0;
  1463   _exception_handler_pc = 0;
  1464   _is_method_handle_return = 0;
  1465   _jvmti_thread_state= NULL;
  1466   _should_post_on_exceptions_flag = JNI_FALSE;
  1467   _jvmti_get_loaded_classes_closure = NULL;
  1468   _interp_only_mode    = 0;
  1469   _special_runtime_exit_condition = _no_async_condition;
  1470   _pending_async_exception = NULL;
  1471   _thread_stat = NULL;
  1472   _thread_stat = new ThreadStatistics();
  1473   _blocked_on_compilation = false;
  1474   _jni_active_critical = 0;
  1475   _pending_jni_exception_check_fn = NULL;
  1476   _do_not_unlock_if_synchronized = false;
  1477   _cached_monitor_info = NULL;
  1478   _parker = Parker::Allocate(this) ;
  1480 #ifndef PRODUCT
  1481   _jmp_ring_index = 0;
  1482   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1483     record_jump(NULL, NULL, NULL, 0);
  1485 #endif /* PRODUCT */
  1487   set_thread_profiler(NULL);
  1488   if (FlatProfiler::is_active()) {
  1489     // This is where we would decide to either give each thread it's own profiler
  1490     // or use one global one from FlatProfiler,
  1491     // or up to some count of the number of profiled threads, etc.
  1492     ThreadProfiler* pp = new ThreadProfiler();
  1493     pp->engage();
  1494     set_thread_profiler(pp);
  1497   // Setup safepoint state info for this thread
  1498   ThreadSafepointState::create(this);
  1500   debug_only(_java_call_counter = 0);
  1502   // JVMTI PopFrame support
  1503   _popframe_condition = popframe_inactive;
  1504   _popframe_preserved_args = NULL;
  1505   _popframe_preserved_args_size = 0;
  1506   _frames_to_pop_failed_realloc = 0;
  1508   pd_initialize();
  1511 #if INCLUDE_ALL_GCS
  1512 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1513 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1514 #endif // INCLUDE_ALL_GCS
  1516 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1517   Thread()
  1518 #if INCLUDE_ALL_GCS
  1519   , _satb_mark_queue(&_satb_mark_queue_set),
  1520   _dirty_card_queue(&_dirty_card_queue_set)
  1521 #endif // INCLUDE_ALL_GCS
  1523   initialize();
  1524   if (is_attaching_via_jni) {
  1525     _jni_attach_state = _attaching_via_jni;
  1526   } else {
  1527     _jni_attach_state = _not_attaching_via_jni;
  1529   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1532 bool JavaThread::reguard_stack(address cur_sp) {
  1533   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1534     return true; // Stack already guarded or guard pages not needed.
  1537   if (register_stack_overflow()) {
  1538     // For those architectures which have separate register and
  1539     // memory stacks, we must check the register stack to see if
  1540     // it has overflowed.
  1541     return false;
  1544   // Java code never executes within the yellow zone: the latter is only
  1545   // there to provoke an exception during stack banging.  If java code
  1546   // is executing there, either StackShadowPages should be larger, or
  1547   // some exception code in c1, c2 or the interpreter isn't unwinding
  1548   // when it should.
  1549   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1551   enable_stack_yellow_zone();
  1552   return true;
  1555 bool JavaThread::reguard_stack(void) {
  1556   return reguard_stack(os::current_stack_pointer());
  1560 void JavaThread::block_if_vm_exited() {
  1561   if (_terminated == _vm_exited) {
  1562     // _vm_exited is set at safepoint, and Threads_lock is never released
  1563     // we will block here forever
  1564     Threads_lock->lock_without_safepoint_check();
  1565     ShouldNotReachHere();
  1570 // Remove this ifdef when C1 is ported to the compiler interface.
  1571 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1573 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1574   Thread()
  1575 #if INCLUDE_ALL_GCS
  1576   , _satb_mark_queue(&_satb_mark_queue_set),
  1577   _dirty_card_queue(&_dirty_card_queue_set)
  1578 #endif // INCLUDE_ALL_GCS
  1580   if (TraceThreadEvents) {
  1581     tty->print_cr("creating thread %p", this);
  1583   initialize();
  1584   _jni_attach_state = _not_attaching_via_jni;
  1585   set_entry_point(entry_point);
  1586   // Create the native thread itself.
  1587   // %note runtime_23
  1588   os::ThreadType thr_type = os::java_thread;
  1589   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1590                                                      os::java_thread;
  1591   os::create_thread(this, thr_type, stack_sz);
  1592   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1593   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1594   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1595   // the exception consists of creating the exception object & initializing it, initialization
  1596   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1597   //
  1598   // The thread is still suspended when we reach here. Thread must be explicit started
  1599   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1600   // by calling Threads:add. The reason why this is not done here, is because the thread
  1601   // object must be fully initialized (take a look at JVM_Start)
  1604 JavaThread::~JavaThread() {
  1605   if (TraceThreadEvents) {
  1606       tty->print_cr("terminate thread %p", this);
  1609   // JSR166 -- return the parker to the free list
  1610   Parker::Release(_parker);
  1611   _parker = NULL ;
  1613   // Free any remaining  previous UnrollBlock
  1614   vframeArray* old_array = vframe_array_last();
  1616   if (old_array != NULL) {
  1617     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1618     old_array->set_unroll_block(NULL);
  1619     delete old_info;
  1620     delete old_array;
  1623   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1624   if (deferred != NULL) {
  1625     // This can only happen if thread is destroyed before deoptimization occurs.
  1626     assert(deferred->length() != 0, "empty array!");
  1627     do {
  1628       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1629       deferred->remove_at(0);
  1630       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1631       delete dlv;
  1632     } while (deferred->length() != 0);
  1633     delete deferred;
  1636   // All Java related clean up happens in exit
  1637   ThreadSafepointState::destroy(this);
  1638   if (_thread_profiler != NULL) delete _thread_profiler;
  1639   if (_thread_stat != NULL) delete _thread_stat;
  1643 // The first routine called by a new Java thread
  1644 void JavaThread::run() {
  1645   // initialize thread-local alloc buffer related fields
  1646   this->initialize_tlab();
  1648   // used to test validitity of stack trace backs
  1649   this->record_base_of_stack_pointer();
  1651   // Record real stack base and size.
  1652   this->record_stack_base_and_size();
  1654   // Initialize thread local storage; set before calling MutexLocker
  1655   this->initialize_thread_local_storage();
  1657   this->create_stack_guard_pages();
  1659   this->cache_global_variables();
  1661   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1662   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1663   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1665   assert(JavaThread::current() == this, "sanity check");
  1666   assert(!Thread::current()->owns_locks(), "sanity check");
  1668   DTRACE_THREAD_PROBE(start, this);
  1670   // This operation might block. We call that after all safepoint checks for a new thread has
  1671   // been completed.
  1672   this->set_active_handles(JNIHandleBlock::allocate_block());
  1674   if (JvmtiExport::should_post_thread_life()) {
  1675     JvmtiExport::post_thread_start(this);
  1678   EventThreadStart event;
  1679   if (event.should_commit()) {
  1680      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1681      event.commit();
  1684   // We call another function to do the rest so we are sure that the stack addresses used
  1685   // from there will be lower than the stack base just computed
  1686   thread_main_inner();
  1688   // Note, thread is no longer valid at this point!
  1692 void JavaThread::thread_main_inner() {
  1693   assert(JavaThread::current() == this, "sanity check");
  1694   assert(this->threadObj() != NULL, "just checking");
  1696   // Execute thread entry point unless this thread has a pending exception
  1697   // or has been stopped before starting.
  1698   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1699   if (!this->has_pending_exception() &&
  1700       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1702       ResourceMark rm(this);
  1703       this->set_native_thread_name(this->get_thread_name());
  1705     HandleMark hm(this);
  1706     this->entry_point()(this, this);
  1709   DTRACE_THREAD_PROBE(stop, this);
  1711   this->exit(false);
  1712   delete this;
  1716 static void ensure_join(JavaThread* thread) {
  1717   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1718   Handle threadObj(thread, thread->threadObj());
  1719   assert(threadObj.not_null(), "java thread object must exist");
  1720   ObjectLocker lock(threadObj, thread);
  1721   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1722   thread->clear_pending_exception();
  1723   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1724   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1725   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1726   // to complete once we've done the notify_all below
  1727   java_lang_Thread::set_thread(threadObj(), NULL);
  1728   lock.notify_all(thread);
  1729   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1730   thread->clear_pending_exception();
  1734 // For any new cleanup additions, please check to see if they need to be applied to
  1735 // cleanup_failed_attach_current_thread as well.
  1736 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1737   assert(this == JavaThread::current(),  "thread consistency check");
  1739   HandleMark hm(this);
  1740   Handle uncaught_exception(this, this->pending_exception());
  1741   this->clear_pending_exception();
  1742   Handle threadObj(this, this->threadObj());
  1743   assert(threadObj.not_null(), "Java thread object should be created");
  1745   if (get_thread_profiler() != NULL) {
  1746     get_thread_profiler()->disengage();
  1747     ResourceMark rm;
  1748     get_thread_profiler()->print(get_thread_name());
  1752   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1754     EXCEPTION_MARK;
  1756     CLEAR_PENDING_EXCEPTION;
  1758   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1759   // has to be fixed by a runtime query method
  1760   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1761     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1762     // java.lang.Thread.dispatchUncaughtException
  1763     if (uncaught_exception.not_null()) {
  1764       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1766         EXCEPTION_MARK;
  1767         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1768         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1769         // so call ThreadGroup.uncaughtException()
  1770         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1771         CallInfo callinfo;
  1772         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1773         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1774                                            vmSymbols::dispatchUncaughtException_name(),
  1775                                            vmSymbols::throwable_void_signature(),
  1776                                            KlassHandle(), false, false, THREAD);
  1777         CLEAR_PENDING_EXCEPTION;
  1778         methodHandle method = callinfo.selected_method();
  1779         if (method.not_null()) {
  1780           JavaValue result(T_VOID);
  1781           JavaCalls::call_virtual(&result,
  1782                                   threadObj, thread_klass,
  1783                                   vmSymbols::dispatchUncaughtException_name(),
  1784                                   vmSymbols::throwable_void_signature(),
  1785                                   uncaught_exception,
  1786                                   THREAD);
  1787         } else {
  1788           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1789           JavaValue result(T_VOID);
  1790           JavaCalls::call_virtual(&result,
  1791                                   group, thread_group,
  1792                                   vmSymbols::uncaughtException_name(),
  1793                                   vmSymbols::thread_throwable_void_signature(),
  1794                                   threadObj,           // Arg 1
  1795                                   uncaught_exception,  // Arg 2
  1796                                   THREAD);
  1798         if (HAS_PENDING_EXCEPTION) {
  1799           ResourceMark rm(this);
  1800           jio_fprintf(defaultStream::error_stream(),
  1801                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1802                 " in thread \"%s\"\n",
  1803                 pending_exception()->klass()->external_name(),
  1804                 get_thread_name());
  1805           CLEAR_PENDING_EXCEPTION;
  1810     // Called before the java thread exit since we want to read info
  1811     // from java_lang_Thread object
  1812     EventThreadEnd event;
  1813     if (event.should_commit()) {
  1814         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1815         event.commit();
  1818     // Call after last event on thread
  1819     EVENT_THREAD_EXIT(this);
  1821     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1822     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1823     // is deprecated anyhow.
  1824     if (!is_Compiler_thread()) {
  1825       int count = 3;
  1826       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1827         EXCEPTION_MARK;
  1828         JavaValue result(T_VOID);
  1829         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1830         JavaCalls::call_virtual(&result,
  1831                               threadObj, thread_klass,
  1832                               vmSymbols::exit_method_name(),
  1833                               vmSymbols::void_method_signature(),
  1834                               THREAD);
  1835         CLEAR_PENDING_EXCEPTION;
  1838     // notify JVMTI
  1839     if (JvmtiExport::should_post_thread_life()) {
  1840       JvmtiExport::post_thread_end(this);
  1843     // We have notified the agents that we are exiting, before we go on,
  1844     // we must check for a pending external suspend request and honor it
  1845     // in order to not surprise the thread that made the suspend request.
