src/share/vm/opto/runtime.cpp

Fri, 03 Dec 2010 01:34:31 -0800

author
twisti
date
Fri, 03 Dec 2010 01:34:31 -0800
changeset 2350
2f644f85485d
parent 2314
f95d63e2154a
child 2497
3582bf76420e
permissions
-rw-r--r--

6961690: load oops from constant table on SPARC
Summary: oops should be loaded from the constant table of an nmethod instead of materializing them with a long code sequence.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    85 // For debugging purposes:
    86 //  To force FullGCALot inside a runtime function, add the following two lines
    87 //
    88 //  Universe::release_fullgc_alot_dummy();
    89 //  MarkSweep::invoke(0, "Debugging");
    90 //
    91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    96 // Compiled code entry points
    97 address OptoRuntime::_new_instance_Java                           = NULL;
    98 address OptoRuntime::_new_array_Java                              = NULL;
    99 address OptoRuntime::_multianewarray2_Java                        = NULL;
   100 address OptoRuntime::_multianewarray3_Java                        = NULL;
   101 address OptoRuntime::_multianewarray4_Java                        = NULL;
   102 address OptoRuntime::_multianewarray5_Java                        = NULL;
   103 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   104 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   105 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   106 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   107 address OptoRuntime::_rethrow_Java                                = NULL;
   109 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   110 address OptoRuntime::_register_finalizer_Java                     = NULL;
   112 # ifdef ENABLE_ZAP_DEAD_LOCALS
   113 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   114 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   115 # endif
   118 // This should be called in an assertion at the start of OptoRuntime routines
   119 // which are entered from compiled code (all of them)
   120 #ifndef PRODUCT
   121 static bool check_compiled_frame(JavaThread* thread) {
   122   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   123 #ifdef ASSERT
   124   RegisterMap map(thread, false);
   125   frame caller = thread->last_frame().sender(&map);
   126   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   127 #endif  /* ASSERT */
   128   return true;
   129 }
   130 #endif
   133 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   134   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
   136 void OptoRuntime::generate(ciEnv* env) {
   138   generate_exception_blob();
   140   // Note: tls: Means fetching the return oop out of the thread-local storage
   141   //
   142   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   143   // -------------------------------------------------------------------------------------------------------------------------------
   144   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   145   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   146   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   147   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   148   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   149   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   150   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   151   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   152   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
   153   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   155   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   156   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   158 # ifdef ENABLE_ZAP_DEAD_LOCALS
   159   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   160   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   161 # endif
   163 }
   165 #undef gen
   168 // Helper method to do generation of RunTimeStub's
   169 address OptoRuntime::generate_stub( ciEnv* env,
   170                                     TypeFunc_generator gen, address C_function,
   171                                     const char *name, int is_fancy_jump,
   172                                     bool pass_tls,
   173                                     bool save_argument_registers,
   174                                     bool return_pc ) {
   175   ResourceMark rm;
   176   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   177   return  C.stub_entry_point();
   178 }
   180 const char* OptoRuntime::stub_name(address entry) {
   181 #ifndef PRODUCT
   182   CodeBlob* cb = CodeCache::find_blob(entry);
   183   RuntimeStub* rs =(RuntimeStub *)cb;
   184   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   185   return rs->name();
   186 #else
   187   // Fast implementation for product mode (maybe it should be inlined too)
   188   return "runtime stub";
   189 #endif
   190 }
   193 //=============================================================================
   194 // Opto compiler runtime routines
   195 //=============================================================================
   198 //=============================allocation======================================
   199 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   200 // and try allocation again.
   202 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   203   // After any safepoint, just before going back to compiled code,
   204   // we inform the GC that we will be doing initializing writes to
   205   // this object in the future without emitting card-marks, so
   206   // GC may take any compensating steps.
   207   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   209   oop new_obj = thread->vm_result();
   210   if (new_obj == NULL)  return;
   212   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   213          "compiler must check this first");
   214   // GC may decide to give back a safer copy of new_obj.
   215   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   216   thread->set_vm_result(new_obj);
   217 }
   219 // object allocation
   220 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   221   JRT_BLOCK;
   222 #ifndef PRODUCT
   223   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   224 #endif
   225   assert(check_compiled_frame(thread), "incorrect caller");
   227   // These checks are cheap to make and support reflective allocation.
