src/share/vm/adlc/output_c.cpp

Mon, 18 Jun 2018 14:39:46 -0700

author
kevinw
date
Mon, 18 Jun 2018 14:39:46 -0700
changeset 9333
2fccf735a116
parent 7853
a1642365d69f
child 9448
73d689add964
child 9846
9003f35baaa0
permissions
-rw-r--r--

8160748: Inconsistent types for ideal_reg
Summary: Made ideal_reg consistently uint.
Reviewed-by: kvn, iveresov

     1 /*
     2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
    70     }
    72     // Finish defining enumeration
    73     fprintf(fp,"};\n");
    75     fprintf(fp,"\n");
    76     fprintf(fp,"// An array of character pointers to machine register names.\n");
    77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    78     reg_def = NULL;
    79     next = NULL;
    80     registers->reset_RegDefs();
    81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    82       next = registers->iter_RegDefs();
    83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
    85     }
    86     // Finish defining array
    87     fprintf(fp,"\t};\n");
    88     fprintf(fp,"\n");
    90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    92   }
    93 }
    95 // Define an array containing the machine register encoding values
    96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    97   if (registers) {
    98     fprintf(fp,"\n");
    99     fprintf(fp,"// An array of the machine register encode values\n");
   100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   102     // Output the register encoding for each register in the allocation classes
   103     RegDef *reg_def = NULL;
   104     RegDef *next    = NULL;
   105     registers->reset_RegDefs();
   106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
   107       next = registers->iter_RegDefs();
   108       const char* register_encode = reg_def->register_encode();
   109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   110       int encval;
   111       if (!ADLParser::is_int_token(register_encode, encval)) {
   112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
   113       } else {
   114         // Output known constants in hex char format (backward compatibility).
   115         assert(encval < 256, "Exceeded supported width for register encoding");
   116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
   117       }
   118     }
   119     // Finish defining enumeration
   120     fprintf(fp,"};\n");
   122   } // Done defining array
   123 }
   125 // Output an enumeration of register class names
   126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   127   if (registers) {
   128     // Output an enumeration of register class names
   129     fprintf(fp,"\n");
   130     fprintf(fp,"// Enumeration of register class names\n");
   131     fprintf(fp, "enum machRegisterClass {\n");
   132     registers->_rclasses.reset();
   133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
   134       const char * class_name_to_upper = toUpper(class_name);
   135       fprintf(fp,"  %s,\n", class_name_to_upper);
   136       delete[] class_name_to_upper;
   137     }
   138     // Finish defining enumeration
   139     fprintf(fp, "  _last_Mach_Reg_Class\n");
   140     fprintf(fp, "};\n");
   141   }
   142 }
   144 // Declare an enumeration of user-defined register classes
   145 // and a list of register masks, one for each class.
   146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   147   const char  *rc_name;
   149   if (_register) {
   150     // Build enumeration of user-defined register classes.
   151     defineRegClassEnum(fp_hpp, _register);
   153     // Generate a list of register masks, one for each class.
   154     fprintf(fp_hpp,"\n");
   155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   156     _register->_rclasses.reset();
   157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   158       RegClass *reg_class = _register->getRegClass(rc_name);
   159       assert(reg_class, "Using an undefined register class");
   160       reg_class->declare_register_masks(fp_hpp);
   161     }
   162   }
   163 }
   165 // Generate an enumeration of user-defined register classes
   166 // and a list of register masks, one for each class.
   167 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   168   const char  *rc_name;
   170   if (_register) {
   171     // Generate a list of register masks, one for each class.
   172     fprintf(fp_cpp,"\n");
   173     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   174     _register->_rclasses.reset();
   175     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   176       RegClass *reg_class = _register->getRegClass(rc_name);
   177       assert(reg_class, "Using an undefined register class");
   178       reg_class->build_register_masks(fp_cpp);
   179     }
   180   }
   181 }
   183 // Compute an index for an array in the pipeline_reads_NNN arrays
   184 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   185 {
   186   int templen = 1;
   187   int paramcount = 0;
   188   const char *paramname;
   190   if (pipeclass->_parameters.count() == 0)
   191     return -1;
   193   pipeclass->_parameters.reset();
   194   paramname = pipeclass->_parameters.iter();
   195   const PipeClassOperandForm *pipeopnd =
   196     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   197   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   198     pipeclass->_parameters.reset();
   200   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   201     const PipeClassOperandForm *tmppipeopnd =
   202         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   204     if (tmppipeopnd)
   205       templen += 10 + (int)strlen(tmppipeopnd->_stage);
   206     else
   207       templen += 19;
   209     paramcount++;
   210   }
   212   // See if the count is zero
   213   if (paramcount == 0) {
   214     return -1;
   215   }
   217   char *operand_stages = new char [templen];
   218   operand_stages[0] = 0;
   219   int i = 0;
   220   templen = 0;
   222   pipeclass->_parameters.reset();
   223   paramname = pipeclass->_parameters.iter();
   224   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   225   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   226     pipeclass->_parameters.reset();
   228   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   229     const PipeClassOperandForm *tmppipeopnd =
   230         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   231     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   232       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
   233       (++i < paramcount ? ',' : ' ') );
   234   }
   236   // See if the same string is in the table
   237   int ndx = pipeline_reads.index(operand_stages);
   239   // No, add it to the table
   240   if (ndx < 0) {
   241     pipeline_reads.addName(operand_stages);
   242     ndx = pipeline_reads.index(operand_stages);
   244     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   245       ndx+1, paramcount, operand_stages);
   246   }
   247   else
   248     delete [] operand_stages;
   250   return (ndx);
   251 }
   253 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   254 static int pipeline_res_stages_initializer(
   255   FILE *fp_cpp,
   256   PipelineForm *pipeline,
   257   NameList &pipeline_res_stages,
   258   PipeClassForm *pipeclass)
   259 {
   260   const PipeClassResourceForm *piperesource;
   261   int * res_stages = new int [pipeline->_rescount];
   262   int i;
   264   for (i = 0; i < pipeline->_rescount; i++)
   265      res_stages[i] = 0;
   267   for (pipeclass->_resUsage.reset();
   268        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   269     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   270     for (i = 0; i < pipeline->_rescount; i++)
   271       if ((1 << i) & used_mask) {
   272         int stage = pipeline->_stages.index(piperesource->_stage);
   273         if (res_stages[i] < stage+1)
   274           res_stages[i] = stage+1;
   275       }
   276   }
   278   // Compute the length needed for the resource list
   279   int commentlen = 0;
   280   int max_stage = 0;
   281   for (i = 0; i < pipeline->_rescount; i++) {
   282     if (res_stages[i] == 0) {
   283       if (max_stage < 9)
   284         max_stage = 9;
   285     }
   286     else {
   287       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   288       if (max_stage < stagelen)
   289         max_stage = stagelen;
   290     }
   292     commentlen += (int)strlen(pipeline->_reslist.name(i));
   293   }
   295   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   297   // Allocate space for the resource list
   298   char * resource_stages = new char [templen];
   300   templen = 0;
   301   for (i = 0; i < pipeline->_rescount; i++) {
   302     const char * const resname =
   303       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   305     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   306       resname, max_stage - (int)strlen(resname) + 1,
   307       (i < pipeline->_rescount-1) ? "," : "",
   308       pipeline->_reslist.name(i));
   309   }
   311   // See if the same string is in the table
   312   int ndx = pipeline_res_stages.index(resource_stages);
   314   // No, add it to the table
   315   if (ndx < 0) {
   316     pipeline_res_stages.addName(resource_stages);
   317     ndx = pipeline_res_stages.index(resource_stages);
   319     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   320       ndx+1, pipeline->_rescount, resource_stages);
   321   }
   322   else
   323     delete [] resource_stages;
   325   delete [] res_stages;
   327   return (ndx);
   328 }
   330 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   331 static int pipeline_res_cycles_initializer(
   332   FILE *fp_cpp,
   333   PipelineForm *pipeline,
   334   NameList &pipeline_res_cycles,
   335   PipeClassForm *pipeclass)
   336 {
   337   const PipeClassResourceForm *piperesource;
   338   int * res_cycles = new int [pipeline->_rescount];
   339   int i;
   341   for (i = 0; i < pipeline->_rescount; i++)
   342      res_cycles[i] = 0;
   344   for (pipeclass->_resUsage.reset();
   345        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   346     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   347     for (i = 0; i < pipeline->_rescount; i++)
   348       if ((1 << i) & used_mask) {
   349         int cycles = piperesource->_cycles;
   350         if (res_cycles[i] < cycles)
   351           res_cycles[i] = cycles;
   352       }
   353   }
   355   // Pre-compute the string length
   356   int templen;
   357   int cyclelen = 0, commentlen = 0;
   358   int max_cycles = 0;
   359   char temp[32];
   361   for (i = 0; i < pipeline->_rescount; i++) {
   362     if (max_cycles < res_cycles[i])
   363       max_cycles = res_cycles[i];
   364     templen = sprintf(temp, "%d", res_cycles[i]);
   365     if (cyclelen < templen)
   366       cyclelen = templen;
   367     commentlen += (int)strlen(pipeline->_reslist.name(i));
   368   }
   370   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   372   // Allocate space for the resource list
   373   char * resource_cycles = new char [templen];
   375   templen = 0;
   377   for (i = 0; i < pipeline->_rescount; i++) {
   378     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   379       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   380   }
   382   // See if the same string is in the table
   383   int ndx = pipeline_res_cycles.index(resource_cycles);
   385   // No, add it to the table
   386   if (ndx < 0) {
   387     pipeline_res_cycles.addName(resource_cycles);
   388     ndx = pipeline_res_cycles.index(resource_cycles);
   390     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   391       ndx+1, pipeline->_rescount, resource_cycles);
   392   }
   393   else
   394     delete [] resource_cycles;
   396   delete [] res_cycles;
   398   return (ndx);
   399 }
   401 //typedef unsigned long long uint64_t;
   403 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   404 static int pipeline_res_mask_initializer(
   405   FILE *fp_cpp,
   406   PipelineForm *pipeline,
   407   NameList &pipeline_res_mask,
   408   NameList &pipeline_res_args,
   409   PipeClassForm *pipeclass)
   410 {
   411   const PipeClassResourceForm *piperesource;
   412   const uint rescount      = pipeline->_rescount;
   413   const uint maxcycleused  = pipeline->_maxcycleused;
   414   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   416   int i, j;
   417   int element_count = 0;
   418   uint *res_mask = new uint [cyclemasksize];
   419   uint resources_used             = 0;
   420   uint resources_used_exclusively = 0;
   422   for (pipeclass->_resUsage.reset();
   423        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   424     element_count++;
   425   }
   427   // Pre-compute the string length
   428   int templen;
   429   int commentlen = 0;
   430   int max_cycles = 0;
   432   int cyclelen = ((maxcycleused + 3) >> 2);
   433   int masklen = (rescount + 3) >> 2;
   435   int cycledigit = 0;
   436   for (i = maxcycleused; i > 0; i /= 10)
   437     cycledigit++;
   439   int maskdigit = 0;
   440   for (i = rescount; i > 0; i /= 10)
   441     maskdigit++;
   443   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   444   static const char* pipeline_use_element    = "Pipeline_Use_Element";
   446   templen = 1 +
   447     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   448      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   450   // Allocate space for the resource list
   451   char * resource_mask = new char [templen];
   452   char * last_comma = NULL;
   454   templen = 0;
   456   for (pipeclass->_resUsage.reset();
   457        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   458     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   460     if (!used_mask) {
   461       fprintf(stderr, "*** used_mask is 0 ***\n");
   462     }
   464     resources_used |= used_mask;
   466     uint lb, ub;
   468     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   469     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   471     if (lb == ub) {
   472       resources_used_exclusively |= used_mask;
   473     }
   475     int formatlen =
   476       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   477         pipeline_use_element,
   478         masklen, used_mask,
   479         cycledigit, lb, cycledigit, ub,
   480         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   481         pipeline_use_cycle_mask);
   483     templen += formatlen;
   485     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   487     int cycles = piperesource->_cycles;
   488     uint stage          = pipeline->_stages.index(piperesource->_stage);
   489     if ((uint)NameList::Not_in_list == stage) {
   490       fprintf(stderr,
   491               "pipeline_res_mask_initializer: "
   492               "semantic error: "
   493               "pipeline stage undeclared: %s\n",
   494               piperesource->_stage);
   495       exit(1);
   496     }
   497     uint upper_limit    = stage + cycles - 1;
   498     uint lower_limit    = stage - 1;
   499     uint upper_idx      = upper_limit >> 5;
   500     uint lower_idx      = lower_limit >> 5;
   501     uint upper_position = upper_limit & 0x1f;
   502     uint lower_position = lower_limit & 0x1f;
   504     uint mask = (((uint)1) << upper_position) - 1;
   506     while (upper_idx > lower_idx) {
   507       res_mask[upper_idx--] |= mask;
   508       mask = (uint)-1;
   509     }
   511     mask -= (((uint)1) << lower_position) - 1;
   512     res_mask[upper_idx] |= mask;
   514     for (j = cyclemasksize-1; j >= 0; j--) {
   515       formatlen =
   516         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   517       templen += formatlen;
   518     }
   520     resource_mask[templen++] = ')';
   521     resource_mask[templen++] = ')';
   522     last_comma = &resource_mask[templen];
   523     resource_mask[templen++] = ',';
   524     resource_mask[templen++] = '\n';
   525   }
   527   resource_mask[templen] = 0;
   528   if (last_comma) {
   529     last_comma[0] = ' ';
   530   }
   532   // See if the same string is in the table
   533   int ndx = pipeline_res_mask.index(resource_mask);
   535   // No, add it to the table
   536   if (ndx < 0) {
   537     pipeline_res_mask.addName(resource_mask);
   538     ndx = pipeline_res_mask.index(resource_mask);
   540     if (strlen(resource_mask) > 0)
   541       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   542         ndx+1, element_count, resource_mask);
   544     char* args = new char [9 + 2*masklen + maskdigit];
   546     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   547       masklen, resources_used,
   548       masklen, resources_used_exclusively,
   549       maskdigit, element_count);
   551     pipeline_res_args.addName(args);
   552   }
   553   else {
   554     delete [] resource_mask;
   555   }
   557   delete [] res_mask;
   558 //delete [] res_masks;
   560   return (ndx);
   561 }
   563 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   564   const char *classname;
   565   const char *resourcename;
   566   int resourcenamelen = 0;
   567   NameList pipeline_reads;
   568   NameList pipeline_res_stages;
   569   NameList pipeline_res_cycles;
   570   NameList pipeline_res_masks;
   571   NameList pipeline_res_args;
   572   const int default_latency = 1;
   573   const int non_operand_latency = 0;
   574   const int node_latency = 0;
   576   if (!_pipeline) {
   577     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   578     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   579     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   580     fprintf(fp_cpp, "}\n");
   581     return;
   582   }
   584   fprintf(fp_cpp, "\n");
   585   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   586   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   587   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   588   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   589   fprintf(fp_cpp, "    \"undefined\"");
   591   for (int s = 0; s < _pipeline->_stagecnt; s++)
   592     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   594   fprintf(fp_cpp, "\n  };\n\n");
   595   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   596     _pipeline->_stagecnt);
   597   fprintf(fp_cpp, "}\n");
   598   fprintf(fp_cpp, "#endif\n\n");
   600   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   601   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   602 #if 0
   603   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   604   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   605   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   606   fprintf(fp_cpp, "  }\n");
   607   fprintf(fp_cpp, "#endif\n\n");
   608 #endif
   609   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   610   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   611 #if 0
   612   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   613   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   614   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   615   fprintf(fp_cpp, "  }\n");
   616   fprintf(fp_cpp, "#endif\n\n");
   617 #endif
   618   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   619   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   620   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   621   fprintf(fp_cpp, "      continue;\n\n");
   622   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   623   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   624   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   625   fprintf(fp_cpp, "        continue;\n\n");