  1846     while (true) {
  1848         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1849         if (!is_external_suspend()) {
  1850           set_terminated(_thread_exiting);
  1851           ThreadService::current_thread_exiting(this);
  1852           break;
  1854         // Implied else:
  1855         // Things get a little tricky here. We have a pending external
  1856         // suspend request, but we are holding the SR_lock so we
  1857         // can't just self-suspend. So we temporarily drop the lock
  1858         // and then self-suspend.
  1861       ThreadBlockInVM tbivm(this);
  1862       java_suspend_self();
  1864       // We're done with this suspend request, but we have to loop around
  1865       // and check again. Eventually we will get SR_lock without a pending
  1866       // external suspend request and will be able to mark ourselves as
  1867       // exiting.
  1869     // no more external suspends are allowed at this point
  1870   } else {
  1871     // before_exit() has already posted JVMTI THREAD_END events
  1874   // Notify waiters on thread object. This has to be done after exit() is called
  1875   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1876   // group should have the destroyed bit set before waiters are notified).
  1877   ensure_join(this);
  1878   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1880   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1881   // held by this thread must be released.  A detach operation must only
  1882   // get here if there are no Java frames on the stack.  Therefore, any
  1883   // owned monitors at this point MUST be JNI-acquired monitors which are
  1884   // pre-inflated and in the monitor cache.
  1885   //
  1886   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1887   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1888     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1889     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1890     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1893   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1894   // is in a consistent state, in case GC happens
  1895   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1897   if (active_handles() != NULL) {
  1898     JNIHandleBlock* block = active_handles();
  1899     set_active_handles(NULL);
  1900     JNIHandleBlock::release_block(block);
  1903   if (free_handle_block() != NULL) {
  1904     JNIHandleBlock* block = free_handle_block();
  1905     set_free_handle_block(NULL);
  1906     JNIHandleBlock::release_block(block);
  1909   // These have to be removed while this is still a valid thread.
  1910   remove_stack_guard_pages();
  1912   if (UseTLAB) {
  1913     tlab().make_parsable(true);  // retire TLAB
  1916   if (JvmtiEnv::environments_might_exist()) {
  1917     JvmtiExport::cleanup_thread(this);
  1920   // We must flush any deferred card marks before removing a thread from
  1921   // the list of active threads.
  1922   Universe::heap()->flush_deferred_store_barrier(this);
  1923   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1925 #if INCLUDE_ALL_GCS
  1926   // We must flush the G1-related buffers before removing a thread
  1927   // from the list of active threads. We must do this after any deferred
  1928   // card marks have been flushed (above) so that any entries that are
  1929   // added to the thread's dirty card queue as a result are not lost.
  1930   if (UseG1GC) {
  1931     flush_barrier_queues();
  1933 #endif // INCLUDE_ALL_GCS
  1935   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1936   Threads::remove(this);
  1939 #if INCLUDE_ALL_GCS
  1940 // Flush G1-related queues.
  1941 void JavaThread::flush_barrier_queues() {
  1942   satb_mark_queue().flush();
  1943   dirty_card_queue().flush();
  1946 void JavaThread::initialize_queues() {
  1947   assert(!SafepointSynchronize::is_at_safepoint(),
  1948          "we should not be at a safepoint");
  1950   ObjPtrQueue& satb_queue = satb_mark_queue();
  1951   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1952   // The SATB queue should have been constructed with its active
  1953   // field set to false.
  1954   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1955   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1956   // If we are creating the thread during a marking cycle, we should
  1957   // set the active field of the SATB queue to true.
  1958   if (satb_queue_set.is_active()) {
  1959     satb_queue.set_active(true);
  1962   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1963   // The dirty card queue should have been constructed with its
  1964   // active field set to true.
  1965   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1967 #endif // INCLUDE_ALL_GCS
  1969 void JavaThread::cleanup_failed_attach_current_thread() {
  1970   if (get_thread_profiler() != NULL) {
  1971     get_thread_profiler()->disengage();
  1972     ResourceMark rm;
  1973     get_thread_profiler()->print(get_thread_name());
  1976   if (active_handles() != NULL) {
  1977     JNIHandleBlock* block = active_handles();
  1978     set_active_handles(NULL);
  1979     JNIHandleBlock::release_block(block);
  1982   if (free_handle_block() != NULL) {
  1983     JNIHandleBlock* block = free_handle_block();
  1984     set_free_handle_block(NULL);
  1985     JNIHandleBlock::release_block(block);
  1988   // These have to be removed while this is still a valid thread.
  1989   remove_stack_guard_pages();
  1991   if (UseTLAB) {
  1992     tlab().make_parsable(true);  // retire TLAB, if any
  1995 #if INCLUDE_ALL_GCS
  1996   if (UseG1GC) {
  1997     flush_barrier_queues();
  1999 #endif // INCLUDE_ALL_GCS
  2001   Threads::remove(this);
  2002   delete this;
  2008 JavaThread* JavaThread::active() {
  2009   Thread* thread = ThreadLocalStorage::thread();
  2010   assert(thread != NULL, "just checking");
  2011   if (thread->is_Java_thread()) {
  2012     return (JavaThread*) thread;
  2013   } else {
  2014     assert(thread->is_VM_thread(), "this must be a vm thread");
  2015     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  2016     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  2017     assert(ret->is_Java_thread(), "must be a Java thread");
  2018     return ret;
  2022 bool JavaThread::is_lock_owned(address adr) const {
  2023   if (Thread::is_lock_owned(adr)) return true;
  2025   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2026     if (chunk->contains(adr)) return true;
  2029   return false;
  2033 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2034   chunk->set_next(monitor_chunks());
  2035   set_monitor_chunks(chunk);
  2038 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2039   guarantee(monitor_chunks() != NULL, "must be non empty");
  2040   if (monitor_chunks() == chunk) {
  2041     set_monitor_chunks(chunk->next());
  2042   } else {
  2043     MonitorChunk* prev = monitor_chunks();
  2044     while (prev->next() != chunk) prev = prev->next();
  2045     prev->set_next(chunk->next());
  2049 // JVM support.
  2051 // Note: this function shouldn't block if it's called in
  2052 // _thread_in_native_trans state (such as from
  2053 // check_special_condition_for_native_trans()).
  2054 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2056   if (has_last_Java_frame() && has_async_condition()) {
  2057     // If we are at a polling page safepoint (not a poll return)
  2058     // then we must defer async exception because live registers
  2059     // will be clobbered by the exception path. Poll return is
  2060     // ok because the call we a returning from already collides
  2061     // with exception handling registers and so there is no issue.
  2062     // (The exception handling path kills call result registers but
  2063     //  this is ok since the exception kills the result anyway).
  2065     if (is_at_poll_safepoint()) {
  2066       // if the code we are returning to has deoptimized we must defer
  2067       // the exception otherwise live registers get clobbered on the
  2068       // exception path before deoptimization is able to retrieve them.
  2069       //
  2070       RegisterMap map(this, false);
  2071       frame caller_fr = last_frame().sender(&map);
  2072       assert(caller_fr.is_compiled_frame(), "what?");
  2073       if (caller_fr.is_deoptimized_frame()) {
  2074         if (TraceExceptions) {
  2075           ResourceMark rm;
  2076           tty->print_cr("deferred async exception at compiled safepoint");
  2078         return;
  2083   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2084   if (condition == _no_async_condition) {
  2085     // Conditions have changed since has_special_runtime_exit_condition()
  2086     // was called:
  2087     // - if we were here only because of an external suspend request,
  2088     //   then that was taken care of above (or cancelled) so we are done
  2089     // - if we were here because of another async request, then it has
  2090     //   been cleared between the has_special_runtime_exit_condition()
  2091     //   and now so again we are done
  2092     return;
  2095   // Check for pending async. exception
  2096   if (_pending_async_exception != NULL) {
  2097     // Only overwrite an already pending exception, if it is not a threadDeath.
  2098     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2100       // We cannot call Exceptions::_throw(...) here because we cannot block
  2101       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2103       if (TraceExceptions) {
  2104         ResourceMark rm;
  2105         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2106         if (has_last_Java_frame() ) {
  2107           frame f = last_frame();
  2108           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2110         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2112       _pending_async_exception = NULL;
  2113       clear_has_async_exception();
  2117   if (check_unsafe_error &&
  2118       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2119     condition = _no_async_condition;  // done
  2120     switch (thread_state()) {
  2121     case _thread_in_vm:
  2123         JavaThread* THREAD = this;
  2124         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2126     case _thread_in_native:
  2128         ThreadInVMfromNative tiv(this);
  2129         JavaThread* THREAD = this;
  2130         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2132     case _thread_in_Java:
  2134         ThreadInVMfromJava tiv(this);
  2135         JavaThread* THREAD = this;
  2136         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2138     default:
  2139       ShouldNotReachHere();
  2143   assert(condition == _no_async_condition || has_pending_exception() ||
  2144          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2145          "must have handled the async condition, if no exception");
  2148 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2149   //
  2150   // Check for pending external suspend. Internal suspend requests do
  2151   // not use handle_special_runtime_exit_condition().
  2152   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2153   // thread is not the current thread. In older versions of jdbx, jdbx
  2154   // threads could call into the VM with another thread's JNIEnv so we
  2155   // can be here operating on behalf of a suspended thread (4432884).
  2156   bool do_self_suspend = is_external_suspend_with_lock();
  2157   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2158     //
  2159     // Because thread is external suspended the safepoint code will count
  2160     // thread as at a safepoint. This can be odd because we can be here
  2161     // as _thread_in_Java which would normally transition to _thread_blocked
  2162     // at a safepoint. We would like to mark the thread as _thread_blocked
  2163     // before calling java_suspend_self like all other callers of it but
  2164     // we must then observe proper safepoint protocol. (We can't leave
  2165     // _thread_blocked with a safepoint in progress). However we can be
  2166     // here as _thread_in_native_trans so we can't use a normal transition
  2167     // constructor/destructor pair because they assert on that type of
  2168     // transition. We could do something like:
  2169     //
  2170     // JavaThreadState state = thread_state();
  2171     // set_thread_state(_thread_in_vm);
  2172     // {
  2173     //   ThreadBlockInVM tbivm(this);
  2174     //   java_suspend_self()
  2175     // }
  2176     // set_thread_state(_thread_in_vm_trans);
  2177     // if (safepoint) block;
  2178     // set_thread_state(state);
  2179     //
  2180     // but that is pretty messy. Instead we just go with the way the
  2181     // code has worked before and note that this is the only path to
  2182     // java_suspend_self that doesn't put the thread in _thread_blocked
  2183     // mode.
  2185     frame_anchor()->make_walkable(this);
  2186     java_suspend_self();
  2188     // We might be here for reasons in addition to the self-suspend request
  2189     // so check for other async requests.
  2192   if (check_asyncs) {
  2193     check_and_handle_async_exceptions();
  2197 void JavaThread::send_thread_stop(oop java_throwable)  {
  2198   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2199   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2200   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2202   // Do not throw asynchronous exceptions against the compiler thread
  2203   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2204   if (is_Compiler_thread()) return;
  2207     // Actually throw the Throwable against the target Thread - however
  2208     // only if there is no thread death exception installed already.
  2209     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2210       // If the topmost frame is a runtime stub, then we are calling into
  2211       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2212       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2213       // may not be valid
  2214       if (has_last_Java_frame()) {
  2215         frame f = last_frame();
  2216         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2217           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2218           RegisterMap reg_map(this, UseBiasedLocking);
  2219           frame compiled_frame = f.sender(&reg_map);
  2220           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2221             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2226       // Set async. pending exception in thread.
  2227       set_pending_async_exception(java_throwable);
  2229       if (TraceExceptions) {
  2230        ResourceMark rm;
  2231        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2233       // for AbortVMOnException flag
  2234       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2239   // Interrupt thread so it will wake up from a potential wait()
  2240   Thread::interrupt(this);
  2243 // External suspension mechanism.
  2244 //
  2245 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2246 // to any VM_locks and it is at a transition
  2247 // Self-suspension will happen on the transition out of the vm.