   228   int lh = Klass::cast(klass)->layout_helper();
   229   if (Klass::layout_helper_needs_slow_path(lh)
   230       || !instanceKlass::cast(klass)->is_initialized()) {
   231     KlassHandle kh(THREAD, klass);
   232     kh->check_valid_for_instantiation(false, THREAD);
   233     if (!HAS_PENDING_EXCEPTION) {
   234       instanceKlass::cast(kh())->initialize(THREAD);
   235     }
   236     if (!HAS_PENDING_EXCEPTION) {
   237       klass = kh();
   238     } else {
   239       klass = NULL;
   240     }
   241   }
   243   if (klass != NULL) {
   244     // Scavenge and allocate an instance.
   245     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   246     thread->set_vm_result(result);
   248     // Pass oops back through thread local storage.  Our apparent type to Java
   249     // is that we return an oop, but we can block on exit from this routine and
   250     // a GC can trash the oop in C's return register.  The generated stub will
   251     // fetch the oop from TLS after any possible GC.
   252   }
   254   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   255   JRT_BLOCK_END;
   257   if (GraphKit::use_ReduceInitialCardMarks()) {
   258     // inform GC that we won't do card marks for initializing writes.
   259     new_store_pre_barrier(thread);
   260   }
   261 JRT_END
   264 // array allocation
   265 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   266   JRT_BLOCK;
   267 #ifndef PRODUCT
   268   SharedRuntime::_new_array_ctr++;            // new array requires GC
   269 #endif
   270   assert(check_compiled_frame(thread), "incorrect caller");
   272   // Scavenge and allocate an instance.
   273   oop result;
   275   if (Klass::cast(array_type)->oop_is_typeArray()) {
   276     // The oopFactory likes to work with the element type.
   277     // (We could bypass the oopFactory, since it doesn't add much value.)
   278     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   279     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   280   } else {
   281     // Although the oopFactory likes to work with the elem_type,
   282     // the compiler prefers the array_type, since it must already have
   283     // that latter value in hand for the fast path.
   284     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   285     result = oopFactory::new_objArray(elem_type, len, THREAD);
   286   }
   288   // Pass oops back through thread local storage.  Our apparent type to Java
   289   // is that we return an oop, but we can block on exit from this routine and
   290   // a GC can trash the oop in C's return register.  The generated stub will
   291   // fetch the oop from TLS after any possible GC.
   292   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   293   thread->set_vm_result(result);
   294   JRT_BLOCK_END;
   296   if (GraphKit::use_ReduceInitialCardMarks()) {
   297     // inform GC that we won't do card marks for initializing writes.
   298     new_store_pre_barrier(thread);
   299   }
   300 JRT_END
   302 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   304 // multianewarray for 2 dimensions
   305 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   306 #ifndef PRODUCT
   307   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   308 #endif
   309   assert(check_compiled_frame(thread), "incorrect caller");
   310   assert(oop(elem_type)->is_klass(), "not a class");
   311   jint dims[2];
   312   dims[0] = len1;
   313   dims[1] = len2;
   314   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   315   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   316   thread->set_vm_result(obj);
   317 JRT_END
   319 // multianewarray for 3 dimensions
   320 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   321 #ifndef PRODUCT
   322   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   323 #endif
   324   assert(check_compiled_frame(thread), "incorrect caller");
   325   assert(oop(elem_type)->is_klass(), "not a class");
   326   jint dims[3];
   327   dims[0] = len1;
   328   dims[1] = len2;
   329   dims[2] = len3;
   330   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   331   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   332   thread->set_vm_result(obj);
   333 JRT_END
   335 // multianewarray for 4 dimensions
   336 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   337 #ifndef PRODUCT
   338   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   339 #endif
   340   assert(check_compiled_frame(thread), "incorrect caller");
   341   assert(oop(elem_type)->is_klass(), "not a class");
   342   jint dims[4];
   343   dims[0] = len1;
   344   dims[1] = len2;
   345   dims[2] = len3;
   346   dims[3] = len4;
   347   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   348   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   349   thread->set_vm_result(obj);
   350 JRT_END