   626   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   627   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   628   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   629   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   630   fprintf(fp_cpp, "          y <<= 1;\n");
   631   fprintf(fp_cpp, "      }\n");
   632   fprintf(fp_cpp, "    }\n");
   633   fprintf(fp_cpp, "  }\n\n");
   634   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   635   fprintf(fp_cpp, "  return (start);\n");
   636   fprintf(fp_cpp, "}\n\n");
   637   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   638   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   639   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   640   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   641   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   642   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   643   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   644   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   645     _pipeline->_maxcycleused+1);
   646   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   647   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   648   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   649   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   650   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   651   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   652   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   653   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   654   fprintf(fp_cpp, "            y <<= 1;\n");
   655   fprintf(fp_cpp, "        }\n");
   656   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   657   fprintf(fp_cpp, "      }\n");
   658   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   659   fprintf(fp_cpp, "    }\n");
   660   fprintf(fp_cpp, "    else {\n");
   661   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   662   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   663   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   664   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   665   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   666   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   667   fprintf(fp_cpp, "            y <<= 1;\n");
   668   fprintf(fp_cpp, "        }\n");
   669   fprintf(fp_cpp, "      }\n");
   670   fprintf(fp_cpp, "    }\n");
   671   fprintf(fp_cpp, "  }\n\n");
   672   fprintf(fp_cpp, "  return (delay);\n");
   673   fprintf(fp_cpp, "}\n\n");
   674   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   675   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   676   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   677   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   678   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   679   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   680   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   681   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   682   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   683   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   684   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   685   fprintf(fp_cpp, "          break;\n");
   686   fprintf(fp_cpp, "        }\n");
   687   fprintf(fp_cpp, "      }\n");
   688   fprintf(fp_cpp, "    }\n");
   689   fprintf(fp_cpp, "    else {\n");
   690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   691   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   692   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   693   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   694   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   695   fprintf(fp_cpp, "      }\n");
   696   fprintf(fp_cpp, "    }\n");
   697   fprintf(fp_cpp, "  }\n");
   698   fprintf(fp_cpp, "}\n\n");
   700   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   701   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   702   fprintf(fp_cpp, "\n");
   703 #if 0
   704   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   705   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   706   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   707   fprintf(fp_cpp, "  }\n");
   708   fprintf(fp_cpp, "#endif\n\n");
   709 #endif
   710   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
   711   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
   712   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   713   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   714   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   715   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   716   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   717 #if 0
   718   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   719   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   720   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   721   fprintf(fp_cpp, "  }\n");
   722   fprintf(fp_cpp, "#endif\n\n");
   723 #endif
   724   fprintf(fp_cpp, "\n");
   725   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   726   fprintf(fp_cpp, "    return (default_latency);\n");
   727   fprintf(fp_cpp, "\n");
   728   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   729   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   730 #if 0
   731   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   732   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   733   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   734   fprintf(fp_cpp, "  }\n");
   735   fprintf(fp_cpp, "#endif\n\n");
   736 #endif
   737   fprintf(fp_cpp, "  return (delta);\n");
   738   fprintf(fp_cpp, "}\n\n");
   740   if (!_pipeline)
   741     /* Do Nothing */;
   743   else if (_pipeline->_maxcycleused <=
   744 #ifdef SPARC
   745     64
   746 #else
   747     32
   748 #endif
   749       ) {
   750     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   751     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   752     fprintf(fp_cpp, "}\n\n");
   753     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   754     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   755     fprintf(fp_cpp, "}\n\n");
   756   }
   757   else {
   758     uint l;
   759     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   760     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   761     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   762     for (l = 1; l <= masklen; l++)
   763       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   764     fprintf(fp_cpp, ");\n");
   765     fprintf(fp_cpp, "}\n\n");
   766     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   767     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   768     for (l = 1; l <= masklen; l++)
   769       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   770     fprintf(fp_cpp, ");\n");
   771     fprintf(fp_cpp, "}\n\n");
   772     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   773     for (l = 1; l <= masklen; l++)
   774       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   775     fprintf(fp_cpp, "\n}\n\n");
   776   }
   778   /* Get the length of all the resource names */
   779   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   780        (resourcename = _pipeline->_reslist.iter()) != NULL;
   781        resourcenamelen += (int)strlen(resourcename));
   783   // Create the pipeline class description
   785   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   786   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   788   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   789   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   790     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   791     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   792     for (int i2 = masklen-1; i2 >= 0; i2--)
   793       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   794     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   795   }
   796   fprintf(fp_cpp, "};\n\n");
   798   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   799     _pipeline->_rescount);
   801   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   802     fprintf(fp_cpp, "\n");
   803     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   804     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   805     int maxWriteStage = -1;
   806     int maxMoreInstrs = 0;
   807     int paramcount = 0;
   808     int i = 0;
   809     const char *paramname;
   810     int resource_count = (_pipeline->_rescount + 3) >> 2;
   812     // Scan the operands, looking for last output stage and number of inputs
   813     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   814       const PipeClassOperandForm *pipeopnd =
   815           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   816       if (pipeopnd) {
   817         if (pipeopnd->_iswrite) {
   818            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   819            int moreinsts = pipeopnd->_more_instrs;
   820           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   821             maxWriteStage = stagenum;
   822             maxMoreInstrs = moreinsts;
   823           }
   824         }
   825       }
   827       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   828         paramcount++;
   829     }
   831     // Create the list of stages for the operands that are read
   832     // Note that we will build a NameList to reduce the number of copies
   834     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   836     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   837       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   839     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   840       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   842     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   843       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   845 #if 0
   846     // Process the Resources
   847     const PipeClassResourceForm *piperesource;
   849     unsigned resources_used = 0;
   850     unsigned exclusive_resources_used = 0;
   851     unsigned resource_groups = 0;
   852     for (pipeclass->_resUsage.reset();
   853          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   854       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   855       if (used_mask)
   856         resource_groups++;
   857       resources_used |= used_mask;
   858       if ((used_mask & (used_mask-1)) == 0)
   859         exclusive_resources_used |= used_mask;
   860     }
   862     if (resource_groups > 0) {
   863       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   864         pipeclass->_num, resource_groups);
   865       for (pipeclass->_resUsage.reset(), i = 1;
   866            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   867            i++ ) {
   868         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   869         if (used_mask) {
   870           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   871         }
   872       }
   873       fprintf(fp_cpp, "};\n\n");
   874     }
   875 #endif
   877     // Create the pipeline class description
   878     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   879       pipeclass->_num);
   880     if (maxWriteStage < 0)
   881       fprintf(fp_cpp, "(uint)stage_undefined");
   882     else if (maxMoreInstrs == 0)
   883       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   884     else
   885       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   886     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   887       paramcount,
   888       pipeclass->hasFixedLatency() ? "true" : "false",
   889       pipeclass->fixedLatency(),
   890       pipeclass->InstructionCount(),
   891       pipeclass->hasBranchDelay() ? "true" : "false",
   892       pipeclass->hasMultipleBundles() ? "true" : "false",
   893       pipeclass->forceSerialization() ? "true" : "false",
   894       pipeclass->mayHaveNoCode() ? "true" : "false" );
   895     if (paramcount > 0) {
   896       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   897         pipeline_reads_index+1);
   898     }
   899     else
   900       fprintf(fp_cpp, " NULL,");
   901     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   902       pipeline_res_stages_index+1);
   903     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   904       pipeline_res_cycles_index+1);
   905     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   906       pipeline_res_args.name(pipeline_res_mask_index));
   907     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   908       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   909         pipeline_res_mask_index+1);
   910     else
   911       fprintf(fp_cpp, "NULL");
   912     fprintf(fp_cpp, "));\n");
   913   }
   915   // Generate the Node::latency method if _pipeline defined
   916   fprintf(fp_cpp, "\n");
   917   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   918   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   919   if (_pipeline) {
   920 #if 0
   921     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   922     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   923     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   924     fprintf(fp_cpp, " }\n");
   925     fprintf(fp_cpp, "#endif\n");
   926 #endif
   927     fprintf(fp_cpp, "  uint j;\n");
   928     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   929     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   930     fprintf(fp_cpp, "  // verify input is not null\n");
   931     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   932     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   933       non_operand_latency);
   934     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   935     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   936     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   937     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   938     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   939     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   940     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   941     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   942       node_latency);
   943     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   944     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   945     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   946       non_operand_latency);
   947     fprintf(fp_cpp, "  // determine which operand this is in\n");
   948     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   949     fprintf(fp_cpp, "  int delta = %d;\n\n",
   950       non_operand_latency);
   951     fprintf(fp_cpp, "  uint k;\n");
   952     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   953     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   954     fprintf(fp_cpp, "    if (i < j)\n");
   955     fprintf(fp_cpp, "      break;\n");
   956     fprintf(fp_cpp, "  }\n");
   957     fprintf(fp_cpp, "  if (k < n)\n");
   958     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
   959     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
   960   }
   961   else {
   962     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   963     fprintf(fp_cpp, "  return %d;\n",
   964       non_operand_latency);
   965   }
   966   fprintf(fp_cpp, "}\n\n");
   968   // Output the list of nop nodes
   969   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
   970   const char *nop;
   971   int nopcnt = 0;
   972   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
   974   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
   975   int i = 0;
   976   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
   977     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
   978   }
   979   fprintf(fp_cpp, "};\n\n");
   980   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   981   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
   982   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
   983   fprintf(fp_cpp, "    \"\",\n");
   984   fprintf(fp_cpp, "    \"use nop delay\",\n");
   985   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
   986   fprintf(fp_cpp, "    \"use conditional delay\",\n");
   987   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
   988   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
   989   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
   990   fprintf(fp_cpp, "  };\n\n");
   992   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
   993   for (i = 0; i < _pipeline->_rescount; i++)
   994     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
   995   fprintf(fp_cpp, "};\n\n");
   997   // See if the same string is in the table
   998   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
   999   fprintf(fp_cpp, "  if (_flags) {\n");
  1000   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
  1001   fprintf(fp_cpp, "    needs_comma = true;\n");
  1002   fprintf(fp_cpp, "  };\n");
  1003   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1004   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1005   fprintf(fp_cpp, "    needs_comma = true;\n");
  1006   fprintf(fp_cpp, "  };\n");
  1007   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1008   fprintf(fp_cpp, "  if (r) {\n");
  1009   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1010   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1011   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1012   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
  1013   fprintf(fp_cpp, "    needs_comma = true;\n");
  1014   fprintf(fp_cpp, "  };\n");
  1015   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
  1016   fprintf(fp_cpp, "}\n");
  1017   fprintf(fp_cpp, "#endif\n");
  1020 // ---------------------------------------------------------------------------
  1021 //------------------------------Utilities to build Instruction Classes--------
  1022 // ---------------------------------------------------------------------------
  1024 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1025   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1026           node, regMask);
  1029 static void print_block_index(FILE *fp, int inst_position) {
  1030   assert( inst_position >= 0, "Instruction number less than zero");
  1031   fprintf(fp, "block_index");
  1032   if( inst_position != 0 ) {
  1033     fprintf(fp, " - %d", inst_position);
  1037 // Scan the peepmatch and output a test for each instruction
  1038 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1039   int         parent        = -1;
  1040   int         inst_position = 0;
  1041   const char* inst_name     = NULL;
  1042   int         input         = 0;
  1043   fprintf(fp, "  // Check instruction sub-tree\n");
  1044   pmatch->reset();
  1045   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1046        inst_name != NULL;
  1047        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1048     // If this is not a placeholder
  1049     if( ! pmatch->is_placeholder() ) {
  1050       // Define temporaries 'inst#', based on parent and parent's input index
  1051       if( parent != -1 ) {                // root was initialized
  1052         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1053         fprintf(fp, "  if( ");
  1054         print_block_index(fp, inst_position);
  1055         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
  1056         print_block_index(fp, inst_position);
  1057         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
  1058         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1061       // When not the root
  1062       // Test we have the correct instruction by comparing the rule.