  2248 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2249 //
  2250 // Guarantees on return:
  2251 //   + Target thread will not execute any new bytecode (that's why we need to
  2252 //     force a safepoint)
  2253 //   + Target thread will not enter any new monitors
  2254 //
  2255 void JavaThread::java_suspend() {
  2256   { MutexLocker mu(Threads_lock);
  2257     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2258        return;
  2262   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2263     if (!is_external_suspend()) {
  2264       // a racing resume has cancelled us; bail out now
  2265       return;
  2268     // suspend is done
  2269     uint32_t debug_bits = 0;
  2270     // Warning: is_ext_suspend_completed() may temporarily drop the
  2271     // SR_lock to allow the thread to reach a stable thread state if
  2272     // it is currently in a transient thread state.
  2273     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2274                                  SuspendRetryDelay, &debug_bits) ) {
  2275       return;
  2279   VM_ForceSafepoint vm_suspend;
  2280   VMThread::execute(&vm_suspend);
  2283 // Part II of external suspension.
  2284 // A JavaThread self suspends when it detects a pending external suspend
  2285 // request. This is usually on transitions. It is also done in places
  2286 // where continuing to the next transition would surprise the caller,
  2287 // e.g., monitor entry.
  2288 //
  2289 // Returns the number of times that the thread self-suspended.
  2290 //
  2291 // Note: DO NOT call java_suspend_self() when you just want to block current
  2292 //       thread. java_suspend_self() is the second stage of cooperative
  2293 //       suspension for external suspend requests and should only be used
  2294 //       to complete an external suspend request.
  2295 //
  2296 int JavaThread::java_suspend_self() {
  2297   int ret = 0;
  2299   // we are in the process of exiting so don't suspend
  2300   if (is_exiting()) {
  2301      clear_external_suspend();
  2302      return ret;
  2305   assert(_anchor.walkable() ||
  2306     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2307     "must have walkable stack");
  2309   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2311   assert(!this->is_ext_suspended(),
  2312     "a thread trying to self-suspend should not already be suspended");
  2314   if (this->is_suspend_equivalent()) {
  2315     // If we are self-suspending as a result of the lifting of a
  2316     // suspend equivalent condition, then the suspend_equivalent
  2317     // flag is not cleared until we set the ext_suspended flag so
  2318     // that wait_for_ext_suspend_completion() returns consistent
  2319     // results.
  2320     this->clear_suspend_equivalent();
  2323   // A racing resume may have cancelled us before we grabbed SR_lock
  2324   // above. Or another external suspend request could be waiting for us
  2325   // by the time we return from SR_lock()->wait(). The thread
  2326   // that requested the suspension may already be trying to walk our
  2327   // stack and if we return now, we can change the stack out from under
  2328   // it. This would be a "bad thing (TM)" and cause the stack walker
  2329   // to crash. We stay self-suspended until there are no more pending
  2330   // external suspend requests.
  2331   while (is_external_suspend()) {
  2332     ret++;
  2333     this->set_ext_suspended();
  2335     // _ext_suspended flag is cleared by java_resume()
  2336     while (is_ext_suspended()) {
  2337       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2341   return ret;
  2344 #ifdef ASSERT
  2345 // verify the JavaThread has not yet been published in the Threads::list, and
  2346 // hence doesn't need protection from concurrent access at this stage
  2347 void JavaThread::verify_not_published() {
  2348   if (!Threads_lock->owned_by_self()) {
  2349    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2350    assert( !Threads::includes(this),
  2351            "java thread shouldn't have been published yet!");
  2353   else {
  2354    assert( !Threads::includes(this),
  2355            "java thread shouldn't have been published yet!");
  2358 #endif
  2360 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2361 // progress or when _suspend_flags is non-zero.
  2362 // Current thread needs to self-suspend if there is a suspend request and/or
  2363 // block if a safepoint is in progress.
  2364 // Async exception ISN'T checked.
  2365 // Note only the ThreadInVMfromNative transition can call this function
  2366 // directly and when thread state is _thread_in_native_trans
  2367 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2368   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2370   JavaThread *curJT = JavaThread::current();
  2371   bool do_self_suspend = thread->is_external_suspend();
  2373   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2375   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2376   // thread is not the current thread. In older versions of jdbx, jdbx
  2377   // threads could call into the VM with another thread's JNIEnv so we
  2378   // can be here operating on behalf of a suspended thread (4432884).
  2379   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2380     JavaThreadState state = thread->thread_state();
  2382     // We mark this thread_blocked state as a suspend-equivalent so
  2383     // that a caller to is_ext_suspend_completed() won't be confused.
  2384     // The suspend-equivalent state is cleared by java_suspend_self().
  2385     thread->set_suspend_equivalent();
  2387     // If the safepoint code sees the _thread_in_native_trans state, it will
  2388     // wait until the thread changes to other thread state. There is no
  2389     // guarantee on how soon we can obtain the SR_lock and complete the
  2390     // self-suspend request. It would be a bad idea to let safepoint wait for
  2391     // too long. Temporarily change the state to _thread_blocked to
  2392     // let the VM thread know that this thread is ready for GC. The problem
  2393     // of changing thread state is that safepoint could happen just after
  2394     // java_suspend_self() returns after being resumed, and VM thread will
  2395     // see the _thread_blocked state. We must check for safepoint
  2396     // after restoring the state and make sure we won't leave while a safepoint
  2397     // is in progress.
  2398     thread->set_thread_state(_thread_blocked);
  2399     thread->java_suspend_self();
  2400     thread->set_thread_state(state);
  2401     // Make sure new state is seen by VM thread
  2402     if (os::is_MP()) {
  2403       if (UseMembar) {
  2404         // Force a fence between the write above and read below
  2405         OrderAccess::fence();
  2406       } else {
  2407         // Must use this rather than serialization page in particular on Windows
  2408         InterfaceSupport::serialize_memory(thread);
  2413   if (SafepointSynchronize::do_call_back()) {
  2414     // If we are safepointing, then block the caller which may not be
  2415     // the same as the target thread (see above).
  2416     SafepointSynchronize::block(curJT);
  2419   if (thread->is_deopt_suspend()) {
  2420     thread->clear_deopt_suspend();
  2421     RegisterMap map(thread, false);
  2422     frame f = thread->last_frame();
  2423     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2424       f = f.sender(&map);
  2426     if (f.id() == thread->must_deopt_id()) {
  2427       thread->clear_must_deopt_id();
  2428       f.deoptimize(thread);
  2429     } else {
  2430       fatal("missed deoptimization!");
  2435 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2436 // progress or when _suspend_flags is non-zero.
  2437 // Current thread needs to self-suspend if there is a suspend request and/or
  2438 // block if a safepoint is in progress.
  2439 // Also check for pending async exception (not including unsafe access error).
  2440 // Note only the native==>VM/Java barriers can call this function and when
  2441 // thread state is _thread_in_native_trans.
  2442 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2443   check_safepoint_and_suspend_for_native_trans(thread);
  2445   if (thread->has_async_exception()) {
  2446     // We are in _thread_in_native_trans state, don't handle unsafe
  2447     // access error since that may block.
  2448     thread->check_and_handle_async_exceptions(false);
  2452 // This is a variant of the normal
  2453 // check_special_condition_for_native_trans with slightly different
  2454 // semantics for use by critical native wrappers.  It does all the
  2455 // normal checks but also performs the transition back into
  2456 // thread_in_Java state.  This is required so that critical natives
  2457 // can potentially block and perform a GC if they are the last thread
  2458 // exiting the GC_locker.
  2459 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2460   check_special_condition_for_native_trans(thread);
  2462   // Finish the transition
  2463   thread->set_thread_state(_thread_in_Java);
  2465   if (thread->do_critical_native_unlock()) {
  2466     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2467     GC_locker::unlock_critical(thread);
  2468     thread->clear_critical_native_unlock();
  2472 // We need to guarantee the Threads_lock here, since resumes are not
  2473 // allowed during safepoint synchronization
  2474 // Can only resume from an external suspension
  2475 void JavaThread::java_resume() {
  2476   assert_locked_or_safepoint(Threads_lock);
  2478   // Sanity check: thread is gone, has started exiting or the thread
  2479   // was not externally suspended.
  2480   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2481     return;
  2484   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2486   clear_external_suspend();
  2488   if (is_ext_suspended()) {
  2489     clear_ext_suspended();
  2490     SR_lock()->notify_all();
  2494 void JavaThread::create_stack_guard_pages() {
  2495   if (!os::uses_stack_guard_pages() ||
  2496       _stack_guard_state != stack_guard_unused ||
  2497       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
  2498       if (TraceThreadEvents) {
  2499         tty->print_cr("Stack guard page creation for thread "
  2500                       UINTX_FORMAT " disabled", os::current_thread_id());
  2502     return;
  2504   address low_addr = stack_base() - stack_size();
  2505   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2507   int allocate = os::allocate_stack_guard_pages();
  2508   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2510   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2511     warning("Attempt to allocate stack guard pages failed.");
  2512     return;
  2515   if (os::guard_memory((char *) low_addr, len)) {
  2516     _stack_guard_state = stack_guard_enabled;
  2517   } else {
  2518     warning("Attempt to protect stack guard pages failed.");
  2519     if (os::uncommit_memory((char *) low_addr, len)) {
  2520       warning("Attempt to deallocate stack guard pages failed.");
  2525 void JavaThread::remove_stack_guard_pages() {
  2526   assert(Thread::current() == this, "from different thread");
  2527   if (_stack_guard_state == stack_guard_unused) return;
  2528   address low_addr = stack_base() - stack_size();
  2529   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2531   if (os::allocate_stack_guard_pages()) {
  2532     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2533       _stack_guard_state = stack_guard_unused;
  2534     } else {
  2535       warning("Attempt to deallocate stack guard pages failed.");
  2537   } else {
  2538     if (_stack_guard_state == stack_guard_unused) return;
  2539     if (os::unguard_memory((char *) low_addr, len)) {
  2540       _stack_guard_state = stack_guard_unused;
  2541     } else {
  2542         warning("Attempt to unprotect stack guard pages failed.");
  2547 void JavaThread::enable_stack_yellow_zone() {
  2548   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2549   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2551   // The base notation is from the stacks point of view, growing downward.
  2552   // We need to adjust it to work correctly with guard_memory()
  2553   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2555   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2556   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2558   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2559     _stack_guard_state = stack_guard_enabled;
  2560   } else {
  2561     warning("Attempt to guard stack yellow zone failed.");
  2563   enable_register_stack_guard();
  2566 void JavaThread::disable_stack_yellow_zone() {
  2567   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2568   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2570   // Simply return if called for a thread that does not use guard pages.
  2571   if (_stack_guard_state == stack_guard_unused) return;
  2573   // The base notation is from the stacks point of view, growing downward.
  2574   // We need to adjust it to work correctly with guard_memory()
  2575   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2577   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2578     _stack_guard_state = stack_guard_yellow_disabled;
  2579   } else {
  2580     warning("Attempt to unguard stack yellow zone failed.");
  2582   disable_register_stack_guard();
  2585 void JavaThread::enable_stack_red_zone() {
  2586   // The base notation is from the stacks point of view, growing downward.
  2587   // We need to adjust it to work correctly with guard_memory()
  2588   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2589   address base = stack_red_zone_base() - stack_red_zone_size();
  2591   guarantee(base < stack_base(),"Error calculating stack red zone");
  2592   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2594   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2595     warning("Attempt to guard stack red zone failed.");
  2599 void JavaThread::disable_stack_red_zone() {
  2600   // The base notation is from the stacks point of view, growing downward.
  2601   // We need to adjust it to work correctly with guard_memory()
  2602   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2603   address base = stack_red_zone_base() - stack_red_zone_size();
  2604   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2605     warning("Attempt to unguard stack red zone failed.");
  2609 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2610   // ignore is there is no stack
  2611   if (!has_last_Java_frame()) return;
  2612   // traverse the stack frames. Starts from top frame.
  2613   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2614     frame* fr = fst.current();
  2615     f(fr, fst.register_map());
  2620 #ifndef PRODUCT
  2621 // Deoptimization
  2622 // Function for testing deoptimization
  2623 void JavaThread::deoptimize() {
  2624   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2625   StackFrameStream fst(this, UseBiasedLocking);
  2626   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2627   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2628   // Iterate over all frames in the thread and deoptimize
  2629   for(; !fst.is_done(); fst.next()) {
  2630     if(fst.current()->can_be_deoptimized()) {
  2632       if (only_at) {
  2633         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2634         // consists of comma or carriage return separated numbers so
  2635         // search for the current bci in that string.
