src/share/vm/runtime/advancedThresholdPolicy.cpp

Thu, 05 Sep 2019 18:52:27 +0800

author
aoqi
date
Thu, 05 Sep 2019 18:52:27 +0800
changeset 9703
2fdf635bcf28
parent 9637
eef07cd490d4
parent 9690
61d955db2a5b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/advancedThresholdPolicy.hpp"
    27 #include "runtime/simpleThresholdPolicy.inline.hpp"
    29 #ifdef TIERED
    30 // Print an event.
    31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    32                                              int bci, CompLevel level) {
    33   tty->print(" rate=");
    34   if (mh->prev_time() == 0) tty->print("n/a");
    35   else tty->print("%f", mh->rate());
    37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    40 }
    42 void AdvancedThresholdPolicy::initialize() {
    43   // Turn on ergonomic compiler count selection
    44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    46   }
    47   int count = CICompilerCount;
    48   if (CICompilerCountPerCPU) {
    49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    50     int log_cpu = log2_int(os::active_processor_count());
    51     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
    52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    53   }
    55   set_c1_count(MAX2(count / 3, 1));
    56   set_c2_count(MAX2(count - c1_count(), 1));
    57   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
    59   // Some inlining tuning
    60 #ifdef X86
    61   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    62     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    63   }
    64 #endif
    66 #ifdef SPARC
    67   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    68     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    69   }
    70 #endif
    72   set_increase_threshold_at_ratio();
    73   set_start_time(os::javaTimeMillis());
    74 }
    76 // update_rate() is called from select_task() while holding a compile queue lock.
    77 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
    78   // Skip update if counters are absent.
    79   // Can't allocate them since we are holding compile queue lock.
    80   if (m->method_counters() == NULL)  return;
    82   if (is_old(m)) {
    83     // We don't remove old methods from the queue,
    84     // so we can just zero the rate.
    85     m->set_rate(0);
    86     return;
    87   }
    89   // We don't update the rate if we've just came out of a safepoint.
    90   // delta_s is the time since last safepoint in milliseconds.
    91   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    92   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    93   // How many events were there since the last time?
    94   int event_count = m->invocation_count() + m->backedge_count();
    95   int delta_e = event_count - m->prev_event_count();
    97   // We should be running for at least 1ms.
    98   if (delta_s >= TieredRateUpdateMinTime) {
    99     // And we must've taken the previous point at least 1ms before.
   100     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
   101       m->set_prev_time(t);
   102       m->set_prev_event_count(event_count);
   103       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
   104     } else {
   105       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
   106         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
   107         m->set_rate(0);
   108       }
   109     }
   110   }
   111 }
   113 // Check if this method has been stale from a given number of milliseconds.
   114 // See select_task().
   115 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
   116   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
   117   jlong delta_t = t - m->prev_time();
   118   if (delta_t > timeout && delta_s > timeout) {
   119     int event_count = m->invocation_count() + m->backedge_count();
   120     int delta_e = event_count - m->prev_event_count();
   121     // Return true if there were no events.
   122     return delta_e == 0;
   123   }
   124   return false;
   125 }
   127 // We don't remove old methods from the compile queue even if they have
   128 // very low activity. See select_task().
   129 bool AdvancedThresholdPolicy::is_old(Method* method) {
   130   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   131 }
   133 double AdvancedThresholdPolicy::weight(Method* method) {
   134   return (double)(method->rate() + 1) *
   135     (method->invocation_count() + 1) * (method->backedge_count() + 1);
   136 }
   138 // Apply heuristics and return true if x should be compiled before y
   139 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
   140   if (x->highest_comp_level() > y->highest_comp_level()) {
   141     // recompilation after deopt
   142     return true;
   143   } else
   144     if (x->highest_comp_level() == y->highest_comp_level()) {
   145       if (weight(x) > weight(y)) {
   146         return true;
   147       }
   148     }
   149   return false;
   150 }
   152 // Is method profiled enough?
   153 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
   154   MethodData* mdo = method->method_data();
   155   if (mdo != NULL) {
   156     int i = mdo->invocation_count_delta();
   157     int b = mdo->backedge_count_delta();
   158     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   159   }
   160   return false;
   161 }
   163 // Called with the queue locked and with at least one element
   164 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   165   CompileTask *max_task = NULL;
   166   Method* max_method = NULL;
   167   jlong t = os::javaTimeMillis();
   168   // Iterate through the queue and find a method with a maximum rate.
   169   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   170     CompileTask* next_task = task->next();
   171     Method* method = task->method();
   172     update_rate(t, method);
   173     if (max_task == NULL) {
   174       max_task = task;
   175       max_method = method;
   176     } else {
   177       // If a method has been stale for some time, remove it from the queue.