  1063       if( parent != -1 ) {
  1064         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
  1065                 inst_position, inst_position, inst_name);
  1067     } else {
  1068       // Check that user did not try to constrain a placeholder
  1069       assert( ! pconstraint->constrains_instruction(inst_position),
  1070               "fatal(): Can not constrain a placeholder instruction");
  1075 // Build mapping for register indices, num_edges to input
  1076 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1077   int         parent        = -1;
  1078   int         inst_position = 0;
  1079   const char* inst_name     = NULL;
  1080   int         input         = 0;
  1081   fprintf(fp, "      // Build map to register info\n");
  1082   pmatch->reset();
  1083   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1084        inst_name != NULL;
  1085        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1086     // If this is not a placeholder
  1087     if( ! pmatch->is_placeholder() ) {
  1088       // Define temporaries 'inst#', based on self's inst_position
  1089       InstructForm *inst = globals[inst_name]->is_instruction();
  1090       if( inst != NULL ) {
  1091         char inst_prefix[]  = "instXXXX_";
  1092         sprintf(inst_prefix, "inst%d_",   inst_position);
  1093         char receiver[]     = "instXXXX->";
  1094         sprintf(receiver,    "inst%d->", inst_position);
  1095         inst->index_temps( fp, globals, inst_prefix, receiver );
  1101 // Generate tests for the constraints
  1102 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1103   fprintf(fp, "\n");
  1104   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1106   // Build mapping from num_edges to local variables
  1107   build_instruction_index_mapping( fp, globals, pmatch );
  1109   // Build constraint tests
  1110   if( pconstraint != NULL ) {
  1111     fprintf(fp, "      matches = matches &&");
  1112     bool   first_constraint = true;
  1113     while( pconstraint != NULL ) {
  1114       // indentation and connecting '&&'
  1115       const char *indentation = "      ";
  1116       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1118       // Only have '==' relation implemented
  1119       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1120         assert( false, "Unimplemented()" );
  1123       // LEFT
  1124       int left_index       = pconstraint->_left_inst;
  1125       const char *left_op  = pconstraint->_left_op;
  1126       // Access info on the instructions whose operands are compared
  1127       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1128       assert( inst_left, "Parser should guaranty this is an instruction");
  1129       int left_op_base  = inst_left->oper_input_base(globals);
  1130       // Access info on the operands being compared
  1131       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1132       if( left_op_index == -1 ) {
  1133         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1134         if( left_op_index == -1 ) {
  1135           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1138       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1139       ComponentList components_left = inst_left->_components;
  1140       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1141       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1142       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1145       // RIGHT
  1146       int right_op_index = -1;
  1147       int right_index      = pconstraint->_right_inst;
  1148       const char *right_op = pconstraint->_right_op;
  1149       if( right_index != -1 ) { // Match operand
  1150         // Access info on the instructions whose operands are compared
  1151         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1152         assert( inst_right, "Parser should guaranty this is an instruction");
  1153         int right_op_base = inst_right->oper_input_base(globals);
  1154         // Access info on the operands being compared
  1155         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1156         if( right_op_index == -1 ) {
  1157           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1158           if( right_op_index == -1 ) {
  1159             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1162         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1163         ComponentList components_right = inst_right->_components;
  1164         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1165         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1166         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1167         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1169       } else {                  // Else match register
  1170         // assert( false, "should be a register" );
  1173       //
  1174       // Check for equivalence
  1175       //
  1176       // fprintf(fp, "phase->eqv( ");
  1177       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1178       //         left_index,  left_op_base,  left_op_index,  left_op,
  1179       //         right_index, right_op_base, right_op_index, right_op );
  1180       // fprintf(fp, ")");
  1181       //
  1182       switch( left_interface_type ) {
  1183       case Form::register_interface: {
  1184         // Check that they are allocated to the same register
  1185         // Need parameter for index position if not result operand
  1186         char left_reg_index[] = ",instXXXX_idxXXXX";
  1187         if( left_op_index != 0 ) {
  1188           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1189           // Must have index into operands
  1190           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
  1191         } else {
  1192           strcpy(left_reg_index, "");
  1194         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1195                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1196         fprintf(fp, " == ");
  1198         if( right_index != -1 ) {
  1199           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1200           if( right_op_index != 0 ) {
  1201             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1202             // Must have index into operands
  1203             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
  1204           } else {
  1205             strcpy(right_reg_index, "");
  1207           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1208                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1209         } else {
  1210           fprintf(fp, "%s_enc", right_op );
  1212         fprintf(fp,")");
  1213         break;
  1215       case Form::constant_interface: {
  1216         // Compare the '->constant()' values
  1217         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1218                 left_index,  left_op_index,  left_index, left_op );
  1219         fprintf(fp, " == ");
  1220         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1221                 right_index, right_op, right_index, right_op_index );
  1222         break;
  1224       case Form::memory_interface: {
  1225         // Compare 'base', 'index', 'scale', and 'disp'
  1226         // base
  1227         fprintf(fp, "( \n");
  1228         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1229           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1230         fprintf(fp, " == ");
  1231         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1232                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1233         // index
  1234         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1235                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1236         fprintf(fp, " == ");
  1237         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1238                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1239         // scale
  1240         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1241                 left_index,  left_op_index,  left_index, left_op );
  1242         fprintf(fp, " == ");
  1243         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1244                 right_index, right_op, right_index, right_op_index );
  1245         // disp
  1246         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1247                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1248         fprintf(fp, " == ");
  1249         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1250                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1251         fprintf(fp, ") \n");
  1252         break;
  1254       case Form::conditional_interface: {
  1255         // Compare the condition code being tested
  1256         assert( false, "Unimplemented()" );
  1257         break;
  1259       default: {
  1260         assert( false, "ShouldNotReachHere()" );
  1261         break;
  1265       // Advance to next constraint
  1266       pconstraint = pconstraint->next();
  1267       first_constraint = false;
  1270     fprintf(fp, ";\n");
  1274 // // EXPERIMENTAL -- TEMPORARY code
  1275 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1276 //   int op_index = instr->operand_position(op_name, Component::USE);
  1277 //   if( op_index == -1 ) {
  1278 //     op_index = instr->operand_position(op_name, Component::DEF);
  1279 //     if( op_index == -1 ) {
  1280 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1281 //     }
  1282 //   }
  1283 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1284 //
  1285 //   ComponentList components_right = instr->_components;
  1286 //   char *right_comp_type = components_right.at(op_index)->_type;
  1287 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1288 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1289 //
  1290 //   return;
  1291 // }
  1293 // Construct the new sub-tree
  1294 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1295   fprintf(fp, "      // IF instructions and constraints matched\n");
  1296   fprintf(fp, "      if( matches ) {\n");
  1297   fprintf(fp, "        // generate the new sub-tree\n");
  1298   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1299   if( preplace != NULL ) {
  1300     // Get the root of the new sub-tree
  1301     const char *root_inst = NULL;
  1302     preplace->next_instruction(root_inst);
  1303     InstructForm *root_form = globals[root_inst]->is_instruction();
  1304     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1305     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1307     int         inst_num;
  1308     const char *op_name;
  1309     int         opnds_index = 0;            // define result operand
  1310     // Then install the use-operands for the new sub-tree
  1311     // preplace->reset();             // reset breaks iteration
  1312     for( preplace->next_operand( inst_num, op_name );
  1313          op_name != NULL;
  1314          preplace->next_operand( inst_num, op_name ) ) {
  1315       InstructForm *inst_form;
  1316       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1317       assert( inst_form, "Parser should guaranty this is an instruction");
  1318       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1319       if( inst_op_num == NameList::Not_in_list )
  1320         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1321       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1322       // find the name of the OperandForm from the local name
  1323       const Form *form   = inst_form->_localNames[op_name];
  1324       OperandForm  *op_form = form->is_operand();
  1325       if( opnds_index == 0 ) {
  1326         // Initial setup of new instruction
  1327         fprintf(fp, "        // ----- Initial setup -----\n");
  1328         //
  1329         // Add control edge for this node
  1330         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1331         // Add unmatched edges from root of match tree
  1332         int op_base = root_form->oper_input_base(globals);
  1333         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1334           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
  1335                                           inst_num, unmatched_edge);
  1337         // If new instruction captures bottom type
  1338         if( root_form->captures_bottom_type(globals) ) {
  1339           // Get bottom type from instruction whose result we are replacing
  1340           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
  1342         // Define result register and result operand
  1343         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
  1344         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
  1345         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
  1346         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
  1347         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1348       } else {
  1349         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1350           // Do not have ideal edges for constants after matching
  1351           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
  1352                   inst_op_num, inst_num, inst_op_num,
  1353                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1354           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
  1355                   inst_num, inst_op_num );
  1356         } else {
  1357           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1359         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
  1360                 opnds_index, inst_num, inst_op_num );
  1362       ++opnds_index;
  1364   }else {
  1365     // Replacing subtree with empty-tree
  1366     assert( false, "ShouldNotReachHere();");
  1369   // Return the new sub-tree
  1370   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1371   fprintf(fp, "        return root;  // return new root;\n");
  1372   fprintf(fp, "      }\n");
  1376 // Define the Peephole method for an instruction node
  1377 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1378   // Generate Peephole function header
  1379   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1380   fprintf(fp, "  bool  matches = true;\n");
  1382   // Identify the maximum instruction position,
  1383   // generate temporaries that hold current instruction
  1384   //
  1385   //   MachNode  *inst0 = NULL;
  1386   //   ...
  1387   //   MachNode  *instMAX = NULL;
  1388   //
  1389   int max_position = 0;
  1390   Peephole *peep;
  1391   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1392     PeepMatch *pmatch = peep->match();
  1393     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1394     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1396   for( int i = 0; i <= max_position; ++i ) {
  1397     if( i == 0 ) {
  1398       fprintf(fp, "  MachNode *inst0 = this;\n");
  1399     } else {
  1400       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1404   // For each peephole rule in architecture description
  1405   //   Construct a test for the desired instruction sub-tree
  1406   //   then check the constraints
  1407   //   If these match, Generate the new subtree
  1408   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1409     int         peephole_number = peep->peephole_number();
  1410     PeepMatch      *pmatch      = peep->match();
  1411     PeepConstraint *pconstraint = peep->constraints();
  1412     PeepReplace    *preplace    = peep->replacement();
  1414     // Root of this peephole is the current MachNode
  1415     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1416             "root of PeepMatch does not match instruction");
  1418     // Make each peephole rule individually selectable
  1419     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1420     fprintf(fp, "    matches = true;\n");
  1421     // Scan the peepmatch and output a test for each instruction
  1422     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1424     // Check constraints and build replacement inside scope
  1425     fprintf(fp, "    // If instruction subtree matches\n");
  1426     fprintf(fp, "    if( matches ) {\n");
  1428     // Generate tests for the constraints
  1429     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1431     // Construct the new sub-tree
  1432     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1434     // End of scope for this peephole's constraints
  1435     fprintf(fp, "    }\n");
  1436     // Closing brace '}' to make each peephole rule individually selectable
  1437     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1438     fprintf(fp, "\n");
  1441   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1442   fprintf(fp, "}\n");
  1443   fprintf(fp, "\n");
  1446 // Define the Expand method for an instruction node
  1447 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1448   unsigned      cnt  = 0;          // Count nodes we have expand into
  1449   unsigned      i;
  1451   // Generate Expand function header
  1452   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  1453   fprintf(fp, "  Compile* C = Compile::current();\n");
  1454   // Generate expand code
  1455   if( node->expands() ) {
  1456     const char   *opid;
  1457     int           new_pos, exp_pos;
  1458     const char   *new_id   = NULL;
  1459     const Form   *frm      = NULL;
  1460     InstructForm *new_inst = NULL;
  1461     OperandForm  *new_oper = NULL;
  1462     unsigned      numo     = node->num_opnds() +
  1463                                 node->_exprule->_newopers.count();
  1465     // If necessary, generate any operands created in expand rule
  1466     if (node->_exprule->_newopers.count()) {
  1467       for(node->_exprule->_newopers.reset();
  1468           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1469         frm = node->_localNames[new_id];
  1470         assert(frm, "Invalid entry in new operands list of expand rule");
  1471         new_oper = frm->is_operand();
  1472         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1473         if (tmp == NULL) {
  1474           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1475                   cnt, new_oper->_ident);
  1477         else {
  1478           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1479                   cnt, new_oper->_ident, tmp);
  1483     cnt = 0;
  1484     // Generate the temps to use for DAG building
  1485     for(i = 0; i < numo; i++) {
  1486       if (i < node->num_opnds()) {
  1487         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1489       else {
  1490         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1493     // Build mapping from num_edges to local variables
  1494     fprintf(fp,"  unsigned num0 = 0;\n");
  1495     for( i = 1; i < node->num_opnds(); i++ ) {
  1496       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1499     // Build a mapping from operand index to input edges
  1500     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1502     // The order in which the memory input is added to a node is very
  1503     // strange.  Store nodes get a memory input before Expand is
  1504     // called and other nodes get it afterwards or before depending on
  1505     // match order so oper_input_base is wrong during expansion.  This
  1506     // code adjusts it so that expansion will work correctly.
  1507     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
  1508     if (has_memory_edge) {
  1509       fprintf(fp,"  if (mem == (Node*)1) {\n");
  1510       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1511       fprintf(fp,"  }\n");
  1514     for( i = 0; i < node->num_opnds(); i++ ) {
  1515       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1516               i+1,i,i);
  1519     // Declare variable to hold root of expansion
  1520     fprintf(fp,"  MachNode *result = NULL;\n");
  1522     // Iterate over the instructions 'node' expands into
  1523     ExpandRule  *expand       = node->_exprule;
  1524     NameAndList *expand_instr = NULL;
  1525     for(expand->reset_instructions();
  1526         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1527       new_id = expand_instr->name();
  1529       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1531       if (!expand_instruction) {
  1532         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
  1533                              node->_ident, new_id);
  1534         continue;
  1537       if (expand_instruction->has_temps()) {
  1538         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1539                              node->_ident, new_id);
  1542       // Build the node for the instruction
  1543       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1544       // Add control edge for this node
  1545       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1546       // Build the operand for the value this node defines.
  1547       Form *form = (Form*)_globalNames[new_id];
  1548       assert( form, "'new_id' must be a defined form name");
  1549       // Grab the InstructForm for the new instruction
  1550       new_inst = form->is_instruction();
  1551       assert( new_inst, "'new_id' must be an instruction name");
  1552       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1553         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1554         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1557       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1558         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1559         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
  1560         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
  1563       // Fill in the bottom_type where requested
  1564       if (node->captures_bottom_type(_globalNames) &&
  1565           new_inst->captures_bottom_type(_globalNames)) {
  1566         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
  1569       const char *resultOper = new_inst->reduce_result();
  1570       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1571               cnt, machOperEnum(resultOper));
  1573       // get the formal operand NameList
  1574       NameList *formal_lst = &new_inst->_parameters;
  1575       formal_lst->reset();
  1577       // Handle any memory operand
  1578       int memory_operand = new_inst->memory_operand(_globalNames);
  1579       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1580         int node_mem_op = node->memory_operand(_globalNames);
  1581         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1582                 "expand rule member needs memory but top-level inst doesn't have any" );
  1583         if (has_memory_edge) {
  1584           // Copy memory edge
  1585           fprintf(fp,"  if (mem != (Node*)1) {\n");
  1586           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1587           fprintf(fp,"  }\n");
  1591       // Iterate over the new instruction's operands
  1592       int prev_pos = -1;
  1593       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1594         // Use 'parameter' at current position in list of new instruction's formals
  1595         // instead of 'opid' when looking up info internal to new_inst
  1596         const char *parameter = formal_lst->iter();
  1597         if (!parameter) {
  1598           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
  1599                                " no equivalent in new instruction %s.",
  1600                                opid, node->_ident, new_inst->_ident);
  1601           assert(0, "Wrong expand");
  1604         // Check for an operand which is created in the expand rule
  1605         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1606           new_pos = new_inst->operand_position(parameter,Component::USE);
  1607           exp_pos += node->num_opnds();
  1608           // If there is no use of the created operand, just skip it
  1609           if (new_pos != NameList::Not_in_list) {
  1610             //Copy the operand from the original made above
  1611             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1612                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1613             // Check for who defines this operand & add edge if needed
  1614             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1615             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1618         else {
  1619           // Use operand name to get an index into instruction component list
  1620           // ins = (InstructForm *) _globalNames[new_id];
  1621           exp_pos = node->operand_position_format(opid);
  1622           assert(exp_pos != -1, "Bad expand rule");
  1623           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1624             // For the add_req calls below to work correctly they need
  1625             // to added in the same order that a match would add them.
  1626             // This means that they would need to be in the order of
  1627             // the components list instead of the formal parameters.
  1628             // This is a sort of hidden invariant that previously
  1629             // wasn't checked and could lead to incorrectly
  1630             // constructed nodes.
  1631             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1632                        node->_ident, new_inst->_ident);
  1634           prev_pos = exp_pos;
  1636           new_pos = new_inst->operand_position(parameter,Component::USE);
  1637           if (new_pos != -1) {
  1638             // Copy the operand from the ExpandNode to the new node
  1639             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1640                     cnt, new_pos, exp_pos, opid);
  1641             // For each operand add appropriate input edges by looking at tmp's
  1642             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1643             // Grab corresponding edges from ExpandNode and insert them here
  1644             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1645             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1646             fprintf(fp,"    }\n");
  1647             fprintf(fp,"  }\n");
  1648             // This value is generated by one of the new instructions
  1649             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1653         // Update the DAG tmp's for values defined by this instruction
  1654         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1655         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1656         // If this operand is a definition in either an effects rule
  1657         // or a match rule
  1658         if((eform) && (is_def(eform->_use_def))) {
  1659           // Update the temp associated with this operand
  1660           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1662         else if( new_def_pos != -1 ) {
  1663           // Instruction defines a value but user did not declare it
  1664           // in the 'effect' clause
  1665           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1667       } // done iterating over a new instruction's operands
  1669       // Invoke Expand() for the newly created instruction.
  1670       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
  1671       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1672     } // done iterating over new instructions
  1673     fprintf(fp,"\n");
  1674   } // done generating expand rule
  1676   // Generate projections for instruction's additional DEFs and KILLs
  1677   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1678     // Get string representing the MachNode that projections point at
  1679     const char *machNode = "this";
  1680     // Generate the projections
  1681     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1683     // Examine each component to see if it is a DEF or KILL
  1684     node->_components.reset();
  1685     // Skip the first component, if already handled as (SET dst (...))
  1686     Component *comp = NULL;
  1687     // For kills, the choice of projection numbers is arbitrary
  1688     int proj_no = 1;
  1689     bool declared_def  = false;
  1690     bool declared_kill = false;
  1692     while( (comp = node->_components.iter()) != NULL ) {
  1693       // Lookup register class associated with operand type
  1694       Form        *form = (Form*)_globalNames[comp->_type];
  1695       assert( form, "component type must be a defined form");
  1696       OperandForm *op   = form->is_operand();
  1698       if (comp->is(Component::TEMP)) {
  1699         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1700         if (!declared_def) {
  1701           // Define the variable "def" to hold new MachProjNodes
  1702           fprintf(fp, "  MachTempNode *def;\n");
  1703           declared_def = true;
  1705         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1706           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1707                   machOperEnum(op->_ident));
  1708           fprintf(fp,"  add_req(def);\n");
  1709           // The operand for TEMP is already constructed during
  1710           // this mach node construction, see buildMachNode().