  2636         address pc = fst.current()->pc();
  2637         nmethod* nm =  (nmethod*) fst.current()->cb();
  2638         ScopeDesc* sd = nm->scope_desc_at( pc);
  2639         char buffer[8];
  2640         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2641         size_t len = strlen(buffer);
  2642         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2643         while (found != NULL) {
  2644           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2645               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2646             // Check that the bci found is bracketed by terminators.
  2647             break;
  2649           found = strstr(found + 1, buffer);
  2651         if (!found) {
  2652           continue;
  2656       if (DebugDeoptimization && !deopt) {
  2657         deopt = true; // One-time only print before deopt
  2658         tty->print_cr("[BEFORE Deoptimization]");
  2659         trace_frames();
  2660         trace_stack();
  2662       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2666   if (DebugDeoptimization && deopt) {
  2667     tty->print_cr("[AFTER Deoptimization]");
  2668     trace_frames();
  2673 // Make zombies
  2674 void JavaThread::make_zombies() {
  2675   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2676     if (fst.current()->can_be_deoptimized()) {
  2677       // it is a Java nmethod
  2678       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2679       nm->make_not_entrant();
  2683 #endif // PRODUCT
  2686 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2687   if (!has_last_Java_frame()) return;
  2688   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2689   StackFrameStream fst(this, UseBiasedLocking);
  2690   for(; !fst.is_done(); fst.next()) {
  2691     if (fst.current()->should_be_deoptimized()) {
  2692       if (LogCompilation && xtty != NULL) {
  2693         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2694         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2695                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2698       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2704 // GC support
  2705 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2707 void JavaThread::gc_epilogue() {
  2708   frames_do(frame_gc_epilogue);
  2712 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2714 void JavaThread::gc_prologue() {
  2715   frames_do(frame_gc_prologue);
  2718 // If the caller is a NamedThread, then remember, in the current scope,
  2719 // the given JavaThread in its _processed_thread field.
  2720 class RememberProcessedThread: public StackObj {
  2721   NamedThread* _cur_thr;
  2722 public:
  2723   RememberProcessedThread(JavaThread* jthr) {
  2724     Thread* thread = Thread::current();
  2725     if (thread->is_Named_thread()) {
  2726       _cur_thr = (NamedThread *)thread;
  2727       _cur_thr->set_processed_thread(jthr);
  2728     } else {
  2729       _cur_thr = NULL;
  2733   ~RememberProcessedThread() {
  2734     if (_cur_thr) {
  2735       _cur_thr->set_processed_thread(NULL);
  2738 };
  2740 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  2741   // Verify that the deferred card marks have been flushed.
  2742   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2744   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2745   // since there may be more than one thread using each ThreadProfiler.
  2747   // Traverse the GCHandles
  2748   Thread::oops_do(f, cld_f, cf);
  2750   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2751           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2753   if (has_last_Java_frame()) {
  2754     // Record JavaThread to GC thread
  2755     RememberProcessedThread rpt(this);
  2757     // Traverse the privileged stack
  2758     if (_privileged_stack_top != NULL) {
  2759       _privileged_stack_top->oops_do(f);
  2762     // traverse the registered growable array
  2763     if (_array_for_gc != NULL) {
  2764       for (int index = 0; index < _array_for_gc->length(); index++) {
  2765         f->do_oop(_array_for_gc->adr_at(index));
  2769     // Traverse the monitor chunks
  2770     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2771       chunk->oops_do(f);
  2774     // Traverse the execution stack
  2775     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2776       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2780   // callee_target is never live across a gc point so NULL it here should
  2781   // it still contain a methdOop.
  2783   set_callee_target(NULL);
  2785   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2786   // If we have deferred set_locals there might be oops waiting to be
  2787   // written
  2788   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2789   if (list != NULL) {
  2790     for (int i = 0; i < list->length(); i++) {
  2791       list->at(i)->oops_do(f);
  2795   // Traverse instance variables at the end since the GC may be moving things
  2796   // around using this function
  2797   f->do_oop((oop*) &_threadObj);
  2798   f->do_oop((oop*) &_vm_result);
  2799   f->do_oop((oop*) &_exception_oop);
  2800   f->do_oop((oop*) &_pending_async_exception);
  2802   if (jvmti_thread_state() != NULL) {
  2803     jvmti_thread_state()->oops_do(f);
  2807 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2808   Thread::nmethods_do(cf);  // (super method is a no-op)
  2810   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2811           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2813   if (has_last_Java_frame()) {
  2814     // Traverse the execution stack
  2815     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2816       fst.current()->nmethods_do(cf);
  2821 void JavaThread::metadata_do(void f(Metadata*)) {
  2822   Thread::metadata_do(f);
  2823   if (has_last_Java_frame()) {
  2824     // Traverse the execution stack to call f() on the methods in the stack
  2825     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2826       fst.current()->metadata_do(f);
  2828   } else if (is_Compiler_thread()) {
  2829     // need to walk ciMetadata in current compile tasks to keep alive.
  2830     CompilerThread* ct = (CompilerThread*)this;
  2831     if (ct->env() != NULL) {
  2832       ct->env()->metadata_do(f);
  2837 // Printing
  2838 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2839   switch (_thread_state) {
  2840   case _thread_uninitialized:     return "_thread_uninitialized";
  2841   case _thread_new:               return "_thread_new";
  2842   case _thread_new_trans:         return "_thread_new_trans";
  2843   case _thread_in_native:         return "_thread_in_native";
  2844   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2845   case _thread_in_vm:             return "_thread_in_vm";
  2846   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2847   case _thread_in_Java:           return "_thread_in_Java";
  2848   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2849   case _thread_blocked:           return "_thread_blocked";
  2850   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2851   default:                        return "unknown thread state";
  2855 #ifndef PRODUCT
  2856 void JavaThread::print_thread_state_on(outputStream *st) const {
  2857   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2858 };
  2859 void JavaThread::print_thread_state() const {
  2860   print_thread_state_on(tty);
  2861 };
  2862 #endif // PRODUCT
  2864 // Called by Threads::print() for VM_PrintThreads operation
  2865 void JavaThread::print_on(outputStream *st) const {
  2866   st->print("\"%s\" ", get_thread_name());
  2867   oop thread_oop = threadObj();
  2868   if (thread_oop != NULL) {
  2869     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2870     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2871     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2873   Thread::print_on(st);
  2874   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2875   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2876   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2877     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2879 #ifndef PRODUCT
  2880   print_thread_state_on(st);
  2881   _safepoint_state->print_on(st);
  2882 #endif // PRODUCT
  2885 // Called by fatal error handler. The difference between this and
  2886 // JavaThread::print() is that we can't grab lock or allocate memory.
  2887 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2888   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2889   oop thread_obj = threadObj();
  2890   if (thread_obj != NULL) {
  2891      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2893   st->print(" [");
  2894   st->print("%s", _get_thread_state_name(_thread_state));
  2895   if (osthread()) {
  2896     st->print(", id=%d", osthread()->thread_id());
  2898   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2899             _stack_base - _stack_size, _stack_base);
  2900   st->print("]");
  2901   return;
  2904 // Verification
  2906 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2908 void JavaThread::verify() {
  2909   // Verify oops in the thread.
  2910   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2912   // Verify the stack frames.
  2913   frames_do(frame_verify);
  2916 // CR 6300358 (sub-CR 2137150)
  2917 // Most callers of this method assume that it can't return NULL but a
  2918 // thread may not have a name whilst it is in the process of attaching to
  2919 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2920 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2921 // if vm exit occurs during initialization). These cases can all be accounted
  2922 // for such that this method never returns NULL.
  2923 const char* JavaThread::get_thread_name() const {
  2924 #ifdef ASSERT
  2925   // early safepoints can hit while current thread does not yet have TLS
  2926   if (!SafepointSynchronize::is_at_safepoint()) {
  2927     Thread *cur = Thread::current();
  2928     if (!(cur->is_Java_thread() && cur == this)) {
  2929       // Current JavaThreads are allowed to get their own name without
  2930       // the Threads_lock.
  2931       assert_locked_or_safepoint(Threads_lock);
  2934 #endif // ASSERT
  2935     return get_thread_name_string();
  2938 // Returns a non-NULL representation of this thread's name, or a suitable
  2939 // descriptive string if there is no set name
  2940 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2941   const char* name_str;
  2942   oop thread_obj = threadObj();
  2943   if (thread_obj != NULL) {
  2944     oop name = java_lang_Thread::name(thread_obj);
  2945     if (name != NULL) {
  2946       if (buf == NULL) {
  2947         name_str = java_lang_String::as_utf8_string(name);
  2949       else {
  2950         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
  2953     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2954       name_str = "<no-name - thread is attaching>";
  2956     else {
  2957       name_str = Thread::name();
  2960   else {
  2961     name_str = Thread::name();
  2963   assert(name_str != NULL, "unexpected NULL thread name");
  2964   return name_str;
  2968 const char* JavaThread::get_threadgroup_name() const {
  2969   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2970   oop thread_obj = threadObj();
  2971   if (thread_obj != NULL) {
  2972     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2973     if (thread_group != NULL) {
  2974       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2975       // ThreadGroup.name can be null
  2976       if (name != NULL) {
  2977         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2978         return str;
  2982   return NULL;
  2985 const char* JavaThread::get_parent_name() const {
  2986   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2987   oop thread_obj = threadObj();
  2988   if (thread_obj != NULL) {
  2989     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2990     if (thread_group != NULL) {
  2991       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2992       if (parent != NULL) {
  2993         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2994         // ThreadGroup.name can be null
  2995         if (name != NULL) {
  2996           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2997           return str;
  3002   return NULL;
  3005 ThreadPriority JavaThread::java_priority() const {
  3006   oop thr_oop = threadObj();
  3007   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  3008   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  3009   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  3010   return priority;
  3013 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  3015   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  3016   // Link Java Thread object <-> C++ Thread
  3018   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  3019   // and put it into a new Handle.  The Handle "thread_oop" can then
  3020   // be used to pass the C++ thread object to other methods.
  3022   // Set the Java level thread object (jthread) field of the
  3023   // new thread (a JavaThread *) to C++ thread object using the
  3024   // "thread_oop" handle.
  3026   // Set the thread field (a JavaThread *) of the
  3027   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3029   Handle thread_oop(Thread::current(),
  3030                     JNIHandles::resolve_non_null(jni_thread));
  3031   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3032     "must be initialized");
  3033   set_threadObj(thread_oop());
  3034   java_lang_Thread::set_thread(thread_oop(), this);
  3036   if (prio == NoPriority) {
  3037     prio = java_lang_Thread::priority(thread_oop());
  3038     assert(prio != NoPriority, "A valid priority should be present");
  3041   // Push the Java priority down to the native thread; needs Threads_lock
  3042   Thread::set_priority(this, prio);
  3044   prepare_ext();
  3046   // Add the new thread to the Threads list and set it in motion.
  3047   // We must have threads lock in order to call Threads::add.
  3048   // It is crucial that we do not block before the thread is
  3049   // added to the Threads list for if a GC happens, then the java_thread oop
  3050   // will not be visited by GC.