   178       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
   179         if (PrintTieredEvents) {
   180           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   181         }
   182         compile_queue->remove_and_mark_stale(task);
   183         method->clear_queued_for_compilation();
   184         task = next_task;
   185         continue;
   186       }
   188       // Select a method with a higher rate
   189       if (compare_methods(method, max_method)) {
   190         max_task = task;
   191         max_method = method;
   192       }
   193     }
   194     task = next_task;
   195   }
   197   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
   198       && is_method_profiled(max_method)) {
   200     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
   201       if (PrintTieredEvents) {
   202         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   203       }
   204       compile_queue->remove_and_mark_stale(max_task);
   205       max_method->clear_queued_for_compilation();
   206       return NULL;
   207     }
   209     max_task->set_comp_level(CompLevel_limited_profile);
   210     if (PrintTieredEvents) {
   211       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   212     }
   213   }
   215   return max_task;
   216 }
   218 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   219   double queue_size = CompileBroker::queue_size(level);
   220   int comp_count = compiler_count(level);
   221   double k = queue_size / (feedback_k * comp_count) + 1;
   223   // Increase C1 compile threshold when the code cache is filled more
   224   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
   225   // The main intention is to keep enough free space for C2 compiled code
   226   // to achieve peak performance if the code cache is under stress.
   227   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
   228     double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
   229     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
   230       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
   231     }
   232   }
   233   return k;
   234 }
   236 // Call and loop predicates determine whether a transition to a higher
   237 // compilation level should be performed (pointers to predicate functions
   238 // are passed to common()).
   239 // Tier?LoadFeedback is basically a coefficient that determines of
   240 // how many methods per compiler thread can be in the queue before
   241 // the threshold values double.
   242 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   243   switch(cur_level) {
   244   case CompLevel_none:
   245   case CompLevel_limited_profile: {
   246     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   247     return loop_predicate_helper<CompLevel_none>(i, b, k);
   248   }
   249   case CompLevel_full_profile: {
   250     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   251     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   252   }
   253   default:
   254     return true;
   255   }
   256 }
   258 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   259   switch(cur_level) {
   260   case CompLevel_none:
   261   case CompLevel_limited_profile: {
   262     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   263     return call_predicate_helper<CompLevel_none>(i, b, k);
   264   }
   265   case CompLevel_full_profile: {
   266     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   267     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   268   }
   269   default:
   270     return true;
   271   }
   272 }
   274 // If a method is old enough and is still in the interpreter we would want to
   275 // start profiling without waiting for the compiled method to arrive.
   276 // We also take the load on compilers into the account.
   277 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
   278   if (cur_level == CompLevel_none &&
   279       CompileBroker::queue_size(CompLevel_full_optimization) <=
   280       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   281     int i = method->invocation_count();
   282     int b = method->backedge_count();
   283     double k = Tier0ProfilingStartPercentage / 100.0;
   284     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   285   }
   286   return false;
   287 }
   289 // Inlining control: if we're compiling a profiled method with C1 and the callee
   290 // is known to have OSRed in a C2 version, don't inline it.
   291 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
   292   CompLevel comp_level = (CompLevel)env->comp_level();
   293   if (comp_level == CompLevel_full_profile ||
   294       comp_level == CompLevel_limited_profile) {
   295     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
   296   }
   297   return false;
   298 }
   300 // Create MDO if necessary.
   301 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
   302   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   303   if (mh->method_data() == NULL) {
   304     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
   305   }
   306 }
   309 /*
   310  * Method states:
   311  *   0 - interpreter (CompLevel_none)
   312  *   1 - pure C1 (CompLevel_simple)
   313  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   314  *   3 - C1 with full profiling (CompLevel_full_profile)
   315  *   4 - C2 (CompLevel_full_optimization)
   316  *
   317  * Common state transition patterns:
   318  * a. 0 -> 3 -> 4.
   319  *    The most common path. But note that even in this straightforward case
   320  *    profiling can start at level 0 and finish at level 3.
   321  *
   322  * b. 0 -> 2 -> 3 -> 4.
   323  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   324  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   325  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   326  *
   327  * c. 0 -> (3->2) -> 4.
   328  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   329  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   330  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
   331  *    without full profiling while c2 is compiling.
   332  *
   333  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   334  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   335  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   336  *
   337  * e. 0 -> 4.
   338  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   339  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   340  *    the compiled version already exists).
   341  *
   342  * Note that since state 0 can be reached from any other state via deoptimization different loops
   343  * are possible.
   344  *
   345  */
   347 // Common transition function. Given a predicate determines if a method should transition to another level.
   348 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
   349   CompLevel next_level = cur_level;
   350   int i = method->invocation_count();
   351   int b = method->backedge_count();
   353   if (is_trivial(method)) {
   354     next_level = CompLevel_simple;
   355   } else {
   356     switch(cur_level) {
   357     case CompLevel_none:
   358       // If we were at full profile level, would we switch to full opt?
   359       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
   360         next_level = CompLevel_full_optimization;
   361       } else if ((this->*p)(i, b, cur_level)) {
   362         // C1-generated fully profiled code is about 30% slower than the limited profile
   363         // code that has only invocation and backedge counters. The observation is that
   364         // if C2 queue is large enough we can spend too much time in the fully profiled code
   365         // while waiting for C2 to pick the method from the queue. To alleviate this problem
   366         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   367         // we choose to compile a limited profiled version and then recompile with full profiling
   368         // when the load on C2 goes down.