   352 // multianewarray for 5 dimensions
   353 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   354 #ifndef PRODUCT
   355   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   356 #endif
   357   assert(check_compiled_frame(thread), "incorrect caller");
   358   assert(oop(elem_type)->is_klass(), "not a class");
   359   jint dims[5];
   360   dims[0] = len1;
   361   dims[1] = len2;
   362   dims[2] = len3;
   363   dims[3] = len4;
   364   dims[4] = len5;
   365   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   366   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   367   thread->set_vm_result(obj);
   368 JRT_END
   370 const TypeFunc *OptoRuntime::new_instance_Type() {
   371   // create input type (domain)
   372   const Type **fields = TypeTuple::fields(1);
   373   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   374   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   376   // create result type (range)
   377   fields = TypeTuple::fields(1);
   378   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   380   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   382   return TypeFunc::make(domain, range);
   383 }
   386 const TypeFunc *OptoRuntime::athrow_Type() {
   387   // create input type (domain)
   388   const Type **fields = TypeTuple::fields(1);
   389   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   390   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   392   // create result type (range)
   393   fields = TypeTuple::fields(0);
   395   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   397   return TypeFunc::make(domain, range);
   398 }
   401 const TypeFunc *OptoRuntime::new_array_Type() {
   402   // create input type (domain)
   403   const Type **fields = TypeTuple::fields(2);
   404   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   405   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   406   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   408   // create result type (range)
   409   fields = TypeTuple::fields(1);
   410   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   412   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   414   return TypeFunc::make(domain, range);
   415 }
   417 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   418   // create input type (domain)
   419   const int nargs = ndim + 1;
   420   const Type **fields = TypeTuple::fields(nargs);
   421   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   422   for( int i = 1; i < nargs; i++ )
   423     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   424   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   426   // create result type (range)
   427   fields = TypeTuple::fields(1);
   428   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   429   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   431   return TypeFunc::make(domain, range);
   432 }
   434 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   435   return multianewarray_Type(2);
   436 }
   438 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   439   return multianewarray_Type(3);
   440 }
   442 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   443   return multianewarray_Type(4);
   444 }
   446 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   447   return multianewarray_Type(5);
   448 }
   450 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   451   const Type **fields = TypeTuple::fields(2);
   452   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   453   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   454   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   456   // create result type (range)
   457   fields = TypeTuple::fields(0);
   458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   460   return TypeFunc::make(domain, range);
   461 }
   463 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   465   const Type **fields = TypeTuple::fields(2);
   466   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   467   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   470   // create result type (range)
   471   fields = TypeTuple::fields(0);
   472   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   474   return TypeFunc::make(domain, range);
   475 }
   477 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   478   // create input type (domain)
   479   const Type **fields = TypeTuple::fields(1);
   480   // symbolOop name of class to be loaded
   481   fields[TypeFunc::Parms+0] = TypeInt::INT;
   482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   484   // create result type (range)
   485   fields = TypeTuple::fields(0);
   486   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   488   return TypeFunc::make(domain, range);
   489 }
   491 # ifdef ENABLE_ZAP_DEAD_LOCALS
   492 // Type used for stub generation for zap_dead_locals.