  3051   Threads::add(this);
  3054 oop JavaThread::current_park_blocker() {
  3055   // Support for JSR-166 locks
  3056   oop thread_oop = threadObj();
  3057   if (thread_oop != NULL &&
  3058       JDK_Version::current().supports_thread_park_blocker()) {
  3059     return java_lang_Thread::park_blocker(thread_oop);
  3061   return NULL;
  3065 void JavaThread::print_stack_on(outputStream* st) {
  3066   if (!has_last_Java_frame()) return;
  3067   ResourceMark rm;
  3068   HandleMark   hm;
  3070   RegisterMap reg_map(this);
  3071   vframe* start_vf = last_java_vframe(&reg_map);
  3072   int count = 0;
  3073   for (vframe* f = start_vf; f; f = f->sender() ) {
  3074     if (f->is_java_frame()) {
  3075       javaVFrame* jvf = javaVFrame::cast(f);
  3076       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3078       // Print out lock information
  3079       if (JavaMonitorsInStackTrace) {
  3080         jvf->print_lock_info_on(st, count);
  3082     } else {
  3083       // Ignore non-Java frames
  3086     // Bail-out case for too deep stacks
  3087     count++;
  3088     if (MaxJavaStackTraceDepth == count) return;
  3093 // JVMTI PopFrame support
  3094 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3095   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3096   if (in_bytes(size_in_bytes) != 0) {
  3097     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3098     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3099     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3103 void* JavaThread::popframe_preserved_args() {
  3104   return _popframe_preserved_args;
  3107 ByteSize JavaThread::popframe_preserved_args_size() {
  3108   return in_ByteSize(_popframe_preserved_args_size);
  3111 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3112   int sz = in_bytes(popframe_preserved_args_size());
  3113   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3114   return in_WordSize(sz / wordSize);
  3117 void JavaThread::popframe_free_preserved_args() {
  3118   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3119   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3120   _popframe_preserved_args = NULL;
  3121   _popframe_preserved_args_size = 0;
  3124 #ifndef PRODUCT
  3126 void JavaThread::trace_frames() {
  3127   tty->print_cr("[Describe stack]");
  3128   int frame_no = 1;
  3129   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3130     tty->print("  %d. ", frame_no++);
  3131     fst.current()->print_value_on(tty,this);
  3132     tty->cr();
  3136 class PrintAndVerifyOopClosure: public OopClosure {
  3137  protected:
  3138   template <class T> inline void do_oop_work(T* p) {
  3139     oop obj = oopDesc::load_decode_heap_oop(p);
  3140     if (obj == NULL) return;
  3141     tty->print(INTPTR_FORMAT ": ", p);
  3142     if (obj->is_oop_or_null()) {
  3143       if (obj->is_objArray()) {
  3144         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3145       } else {
  3146         obj->print();
  3148     } else {
  3149       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3151     tty->cr();
  3153  public:
  3154   virtual void do_oop(oop* p) { do_oop_work(p); }
  3155   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3156 };
  3159 static void oops_print(frame* f, const RegisterMap *map) {
  3160   PrintAndVerifyOopClosure print;
  3161   f->print_value();
  3162   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3165 // Print our all the locations that contain oops and whether they are
  3166 // valid or not.  This useful when trying to find the oldest frame
  3167 // where an oop has gone bad since the frame walk is from youngest to
  3168 // oldest.
  3169 void JavaThread::trace_oops() {
  3170   tty->print_cr("[Trace oops]");
  3171   frames_do(oops_print);
  3175 #ifdef ASSERT
  3176 // Print or validate the layout of stack frames
  3177 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3178   ResourceMark rm;
  3179   PRESERVE_EXCEPTION_MARK;
  3180   FrameValues values;
  3181   int frame_no = 0;
  3182   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3183     fst.current()->describe(values, ++frame_no);
  3184     if (depth == frame_no) break;
  3186   if (validate_only) {
  3187     values.validate();
  3188   } else {
  3189     tty->print_cr("[Describe stack layout]");
  3190     values.print(this);
  3193 #endif
  3195 void JavaThread::trace_stack_from(vframe* start_vf) {
  3196   ResourceMark rm;
  3197   int vframe_no = 1;
  3198   for (vframe* f = start_vf; f; f = f->sender() ) {
  3199     if (f->is_java_frame()) {
  3200       javaVFrame::cast(f)->print_activation(vframe_no++);
  3201     } else {
  3202       f->print();
  3204     if (vframe_no > StackPrintLimit) {
  3205       tty->print_cr("...<more frames>...");
  3206       return;
  3212 void JavaThread::trace_stack() {
  3213   if (!has_last_Java_frame()) return;
  3214   ResourceMark rm;
  3215   HandleMark   hm;
  3216   RegisterMap reg_map(this);
  3217   trace_stack_from(last_java_vframe(&reg_map));
  3221 #endif // PRODUCT
  3224 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3225   assert(reg_map != NULL, "a map must be given");
  3226   frame f = last_frame();
  3227   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3228     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3230   return NULL;
  3234 Klass* JavaThread::security_get_caller_class(int depth) {
  3235   vframeStream vfst(this);
  3236   vfst.security_get_caller_frame(depth);
  3237   if (!vfst.at_end()) {
  3238     return vfst.method()->method_holder();
  3240   return NULL;
  3243 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3244   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3245   CompileBroker::compiler_thread_loop();
  3248 // Create a CompilerThread
  3249 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3250 : JavaThread(&compiler_thread_entry) {
  3251   _env   = NULL;
  3252   _log   = NULL;
  3253   _task  = NULL;
  3254   _queue = queue;
  3255   _counters = counters;
  3256   _buffer_blob = NULL;
  3257   _scanned_nmethod = NULL;
  3258   _compiler = NULL;
  3260   // Compiler uses resource area for compilation, let's bias it to mtCompiler
  3261   resource_area()->bias_to(mtCompiler);
  3263 #ifndef PRODUCT
  3264   _ideal_graph_printer = NULL;
  3265 #endif
  3268 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  3269   JavaThread::oops_do(f, cld_f, cf);
  3270   if (_scanned_nmethod != NULL && cf != NULL) {
  3271     // Safepoints can occur when the sweeper is scanning an nmethod so
  3272     // process it here to make sure it isn't unloaded in the middle of
  3273     // a scan.
  3274     cf->do_code_blob(_scanned_nmethod);
  3279 // ======= Threads ========
  3281 // The Threads class links together all active threads, and provides
  3282 // operations over all threads.  It is protected by its own Mutex
  3283 // lock, which is also used in other contexts to protect thread
  3284 // operations from having the thread being operated on from exiting
  3285 // and going away unexpectedly (e.g., safepoint synchronization)
  3287 JavaThread* Threads::_thread_list = NULL;
  3288 int         Threads::_number_of_threads = 0;
  3289 int         Threads::_number_of_non_daemon_threads = 0;
  3290 int         Threads::_return_code = 0;
  3291 size_t      JavaThread::_stack_size_at_create = 0;
  3292 #ifdef ASSERT
  3293 bool        Threads::_vm_complete = false;
  3294 #endif
  3296 // All JavaThreads
  3297 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3299 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3300 void Threads::threads_do(ThreadClosure* tc) {
  3301   assert_locked_or_safepoint(Threads_lock);
  3302   // ALL_JAVA_THREADS iterates through all JavaThreads
  3303   ALL_JAVA_THREADS(p) {
  3304     tc->do_thread(p);
  3306   // Someday we could have a table or list of all non-JavaThreads.
  3307   // For now, just manually iterate through them.
  3308   tc->do_thread(VMThread::vm_thread());
  3309   Universe::heap()->gc_threads_do(tc);
  3310   WatcherThread *wt = WatcherThread::watcher_thread();
  3311   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3312   // the data for WatcherThread is still valid upon being examined. However,
  3313   // considering that WatchThread terminates when the VM is on the way to
  3314   // exit at safepoint, the chance of the above is extremely small. The right
  3315   // way to prevent termination of WatcherThread would be to acquire
  3316   // Terminator_lock, but we can't do that without violating the lock rank
  3317   // checking in some cases.
  3318   if (wt != NULL)
  3319     tc->do_thread(wt);
  3321   // If CompilerThreads ever become non-JavaThreads, add them here
  3324 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3326   extern void JDK_Version_init();
  3328   // Preinitialize version info.
  3329   VM_Version::early_initialize();
  3331   // Check version
  3332   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3334   // Initialize the output stream module
  3335   ostream_init();
  3337   // Process java launcher properties.
  3338   Arguments::process_sun_java_launcher_properties(args);
  3340   // Initialize the os module before using TLS
  3341   os::init();
  3343   // Initialize system properties.
  3344   Arguments::init_system_properties();
  3346   // So that JDK version can be used as a discrimintor when parsing arguments
  3347   JDK_Version_init();
  3349   // Update/Initialize System properties after JDK version number is known
  3350   Arguments::init_version_specific_system_properties();
  3352   // Parse arguments
  3353   // Note: this internally calls os::init_container_support()
  3354   jint parse_result = Arguments::parse(args);
  3355   if (parse_result != JNI_OK) return parse_result;
  3357   os::init_before_ergo();
  3359   jint ergo_result = Arguments::apply_ergo();
  3360   if (ergo_result != JNI_OK) return ergo_result;
  3362   if (PauseAtStartup) {
  3363     os::pause();
  3366 #ifndef USDT2
  3367   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3368 #else /* USDT2 */
  3369   HOTSPOT_VM_INIT_BEGIN();
  3370 #endif /* USDT2 */
  3372   // Record VM creation timing statistics
  3373   TraceVmCreationTime create_vm_timer;
  3374   create_vm_timer.start();
  3376   // Timing (must come after argument parsing)
  3377   TraceTime timer("Create VM", TraceStartupTime);
  3379   // Initialize the os module after parsing the args
  3380   jint os_init_2_result = os::init_2();
  3381   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3383   jint adjust_after_os_result = Arguments::adjust_after_os();
  3384   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3386   // intialize TLS
  3387   ThreadLocalStorage::init();
  3389   // Initialize output stream logging
  3390   ostream_init_log();
  3392   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3393   // Must be before create_vm_init_agents()
  3394   if (Arguments::init_libraries_at_startup()) {
  3395     convert_vm_init_libraries_to_agents();
  3398   // Launch -agentlib/-agentpath and converted -Xrun agents
  3399   if (Arguments::init_agents_at_startup()) {
  3400     create_vm_init_agents();
  3403   // Initialize Threads state
  3404   _thread_list = NULL;
  3405   _number_of_threads = 0;
  3406   _number_of_non_daemon_threads = 0;
  3408   // Initialize global data structures and create system classes in heap
  3409   vm_init_globals();
  3411   // Attach the main thread to this os thread
  3412   JavaThread* main_thread = new JavaThread();
  3413   main_thread->set_thread_state(_thread_in_vm);
  3414   // must do this before set_active_handles and initialize_thread_local_storage
  3415   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3416   // change the stack size recorded here to one based on the java thread
  3417   // stacksize. This adjusted size is what is used to figure the placement
  3418   // of the guard pages.
  3419   main_thread->record_stack_base_and_size();
  3420   main_thread->initialize_thread_local_storage();
  3422   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3424   if (!main_thread->set_as_starting_thread()) {
  3425     vm_shutdown_during_initialization(
  3426       "Failed necessary internal allocation. Out of swap space");
  3427     delete main_thread;
  3428     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3429     return JNI_ENOMEM;
  3432   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3433   // crash Linux VM, see notes in os_linux.cpp.
  3434   main_thread->create_stack_guard_pages();
  3436   // Initialize Java-Level synchronization subsystem
  3437   ObjectMonitor::Initialize() ;
  3439   // Initialize global modules
  3440   jint status = init_globals();
  3441   if (status != JNI_OK) {
  3442     delete main_thread;
  3443     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3444     return status;
  3447 #if defined MIPS && !defined ZERO
  3448   /* 2013/11/5 Jin: To be accessed in NativeGeneralJump::patch_verified_entry() */
  3449   main_thread->set_handle_wrong_method_stub(SharedRuntime::get_handle_wrong_method_stub());
  3450 #endif
  3452   // Should be done after the heap is fully created
  3453   main_thread->cache_global_variables();
  3455   HandleMark hm;
  3457   { MutexLocker mu(Threads_lock);
  3458     Threads::add(main_thread);
  3461   // Any JVMTI raw monitors entered in onload will transition into
  3462   // real raw monitor. VM is setup enough here for raw monitor enter.
  3463   JvmtiExport::transition_pending_onload_raw_monitors();
  3465   // Create the VMThread
  3466   { TraceTime timer("Start VMThread", TraceStartupTime);
  3467     VMThread::create();
  3468     Thread* vmthread = VMThread::vm_thread();
  3470     if (!os::create_thread(vmthread, os::vm_thread))
  3471       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3473     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3474     // Monitors can have spurious returns, must always check another state flag
  3476       MutexLocker ml(Notify_lock);
  3477       os::start_thread(vmthread);
  3478       while (vmthread->active_handles() == NULL) {
  3479         Notify_lock->wait();
  3484   assert (Universe::is_fully_initialized(), "not initialized");
  3485   if (VerifyDuringStartup) {
  3486     // Make sure we're starting with a clean slate.