  1711           //
  1712           // int idx  = node->operand_position_format(comp->_name);
  1713           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1714           //         idx, machOperEnum(op->_ident));
  1715         } else {
  1716           assert(false, "can't have temps which aren't registers");
  1718       } else if (comp->isa(Component::KILL)) {
  1719         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1721         if (!declared_kill) {
  1722           // Define the variable "kill" to hold new MachProjNodes
  1723           fprintf(fp, "  MachProjNode *kill;\n");
  1724           declared_kill = true;
  1727         assert( op, "Support additional KILLS for base operands");
  1728         const char *regmask    = reg_mask(*op);
  1729         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1731         if (!op->is_bound_register()) {
  1732           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1733                      node->_ident, comp->_type, comp->_name);
  1736         fprintf(fp,"  kill = ");
  1737         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1738                 machNode, proj_no++, regmask, ideal_type);
  1739         fprintf(fp,"  proj_list.push(kill);\n");
  1744   if( !node->expands() && node->_matrule != NULL ) {
  1745     // Remove duplicated operands and inputs which use the same name.
  1746     // Seach through match operands for the same name usage.
  1747     uint cur_num_opnds = node->num_opnds();
  1748     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1749       Component *comp = NULL;
  1750       // Build mapping from num_edges to local variables
  1751       fprintf(fp,"  unsigned num0 = 0;\n");
  1752       for( i = 1; i < cur_num_opnds; i++ ) {
  1753         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
  1754         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
  1756       // Build a mapping from operand index to input edges
  1757       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1758       for( i = 0; i < cur_num_opnds; i++ ) {
  1759         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1760                 i+1,i,i);
  1763       uint new_num_opnds = 1;
  1764       node->_components.reset();
  1765       // Skip first unique operands.
  1766       for( i = 1; i < cur_num_opnds; i++ ) {
  1767         comp = node->_components.iter();
  1768         if (i != node->unique_opnds_idx(i)) {
  1769           break;
  1771         new_num_opnds++;
  1773       // Replace not unique operands with next unique operands.
  1774       for( ; i < cur_num_opnds; i++ ) {
  1775         comp = node->_components.iter();
  1776         uint j = node->unique_opnds_idx(i);
  1777         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1778         if( j != node->unique_opnds_idx(j) ) {
  1779           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1780                   new_num_opnds, i, comp->_name);
  1781           // delete not unique edges here
  1782           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1783           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1784           fprintf(fp,"  }\n");
  1785           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1786           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1787           new_num_opnds++;
  1790       // delete the rest of edges
  1791       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1792       fprintf(fp,"    del_req(i);\n");
  1793       fprintf(fp,"  }\n");
  1794       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1795       assert(new_num_opnds == node->num_unique_opnds(), "what?");
  1799   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
  1800   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
  1801   // There are nodes that don't use $constantablebase, but still require that it
  1802   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
  1803   if (node->is_mach_constant() || node->needs_constant_base()) {
  1804     if (node->is_ideal_call() != Form::invalid_type &&
  1805         node->is_ideal_call() != Form::JAVA_LEAF) {
  1806       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
  1807       _needs_clone_jvms = true;
  1808     } else {
  1809       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
  1813   fprintf(fp, "\n");
  1814   if (node->expands()) {
  1815     fprintf(fp, "  return result;\n");
  1816   } else {
  1817     fprintf(fp, "  return this;\n");
  1819   fprintf(fp, "}\n");
  1820   fprintf(fp, "\n");
  1824 //------------------------------Emit Routines----------------------------------
  1825 // Special classes and routines for defining node emit routines which output
  1826 // target specific instruction object encodings.
  1827 // Define the ___Node::emit() routine
  1828 //
  1829 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1830 // (2)   // ...  encoding defined by user
  1831 // (3)
  1832 // (4) }
  1833 //
  1835 class DefineEmitState {
  1836 private:
  1837   enum reloc_format { RELOC_NONE        = -1,
  1838                       RELOC_IMMEDIATE   =  0,
  1839                       RELOC_DISP        =  1,
  1840                       RELOC_CALL_DISP   =  2 };
  1841   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1842                        LITERAL_SEEN      = 1,
  1843                        LITERAL_ACCESSED  = 2,
  1844                        LITERAL_OUTPUT    = 3 };
  1845   // Temporaries that describe current operand
  1846   bool          _cleared;
  1847   OpClassForm  *_opclass;
  1848   OperandForm  *_operand;
  1849   int           _operand_idx;
  1850   const char   *_local_name;
  1851   const char   *_operand_name;
  1852   bool          _doing_disp;
  1853   bool          _doing_constant;
  1854   Form::DataType _constant_type;
  1855   DefineEmitState::literal_status _constant_status;
  1856   DefineEmitState::literal_status _reg_status;
  1857   bool          _doing_emit8;
  1858   bool          _doing_emit_d32;
  1859   bool          _doing_emit_d16;
  1860   bool          _doing_emit_hi;
  1861   bool          _doing_emit_lo;
  1862   bool          _may_reloc;
  1863   reloc_format  _reloc_form;
  1864   const char *  _reloc_type;
  1865   bool          _processing_noninput;
  1867   NameList      _strings_to_emit;
  1869   // Stable state, set by constructor
  1870   ArchDesc     &_AD;
  1871   FILE         *_fp;
  1872   EncClass     &_encoding;
  1873   InsEncode    &_ins_encode;
  1874   InstructForm &_inst;
  1876 public:
  1877   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1878                   InsEncode &ins_encode, InstructForm &inst)
  1879     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1880       clear();
  1883   void clear() {
  1884     _cleared       = true;
  1885     _opclass       = NULL;
  1886     _operand       = NULL;
  1887     _operand_idx   = 0;
  1888     _local_name    = "";
  1889     _operand_name  = "";
  1890     _doing_disp    = false;
  1891     _doing_constant= false;
  1892     _constant_type = Form::none;
  1893     _constant_status = LITERAL_NOT_SEEN;
  1894     _reg_status      = LITERAL_NOT_SEEN;
  1895     _doing_emit8   = false;
  1896     _doing_emit_d32= false;
  1897     _doing_emit_d16= false;
  1898     _doing_emit_hi = false;
  1899     _doing_emit_lo = false;
  1900     _may_reloc     = false;
  1901     _reloc_form    = RELOC_NONE;
  1902     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1903     _strings_to_emit.clear();
  1906   // Track necessary state when identifying a replacement variable
  1907   // @arg rep_var: The formal parameter of the encoding.
  1908   void update_state(const char *rep_var) {
  1909     // A replacement variable or one of its subfields
  1910     // Obtain replacement variable from list
  1911     if ( (*rep_var) != '$' ) {
  1912       // A replacement variable, '$' prefix
  1913       // check_rep_var( rep_var );
  1914       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1915         // No state needed.
  1916         assert( _opclass == NULL,
  1917                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1919       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
  1920                (strcmp(rep_var, "constantoffset")    == 0) ||
  1921                (strcmp(rep_var, "constantaddress")   == 0)) {
  1922         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
  1923           _AD.syntax_err(_encoding._linenum,
  1924                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
  1925                          rep_var, _encoding._name);
  1928       else {
  1929         // Lookup its position in (formal) parameter list of encoding
  1930         int   param_no  = _encoding.rep_var_index(rep_var);
  1931         if ( param_no == -1 ) {
  1932           _AD.syntax_err( _encoding._linenum,
  1933                           "Replacement variable %s not found in enc_class %s.\n",
  1934                           rep_var, _encoding._name);
  1937         // Lookup the corresponding ins_encode parameter
  1938         // This is the argument (actual parameter) to the encoding.
  1939         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1940         if (inst_rep_var == NULL) {
  1941           _AD.syntax_err( _ins_encode._linenum,
  1942                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1943                           rep_var, _encoding._name, _inst._ident);
  1946         // Check if instruction's actual parameter is a local name in the instruction
  1947         const Form  *local     = _inst._localNames[inst_rep_var];
  1948         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1949         // Note: assert removed to allow constant and symbolic parameters
  1950         // assert( opc, "replacement variable was not found in local names");
  1951         // Lookup the index position iff the replacement variable is a localName
  1952         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1954         if ( idx != -1 ) {
  1955           // This is a local in the instruction
  1956           // Update local state info.
  1957           _opclass        = opc;
  1958           _operand_idx    = idx;
  1959           _local_name     = rep_var;
  1960           _operand_name   = inst_rep_var;
  1962           // !!!!!
  1963           // Do not support consecutive operands.
  1964           assert( _operand == NULL, "Unimplemented()");
  1965           _operand = opc->is_operand();
  1967         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  1968           // Instruction provided a constant expression
  1969           // Check later that encoding specifies $$$constant to resolve as constant
  1970           _constant_status   = LITERAL_SEEN;
  1972         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  1973           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  1974           // Check later that encoding specifies $$$constant to resolve as constant
  1975           _constant_status   = LITERAL_SEEN;
  1977         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  1978           // Instruction provided a literal register name for this parameter
  1979           // Check that encoding specifies $$$reg to resolve.as register.
  1980           _reg_status        = LITERAL_SEEN;
  1982         else {
  1983           // Check for unimplemented functionality before hard failure
  1984           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  1985           assert( false, "ShouldNotReachHere()");
  1987       } // done checking which operand this is.
  1988     } else {
  1989       //
  1990       // A subfield variable, '$$' prefix
  1991       // Check for fields that may require relocation information.
  1992       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  1993       //
  1994       if ( strcmp(rep_var,"$disp") == 0 ) {
  1995         _doing_disp = true;
  1996         assert( _opclass, "Must use operand or operand class before '$disp'");
  1997         if( _operand == NULL ) {
  1998           // Only have an operand class, generate run-time check for relocation
  1999           _may_reloc    = true;
  2000           _reloc_form   = RELOC_DISP;
  2001           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2002         } else {
  2003           // Do precise check on operand: is it a ConP or not
  2004           //
  2005           // Check interface for value of displacement
  2006           assert( ( _operand->_interface != NULL ),
  2007                   "$disp can only follow memory interface operand");
  2008           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2009           assert( mem_interface != NULL,
  2010                   "$disp can only follow memory interface operand");
  2011           const char *disp = mem_interface->_disp;
  2013           if( disp != NULL && (*disp == '$') ) {
  2014             // MemInterface::disp contains a replacement variable,
  2015             // Check if this matches a ConP
  2016             //
  2017             // Lookup replacement variable, in operand's component list
  2018             const char *rep_var_name = disp + 1; // Skip '$'
  2019             const Component *comp = _operand->_components.search(rep_var_name);
  2020             assert( comp != NULL,"Replacement variable not found in components");
  2021             const char      *type = comp->_type;
  2022             // Lookup operand form for replacement variable's type
  2023             const Form *form = _AD.globalNames()[type];
  2024             assert( form != NULL, "Replacement variable's type not found");
  2025             OperandForm *op = form->is_operand();
  2026             assert( op, "Attempting to emit a non-register or non-constant");
  2027             // Check if this is a constant
  2028             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2029               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2030               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2031               // assert( idx != -1, "Constant component not found in operand");
  2032               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2033               if ( dtype == Form::idealP ) {
  2034                 _may_reloc    = true;
  2035                 // No longer true that idealP is always an oop
  2036                 _reloc_form   = RELOC_DISP;
  2037                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2041             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2042               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2043               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2044               _may_reloc   = false;
  2045             } else {
  2046               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2049         } // finished with precise check of operand for relocation.
  2050       } // finished with subfield variable
  2051       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2052         _doing_constant = true;
  2053         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2054           // Check operand for type of constant
  2055           assert( _operand, "Must use operand before '$$constant'");
  2056           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2057           _constant_type = dtype;
  2058           if ( dtype == Form::idealP ) {
  2059             _may_reloc    = true;
  2060             // No longer true that idealP is always an oop
  2061             // // _must_reloc   = true;
  2062             _reloc_form   = RELOC_IMMEDIATE;
  2063             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2064           } else {
  2065             // No relocation information needed
  2067         } else {
  2068           // User-provided literals may not require relocation information !!!!!
  2069           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2072       else if ( strcmp(rep_var,"$label") == 0 ) {
  2073         // Calls containing labels require relocation
  2074         if ( _inst.is_ideal_call() )  {
  2075           _may_reloc    = true;
  2076           // !!!!! !!!!!
  2077           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2081       // literal register parameter must be accessed as a 'reg' field.
  2082       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2083         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2084         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2085           _reg_status  = LITERAL_ACCESSED;
  2086         } else {
  2087           _AD.syntax_err(_encoding._linenum,
  2088                          "Invalid access to literal register parameter '%s' in %s.\n",
  2089                          rep_var, _encoding._name);
  2090           assert( false, "invalid access to literal register parameter");
  2093       // literal constant parameters must be accessed as a 'constant' field
  2094       if (_constant_status != LITERAL_NOT_SEEN) {
  2095         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2096         if (strcmp(rep_var,"$constant") == 0) {
  2097           _constant_status = LITERAL_ACCESSED;
  2098         } else {
  2099           _AD.syntax_err(_encoding._linenum,
  2100                          "Invalid access to literal constant parameter '%s' in %s.\n",
  2101                          rep_var, _encoding._name);
  2104     } // end replacement and/or subfield
  2108   void add_rep_var(const char *rep_var) {
  2109     // Handle subfield and replacement variables.
  2110     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2111       // Check for emit prefix, '$$emit32'
  2112       assert( _cleared, "Can not nest $$$emit32");
  2113       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2114         _doing_emit_d32 = true;
  2116       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2117         _doing_emit_d16 = true;
  2119       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2120         _doing_emit_hi  = true;
  2122       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2123         _doing_emit_lo  = true;
  2125       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2126         _doing_emit8    = true;
  2128       else {
  2129         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2130         assert( false, "fatal();");
  2133     else {
  2134       // Update state for replacement variables
  2135       update_state( rep_var );
  2136       _strings_to_emit.addName(rep_var);
  2138     _cleared  = false;
  2141   void emit_replacement() {
  2142     // A replacement variable or one of its subfields
  2143     // Obtain replacement variable from list
  2144     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2145     const char *rep_var;
  2146     _strings_to_emit.reset();
  2147     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2149       if ( (*rep_var) == '$' ) {
  2150         // A subfield variable, '$$' prefix
  2151         emit_field( rep_var );
  2152       } else {
  2153         if (_strings_to_emit.peek() != NULL &&
  2154             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
  2155           fprintf(_fp, "Address::make_raw(");
  2157           emit_rep_var( rep_var );
  2158           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
  2160           _reg_status = LITERAL_ACCESSED;
  2161           emit_rep_var( rep_var );
  2162           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
  2164           _reg_status = LITERAL_ACCESSED;
  2165           emit_rep_var( rep_var );
  2166           fprintf(_fp,"->scale(), ");
  2168           _reg_status = LITERAL_ACCESSED;
  2169           emit_rep_var( rep_var );
  2170           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2171           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2172             fprintf(_fp,"->disp(ra_,this,0), ");
  2173           } else {
  2174             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
  2177           _reg_status = LITERAL_ACCESSED;
  2178           emit_rep_var( rep_var );
  2179           fprintf(_fp,"->disp_reloc())");
  2181           // skip trailing $Address
  2182           _strings_to_emit.iter();
  2183         } else {
  2184           // A replacement variable, '$' prefix
  2185           const char* next = _strings_to_emit.peek();
  2186           const char* next2 = _strings_to_emit.peek(2);
  2187           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
  2188               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
  2189             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
  2190             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
  2191             fprintf(_fp, "as_Register(");
  2192             // emit the operand reference
  2193             emit_rep_var( rep_var );
  2194             rep_var = _strings_to_emit.iter();
  2195             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
  2196             // handle base or index
  2197             emit_field(rep_var);
  2198             rep_var = _strings_to_emit.iter();
  2199             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
  2200             // close up the parens
  2201             fprintf(_fp, ")");
  2202           } else {
  2203             emit_rep_var( rep_var );
  2206       } // end replacement and/or subfield
  2210   void emit_reloc_type(const char* type) {
  2211     fprintf(_fp, "%s", type)
  2216   void emit() {
  2217     //
  2218     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2219     //
  2220     // Emit the function name when generating an emit function
  2221     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2222       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2223       // In general, relocatable isn't known at compiler compile time.