   493 // No inputs or outputs
   494 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   495   // create input type (domain)
   496   const Type **fields = TypeTuple::fields(0);
   497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   499   // create result type (range)
   500   fields = TypeTuple::fields(0);
   501   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   503   return TypeFunc::make(domain,range);
   504 }
   505 # endif
   508 //-----------------------------------------------------------------------------
   509 // Monitor Handling
   510 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   511   // create input type (domain)
   512   const Type **fields = TypeTuple::fields(2);
   513   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   514   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   515   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   517   // create result type (range)
   518   fields = TypeTuple::fields(0);
   520   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   522   return TypeFunc::make(domain,range);
   523 }
   526 //-----------------------------------------------------------------------------
   527 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   528   // create input type (domain)
   529   const Type **fields = TypeTuple::fields(2);
   530   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   531   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   532   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   534   // create result type (range)
   535   fields = TypeTuple::fields(0);
   537   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   539   return TypeFunc::make(domain,range);
   540 }
   542 const TypeFunc* OptoRuntime::flush_windows_Type() {
   543   // create input type (domain)
   544   const Type** fields = TypeTuple::fields(1);
   545   fields[TypeFunc::Parms+0] = NULL; // void
   546   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   548   // create result type
   549   fields = TypeTuple::fields(1);
   550   fields[TypeFunc::Parms+0] = NULL; // void
   551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   553   return TypeFunc::make(domain, range);
   554 }
   556 const TypeFunc* OptoRuntime::l2f_Type() {
   557   // create input type (domain)
   558   const Type **fields = TypeTuple::fields(2);
   559   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   560   fields[TypeFunc::Parms+1] = Type::HALF;
   561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   563   // create result type (range)
   564   fields = TypeTuple::fields(1);
   565   fields[TypeFunc::Parms+0] = Type::FLOAT;
   566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   568   return TypeFunc::make(domain, range);
   569 }
   571 const TypeFunc* OptoRuntime::modf_Type() {
   572   const Type **fields = TypeTuple::fields(2);
   573   fields[TypeFunc::Parms+0] = Type::FLOAT;
   574   fields[TypeFunc::Parms+1] = Type::FLOAT;
   575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   577   // create result type (range)
   578   fields = TypeTuple::fields(1);
   579   fields[TypeFunc::Parms+0] = Type::FLOAT;
   581   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   583   return TypeFunc::make(domain, range);
   584 }
   586 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   587   // create input type (domain)
   588   const Type **fields = TypeTuple::fields(2);
   589   // symbolOop name of class to be loaded
   590   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   591   fields[TypeFunc::Parms+1] = Type::HALF;
   592   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   594   // create result type (range)
   595   fields = TypeTuple::fields(2);
   596   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   597   fields[TypeFunc::Parms+1] = Type::HALF;
   598   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   600   return TypeFunc::make(domain, range);
   601 }
   603 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   604   const Type **fields = TypeTuple::fields(4);
   605   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   606   fields[TypeFunc::Parms+1] = Type::HALF;
   607   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   608   fields[TypeFunc::Parms+3] = Type::HALF;
   609   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   611   // create result type (range)
   612   fields = TypeTuple::fields(2);
   613   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   614   fields[TypeFunc::Parms+1] = Type::HALF;
   615   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   617   return TypeFunc::make(domain, range);
   618 }
   620 //-------------- currentTimeMillis
   622 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   623   // create input type (domain)
   624   const Type **fields = TypeTuple::fields(0);
   625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   627   // create result type (range)
   628   fields = TypeTuple::fields(2);
   629   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   630   fields[TypeFunc::Parms+1] = Type::HALF;
   631   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   633   return TypeFunc::make(domain, range);
   634 }
   636 // arraycopy stub variations:
   637 enum ArrayCopyType {
   638   ac_fast,                      // void(ptr, ptr, size_t)
   639   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   640   ac_slow,                      // void(ptr, int, ptr, int, int)
   641   ac_generic                    //  int(ptr, int, ptr, int, int)
   642 };
   644 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   645   // create input type (domain)
   646   int num_args      = (act == ac_fast ? 3 : 5);
   647   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   648   int argcnt = num_args;
   649   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   650   const Type** fields = TypeTuple::fields(argcnt);
   651   int argp = TypeFunc::Parms;
   652   fields[argp++] = TypePtr::NOTNULL;    // src
   653   if (num_size_args == 0) {
   654     fields[argp++] = TypeInt::INT;      // src_pos
   655   }
   656   fields[argp++] = TypePtr::NOTNULL;    // dest
   657   if (num_size_args == 0) {
   658     fields[argp++] = TypeInt::INT;      // dest_pos
   659     fields[argp++] = TypeInt::INT;      // length
   660   }
   661   while (num_size_args-- > 0) {
   662     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   663     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   664   }
   665   if (act == ac_checkcast) {
   666     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   667   }
   668   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   669   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   671   // create result type if needed
   672   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   673   fields = TypeTuple::fields(1);
   674   if (retcnt == 0)
   675     fields[TypeFunc::Parms+0] = NULL; // void
   676   else
   677     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   678   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   679   return TypeFunc::make(domain, range);
   680 }
   682 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   683   // This signature is simple:  Two base pointers and a size_t.
   684   return make_arraycopy_Type(ac_fast);
   685 }
   687 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   688   // An extension of fast_arraycopy_Type which adds type checking.
   689   return make_arraycopy_Type(ac_checkcast);
   690 }
   692 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   693   // This signature is exactly the same as System.arraycopy.