  3487     VM_Verify verify_op;
  3488     VMThread::execute(&verify_op);
  3491   EXCEPTION_MARK;
  3493   // At this point, the Universe is initialized, but we have not executed
  3494   // any byte code.  Now is a good time (the only time) to dump out the
  3495   // internal state of the JVM for sharing.
  3496   if (DumpSharedSpaces) {
  3497     MetaspaceShared::preload_and_dump(CHECK_0);
  3498     ShouldNotReachHere();
  3501   // Always call even when there are not JVMTI environments yet, since environments
  3502   // may be attached late and JVMTI must track phases of VM execution
  3503   JvmtiExport::enter_start_phase();
  3505   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3506   JvmtiExport::post_vm_start();
  3509     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3511     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3512       create_vm_init_libraries();
  3515     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3517     // Initialize java_lang.System (needed before creating the thread)
  3518     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3519     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3520     Handle thread_group = create_initial_thread_group(CHECK_0);
  3521     Universe::set_main_thread_group(thread_group());
  3522     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3523     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3524     main_thread->set_threadObj(thread_object);
  3525     // Set thread status to running since main thread has
  3526     // been started and running.
  3527     java_lang_Thread::set_thread_status(thread_object,
  3528                                         java_lang_Thread::RUNNABLE);
  3530     // The VM creates & returns objects of this class. Make sure it's initialized.
  3531     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3533     // The VM preresolves methods to these classes. Make sure that they get initialized
  3534     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3535     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3536     call_initializeSystemClass(CHECK_0);
  3538     // get the Java runtime name after java.lang.System is initialized
  3539     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3540     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3542     // an instance of OutOfMemory exception has been allocated earlier
  3543     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3544     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3545     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3546     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3547     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3548     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3549     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3550     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3553   // See        : bugid 4211085.
  3554   // Background : the static initializer of java.lang.Compiler tries to read
  3555   //              property"java.compiler" and read & write property "java.vm.info".
  3556   //              When a security manager is installed through the command line
  3557   //              option "-Djava.security.manager", the above properties are not
  3558   //              readable and the static initializer for java.lang.Compiler fails
  3559   //              resulting in a NoClassDefFoundError.  This can happen in any
  3560   //              user code which calls methods in java.lang.Compiler.
  3561   // Hack :       the hack is to pre-load and initialize this class, so that only
  3562   //              system domains are on the stack when the properties are read.
  3563   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3564   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3565   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3566   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3567   //              Once that is done, we should remove this hack.
  3568   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3570   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3571   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3572   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3573   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3574   // This should also be taken out as soon as 4211383 gets fixed.
  3575   reset_vm_info_property(CHECK_0);
  3577   quicken_jni_functions();
  3579   // Must be run after init_ft which initializes ft_enabled
  3580   if (TRACE_INITIALIZE() != JNI_OK) {
  3581     vm_exit_during_initialization("Failed to initialize tracing backend");
  3584   // Set flag that basic initialization has completed. Used by exceptions and various
  3585   // debug stuff, that does not work until all basic classes have been initialized.
  3586   set_init_completed();
  3588   Metaspace::post_initialize();
  3590 #ifndef USDT2
  3591   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3592 #else /* USDT2 */
  3593   HOTSPOT_VM_INIT_END();
  3594 #endif /* USDT2 */
  3596   // record VM initialization completion time
  3597 #if INCLUDE_MANAGEMENT
  3598   Management::record_vm_init_completed();
  3599 #endif // INCLUDE_MANAGEMENT
  3601   // Compute system loader. Note that this has to occur after set_init_completed, since
  3602   // valid exceptions may be thrown in the process.
  3603   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3604   // set_init_completed has just been called, causing exceptions not to be shortcut
  3605   // anymore. We call vm_exit_during_initialization directly instead.
  3606   SystemDictionary::compute_java_system_loader(THREAD);
  3607   if (HAS_PENDING_EXCEPTION) {
  3608     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3611 #if INCLUDE_ALL_GCS
  3612   // Support for ConcurrentMarkSweep. This should be cleaned up
  3613   // and better encapsulated. The ugly nested if test would go away
  3614   // once things are properly refactored. XXX YSR
  3615   if (UseConcMarkSweepGC || UseG1GC) {
  3616     if (UseConcMarkSweepGC) {
  3617       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3618     } else {
  3619       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3621     if (HAS_PENDING_EXCEPTION) {
  3622       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3625 #endif // INCLUDE_ALL_GCS
  3627   // Always call even when there are not JVMTI environments yet, since environments
  3628   // may be attached late and JVMTI must track phases of VM execution
  3629   JvmtiExport::enter_live_phase();
  3631   // Signal Dispatcher needs to be started before VMInit event is posted
  3632   os::signal_init();
  3634   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3635   if (!DisableAttachMechanism) {
  3636     AttachListener::vm_start();
  3637     if (StartAttachListener || AttachListener::init_at_startup()) {
  3638       AttachListener::init();
  3642   // Launch -Xrun agents
  3643   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3644   // back-end can launch with -Xdebug -Xrunjdwp.
  3645   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3646     create_vm_init_libraries();
  3649   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3650   JvmtiExport::post_vm_initialized();
  3652   if (TRACE_START() != JNI_OK) {
  3653     vm_exit_during_initialization("Failed to start tracing backend.");
  3656   if (CleanChunkPoolAsync) {
  3657     Chunk::start_chunk_pool_cleaner_task();
  3660   // initialize compiler(s)
  3661 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3662   CompileBroker::compilation_init();
  3663 #endif
  3665   if (EnableInvokeDynamic) {
  3666     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
  3667     // It is done after compilers are initialized, because otherwise compilations of
  3668     // signature polymorphic MH intrinsics can be missed
  3669     // (see SystemDictionary::find_method_handle_intrinsic).
  3670     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
  3671     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
  3672     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  3675 #if INCLUDE_MANAGEMENT
  3676   Management::initialize(THREAD);
  3677 #endif // INCLUDE_MANAGEMENT
  3679   if (HAS_PENDING_EXCEPTION) {
  3680     // management agent fails to start possibly due to
  3681     // configuration problem and is responsible for printing
  3682     // stack trace if appropriate. Simply exit VM.
  3683     vm_exit(1);
  3686   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3687   if (MemProfiling)                   MemProfiler::engage();
  3688   StatSampler::engage();
  3689   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3691   BiasedLocking::init();
  3693 #if INCLUDE_RTM_OPT
  3694   RTMLockingCounters::init();
  3695 #endif
  3697   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3698     call_postVMInitHook(THREAD);
  3699     // The Java side of PostVMInitHook.run must deal with all
  3700     // exceptions and provide means of diagnosis.
  3701     if (HAS_PENDING_EXCEPTION) {
  3702       CLEAR_PENDING_EXCEPTION;
  3707       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3708       // Make sure the watcher thread can be started by WatcherThread::start()
  3709       // or by dynamic enrollment.
  3710       WatcherThread::make_startable();
  3711       // Start up the WatcherThread if there are any periodic tasks
  3712       // NOTE:  All PeriodicTasks should be registered by now. If they
  3713       //   aren't, late joiners might appear to start slowly (we might
  3714       //   take a while to process their first tick).
  3715       if (PeriodicTask::num_tasks() > 0) {
  3716           WatcherThread::start();
  3720   create_vm_timer.end();
  3721 #ifdef ASSERT
  3722   _vm_complete = true;
  3723 #endif
  3724   return JNI_OK;
  3727 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3728 extern "C" {
  3729   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3731 // Find a command line agent library and return its entry point for
  3732 //         -agentlib:  -agentpath:   -Xrun
  3733 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3734 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3735   OnLoadEntry_t on_load_entry = NULL;
  3736   void *library = NULL;
  3738   if (!agent->valid()) {
  3739     char buffer[JVM_MAXPATHLEN];
  3740     char ebuf[1024];
  3741     const char *name = agent->name();
  3742     const char *msg = "Could not find agent library ";
  3744     // First check to see if agent is statically linked into executable
  3745     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
  3746       library = agent->os_lib();
  3747     } else if (agent->is_absolute_path()) {
  3748       library = os::dll_load(name, ebuf, sizeof ebuf);
  3749       if (library == NULL) {
  3750         const char *sub_msg = " in absolute path, with error: ";
  3751         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3752         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3753         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3754         // If we can't find the agent, exit.
  3755         vm_exit_during_initialization(buf, NULL);
  3756         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3758     } else {
  3759       // Try to load the agent from the standard dll directory
  3760       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3761                              name)) {
  3762         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3764       if (library == NULL) { // Try the local directory
  3765         char ns[1] = {0};
  3766         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3767           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3769         if (library == NULL) {
  3770           const char *sub_msg = " on the library path, with error: ";
  3771           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3772           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3773           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3774           // If we can't find the agent, exit.
  3775           vm_exit_during_initialization(buf, NULL);
  3776           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3780     agent->set_os_lib(library);
  3781     agent->set_valid();
  3784   // Find the OnLoad function.
  3785   on_load_entry =
  3786     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
  3787                                                           false,
  3788                                                           on_load_symbols,
  3789                                                           num_symbol_entries));
  3790   return on_load_entry;
  3793 // Find the JVM_OnLoad entry point
  3794 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3795   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3796   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3799 // Find the Agent_OnLoad entry point
  3800 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3801   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3802   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3805 // For backwards compatibility with -Xrun
  3806 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3807 // treated like -agentpath:
  3808 // Must be called before agent libraries are created
  3809 void Threads::convert_vm_init_libraries_to_agents() {
  3810   AgentLibrary* agent;
  3811   AgentLibrary* next;
  3813   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3814     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3815     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3817     // If there is an JVM_OnLoad function it will get called later,
  3818     // otherwise see if there is an Agent_OnLoad
  3819     if (on_load_entry == NULL) {
  3820       on_load_entry = lookup_agent_on_load(agent);
  3821       if (on_load_entry != NULL) {
  3822         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3823         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3824         Arguments::convert_library_to_agent(agent);
  3825       } else {
  3826         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3832 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3833 // Invokes Agent_OnLoad
  3834 // Called very early -- before JavaThreads exist
  3835 void Threads::create_vm_init_agents() {
  3836   extern struct JavaVM_ main_vm;
  3837   AgentLibrary* agent;
  3839   JvmtiExport::enter_onload_phase();
  3841   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3842     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3844     if (on_load_entry != NULL) {
  3845       // Invoke the Agent_OnLoad function
  3846       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3847       if (err != JNI_OK) {
  3848         vm_exit_during_initialization("agent library failed to init", agent->name());
  3850     } else {
  3851       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3854   JvmtiExport::enter_primordial_phase();
  3857 extern "C" {
  3858   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3861 void Threads::shutdown_vm_agents() {
  3862   // Send any Agent_OnUnload notifications
  3863   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3864   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  3865   extern struct JavaVM_ main_vm;
  3866   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3868     // Find the Agent_OnUnload function.
  3869     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3870       os::find_agent_function(agent,
  3871       false,
  3872       on_unload_symbols,
  3873       num_symbol_entries));
  3875     // Invoke the Agent_OnUnload function
  3876     if (unload_entry != NULL) {
  3877       JavaThread* thread = JavaThread::current();
  3878       ThreadToNativeFromVM ttn(thread);
  3879       HandleMark hm(thread);
  3880       (*unload_entry)(&main_vm);
  3885 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3886 // Invokes JVM_OnLoad
  3887 void Threads::create_vm_init_libraries() {
  3888   extern struct JavaVM_ main_vm;
  3889   AgentLibrary* agent;
  3891   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3892     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3894     if (on_load_entry != NULL) {
  3895       // Invoke the JVM_OnLoad function
  3896       JavaThread* thread = JavaThread::current();
  3897       ThreadToNativeFromVM ttn(thread);
  3898       HandleMark hm(thread);
  3899       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3900       if (err != JNI_OK) {
  3901         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3903     } else {
  3904       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3909 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
  3910   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
  3912   JavaThread* java_thread = NULL;
  3913   // Sequential search for now.  Need to do better optimization later.