  2224       // Check results of prior scan
  2225       if ( ! _may_reloc ) {
  2226         // Definitely don't need relocation information
  2227         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2228         emit_replacement(); fprintf(_fp, ")");
  2230       else {
  2231         // Emit RUNTIME CHECK to see if value needs relocation info
  2232         // If emitting a relocatable address, use 'emit_d32_reloc'
  2233         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2234         assert( (_doing_disp || _doing_constant)
  2235                 && !(_doing_disp && _doing_constant),
  2236                 "Must be emitting either a displacement or a constant");
  2237         fprintf(_fp,"\n");
  2238         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
  2239                 _operand_idx, disp_constant);
  2240         fprintf(_fp,"  ");
  2241         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
  2242         emit_replacement();             fprintf(_fp,", ");
  2243         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
  2244                 _operand_idx, disp_constant);
  2245         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2246         fprintf(_fp,"\n");
  2247         fprintf(_fp,"} else {\n");
  2248         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2249         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2252     else if ( _doing_emit_d16 ) {
  2253       // Relocation of 16-bit values is not supported
  2254       fprintf(_fp,"emit_d16(cbuf, ");
  2255       emit_replacement(); fprintf(_fp, ")");
  2256       // No relocation done for 16-bit values
  2258     else if ( _doing_emit8 ) {
  2259       // Relocation of 8-bit values is not supported
  2260       fprintf(_fp,"emit_d8(cbuf, ");
  2261       emit_replacement(); fprintf(_fp, ")");
  2262       // No relocation done for 8-bit values
  2264     else {
  2265       // Not an emit# command, just output the replacement string.
  2266       emit_replacement();
  2269     // Get ready for next state collection.
  2270     clear();
  2273 private:
  2275   // recognizes names which represent MacroAssembler register types
  2276   // and return the conversion function to build them from OptoReg
  2277   const char* reg_conversion(const char* rep_var) {
  2278     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2279     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2280 #if defined(IA32) || defined(AMD64)
  2281     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2282 #endif
  2283     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
  2284     return NULL;
  2287   void emit_field(const char *rep_var) {
  2288     const char* reg_convert = reg_conversion(rep_var);
  2290     // A subfield variable, '$$subfield'
  2291     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2292       // $reg form or the $Register MacroAssembler type conversions
  2293       assert( _operand_idx != -1,
  2294               "Must use this subfield after operand");
  2295       if( _reg_status == LITERAL_NOT_SEEN ) {
  2296         if (_processing_noninput) {
  2297           const Form  *local     = _inst._localNames[_operand_name];
  2298           OperandForm *oper      = local->is_operand();
  2299           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2300           if (reg_convert != NULL) {
  2301             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2302           } else {
  2303             fprintf(_fp, "%s_enc", first->_regname);
  2305         } else {
  2306           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2307           // Add parameter for index position, if not result operand
  2308           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2309           fprintf(_fp,")");
  2310           fprintf(_fp, "/* %s */", _operand_name);
  2312       } else {
  2313         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2314         // Register literal has already been sent to output file, nothing more needed
  2317     else if ( strcmp(rep_var,"$base") == 0 ) {
  2318       assert( _operand_idx != -1,
  2319               "Must use this subfield after operand");
  2320       assert( ! _may_reloc, "UnImplemented()");
  2321       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2323     else if ( strcmp(rep_var,"$index") == 0 ) {
  2324       assert( _operand_idx != -1,
  2325               "Must use this subfield after operand");
  2326       assert( ! _may_reloc, "UnImplemented()");
  2327       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2329     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2330       assert( ! _may_reloc, "UnImplemented()");
  2331       fprintf(_fp,"->scale()");
  2333     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2334       assert( ! _may_reloc, "UnImplemented()");
  2335       fprintf(_fp,"->ccode()");
  2337     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2338       if( _constant_status == LITERAL_NOT_SEEN ) {
  2339         if ( _constant_type == Form::idealD ) {
  2340           fprintf(_fp,"->constantD()");
  2341         } else if ( _constant_type == Form::idealF ) {
  2342           fprintf(_fp,"->constantF()");
  2343         } else if ( _constant_type == Form::idealL ) {
  2344           fprintf(_fp,"->constantL()");
  2345         } else {
  2346           fprintf(_fp,"->constant()");
  2348       } else {
  2349         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2350         // Constant literal has already been sent to output file, nothing more needed
  2353     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2354       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2355       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2356         fprintf(_fp,"->disp(ra_,this,0)");
  2357       } else {
  2358         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2361     else if ( strcmp(rep_var,"$label") == 0 ) {
  2362       fprintf(_fp,"->label()");
  2364     else if ( strcmp(rep_var,"$method") == 0 ) {
  2365       fprintf(_fp,"->method()");
  2367     else {
  2368       printf("emit_field: %s\n",rep_var);
  2369       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
  2370                            rep_var, _inst._ident);
  2371       assert( false, "UnImplemented()");
  2376   void emit_rep_var(const char *rep_var) {
  2377     _processing_noninput = false;
  2378     // A replacement variable, originally '$'
  2379     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2380       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2381         // Missing opcode
  2382         _AD.syntax_err( _inst._linenum,
  2383                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2384                         rep_var, _inst._ident, _encoding._name);
  2387     else if (strcmp(rep_var, "constanttablebase") == 0) {
  2388       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
  2390     else if (strcmp(rep_var, "constantoffset") == 0) {
  2391       fprintf(_fp, "constant_offset()");
  2393     else if (strcmp(rep_var, "constantaddress") == 0) {
  2394       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
  2396     else {
  2397       // Lookup its position in parameter list
  2398       int   param_no  = _encoding.rep_var_index(rep_var);
  2399       if ( param_no == -1 ) {
  2400         _AD.syntax_err( _encoding._linenum,
  2401                         "Replacement variable %s not found in enc_class %s.\n",
  2402                         rep_var, _encoding._name);
  2404       // Lookup the corresponding ins_encode parameter
  2405       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2407       // Check if instruction's actual parameter is a local name in the instruction
  2408       const Form  *local     = _inst._localNames[inst_rep_var];
  2409       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2410       // Note: assert removed to allow constant and symbolic parameters
  2411       // assert( opc, "replacement variable was not found in local names");
  2412       // Lookup the index position iff the replacement variable is a localName
  2413       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2414       if( idx != -1 ) {
  2415         if (_inst.is_noninput_operand(idx)) {
  2416           // This operand isn't a normal input so printing it is done
  2417           // specially.
  2418           _processing_noninput = true;
  2419         } else {
  2420           // Output the emit code for this operand
  2421           fprintf(_fp,"opnd_array(%d)",idx);
  2423         assert( _operand == opc->is_operand(),
  2424                 "Previous emit $operand does not match current");
  2426       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2427         // else check if it is a constant expression
  2428         // Removed following assert to allow primitive C types as arguments to encodings
  2429         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2430         fprintf(_fp,"(%s)", inst_rep_var);
  2431         _constant_status = LITERAL_OUTPUT;
  2433       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2434         // else check if "primary", "secondary", "tertiary"
  2435         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2436         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2437           // Missing opcode
  2438           _AD.syntax_err( _inst._linenum,
  2439                           "Missing $%s opcode definition in %s\n",
  2440                           rep_var, _inst._ident);
  2443         _constant_status = LITERAL_OUTPUT;
  2445       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2446         // Instruction provided a literal register name for this parameter
  2447         // Check that encoding specifies $$$reg to resolve.as register.
  2448         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2449         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2450         _reg_status = LITERAL_OUTPUT;
  2452       else {
  2453         // Check for unimplemented functionality before hard failure
  2454         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2455         assert( false, "ShouldNotReachHere()");
  2457       // all done
  2461 };  // end class DefineEmitState
  2464 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2466   //(1)
  2467   // Output instruction's emit prototype
  2468   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2469           inst._ident);
  2471   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2473   //(2)
  2474   // Print the size
  2475   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2477   // (3) and (4)
  2478   fprintf(fp,"}\n\n");
  2481 // Emit postalloc expand function.
  2482 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
  2483   InsEncode *ins_encode = inst._insencode;
  2485   // Output instruction's postalloc_expand prototype.
  2486   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
  2487           inst._ident);
  2489   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
  2491   // Output each operand's offset into the array of registers.
  2492   inst.index_temps(fp, _globalNames);
  2494   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
  2495   // for each parameter <par_name> specified in the encoding.
  2496   ins_encode->reset();
  2497   const char *ec_name = ins_encode->encode_class_iter();
  2498   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
  2500   EncClass *encoding = _encode->encClass(ec_name);
  2501   if (encoding == NULL) {
  2502     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2503     abort();
  2505   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
  2506     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2507                          inst._ident, ins_encode->current_encoding_num_args(),
  2508                          ec_name, encoding->num_args());
  2511   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
  2512   const int buflen = 2000;
  2513   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
  2514   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
  2515   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
  2517   encoding->_parameter_type.reset();
  2518   encoding->_parameter_name.reset();
  2519   const char *type = encoding->_parameter_type.iter();
  2520   const char *name = encoding->_parameter_name.iter();
  2521   int param_no = 0;
  2522   for (; (type != NULL) && (name != NULL);
  2523        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
  2524     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
  2525     int idx = inst.operand_position_format(arg_name);
  2526     if (strcmp(arg_name, "constanttablebase") == 0) {
  2527       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
  2528                     name, type, arg_name);
  2529       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2530       // There is no operand for the constanttablebase.
  2531     } else if (inst.is_noninput_operand(idx)) {
  2532       globalAD->syntax_err(inst._linenum,
  2533                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
  2534                            inst._ident, arg_name);
  2535     } else {
  2536       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
  2537                     name, idx, type, arg_name);
  2538       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2539       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
  2541     param_no++;
  2543   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
  2545   fprintf(fp, "%s", idxbuf);
  2546   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
  2547   fprintf(fp, "%s%s", nbuf, opbuf);
  2548   fprintf(fp, "  Compile *C = ra_->C;\n");
  2550   // Output this instruction's encodings.
  2551   fprintf(fp, "  {");
  2552   const char *ec_code    = NULL;
  2553   const char *ec_rep_var = NULL;
  2554   assert(encoding == _encode->encClass(ec_name), "");
  2556   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
  2557   encoding->_code.reset();
  2558   encoding->_rep_vars.reset();
  2559   // Process list of user-defined strings,
  2560   // and occurrences of replacement variables.
  2561   // Replacement Vars are pushed into a list and then output.
  2562   while ((ec_code = encoding->_code.iter()) != NULL) {
  2563     if (! encoding->_code.is_signal(ec_code)) {
  2564       // Emit pending code.
  2565       pending.emit();
  2566       pending.clear();
  2567       // Emit this code section.
  2568       fprintf(fp, "%s", ec_code);
  2569     } else {
  2570       // A replacement variable or one of its subfields.
  2571       // Obtain replacement variable from list.
  2572       ec_rep_var = encoding->_rep_vars.iter();
  2573       pending.add_rep_var(ec_rep_var);
  2576   // Emit pending code.
  2577   pending.emit();
  2578   pending.clear();
  2579   fprintf(fp, "  }\n");
  2581   fprintf(fp, "}\n\n");
  2583   ec_name = ins_encode->encode_class_iter();
  2584   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
  2587 // defineEmit -----------------------------------------------------------------
  2588 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
  2589   InsEncode* encode = inst._insencode;
  2591   // (1)
  2592   // Output instruction's emit prototype
  2593   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
  2595   // If user did not define an encode section,
  2596   // provide stub that does not generate any machine code.
  2597   if( (_encode == NULL) || (encode == NULL) ) {
  2598     fprintf(fp, "  // User did not define an encode section.\n");
  2599     fprintf(fp, "}\n");
  2600     return;
  2603   // Save current instruction's starting address (helps with relocation).
  2604   fprintf(fp, "  cbuf.set_insts_mark();\n");
  2606   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
  2607   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
  2608     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
  2611   // Output each operand's offset into the array of registers.
  2612   inst.index_temps(fp, _globalNames);
  2614   // Output this instruction's encodings
  2615   const char *ec_name;
  2616   bool        user_defined = false;
  2617   encode->reset();
  2618   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2619     fprintf(fp, "  {\n");
  2620     // Output user-defined encoding
  2621     user_defined           = true;
  2623     const char *ec_code    = NULL;
  2624     const char *ec_rep_var = NULL;
  2625     EncClass   *encoding   = _encode->encClass(ec_name);
  2626     if (encoding == NULL) {
  2627       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2628       abort();
  2631     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2632       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2633                            inst._ident, encode->current_encoding_num_args(),
  2634                            ec_name, encoding->num_args());
  2637     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2638     encoding->_code.reset();
  2639     encoding->_rep_vars.reset();
  2640     // Process list of user-defined strings,
  2641     // and occurrences of replacement variables.
  2642     // Replacement Vars are pushed into a list and then output
  2643     while ((ec_code = encoding->_code.iter()) != NULL) {
  2644       if (!encoding->_code.is_signal(ec_code)) {
  2645         // Emit pending code
  2646         pending.emit();
  2647         pending.clear();
  2648         // Emit this code section
  2649         fprintf(fp, "%s", ec_code);
  2650       } else {
  2651         // A replacement variable or one of its subfields
  2652         // Obtain replacement variable from list
  2653         ec_rep_var  = encoding->_rep_vars.iter();
  2654         pending.add_rep_var(ec_rep_var);
  2657     // Emit pending code
  2658     pending.emit();
  2659     pending.clear();
  2660     fprintf(fp, "  }\n");
  2661   } // end while instruction's encodings
  2663   // Check if user stated which encoding to user
  2664   if ( user_defined == false ) {
  2665     fprintf(fp, "  // User did not define which encode class to use.\n");
  2668   // (3) and (4)
  2669   fprintf(fp, "}\n\n");
  2672 // defineEvalConstant ---------------------------------------------------------
  2673 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
  2674   InsEncode* encode = inst._constant;
  2676   // (1)
  2677   // Output instruction's emit prototype
  2678   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
  2680   // For ideal jump nodes, add a jump-table entry.
  2681   if (inst.is_ideal_jump()) {
  2682     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
  2685   // If user did not define an encode section,
  2686   // provide stub that does not generate any machine code.
  2687   if ((_encode == NULL) || (encode == NULL)) {
  2688     fprintf(fp, "  // User did not define an encode section.\n");
  2689     fprintf(fp, "}\n");
  2690     return;
  2693   // Output this instruction's encodings
  2694   const char *ec_name;
  2695   bool        user_defined = false;
  2696   encode->reset();
  2697   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2698     fprintf(fp, "  {\n");
  2699     // Output user-defined encoding
  2700     user_defined           = true;
  2702     const char *ec_code    = NULL;
  2703     const char *ec_rep_var = NULL;
  2704     EncClass   *encoding   = _encode->encClass(ec_name);
  2705     if (encoding == NULL) {
  2706       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2707       abort();
  2710     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2711       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2712                            inst._ident, encode->current_encoding_num_args(),
  2713                            ec_name, encoding->num_args());
  2716     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2717     encoding->_code.reset();
  2718     encoding->_rep_vars.reset();
  2719     // Process list of user-defined strings,
  2720     // and occurrences of replacement variables.