   369         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
   370                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   371           next_level = CompLevel_limited_profile;
   372         } else {
   373           next_level = CompLevel_full_profile;
   374         }
   375       }
   376       break;
   377     case CompLevel_limited_profile:
   378       if (is_method_profiled(method)) {
   379         // Special case: we got here because this method was fully profiled in the interpreter.
   380         next_level = CompLevel_full_optimization;
   381       } else {
   382         MethodData* mdo = method->method_data();
   383         if (mdo != NULL) {
   384           if (mdo->would_profile()) {
   385             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
   386                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   387                                      (this->*p)(i, b, cur_level))) {
   388               next_level = CompLevel_full_profile;
   389             }
   390           } else {
   391             next_level = CompLevel_full_optimization;
   392           }
   393         }
   394       }
   395       break;
   396     case CompLevel_full_profile:
   397       {
   398         MethodData* mdo = method->method_data();
   399         if (mdo != NULL) {
   400           if (mdo->would_profile()) {
   401             int mdo_i = mdo->invocation_count_delta();
   402             int mdo_b = mdo->backedge_count_delta();
   403             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   404               next_level = CompLevel_full_optimization;
   405             }
   406           } else {
   407             next_level = CompLevel_full_optimization;
   408           }
   409         }
   410       }
   411       break;
   412     }
   413   }
   414   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
   415 }
   417 // Determine if a method should be compiled with a normal entry point at a different level.
   418 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
   419   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
   420                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
   421   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   423   // If OSR method level is greater than the regular method level, the levels should be
   424   // equalized by raising the regular method level in order to avoid OSRs during each
   425   // invocation of the method.
   426   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   427     MethodData* mdo = method->method_data();
   428     guarantee(mdo != NULL, "MDO should not be NULL");
   429     if (mdo->invocation_count() >= 1) {
   430       next_level = CompLevel_full_optimization;
   431     }
   432   } else {
   433     next_level = MAX2(osr_level, next_level);
   434   }
   435   return next_level;
   436 }
   438 // Determine if we should do an OSR compilation of a given method.
   439 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
   440   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
   441   if (cur_level == CompLevel_none) {
   442     // If there is a live OSR method that means that we deopted to the interpreter
   443     // for the transition.
   444     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
   445     if (osr_level > CompLevel_none) {
   446       return osr_level;
   447     }
   448   }
   449   return next_level;
   450 }
   452 // Update the rate and submit compile
   453 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
   454   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   455   update_rate(os::javaTimeMillis(), mh());
   456   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
   457 }
   459 // Handle the invocation event.
   460 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   461                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
   462   if (should_create_mdo(mh(), level)) {
   463     create_mdo(mh, thread);
   464   }
   465   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
   466     CompLevel next_level = call_event(mh(), level);
   467     if (next_level != level) {
   468       compile(mh, InvocationEntryBci, next_level, thread);
   469     }
   470   }
   471 }
   473 // Handle the back branch event. Notice that we can compile the method
   474 // with a regular entry from here.
   475 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   476                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
   477   if (should_create_mdo(mh(), level)) {
   478     create_mdo(mh, thread);
   479   }
   480   // Check if MDO should be created for the inlined method
   481   if (should_create_mdo(imh(), level)) {
   482     create_mdo(imh, thread);
   483   }
   485   if (is_compilation_enabled()) {
   486     CompLevel next_osr_level = loop_event(imh(), level);
   487     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
   488     // At the very least compile the OSR version
   489     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
   490       compile(imh, bci, next_osr_level, thread);
   491     }
   493     // Use loop event as an opportunity to also check if there's been
   494     // enough calls.
   495     CompLevel cur_level, next_level;
   496     if (mh() != imh()) { // If there is an enclosing method
   497       guarantee(nm != NULL, "Should have nmethod here");
   498       cur_level = comp_level(mh());
   499       next_level = call_event(mh(), cur_level);
   501       if (max_osr_level == CompLevel_full_optimization) {
   502         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
   503         bool make_not_entrant = false;
   504         if (nm->is_osr_method()) {
   505           // This is an osr method, just make it not entrant and recompile later if needed
   506           make_not_entrant = true;
   507         } else {
   508           if (next_level != CompLevel_full_optimization) {
   509             // next_level is not full opt, so we need to recompile the
   510             // enclosing method without the inlinee
   511             cur_level = CompLevel_none;
   512             make_not_entrant = true;
   513           }
   514         }
   515         if (make_not_entrant) {
   516           if (PrintTieredEvents) {
   517             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
   518             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
   519           }
   520           nm->make_not_entrant();
   521         }
   522       }
   523       if (!CompileBroker::compilation_is_in_queue(mh)) {
   524         // Fix up next_level if necessary to avoid deopts
   525         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
   526           next_level = CompLevel_full_profile;
   527         }
   528         if (cur_level != next_level) {
   529           compile(mh, InvocationEntryBci, next_level, thread);
   530         }
   531       }
   532     } else {
   533       cur_level = comp_level(imh());
   534       next_level = call_event(imh(), cur_level);
   535       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
   536         compile(imh, InvocationEntryBci, next_level, thread);
   537       }
   538     }
   539   }
   540 }
   542 #endif // TIERED

mercurial