  3914   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
  3915     oop tobj = thread->threadObj();
  3916     if (!thread->is_exiting() &&
  3917         tobj != NULL &&
  3918         java_tid == java_lang_Thread::thread_id(tobj)) {
  3919       java_thread = thread;
  3920       break;
  3923   return java_thread;
  3927 // Last thread running calls java.lang.Shutdown.shutdown()
  3928 void JavaThread::invoke_shutdown_hooks() {
  3929   HandleMark hm(this);
  3931   // We could get here with a pending exception, if so clear it now.
  3932   if (this->has_pending_exception()) {
  3933     this->clear_pending_exception();
  3936   EXCEPTION_MARK;
  3937   Klass* k =
  3938     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3939                                       THREAD);
  3940   if (k != NULL) {
  3941     // SystemDictionary::resolve_or_null will return null if there was
  3942     // an exception.  If we cannot load the Shutdown class, just don't
  3943     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3944     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3945     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3946     // was called, the Shutdown class would have already been loaded
  3947     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3948     instanceKlassHandle shutdown_klass (THREAD, k);
  3949     JavaValue result(T_VOID);
  3950     JavaCalls::call_static(&result,
  3951                            shutdown_klass,
  3952                            vmSymbols::shutdown_method_name(),
  3953                            vmSymbols::void_method_signature(),
  3954                            THREAD);
  3956   CLEAR_PENDING_EXCEPTION;
  3959 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3960 // the program falls off the end of main(). Another VM exit path is through
  3961 // vm_exit() when the program calls System.exit() to return a value or when
  3962 // there is a serious error in VM. The two shutdown paths are not exactly
  3963 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3964 // and VM_Exit op at VM level.
  3965 //
  3966 // Shutdown sequence:
  3967 //   + Shutdown native memory tracking if it is on
  3968 //   + Wait until we are the last non-daemon thread to execute
  3969 //     <-- every thing is still working at this moment -->
  3970 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3971 //        shutdown hooks, run finalizers if finalization-on-exit
  3972 //   + Call before_exit(), prepare for VM exit
  3973 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3974 //        currently the only user of this mechanism is File.deleteOnExit())
  3975 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3976 //        post thread end and vm death events to JVMTI,
  3977 //        stop signal thread
  3978 //   + Call JavaThread::exit(), it will:
  3979 //      > release JNI handle blocks, remove stack guard pages
  3980 //      > remove this thread from Threads list
  3981 //     <-- no more Java code from this thread after this point -->
  3982 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3983 //     the compiler threads at safepoint
  3984 //     <-- do not use anything that could get blocked by Safepoint -->
  3985 //   + Disable tracing at JNI/JVM barriers
  3986 //   + Set _vm_exited flag for threads that are still running native code
  3987 //   + Delete this thread
  3988 //   + Call exit_globals()
  3989 //      > deletes tty
  3990 //      > deletes PerfMemory resources
  3991 //   + Return to caller
  3993 bool Threads::destroy_vm() {
  3994   JavaThread* thread = JavaThread::current();
  3996 #ifdef ASSERT
  3997   _vm_complete = false;
  3998 #endif
  3999   // Wait until we are the last non-daemon thread to execute
  4000   { MutexLocker nu(Threads_lock);
  4001     while (Threads::number_of_non_daemon_threads() > 1 )
  4002       // This wait should make safepoint checks, wait without a timeout,
  4003       // and wait as a suspend-equivalent condition.
  4004       //
  4005       // Note: If the FlatProfiler is running and this thread is waiting
  4006       // for another non-daemon thread to finish, then the FlatProfiler
  4007       // is waiting for the external suspend request on this thread to
  4008       // complete. wait_for_ext_suspend_completion() will eventually
  4009       // timeout, but that takes time. Making this wait a suspend-
  4010       // equivalent condition solves that timeout problem.
  4011       //
  4012       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  4013                          Mutex::_as_suspend_equivalent_flag);
  4016   // Hang forever on exit if we are reporting an error.
  4017   if (ShowMessageBoxOnError && is_error_reported()) {
  4018     os::infinite_sleep();
  4020   os::wait_for_keypress_at_exit();
  4022   if (JDK_Version::is_jdk12x_version()) {
  4023     // We are the last thread running, so check if finalizers should be run.
  4024     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  4025     HandleMark rm(thread);
  4026     Universe::run_finalizers_on_exit();
  4027   } else {
  4028     // run Java level shutdown hooks
  4029     thread->invoke_shutdown_hooks();
  4032   before_exit(thread);
  4034   thread->exit(true);
  4036   // Stop VM thread.
  4038     // 4945125 The vm thread comes to a safepoint during exit.
  4039     // GC vm_operations can get caught at the safepoint, and the
  4040     // heap is unparseable if they are caught. Grab the Heap_lock
  4041     // to prevent this. The GC vm_operations will not be able to
  4042     // queue until after the vm thread is dead. After this point,
  4043     // we'll never emerge out of the safepoint before the VM exits.
  4045     MutexLocker ml(Heap_lock);
  4047     VMThread::wait_for_vm_thread_exit();
  4048     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4049     VMThread::destroy();
  4052   // clean up ideal graph printers
  4053 #if defined(COMPILER2) && !defined(PRODUCT)
  4054   IdealGraphPrinter::clean_up();
  4055 #endif
  4057   // Now, all Java threads are gone except daemon threads. Daemon threads
  4058   // running Java code or in VM are stopped by the Safepoint. However,
  4059   // daemon threads executing native code are still running.  But they
  4060   // will be stopped at native=>Java/VM barriers. Note that we can't
  4061   // simply kill or suspend them, as it is inherently deadlock-prone.
  4063 #ifndef PRODUCT
  4064   // disable function tracing at JNI/JVM barriers
  4065   TraceJNICalls = false;
  4066   TraceJVMCalls = false;
  4067   TraceRuntimeCalls = false;
  4068 #endif
  4070   VM_Exit::set_vm_exited();
  4072   notify_vm_shutdown();
  4074   delete thread;
  4076   // exit_globals() will delete tty
  4077   exit_globals();
  4079   return true;
  4083 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4084   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4085   return is_supported_jni_version(version);
  4089 jboolean Threads::is_supported_jni_version(jint version) {
  4090   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4091   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4092   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4093   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4094   return JNI_FALSE;
  4098 void Threads::add(JavaThread* p, bool force_daemon) {
  4099   // The threads lock must be owned at this point
  4100   assert_locked_or_safepoint(Threads_lock);
  4102   // See the comment for this method in thread.hpp for its purpose and
  4103   // why it is called here.
  4104   p->initialize_queues();
  4105   p->set_next(_thread_list);
  4106   _thread_list = p;
  4107   _number_of_threads++;
  4108   oop threadObj = p->threadObj();
  4109   bool daemon = true;
  4110   // Bootstrapping problem: threadObj can be null for initial
  4111   // JavaThread (or for threads attached via JNI)
  4112   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4113     _number_of_non_daemon_threads++;
  4114     daemon = false;
  4117   ThreadService::add_thread(p, daemon);
  4119   // Possible GC point.
  4120   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4123 void Threads::remove(JavaThread* p) {
  4124   // Extra scope needed for Thread_lock, so we can check
  4125   // that we do not remove thread without safepoint code notice
  4126   { MutexLocker ml(Threads_lock);
  4128     assert(includes(p), "p must be present");
  4130     JavaThread* current = _thread_list;
  4131     JavaThread* prev    = NULL;
  4133     while (current != p) {
  4134       prev    = current;
  4135       current = current->next();
  4138     if (prev) {
  4139       prev->set_next(current->next());
  4140     } else {
  4141       _thread_list = p->next();
  4143     _number_of_threads--;
  4144     oop threadObj = p->threadObj();
  4145     bool daemon = true;
  4146     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4147       _number_of_non_daemon_threads--;
  4148       daemon = false;
  4150       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4151       // on destroy_vm will wake up.
  4152       if (number_of_non_daemon_threads() == 1)
  4153         Threads_lock->notify_all();
  4155     ThreadService::remove_thread(p, daemon);
  4157     // Make sure that safepoint code disregard this thread. This is needed since
  4158     // the thread might mess around with locks after this point. This can cause it
  4159     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4160     // of this thread since it is removed from the queue.
  4161     p->set_terminated_value();
  4162   } // unlock Threads_lock
  4164   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4165   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4168 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4169 bool Threads::includes(JavaThread* p) {
  4170   assert(Threads_lock->is_locked(), "sanity check");
  4171   ALL_JAVA_THREADS(q) {
  4172     if (q == p ) {
  4173       return true;
  4176   return false;
  4179 // Operations on the Threads list for GC.  These are not explicitly locked,
  4180 // but the garbage collector must provide a safe context for them to run.
  4181 // In particular, these things should never be called when the Threads_lock
  4182 // is held by some other thread. (Note: the Safepoint abstraction also
  4183 // uses the Threads_lock to gurantee this property. It also makes sure that
  4184 // all threads gets blocked when exiting or starting).
  4186 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4187   ALL_JAVA_THREADS(p) {
  4188     p->oops_do(f, cld_f, cf);
  4190   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4193 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4194   // Introduce a mechanism allowing parallel threads to claim threads as
  4195   // root groups.  Overhead should be small enough to use all the time,
  4196   // even in sequential code.
  4197   SharedHeap* sh = SharedHeap::heap();
  4198   // Cannot yet substitute active_workers for n_par_threads
  4199   // because of G1CollectedHeap::verify() use of
  4200   // SharedHeap::process_roots().  n_par_threads == 0 will
  4201   // turn off parallelism in process_roots while active_workers
  4202   // is being used for parallelism elsewhere.
  4203   bool is_par = sh->n_par_threads() > 0;
  4204   assert(!is_par ||
  4205          (SharedHeap::heap()->n_par_threads() ==
  4206           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4207   int cp = SharedHeap::heap()->strong_roots_parity();
  4208   ALL_JAVA_THREADS(p) {
  4209     if (p->claim_oops_do(is_par, cp)) {
  4210       p->oops_do(f, cld_f, cf);
  4213   VMThread* vmt = VMThread::vm_thread();
  4214   if (vmt->claim_oops_do(is_par, cp)) {
  4215     vmt->oops_do(f, cld_f, cf);
  4219 #if INCLUDE_ALL_GCS
  4220 // Used by ParallelScavenge
  4221 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4222   ALL_JAVA_THREADS(p) {
  4223     q->enqueue(new ThreadRootsTask(p));
  4225   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4228 // Used by Parallel Old
  4229 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4230   ALL_JAVA_THREADS(p) {
  4231     q->enqueue(new ThreadRootsMarkingTask(p));
  4233   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4235 #endif // INCLUDE_ALL_GCS
  4237 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4238   ALL_JAVA_THREADS(p) {
  4239     p->nmethods_do(cf);
  4241   VMThread::vm_thread()->nmethods_do(cf);
  4244 void Threads::metadata_do(void f(Metadata*)) {
  4245   ALL_JAVA_THREADS(p) {
  4246     p->metadata_do(f);
  4250 void Threads::gc_epilogue() {
  4251   ALL_JAVA_THREADS(p) {
  4252     p->gc_epilogue();
  4256 void Threads::gc_prologue() {
  4257   ALL_JAVA_THREADS(p) {
  4258     p->gc_prologue();
  4262 void Threads::deoptimized_wrt_marked_nmethods() {
  4263   ALL_JAVA_THREADS(p) {
  4264     p->deoptimized_wrt_marked_nmethods();
  4269 // Get count Java threads that are waiting to enter the specified monitor.
  4270 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4271   address monitor, bool doLock) {
  4272   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4273     "must grab Threads_lock or be at safepoint");
  4274   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4276   int i = 0;
  4278     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4279     ALL_JAVA_THREADS(p) {
  4280       if (p->is_Compiler_thread()) continue;
  4282       address pending = (address)p->current_pending_monitor();
  4283       if (pending == monitor) {             // found a match
  4284         if (i < count) result->append(p);   // save the first count matches
  4285         i++;
  4289   return result;
  4293 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4294   assert(doLock ||
  4295          Threads_lock->owned_by_self() ||
  4296          SafepointSynchronize::is_at_safepoint(),
  4297          "must grab Threads_lock or be at safepoint");
  4299   // NULL owner means not locked so we can skip the search
  4300   if (owner == NULL) return NULL;
  4303     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4304     ALL_JAVA_THREADS(p) {
  4305       // first, see if owner is the address of a Java thread
  4306       if (owner == (address)p) return p;
  4309   // Cannot assert on lack of success here since this function may be
  4310   // used by code that is trying to report useful problem information
  4311   // like deadlock detection.