  2721     // Replacement Vars are pushed into a list and then output
  2722     while ((ec_code = encoding->_code.iter()) != NULL) {
  2723       if (!encoding->_code.is_signal(ec_code)) {
  2724         // Emit pending code
  2725         pending.emit();
  2726         pending.clear();
  2727         // Emit this code section
  2728         fprintf(fp, "%s", ec_code);
  2729       } else {
  2730         // A replacement variable or one of its subfields
  2731         // Obtain replacement variable from list
  2732         ec_rep_var  = encoding->_rep_vars.iter();
  2733         pending.add_rep_var(ec_rep_var);
  2736     // Emit pending code
  2737     pending.emit();
  2738     pending.clear();
  2739     fprintf(fp, "  }\n");
  2740   } // end while instruction's encodings
  2742   // Check if user stated which encoding to user
  2743   if (user_defined == false) {
  2744     fprintf(fp, "  // User did not define which encode class to use.\n");
  2747   // (3) and (4)
  2748   fprintf(fp, "}\n");
  2751 // ---------------------------------------------------------------------------
  2752 //--------Utilities to build MachOper and MachNode derived Classes------------
  2753 // ---------------------------------------------------------------------------
  2755 //------------------------------Utilities to build Operand Classes------------
  2756 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2757   uint num_edges = oper.num_edges(globals);
  2758   if( num_edges != 0 ) {
  2759     // Method header
  2760     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2761             oper._ident);
  2763     // Assert that the index is in range.
  2764     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2765             num_edges);
  2767     // Figure out if all RegMasks are the same.
  2768     const char* first_reg_class = oper.in_reg_class(0, globals);
  2769     bool all_same = true;
  2770     assert(first_reg_class != NULL, "did not find register mask");
  2772     for (uint index = 1; all_same && index < num_edges; index++) {
  2773       const char* some_reg_class = oper.in_reg_class(index, globals);
  2774       assert(some_reg_class != NULL, "did not find register mask");
  2775       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2776         all_same = false;
  2780     if (all_same) {
  2781       // Return the sole RegMask.
  2782       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2783         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2784       } else {
  2785         const char* first_reg_class_to_upper = toUpper(first_reg_class);
  2786         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
  2787         delete[] first_reg_class_to_upper;
  2789     } else {
  2790       // Build a switch statement to return the desired mask.
  2791       fprintf(fp,"  switch (index) {\n");
  2793       for (uint index = 0; index < num_edges; index++) {
  2794         const char *reg_class = oper.in_reg_class(index, globals);
  2795         assert(reg_class != NULL, "did not find register mask");
  2796         if( !strcmp(reg_class, "stack_slots") ) {
  2797           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2798         } else {
  2799           const char* reg_class_to_upper = toUpper(reg_class);
  2800           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
  2801           delete[] reg_class_to_upper;
  2804       fprintf(fp,"  }\n");
  2805       fprintf(fp,"  ShouldNotReachHere();\n");
  2806       fprintf(fp,"  return NULL;\n");
  2809     // Method close
  2810     fprintf(fp, "}\n\n");
  2814 // generate code to create a clone for a class derived from MachOper
  2815 //
  2816 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2817 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2818 // (2)  }
  2819 //
  2820 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2821   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
  2822   // Check for constants that need to be copied over
  2823   const int  num_consts    = oper.num_consts(globalNames);
  2824   const bool is_ideal_bool = oper.is_ideal_bool();
  2825   if( (num_consts > 0) ) {
  2826     fprintf(fp,"  return new (C) %sOper(", oper._ident);
  2827     // generate parameters for constants
  2828     int i = 0;
  2829     fprintf(fp,"_c%d", i);
  2830     for( i = 1; i < num_consts; ++i) {
  2831       fprintf(fp,", _c%d", i);
  2833     // finish line (1)
  2834     fprintf(fp,");\n");
  2836   else {
  2837     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2838     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
  2840   // finish method
  2841   fprintf(fp,"}\n");
  2844 // Helper functions for bug 4796752, abstracted with minimal modification
  2845 // from define_oper_interface()
  2846 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2847   OperandForm *op = NULL;
  2848   // Check for replacement variable
  2849   if( *encoding == '$' ) {
  2850     // Replacement variable
  2851     const char *rep_var = encoding + 1;
  2852     // Lookup replacement variable, rep_var, in operand's component list
  2853     const Component *comp = oper._components.search(rep_var);
  2854     assert( comp != NULL, "Replacement variable not found in components");
  2855     // Lookup operand form for replacement variable's type
  2856     const char      *type = comp->_type;
  2857     Form            *form = (Form*)globals[type];
  2858     assert( form != NULL, "Replacement variable's type not found");
  2859     op = form->is_operand();
  2860     assert( op, "Attempting to emit a non-register or non-constant");
  2863   return op;
  2866 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2867   int idx = -1;
  2868   // Check for replacement variable
  2869   if( *encoding == '$' ) {
  2870     // Replacement variable
  2871     const char *rep_var = encoding + 1;
  2872     // Lookup replacement variable, rep_var, in operand's component list
  2873     const Component *comp = oper._components.search(rep_var);
  2874     assert( comp != NULL, "Replacement variable not found in components");
  2875     // Lookup operand form for replacement variable's type
  2876     const char      *type = comp->_type;
  2877     Form            *form = (Form*)globals[type];
  2878     assert( form != NULL, "Replacement variable's type not found");
  2879     OperandForm *op = form->is_operand();
  2880     assert( op, "Attempting to emit a non-register or non-constant");
  2881     // Check that this is a constant and find constant's index:
  2882     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2883       idx  = oper.constant_position(globals, comp);
  2887   return idx;
  2890 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2891   bool is_regI = false;
  2893   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2894   if( op != NULL ) {
  2895     // Check that this is a register
  2896     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2897       // Register
  2898       const char* ideal  = op->ideal_type(globals);
  2899       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2903   return is_regI;
  2906 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2907   bool is_conP = false;
  2909   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2910   if( op != NULL ) {
  2911     // Check that this is a constant pointer
  2912     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2913       // Constant
  2914       Form::DataType dtype = op->is_base_constant(globals);
  2915       is_conP = (dtype == Form::idealP);
  2919   return is_conP;
  2923 // Define a MachOper interface methods
  2924 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2925                                      const char *name, const char *encoding) {
  2926   bool emit_position = false;
  2927   int position = -1;
  2929   fprintf(fp,"  virtual int            %s", name);
  2930   // Generate access method for base, index, scale, disp, ...
  2931   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2932     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2933     emit_position = true;
  2934   } else if ( (strcmp(name,"disp") == 0) ) {
  2935     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2936   } else {
  2937     fprintf(fp, "() const {\n");
  2940   // Check for hexadecimal value OR replacement variable
  2941   if( *encoding == '$' ) {
  2942     // Replacement variable
  2943     const char *rep_var = encoding + 1;
  2944     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
  2945     // Lookup replacement variable, rep_var, in operand's component list
  2946     const Component *comp = oper._components.search(rep_var);
  2947     assert( comp != NULL, "Replacement variable not found in components");
  2948     // Lookup operand form for replacement variable's type
  2949     const char      *type = comp->_type;
  2950     Form            *form = (Form*)globals[type];
  2951     assert( form != NULL, "Replacement variable's type not found");
  2952     OperandForm *op = form->is_operand();
  2953     assert( op, "Attempting to emit a non-register or non-constant");
  2954     // Check that this is a register or a constant and generate code:
  2955     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2956       // Register
  2957       int idx_offset = oper.register_position( globals, rep_var);
  2958       position = idx_offset;
  2959       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  2960       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  2961       fprintf(fp,"));\n");
  2962     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  2963       // StackSlot for an sReg comes either from input node or from self, when idx==0
  2964       fprintf(fp,"    if( idx != 0 ) {\n");
  2965       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
  2966       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  2967       fprintf(fp,"    }\n");
  2968       fprintf(fp,"    // Access stack offset (register number) from myself\n");
  2969       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  2970     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2971       // Constant
  2972       // Check which constant this name maps to: _c0, _c1, ..., _cn
  2973       const int idx = oper.constant_position(globals, comp);
  2974       assert( idx != -1, "Constant component not found in operand");
  2975       // Output code for this constant, type dependent.
  2976       fprintf(fp,"    return (int)" );
  2977       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  2978       fprintf(fp,";\n");
  2979     } else {
  2980       assert( false, "Attempting to emit a non-register or non-constant");
  2983   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  2984     // Hex value
  2985     fprintf(fp,"    return %s;\n", encoding);
  2986   } else {
  2987     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
  2988                          oper._ident, encoding, name);
  2989     assert( false, "Do not support octal or decimal encode constants");
  2991   fprintf(fp,"  }\n");
  2993   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  2994     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  2995     MemInterface *mem_interface = oper._interface->is_MemInterface();
  2996     const char *base = mem_interface->_base;
  2997     const char *disp = mem_interface->_disp;
  2998     if( emit_position && (strcmp(name,"base") == 0)
  2999         && base != NULL && is_regI(base, oper, globals)
  3000         && disp != NULL && is_conP(disp, oper, globals) ) {
  3001       // Found a memory access using a constant pointer for a displacement
  3002       // and a base register containing an integer offset.
  3003       // In this case the base and disp are reversed with respect to what
  3004       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  3005       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  3006       // to correctly compute the access type for alias analysis.
  3007       //
  3008       // See BugId 4796752, operand indOffset32X in i486.ad
  3009       int idx = rep_var_to_constant_index(disp, oper, globals);
  3010       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  3015 //
  3016 // Construct the method to copy _idx, inputs and operands to new node.
  3017 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  3018   fprintf(fp_cpp, "\n");
  3019   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  3020   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  3021   if( !used ) {
  3022     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  3023     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  3024     fprintf(fp_cpp, "}\n");
  3025   } else {
  3026     // New node must use same node index for access through allocator's tables
  3027     fprintf(fp_cpp, "  // New node must use same node index\n");
  3028     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  3029     // Copy machine-independent inputs
  3030     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  3031     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  3032     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  3033     fprintf(fp_cpp, "  }\n");
  3034     // Copy machine operands to new MachNode
  3035     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  3036     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  3037     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  3038     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  3039     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  3040     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  3041     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  3042     fprintf(fp_cpp, "  }\n");
  3043     fprintf(fp_cpp, "}\n");
  3045   fprintf(fp_cpp, "\n");
  3048 //------------------------------defineClasses----------------------------------
  3049 // Define members of MachNode and MachOper classes based on
  3050 // operand and instruction lists
  3051 void ArchDesc::defineClasses(FILE *fp) {
  3053   // Define the contents of an array containing the machine register names
  3054   defineRegNames(fp, _register);
  3055   // Define an array containing the machine register encoding values
  3056   defineRegEncodes(fp, _register);
  3057   // Generate an enumeration of user-defined register classes
  3058   // and a list of register masks, one for each class.
  3059   // Only define the RegMask value objects in the expand file.
  3060   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  3061   declare_register_masks(_HPP_file._fp);
  3062   // build_register_masks(fp);
  3063   build_register_masks(_CPP_EXPAND_file._fp);
  3064   // Define the pipe_classes
  3065   build_pipe_classes(_CPP_PIPELINE_file._fp);
  3067   // Generate Machine Classes for each operand defined in AD file
  3068   fprintf(fp,"\n");
  3069   fprintf(fp,"\n");
  3070   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  3071   // Iterate through all operands
  3072   _operands.reset();
  3073   OperandForm *oper;
  3074   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  3075     // Ensure this is a machine-world instruction
  3076     if ( oper->ideal_only() ) continue;
  3077     // !!!!!
  3078     // The declaration of labelOper is in machine-independent file: machnode
  3079     if ( strcmp(oper->_ident,"label") == 0 ) {
  3080       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3082       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3083       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  3084       fprintf(fp,"}\n");
  3086       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3087               oper->_ident, machOperEnum(oper->_ident));
  3088       // // Currently all XXXOper::Hash() methods are identical (990820)
  3089       // define_hash(fp, oper->_ident);
  3090       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3091       // define_cmp(fp, oper->_ident);
  3092       fprintf(fp,"\n");
  3094       continue;
  3097     // The declaration of methodOper is in machine-independent file: machnode
  3098     if ( strcmp(oper->_ident,"method") == 0 ) {
  3099       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3101       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3102       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  3103       fprintf(fp,"}\n");
  3105       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3106               oper->_ident, machOperEnum(oper->_ident));
  3107       // // Currently all XXXOper::Hash() methods are identical (990820)
  3108       // define_hash(fp, oper->_ident);
  3109       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3110       // define_cmp(fp, oper->_ident);
  3111       fprintf(fp,"\n");
  3113       continue;
  3116     defineIn_RegMask(fp, _globalNames, *oper);
  3117     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  3118     // // Currently all XXXOper::Hash() methods are identical (990820)
  3119     // define_hash(fp, oper->_ident);
  3120     // // Currently all XXXOper::Cmp() methods are identical (990820)
  3121     // define_cmp(fp, oper->_ident);
  3123     // side-call to generate output that used to be in the header file:
  3124     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  3125     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  3130   // Generate Machine Classes for each instruction defined in AD file
  3131   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  3132   // Output the definitions for out_RegMask() // & kill_RegMask()
  3133   _instructions.reset();
  3134   InstructForm *instr;
  3135   MachNodeForm *machnode;
  3136   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3137     // Ensure this is a machine-world instruction
  3138     if ( instr->ideal_only() ) continue;
  3140     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  3143   bool used = false;
  3144   // Output the definitions for expand rules & peephole rules
  3145   _instructions.reset();
  3146   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3147     // Ensure this is a machine-world instruction
  3148     if ( instr->ideal_only() ) continue;
  3149     // If there are multiple defs/kills, or an explicit expand rule, build rule
  3150     if( instr->expands() || instr->needs_projections() ||
  3151         instr->has_temps() ||
  3152         instr->is_mach_constant() ||
  3153         instr->needs_constant_base() ||
  3154         instr->_matrule != NULL &&
  3155         instr->num_opnds() != instr->num_unique_opnds() )
  3156       defineExpand(_CPP_EXPAND_file._fp, instr);
  3157     // If there is an explicit peephole rule, build it
  3158     if ( instr->peepholes() )
  3159       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  3161     // Output code to convert to the cisc version, if applicable
  3162     used |= instr->define_cisc_version(*this, fp);
  3164     // Output code to convert to the short branch version, if applicable
  3165     used |= instr->define_short_branch_methods(*this, fp);
  3168   // Construct the method called by cisc_version() to copy inputs and operands.
  3169   define_fill_new_machnode(used, fp);
  3171   // Output the definitions for labels
  3172   _instructions.reset();
  3173   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3174     // Ensure this is a machine-world instruction
  3175     if ( instr->ideal_only() ) continue;
  3177     // Access the fields for operand Label
  3178     int label_position = instr->label_position();
  3179     if( label_position != -1 ) {
  3180       // Set the label
  3181       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
  3182       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3183               label_position );
  3184       fprintf(fp,"  oper->_label     = label;\n");
  3185       fprintf(fp,"  oper->_block_num = block_num;\n");
  3186       fprintf(fp,"}\n");
  3187       // Save the label
  3188       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
  3189       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3190               label_position );
  3191       fprintf(fp,"  *label = oper->_label;\n");
  3192       fprintf(fp,"  *block_num = oper->_block_num;\n");
  3193       fprintf(fp,"}\n");
  3197   // Output the definitions for methods
  3198   _instructions.reset();
  3199   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3200     // Ensure this is a machine-world instruction
  3201     if ( instr->ideal_only() ) continue;
  3203     // Access the fields for operand Label
  3204     int method_position = instr->method_position();
  3205     if( method_position != -1 ) {
  3206       // Access the method's address
  3207       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  3208       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  3209               method_position );
  3210       fprintf(fp,"}\n");
  3211       fprintf(fp,"\n");
  3215   // Define this instruction's number of relocation entries, base is '0'
  3216   _instructions.reset();
  3217   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3218     // Output the definition for number of relocation entries
  3219     uint reloc_size = instr->reloc(_globalNames);
  3220     if ( reloc_size != 0 ) {
  3221       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
  3222       fprintf(fp,"  return %d;\n", reloc_size);
  3223       fprintf(fp,"}\n");
  3224       fprintf(fp,"\n");
  3227   fprintf(fp,"\n");
  3229   // Output the definitions for code generation
  3230   //
  3231   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  3232   //   // ...  encoding defined by user
  3233   //   return ptr;
  3234   // }
  3235   //
  3236   _instructions.reset();
  3237   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3238     // Ensure this is a machine-world instruction
  3239     if ( instr->ideal_only() ) continue;
  3241     if (instr->_insencode) {
  3242       if (instr->postalloc_expands()) {
  3243         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
  3244         // from code sections in ad file that is dumped to fp.