  4312   if (UseHeavyMonitors) return NULL;
  4314   //
  4315   // If we didn't find a matching Java thread and we didn't force use of
  4316   // heavyweight monitors, then the owner is the stack address of the
  4317   // Lock Word in the owning Java thread's stack.
  4318   //
  4319   JavaThread* the_owner = NULL;
  4321     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4322     ALL_JAVA_THREADS(q) {
  4323       if (q->is_lock_owned(owner)) {
  4324         the_owner = q;
  4325         break;
  4329   // cannot assert on lack of success here; see above comment
  4330   return the_owner;
  4333 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4334 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4335   char buf[32];
  4336   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
  4338   st->print_cr("Full thread dump %s (%s %s):",
  4339                 Abstract_VM_Version::vm_name(),
  4340                 Abstract_VM_Version::vm_release(),
  4341                 Abstract_VM_Version::vm_info_string()
  4342                );
  4343   st->cr();
  4345 #if INCLUDE_ALL_GCS
  4346   // Dump concurrent locks
  4347   ConcurrentLocksDump concurrent_locks;
  4348   if (print_concurrent_locks) {
  4349     concurrent_locks.dump_at_safepoint();
  4351 #endif // INCLUDE_ALL_GCS
  4353   ALL_JAVA_THREADS(p) {
  4354     ResourceMark rm;
  4355     p->print_on(st);
  4356     if (print_stacks) {
  4357       if (internal_format) {
  4358         p->trace_stack();
  4359       } else {
  4360         p->print_stack_on(st);
  4363     st->cr();
  4364 #if INCLUDE_ALL_GCS
  4365     if (print_concurrent_locks) {
  4366       concurrent_locks.print_locks_on(p, st);
  4368 #endif // INCLUDE_ALL_GCS
  4371   VMThread::vm_thread()->print_on(st);
  4372   st->cr();
  4373   Universe::heap()->print_gc_threads_on(st);
  4374   WatcherThread* wt = WatcherThread::watcher_thread();
  4375   if (wt != NULL) {
  4376     wt->print_on(st);
  4377     st->cr();
  4379   CompileBroker::print_compiler_threads_on(st);
  4380   st->flush();
  4383 // Threads::print_on_error() is called by fatal error handler. It's possible
  4384 // that VM is not at safepoint and/or current thread is inside signal handler.
  4385 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4386 // memory (even in resource area), it might deadlock the error handler.
  4387 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4388   bool found_current = false;
  4389   st->print_cr("Java Threads: ( => current thread )");
  4390   ALL_JAVA_THREADS(thread) {
  4391     bool is_current = (current == thread);
  4392     found_current = found_current || is_current;
  4394     st->print("%s", is_current ? "=>" : "  ");
  4396     st->print(PTR_FORMAT, thread);
  4397     st->print(" ");
  4398     thread->print_on_error(st, buf, buflen);
  4399     st->cr();
  4401   st->cr();
  4403   st->print_cr("Other Threads:");
  4404   if (VMThread::vm_thread()) {
  4405     bool is_current = (current == VMThread::vm_thread());
  4406     found_current = found_current || is_current;
  4407     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4409     st->print(PTR_FORMAT, VMThread::vm_thread());
  4410     st->print(" ");
  4411     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4412     st->cr();
  4414   WatcherThread* wt = WatcherThread::watcher_thread();
  4415   if (wt != NULL) {
  4416     bool is_current = (current == wt);
  4417     found_current = found_current || is_current;
  4418     st->print("%s", is_current ? "=>" : "  ");
  4420     st->print(PTR_FORMAT, wt);
  4421     st->print(" ");
  4422     wt->print_on_error(st, buf, buflen);
  4423     st->cr();
  4425   if (!found_current) {
  4426     st->cr();
  4427     st->print("=>" PTR_FORMAT " (exited) ", current);
  4428     current->print_on_error(st, buf, buflen);
  4429     st->cr();
  4433 // Internal SpinLock and Mutex
  4434 // Based on ParkEvent
  4436 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4437 //
  4438 // We employ SpinLocks _only for low-contention, fixed-length
  4439 // short-duration critical sections where we're concerned
  4440 // about native mutex_t or HotSpot Mutex:: latency.
  4441 // The mux construct provides a spin-then-block mutual exclusion
  4442 // mechanism.
  4443 //
  4444 // Testing has shown that contention on the ListLock guarding gFreeList
  4445 // is common.  If we implement ListLock as a simple SpinLock it's common
  4446 // for the JVM to devolve to yielding with little progress.  This is true
  4447 // despite the fact that the critical sections protected by ListLock are
  4448 // extremely short.
  4449 //
  4450 // TODO-FIXME: ListLock should be of type SpinLock.
  4451 // We should make this a 1st-class type, integrated into the lock
  4452 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4453 // should have sufficient padding to avoid false-sharing and excessive
  4454 // cache-coherency traffic.
  4457 typedef volatile int SpinLockT ;
  4459 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4460   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4461      return ;   // normal fast-path return
  4464   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4465   TEVENT (SpinAcquire - ctx) ;
  4466   int ctr = 0 ;
  4467   int Yields = 0 ;
  4468   for (;;) {
  4469      while (*adr != 0) {
  4470         ++ctr ;
  4471         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4472            if (Yields > 5) {
  4473              os::naked_short_sleep(1);
  4474            } else {
  4475              os::NakedYield() ;
  4476              ++Yields ;
  4478         } else {
  4479            SpinPause() ;
  4482      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4486 void Thread::SpinRelease (volatile int * adr) {
  4487   assert (*adr != 0, "invariant") ;
  4488   OrderAccess::fence() ;      // guarantee at least release consistency.
  4489   // Roach-motel semantics.
  4490   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4491   // but prior LDs and STs within the critical section can't be allowed
  4492   // to reorder or float past the ST that releases the lock.
  4493   *adr = 0 ;
  4496 // muxAcquire and muxRelease:
  4497 //
  4498 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4499 //    The LSB of the word is set IFF the lock is held.
  4500 //    The remainder of the word points to the head of a singly-linked list
  4501 //    of threads blocked on the lock.
  4502 //
  4503 // *  The current implementation of muxAcquire-muxRelease uses its own
  4504 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4505 //    minimizing the peak number of extant ParkEvent instances then
  4506 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4507 //    as certain invariants were satisfied.  Specifically, care would need
  4508 //    to be taken with regards to consuming unpark() "permits".
  4509 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4510 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4511 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4512 //    consume an unpark() permit intended for monitorenter, for instance.
  4513 //    One way around this would be to widen the restricted-range semaphore
  4514 //    implemented in park().  Another alternative would be to provide
  4515 //    multiple instances of the PlatformEvent() for each thread.  One
  4516 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4517 //
  4518 // *  Usage:
  4519 //    -- Only as leaf locks
  4520 //    -- for short-term locking only as muxAcquire does not perform
  4521 //       thread state transitions.
  4522 //
  4523 // Alternatives:
  4524 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4525 //    but with parking or spin-then-park instead of pure spinning.
  4526 // *  Use Taura-Oyama-Yonenzawa locks.
  4527 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4528 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4529 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4530 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4531 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4532 //    boundaries by using placement-new.
  4533 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4534 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4535 //    The validity of the backlinks must be ratified before we trust the value.
  4536 //    If the backlinks are invalid the exiting thread must back-track through the
  4537 //    the forward links, which are always trustworthy.
  4538 // *  Add a successor indication.  The LockWord is currently encoded as
  4539 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4540 //    to provide the usual futile-wakeup optimization.
  4541 //    See RTStt for details.
  4542 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4543 //
  4546 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4547 enum MuxBits { LOCKBIT = 1 } ;
  4549 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4550   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4551   if (w == 0) return ;
  4552   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4553      return ;
  4556   TEVENT (muxAcquire - Contention) ;
  4557   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4558   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4559   for (;;) {
  4560      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4562      // Optional spin phase: spin-then-park strategy
  4563      while (--its >= 0) {
  4564        w = *Lock ;
  4565        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4566           return ;
  4570      Self->reset() ;
  4571      Self->OnList = intptr_t(Lock) ;
  4572      // The following fence() isn't _strictly necessary as the subsequent
  4573      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4574      OrderAccess::fence();
  4575      for (;;) {
  4576         w = *Lock ;
  4577         if ((w & LOCKBIT) == 0) {
  4578             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4579                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4580                 return ;
  4582             continue ;      // Interference -- *Lock changed -- Just retry
  4584         assert (w & LOCKBIT, "invariant") ;
  4585         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4586         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4589      while (Self->OnList != 0) {
  4590         Self->park() ;
  4595 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4596   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4597   if (w == 0) return ;
  4598   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4599     return ;
  4602   TEVENT (muxAcquire - Contention) ;
  4603   ParkEvent * ReleaseAfter = NULL ;
  4604   if (ev == NULL) {
  4605     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4607   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4608   for (;;) {
  4609     guarantee (ev->OnList == 0, "invariant") ;
  4610     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4612     // Optional spin phase: spin-then-park strategy
  4613     while (--its >= 0) {
  4614       w = *Lock ;
  4615       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4616         if (ReleaseAfter != NULL) {
  4617           ParkEvent::Release (ReleaseAfter) ;
  4619         return ;
  4623     ev->reset() ;
  4624     ev->OnList = intptr_t(Lock) ;
  4625     // The following fence() isn't _strictly necessary as the subsequent
  4626     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4627     OrderAccess::fence();
  4628     for (;;) {
  4629       w = *Lock ;
  4630       if ((w & LOCKBIT) == 0) {
  4631         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4632           ev->OnList = 0 ;
  4633           // We call ::Release while holding the outer lock, thus
  4634           // artificially lengthening the critical section.
  4635           // Consider deferring the ::Release() until the subsequent unlock(),
  4636           // after we've dropped the outer lock.
  4637           if (ReleaseAfter != NULL) {
  4638             ParkEvent::Release (ReleaseAfter) ;
  4640           return ;
  4642         continue ;      // Interference -- *Lock changed -- Just retry
  4644       assert (w & LOCKBIT, "invariant") ;
  4645       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4646       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4649     while (ev->OnList != 0) {
  4650       ev->park() ;
  4655 // Release() must extract a successor from the list and then wake that thread.
  4656 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4657 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4658 // Release() would :
  4659 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4660 // (B) Extract a successor from the private list "in-hand"
  4661 // (C) attempt to CAS() the residual back into *Lock over null.
  4662 //     If there were any newly arrived threads and the CAS() would fail.
  4663 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4664 //     with the RATs and repeat as needed.  Alternately, Release() might
  4665 //     detach and extract a successor, but then pass the residual list to the wakee.
  4666 //     The wakee would be responsible for reattaching and remerging before it
  4667 //     competed for the lock.
  4668 //
  4669 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4670 // multiple concurrent pushers, but only one popper or detacher.
  4671 // This implementation pops from the head of the list.  This is unfair,
  4672 // but tends to provide excellent throughput as hot threads remain hot.
  4673 // (We wake recently run threads first).
  4675 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4676   for (;;) {
  4677     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4678     assert (w & LOCKBIT, "invariant") ;
  4679     if (w == LOCKBIT) return ;
  4680     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4681     assert (List != NULL, "invariant") ;
  4682     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4683     ParkEvent * nxt = List->ListNext ;
  4685     // The following CAS() releases the lock and pops the head element.
  4686     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4687       continue ;
  4689     List->OnList = 0 ;
  4690     OrderAccess::fence() ;
  4691     List->unpark () ;
  4692     return ;
  4697 void Threads::verify() {
  4698   ALL_JAVA_THREADS(p) {
  4699     p->verify();
  4701   VMThread* thread = VMThread::vm_thread();
  4702   if (thread != NULL) thread->verify();

mercurial