  3245         define_postalloc_expand(fp, *instr);
  3246       } else {
  3247         defineEmit(fp, *instr);
  3250     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
  3251     if (instr->_size)              defineSize        (fp, *instr);
  3253     // side-call to generate output that used to be in the header file:
  3254     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  3255     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  3258   // Output the definitions for alias analysis
  3259   _instructions.reset();
  3260   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3261     // Ensure this is a machine-world instruction
  3262     if ( instr->ideal_only() ) continue;
  3264     // Analyze machine instructions that either USE or DEF memory.
  3265     int memory_operand = instr->memory_operand(_globalNames);
  3266     // Some guys kill all of memory
  3267     if ( instr->is_wide_memory_kill(_globalNames) ) {
  3268       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3271     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3272       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3273         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3274         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3275       } else {
  3276         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3281   // Get the length of the longest identifier
  3282   int max_ident_len = 0;
  3283   _instructions.reset();
  3285   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3286     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3287       int ident_len = (int)strlen(instr->_ident);
  3288       if( max_ident_len < ident_len )
  3289         max_ident_len = ident_len;
  3293   // Emit specifically for Node(s)
  3294   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3295     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3296   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3297     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3298   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3300   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3301     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3302   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3303     max_ident_len, "MachNode");
  3304   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3306   // Output the definitions for machine node specific pipeline data
  3307   _machnodes.reset();
  3309   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3310     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3311       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3314   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3316   // Output the definitions for instruction pipeline static data references
  3317   _instructions.reset();
  3319   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3320     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3321       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3322       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3323         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3324       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3325         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3331 // -------------------------------- maps ------------------------------------
  3333 // Information needed to generate the ReduceOp mapping for the DFA
  3334 class OutputReduceOp : public OutputMap {
  3335 public:
  3336   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3337     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
  3339   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3340   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3341   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3342                        OutputMap::closing();
  3344   void map(OpClassForm &opc)  {
  3345     const char *reduce = opc._ident;
  3346     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3347     else          fprintf(_cpp, "  0");
  3349   void map(OperandForm &oper) {
  3350     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3351     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3352     // operand stackSlot does not have a match rule, but produces a stackSlot
  3353     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3354     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3355     else          fprintf(_cpp, "  0");
  3357   void map(InstructForm &inst) {
  3358     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3359     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3360     else          fprintf(_cpp, "  0");
  3362   void map(char         *reduce) {
  3363     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3364     else          fprintf(_cpp, "  0");
  3366 };
  3368 // Information needed to generate the LeftOp mapping for the DFA
  3369 class OutputLeftOp : public OutputMap {
  3370 public:
  3371   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3372     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
  3374   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3375   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3376   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3377                        OutputMap::closing();
  3379   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3380   void map(OperandForm &oper) {
  3381     const char *reduce = oper.reduce_left(_globals);
  3382     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3383     else          fprintf(_cpp, "  0");
  3385   void map(char        *name) {
  3386     const char *reduce = _AD.reduceLeft(name);
  3387     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3388     else          fprintf(_cpp, "  0");
  3390   void map(InstructForm &inst) {
  3391     const char *reduce = inst.reduce_left(_globals);
  3392     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3393     else          fprintf(_cpp, "  0");
  3395 };
  3398 // Information needed to generate the RightOp mapping for the DFA
  3399 class OutputRightOp : public OutputMap {
  3400 public:
  3401   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3402     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
  3404   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3405   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3406   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3407                        OutputMap::closing();
  3409   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3410   void map(OperandForm &oper) {
  3411     const char *reduce = oper.reduce_right(_globals);
  3412     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3413     else          fprintf(_cpp, "  0");
  3415   void map(char        *name) {
  3416     const char *reduce = _AD.reduceRight(name);
  3417     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3418     else          fprintf(_cpp, "  0");
  3420   void map(InstructForm &inst) {
  3421     const char *reduce = inst.reduce_right(_globals);
  3422     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3423     else          fprintf(_cpp, "  0");
  3425 };
  3428 // Information needed to generate the Rule names for the DFA
  3429 class OutputRuleName : public OutputMap {
  3430 public:
  3431   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3432     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
  3434   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3435   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3436   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
  3437                        OutputMap::closing();
  3439   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3440   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3441   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3442   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3443 };
  3446 // Information needed to generate the swallowed mapping for the DFA
  3447 class OutputSwallowed : public OutputMap {
  3448 public:
  3449   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3450     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
  3452   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3453   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3454   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3455                        OutputMap::closing();
  3457   void map(OperandForm &oper) { // Generate the entry for this opcode
  3458     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3459     fprintf(_cpp, "  %s", swallowed);
  3461   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3462   void map(char        *name) { fprintf(_cpp, "  false"); }
  3463   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3464 };
  3467 // Information needed to generate the decision array for instruction chain rule
  3468 class OutputInstChainRule : public OutputMap {
  3469 public:
  3470   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3471     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
  3473   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3474   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3475   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3476                        OutputMap::closing();
  3478   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3479   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3480   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3481   void map(InstructForm &inst) { // Check for simple chain rule
  3482     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3483     fprintf(_cpp, "  %s", chain);
  3485 };
  3488 //---------------------------build_map------------------------------------
  3489 // Build  mapping from enumeration for densely packed operands
  3490 // TO result and child types.
  3491 void ArchDesc::build_map(OutputMap &map) {
  3492   FILE         *fp_hpp = map.decl_file();
  3493   FILE         *fp_cpp = map.def_file();
  3494   int           idx    = 0;
  3495   OperandForm  *op;
  3496   OpClassForm  *opc;
  3497   InstructForm *inst;
  3499   // Construct this mapping
  3500   map.declaration();
  3501   fprintf(fp_cpp,"\n");
  3502   map.definition();
  3504   // Output the mapping for operands
  3505   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3506   _operands.reset();
  3507   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3508     // Ensure this is a machine-world instruction
  3509     if ( op->ideal_only() )  continue;
  3511     // Generate the entry for this opcode
  3512     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
  3513     ++idx;
  3514   };
  3515   fprintf(fp_cpp, "  // last operand\n");
  3517   // Place all user-defined operand classes into the mapping
  3518   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3519   _opclass.reset();
  3520   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3521     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
  3522     ++idx;
  3523   };
  3524   fprintf(fp_cpp, "  // last operand class\n");
  3526   // Place all internally defined operands into the mapping
  3527   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3528   _internalOpNames.reset();
  3529   char *name = NULL;
  3530   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3531     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
  3532     ++idx;
  3533   };
  3534   fprintf(fp_cpp, "  // last internally defined operand\n");
  3536   // Place all user-defined instructions into the mapping
  3537   if( map.do_instructions() ) {
  3538     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3539     // Output all simple instruction chain rules first
  3540     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3542       _instructions.reset();
  3543       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3544         // Ensure this is a machine-world instruction
  3545         if ( inst->ideal_only() )  continue;
  3546         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3547         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3549         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3550         ++idx;
  3551       };
  3552       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3553       _instructions.reset();
  3554       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3555         // Ensure this is a machine-world instruction
  3556         if ( inst->ideal_only() )  continue;
  3557         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3558         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3560         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3561         ++idx;
  3562       };
  3563       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3565     // Output all instructions that are NOT simple chain rules
  3567       _instructions.reset();
  3568       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3569         // Ensure this is a machine-world instruction
  3570         if ( inst->ideal_only() )  continue;
  3571         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3572         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3574         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3575         ++idx;
  3576       };
  3577       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3578       _instructions.reset();
  3579       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3580         // Ensure this is a machine-world instruction
  3581         if ( inst->ideal_only() )  continue;
  3582         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3583         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3585         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3586         ++idx;
  3587       };
  3589     fprintf(fp_cpp, "  // last instruction\n");
  3590     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3592   // Finish defining table
  3593   map.closing();
  3594 };
  3597 // Helper function for buildReduceMaps
  3598 char reg_save_policy(const char *calling_convention) {
  3599   char callconv;
  3601   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3602   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3603   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3604   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3605   else                                         callconv = 'Z';
  3607   return callconv;
  3610 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
  3611   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
  3612           _needs_clone_jvms ? "true" : "false");
  3615 //---------------------------generate_assertion_checks-------------------
  3616 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3617   fprintf(fp_cpp, "\n");
  3619   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3620   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3621   globalDefs().print_asserts(fp_cpp);
  3622   fprintf(fp_cpp, "}\n");
  3623   fprintf(fp_cpp, "#endif\n");
  3624   fprintf(fp_cpp, "\n");
  3627 //---------------------------addSourceBlocks-----------------------------
  3628 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3629   if (_source.count() > 0)
  3630     _source.output(fp_cpp);
  3632   generate_adlc_verification(fp_cpp);
  3634 //---------------------------addHeaderBlocks-----------------------------
  3635 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3636   if (_header.count() > 0)
  3637     _header.output(fp_hpp);
  3639 //-------------------------addPreHeaderBlocks----------------------------
  3640 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3641   // Output #defines from definition block
  3642   globalDefs().print_defines(fp_hpp);
  3644   if (_pre_header.count() > 0)
  3645     _pre_header.output(fp_hpp);
  3648 //---------------------------buildReduceMaps-----------------------------
  3649 // Build  mapping from enumeration for densely packed operands
  3650 // TO result and child types.
  3651 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3652   RegDef       *rdef;
  3653   RegDef       *next;
  3655   // The emit bodies currently require functions defined in the source block.
  3657   // Build external declarations for mappings
  3658   fprintf(fp_hpp, "\n");
  3659   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3660   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3661   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3662   fprintf(fp_hpp, "\n");
  3664   // Construct Save-Policy array
  3665   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3666   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3667   _register->reset_RegDefs();
  3668   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3669     next              = _register->iter_RegDefs();
  3670     char policy       = reg_save_policy(rdef->_callconv);
  3671     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3672     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3674   fprintf(fp_cpp, "};\n\n");
  3676   // Construct Native Save-Policy array
  3677   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3678   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3679   _register->reset_RegDefs();
  3680   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3681     next        = _register->iter_RegDefs();
  3682     char policy = reg_save_policy(rdef->_c_conv);
  3683     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3684     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3686   fprintf(fp_cpp, "};\n\n");
  3688   // Construct Register Save Type array
  3689   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3690   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3691   _register->reset_RegDefs();
  3692   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3693     next = _register->iter_RegDefs();
  3694     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3695     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3697   fprintf(fp_cpp, "};\n\n");
  3699   // Construct the table for reduceOp
  3700   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3701   build_map(output_reduce_op);
  3702   // Construct the table for leftOp
  3703   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3704   build_map(output_left_op);
  3705   // Construct the table for rightOp
  3706   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3707   build_map(output_right_op);
  3708   // Construct the table of rule names
  3709   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3710   build_map(output_rule_name);
  3711   // Construct the boolean table for subsumed operands
  3712   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3713   build_map(output_swallowed);
  3714   // // // Preserve in case we decide to use this table instead of another
  3715   //// Construct the boolean table for instruction chain rules
  3716   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3717   //build_map(output_inst_chain);
  3722 //---------------------------buildMachOperGenerator---------------------------
  3724 // Recurse through match tree, building path through corresponding state tree,
  3725 // Until we reach the constant we are looking for.
  3726 static void path_to_constant(FILE *fp, FormDict &globals,
  3727                              MatchNode *mnode, uint idx) {
  3728   if ( ! mnode) return;
  3730   unsigned    position = 0;
  3731   const char *result   = NULL;
  3732   const char *name     = NULL;
  3733   const char *optype   = NULL;
  3735   // Base Case: access constant in ideal node linked to current state node
  3736   // Each type of constant has its own access function
  3737   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3738        && mnode->base_operand(position, globals, result, name, optype) ) {
  3739     if (         strcmp(optype,"ConI") == 0 ) {
  3740       fprintf(fp, "_leaf->get_int()");
  3741     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3742       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3743     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3744       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3745     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
  3746       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
  3747     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3748       fprintf(fp, "_leaf->getf()");
  3749     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3750       fprintf(fp, "_leaf->getd()");
  3751     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3752       fprintf(fp, "_leaf->get_long()");
  3753     } else if ( (strcmp(optype,"Con")==0) ) {
  3754       // !!!!! - Update if adding a machine-independent constant type
  3755       fprintf(fp, "_leaf->get_int()");
  3756       assert( false, "Unsupported constant type, pointer or indefinite");
  3757     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3758       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3759     } else {
  3760       assert( false, "Unsupported constant type");
  3762     return;
  3765   // If constant is in left child, build path and recurse
  3766   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3767   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3768   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3769     fprintf(fp, "_kids[0]->");
  3770     path_to_constant(fp, globals, mnode->_lChild, idx);
  3771     return;
  3773   // If constant is in right child, build path and recurse
  3774   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3775     idx = idx - lConsts;
  3776     fprintf(fp, "_kids[1]->");
  3777     path_to_constant(fp, globals, mnode->_rChild, idx);
  3778     return;
  3780   assert( false, "ShouldNotReachHere()");
  3783 // Generate code that is executed when generating a specific Machine Operand
  3784 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3785                             OperandForm &op) {
  3786   const char *opName         = op._ident;
  3787   const char *opEnumName     = AD.machOperEnum(opName);
  3788   uint        num_consts     = op.num_consts(globalNames);
  3790   // Generate the case statement for this opcode
  3791   fprintf(fp, "  case %s:", opEnumName);
  3792   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3793   // Access parameters for constructor from the stat object
  3794   //
  3795   // Build access to condition code value
  3796   if ( (num_consts > 0) ) {
  3797     uint i = 0;
  3798     path_to_constant(fp, globalNames, op._matrule, i);
  3799     for ( i = 1; i < num_consts; ++i ) {
  3800       fprintf(fp, ", ");
  3801       path_to_constant(fp, globalNames, op._matrule, i);
  3804   fprintf(fp, " );\n");
  3808 // Build switch to invoke "new" MachNode or MachOper
  3809 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3810   int idx = 0;
  3812   // Build switch to invoke 'new' for a specific MachOper
  3813   fprintf(fp_cpp, "\n");
  3814   fprintf(fp_cpp, "\n");
  3815   fprintf(fp_cpp,
  3816           "//------------------------- MachOper Generator ---------------\n");
  3817   fprintf(fp_cpp,
  3818           "// A switch statement on the dense-packed user-defined type system\n"
  3819           "// that invokes 'new' on the corresponding class constructor.\n");
  3820   fprintf(fp_cpp, "\n");
  3821   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3822   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3823   fprintf(fp_cpp, "{\n");
  3824   fprintf(fp_cpp, "\n");
  3825   fprintf(fp_cpp, "  switch(opcode) {\n");
  3827   // Place all user-defined operands into the mapping
  3828   _operands.reset();
  3829   int  opIndex = 0;
  3830   OperandForm *op;
  3831   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3832     // Ensure this is a machine-world instruction
  3833     if ( op->ideal_only() )  continue;
  3835     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3836   };
  3838   // Do not iterate over operand classes for the  operand generator!!!
  3840   // Place all internal operands into the mapping
  3841   _internalOpNames.reset();
  3842   const char *iopn;
  3843   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3844     const char *opEnumName = machOperEnum(iopn);
  3845     // Generate the case statement for this opcode
  3846     fprintf(fp_cpp, "  case %s:", opEnumName);
  3847     fprintf(fp_cpp, "    return NULL;\n");
  3848   };
  3850   // Generate the default case for switch(opcode)
  3851   fprintf(fp_cpp, "  \n");
  3852   fprintf(fp_cpp, "  default:\n");
  3853   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3854   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3855   fprintf(fp_cpp, "    break;\n");
  3856   fprintf(fp_cpp, "  }\n");
  3858   // Generate the closing for method Matcher::MachOperGenerator
  3859   fprintf(fp_cpp, "  return NULL;\n");
  3860   fprintf(fp_cpp, "};\n");
  3864 //---------------------------buildMachNode-------------------------------------
  3865 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3866 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3867   const char *opType  = NULL;
  3868   const char *opClass = inst->_ident;
  3870   // Create the MachNode object
  3871   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3873   if ( (inst->num_post_match_opnds() != 0) ) {
  3874     // Instruction that contains operands which are not in match rule.
  3875     //
  3876     // Check if the first post-match component may be an interesting def
  3877     bool           dont_care = false;
  3878     ComponentList &comp_list = inst->_components;
  3879     Component     *comp      = NULL;
  3880     comp_list.reset();
  3881     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3883     // Insert operands that are not in match-rule.
  3884     // Only insert a DEF if the do_care flag is set
  3885     comp_list.reset();
  3886     while ( comp = comp_list.post_match_iter() ) {
  3887       // Check if we don't care about DEFs or KILLs that are not USEs
  3888       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3889         continue;
  3891       dont_care = true;
  3892       // For each operand not in the match rule, call MachOperGenerator
  3893       // with the enum for the opcode that needs to be built.
  3894       ComponentList clist = inst->_components;
  3895       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
  3896       const char *opcode = machOperEnum(comp->_type);
  3897       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3898       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3901   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3902     // An instruction that chains from a constant!
  3903     // In this case, we need to subsume the constant into the node
  3904     // at operand position, oper_input_base().
  3905     //
  3906     // Fill in the constant
  3907     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3908             inst->oper_input_base(_globalNames));
  3909     // #####
  3910     // Check for multiple constants and then fill them in.
  3911     // Just like MachOperGenerator
  3912     const char *opName = inst->_matrule->_rChild->_opType;
  3913     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3914     // Grab operand form
  3915     OperandForm *op = (_globalNames[opName])->is_operand();
  3916     // Look up the number of constants
  3917     uint num_consts = op->num_consts(_globalNames);
  3918     if ( (num_consts > 0) ) {
  3919       uint i = 0;
  3920       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3921       for ( i = 1; i < num_consts; ++i ) {
  3922         fprintf(fp_cpp, ", ");
  3923         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3926     fprintf(fp_cpp, " );\n");
  3927     // #####
  3930   // Fill in the bottom_type where requested
  3931   if (inst->captures_bottom_type(_globalNames)) {
  3932     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
  3933       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3936   if( inst->is_ideal_if() ) {
  3937     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3938     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3940   if( inst->is_ideal_fastlock() ) {
  3941     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3942     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
  3943     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
  3948 //---------------------------declare_cisc_version------------------------------
  3949 // Build CISC version of this instruction
  3950 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3951   if( AD.can_cisc_spill() ) {
  3952     InstructForm *inst_cisc = cisc_spill_alternate();
  3953     if (inst_cisc != NULL) {
  3954       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3955       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3956       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  3957       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  3962 //---------------------------define_cisc_version-------------------------------
  3963 // Build CISC version of this instruction
  3964 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  3965   InstructForm *inst_cisc = this->cisc_spill_alternate();
  3966   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  3967     const char   *name      = inst_cisc->_ident;
  3968     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  3969     OperandForm *cisc_oper = AD.cisc_spill_operand();
  3970     assert( cisc_oper != NULL, "insanity check");
  3971     const char *cisc_oper_name  = cisc_oper->_ident;
  3972     assert( cisc_oper_name != NULL, "insanity check");
  3973     //
  3974     // Set the correct reg_mask_or_stack for the cisc operand
  3975     fprintf(fp_cpp, "\n");
  3976     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  3977     // Lookup the correct reg_mask_or_stack
  3978     const char *reg_mask_name = cisc_reg_mask_name();
  3979     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  3980     fprintf(fp_cpp, "}\n");
  3981     //
  3982     // Construct CISC version of this instruction
  3983     fprintf(fp_cpp, "\n");
  3984     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  3985     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  3986     // Create the MachNode object
  3987     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3988     // Fill in the bottom_type where requested
  3989     if ( this->captures_bottom_type(AD.globalNames()) ) {
  3990       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3993     uint cur_num_opnds = num_opnds();
  3994     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
  3995       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
  3998     fprintf(fp_cpp, "\n");
  3999     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4000     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4001     // Construct operand to access [stack_pointer + offset]
  4002     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  4003     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  4004     fprintf(fp_cpp, "\n");
  4006     // Return result and exit scope
  4007     fprintf(fp_cpp, "  return node;\n");
  4008     fprintf(fp_cpp, "}\n");
  4009     fprintf(fp_cpp, "\n");
  4010     return true;
  4012   return false;
  4015 //---------------------------declare_short_branch_methods----------------------
  4016 // Build prototypes for short branch methods
  4017 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  4018   if (has_short_branch_form()) {
  4019     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  4023 //---------------------------define_short_branch_methods-----------------------
  4024 // Build definitions for short branch methods
  4025 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
  4026   if (has_short_branch_form()) {
  4027     InstructForm *short_branch = short_branch_form();
  4028     const char   *name         = short_branch->_ident;
  4030     // Construct short_branch_version() method.
  4031     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  4032     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  4033     // Create the MachNode object
  4034     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4035     if( is_ideal_if() ) {
  4036       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  4037       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  4039     // Fill in the bottom_type where requested
  4040     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4041       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4044     fprintf(fp_cpp, "\n");
  4045     // Short branch version must use same node index for access
  4046     // through allocator's tables
  4047     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4048     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4050     // Return result and exit scope
  4051     fprintf(fp_cpp, "  return node;\n");
  4052     fprintf(fp_cpp, "}\n");
  4053     fprintf(fp_cpp,"\n");
  4054     return true;
  4056   return false;
  4060 //---------------------------buildMachNodeGenerator----------------------------
  4061 // Build switch to invoke appropriate "new" MachNode for an opcode
  4062 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  4064   // Build switch to invoke 'new' for a specific MachNode
  4065   fprintf(fp_cpp, "\n");
  4066   fprintf(fp_cpp, "\n");
  4067   fprintf(fp_cpp,
  4068           "//------------------------- MachNode Generator ---------------\n");
  4069   fprintf(fp_cpp,
  4070           "// A switch statement on the dense-packed user-defined type system\n"
  4071           "// that invokes 'new' on the corresponding class constructor.\n");
  4072   fprintf(fp_cpp, "\n");
  4073   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  4074   fprintf(fp_cpp, "(int opcode, Compile* C)");
  4075   fprintf(fp_cpp, "{\n");
  4076   fprintf(fp_cpp, "  switch(opcode) {\n");
  4078   // Provide constructor for all user-defined instructions
  4079   _instructions.reset();
  4080   int  opIndex = operandFormCount();
  4081   InstructForm *inst;
  4082   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4083     // Ensure that matrule is defined.
  4084     if ( inst->_matrule == NULL ) continue;
  4086     int         opcode  = opIndex++;
  4087     const char *opClass = inst->_ident;
  4088     char       *opType  = NULL;
  4090     // Generate the case statement for this instruction
  4091     fprintf(fp_cpp, "  case %s_rule:", opClass);
  4093     // Start local scope
  4094     fprintf(fp_cpp, " {\n");
  4095     // Generate code to construct the new MachNode
  4096     buildMachNode(fp_cpp, inst, "     ");
  4097     // Return result and exit scope
  4098     fprintf(fp_cpp, "      return node;\n");
  4099     fprintf(fp_cpp, "    }\n");
  4102   // Generate the default case for switch(opcode)
  4103   fprintf(fp_cpp, "  \n");
  4104   fprintf(fp_cpp, "  default:\n");
  4105   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  4106   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  4107   fprintf(fp_cpp, "    break;\n");
  4108   fprintf(fp_cpp, "  };\n");
  4110   // Generate the closing for method Matcher::MachNodeGenerator
  4111   fprintf(fp_cpp, "  return NULL;\n");
  4112   fprintf(fp_cpp, "}\n");
  4116 //---------------------------buildInstructMatchCheck--------------------------
  4117 // Output the method to Matcher which checks whether or not a specific
  4118 // instruction has a matching rule for the host architecture.
  4119 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  4120   fprintf(fp_cpp, "\n\n");
  4121   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  4122   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  4123   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  4124   fprintf(fp_cpp, "}\n\n");
  4126   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  4127   int i;
  4128   for (i = 0; i < _last_opcode - 1; i++) {
  4129     fprintf(fp_cpp, "    %-5s,  // %s\n",
  4130             _has_match_rule[i] ? "true" : "false",
  4131             NodeClassNames[i]);
  4133   fprintf(fp_cpp, "    %-5s   // %s\n",
  4134           _has_match_rule[i] ? "true" : "false",
  4135           NodeClassNames[i]);
  4136   fprintf(fp_cpp, "};\n");
  4139 //---------------------------buildFrameMethods---------------------------------
  4140 // Output the methods to Matcher which specify frame behavior
  4141 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  4142   fprintf(fp_cpp,"\n\n");
  4143   // Stack Direction
  4144   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  4145           _frame->_direction ? "true" : "false");
  4146   // Sync Stack Slots
  4147   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  4148           _frame->_sync_stack_slots);
  4149   // Java Stack Alignment
  4150   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  4151           _frame->_alignment);
  4152   // Java Return Address Location
  4153   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  4154   if (_frame->_return_addr_loc) {
  4155     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4156             _frame->_return_addr);
  4158   else {
  4159     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  4160             _frame->_return_addr);
  4162   // Java Stack Slot Preservation
  4163   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  4164   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  4165   // Top Of Stack Slot Preservation, for both Java and C
  4166   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  4167   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  4168   // varargs C out slots killed
  4169   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  4170   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  4171   // Java Argument Position
  4172   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  4173   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  4174   fprintf(fp_cpp,"}\n\n");
  4175   // Native Argument Position
  4176   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  4177   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  4178   fprintf(fp_cpp,"}\n\n");
  4179   // Java Return Value Location
  4180   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
  4181   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  4182   fprintf(fp_cpp,"}\n\n");
  4183   // Native Return Value Location
  4184   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
  4185   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  4186   fprintf(fp_cpp,"}\n\n");
  4188   // Inline Cache Register, mask definition, and encoding
  4189   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  4190   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4191           _frame->_inline_cache_reg);
  4192   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  4193   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  4195   // Interpreter's Method Oop Register, mask definition, and encoding
  4196   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  4197   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4198           _frame->_interpreter_method_oop_reg);
  4199   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  4200   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  4202   // Interpreter's Frame Pointer Register, mask definition, and encoding
  4203   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  4204   if (_frame->_interpreter_frame_pointer_reg == NULL)
  4205     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  4206   else
  4207     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4208             _frame->_interpreter_frame_pointer_reg);
  4210   // Frame Pointer definition
  4211   /* CNC - I can not contemplate having a different frame pointer between
  4212      Java and native code; makes my head hurt to think about it.
  4213   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  4214   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4215           _frame->_frame_pointer);
  4216   */
  4217   // (Native) Frame Pointer definition
  4218   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  4219   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4220           _frame->_frame_pointer);
  4222   // Number of callee-save + always-save registers for calling convention
  4223   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  4224   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  4225   RegDef *rdef;
  4226   int nof_saved_registers = 0;
  4227   _register->reset_RegDefs();
  4228   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  4229     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  4230       ++nof_saved_registers;
  4232   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  4233   fprintf(fp_cpp, "};\n\n");
  4239 static int PrintAdlcCisc = 0;
  4240 //---------------------------identify_cisc_spilling----------------------------
  4241 // Get info for the CISC_oracle and MachNode::cisc_version()
  4242 void ArchDesc::identify_cisc_spill_instructions() {
  4244   if (_frame == NULL)
  4245     return;
  4247   // Find the user-defined operand for cisc-spilling
  4248   if( _frame->_cisc_spilling_operand_name != NULL ) {
  4249     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  4250     OperandForm *oper = form ? form->is_operand() : NULL;
  4251     // Verify the user's suggestion
  4252     if( oper != NULL ) {
  4253       // Ensure that match field is defined.
  4254       if ( oper->_matrule != NULL )  {
  4255         MatchRule &mrule = *oper->_matrule;
  4256         if( strcmp(mrule._opType,"AddP") == 0 ) {
  4257           MatchNode *left = mrule._lChild;
  4258           MatchNode *right= mrule._rChild;
  4259           if( left != NULL && right != NULL ) {
  4260             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  4261             const Form *right_op = _globalNames[right->_opType]->is_operand();
  4262             if(  (left_op != NULL && right_op != NULL)
  4263               && (left_op->interface_type(_globalNames) == Form::register_interface)
  4264               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  4265               // Successfully verified operand
  4266               set_cisc_spill_operand( oper );
  4267               if( _cisc_spill_debug ) {
  4268                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  4277   if( cisc_spill_operand() != NULL ) {
  4278     // N^2 comparison of instructions looking for a cisc-spilling version
  4279     _instructions.reset();
  4280     InstructForm *instr;
  4281     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4282       // Ensure that match field is defined.
  4283       if ( instr->_matrule == NULL )  continue;
  4285       MatchRule &mrule = *instr->_matrule;
  4286       Predicate *pred  =  instr->build_predicate();
  4288       // Grab the machine type of the operand
  4289       const char *rootOp = instr->_ident;
  4290       mrule._machType    = rootOp;
  4292       // Find result type for match
  4293       const char *result = instr->reduce_result();
  4295       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4296       bool  found_cisc_alternate = false;
  4297       _instructions.reset2();
  4298       InstructForm *instr2;
  4299       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4300         // Ensure that match field is defined.
  4301         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4302         if ( instr2->_matrule != NULL
  4303             && (instr != instr2 )                // Skip self
  4304             && (instr2->reduce_result() != NULL) // want same result
  4305             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4306           MatchRule &mrule2 = *instr2->_matrule;
  4307           Predicate *pred2  =  instr2->build_predicate();
  4308           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4315 //---------------------------build_cisc_spilling-------------------------------
  4316 // Get info for the CISC_oracle and MachNode::cisc_version()
  4317 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4318   // Output the table for cisc spilling
  4319   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4320   _instructions.reset();
  4321   InstructForm *inst = NULL;
  4322   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4323     // Ensure this is a machine-world instruction
  4324     if ( inst->ideal_only() )  continue;
  4325     const char *inst_name = inst->_ident;
  4326     int   operand   = inst->cisc_spill_operand();
  4327     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4328       InstructForm *inst2 = inst->cisc_spill_alternate();
  4329       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4332   fprintf(fp_cpp, "\n\n");
  4335 //---------------------------identify_short_branches----------------------------
  4336 // Get info for our short branch replacement oracle.
  4337 void ArchDesc::identify_short_branches() {
  4338   // Walk over all instructions, checking to see if they match a short
  4339   // branching alternate.
  4340   _instructions.reset();
  4341   InstructForm *instr;
  4342   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4343     // The instruction must have a match rule.
  4344     if (instr->_matrule != NULL &&
  4345         instr->is_short_branch()) {
  4347       _instructions.reset2();
  4348       InstructForm *instr2;
  4349       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4350         instr2->check_branch_variant(*this, instr);
  4357 //---------------------------identify_unique_operands---------------------------
  4358 // Identify unique operands.
  4359 void ArchDesc::identify_unique_operands() {
  4360   // Walk over all instructions.
  4361   _instructions.reset();
  4362   InstructForm *instr;
  4363   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4364     // Ensure this is a machine-world instruction
  4365     if (!instr->ideal_only()) {
  4366       instr->set_unique_opnds();

mercurial