   694   // There are no intptr_t (int/long) arguments.
   695   return make_arraycopy_Type(ac_slow);
   696 }
   698 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   699   // This signature is like System.arraycopy, except that it returns status.
   700   return make_arraycopy_Type(ac_generic);
   701 }
   704 const TypeFunc* OptoRuntime::array_fill_Type() {
   705   // create input type (domain): pointer, int, size_t
   706   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   707   int argp = TypeFunc::Parms;
   708   fields[argp++] = TypePtr::NOTNULL;
   709   fields[argp++] = TypeInt::INT;
   710   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   711   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   712   const TypeTuple *domain = TypeTuple::make(argp, fields);
   714   // create result type
   715   fields = TypeTuple::fields(1);
   716   fields[TypeFunc::Parms+0] = NULL; // void
   717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   719   return TypeFunc::make(domain, range);
   720 }
   722 //------------- Interpreter state access for on stack replacement
   723 const TypeFunc* OptoRuntime::osr_end_Type() {
   724   // create input type (domain)
   725   const Type **fields = TypeTuple::fields(1);
   726   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   727   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   729   // create result type
   730   fields = TypeTuple::fields(1);
   731   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   732   fields[TypeFunc::Parms+0] = NULL; // void
   733   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   734   return TypeFunc::make(domain, range);
   735 }
   737 //-------------- methodData update helpers
   739 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   740   // create input type (domain)
   741   const Type **fields = TypeTuple::fields(2);
   742   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   743   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   744   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   746   // create result type
   747   fields = TypeTuple::fields(1);
   748   fields[TypeFunc::Parms+0] = NULL; // void
   749   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   750   return TypeFunc::make(domain,range);
   751 }
   753 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   754   if (receiver == NULL) return;
   755   klassOop receiver_klass = receiver->klass();
   757   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   758   int empty_row = -1;           // free row, if any is encountered
   760   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   761   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   762     // if (vc->receiver(row) == receiver_klass)
   763     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   764     intptr_t row_recv = *(mdp + receiver_off);
   765     if (row_recv == (intptr_t) receiver_klass) {
   766       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   767       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   768       *(mdp + count_off) += DataLayout::counter_increment;
   769       return;
   770     } else if (row_recv == 0) {
   771       // else if (vc->receiver(row) == NULL)
   772       empty_row = (int) row;
   773     }
   774   }
   776   if (empty_row != -1) {
   777     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   778     // vc->set_receiver(empty_row, receiver_klass);
   779     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   780     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   781     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   782     *(mdp + count_off) = DataLayout::counter_increment;
   783   } else {
   784     // Receiver did not match any saved receiver and there is no empty row for it.
   785     // Increment total counter to indicate polymorphic case.
   786     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   787     *count_p += DataLayout::counter_increment;
   788   }
   789 JRT_END
   791 //-----------------------------------------------------------------------------
   792 // implicit exception support.
   794 static void report_null_exception_in_code_cache(address exception_pc) {
   795   ResourceMark rm;
   796   CodeBlob* n = CodeCache::find_blob(exception_pc);
   797   if (n != NULL) {
   798     tty->print_cr("#");
   799     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   800     tty->print_cr("#");
   801     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   803     if (n->is_nmethod()) {
   804       methodOop method = ((nmethod*)n)->method();
   805       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   806       tty->print_cr("#");
   807       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   808         const char* title    = "HotSpot Runtime Error";
   809         const char* question = "Do you want to exclude compilation of this method in future runs?";
   810         if (os::message_box(title, question)) {
   811           CompilerOracle::append_comment_to_file("");
   812           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   813           CompilerOracle::append_comment_to_file("");
   814           CompilerOracle::append_exclude_to_file(method);
   815           tty->print_cr("#");
   816           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   817           tty->print_cr("#");
   818         }
   819       }
   820       fatal("Implicit null exception happened in compiled method");
   821     } else {
   822       n->print();
   823       fatal("Implicit null exception happened in generated stub");
   824     }
   825   }
   826   fatal("Implicit null exception at wrong place");
   827 }
   830 //-------------------------------------------------------------------------------------
   831 // register policy
   833 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   834   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   835   switch (register_save_policy[reg]) {
   836     case 'C': return false; //SOC
   837     case 'E': return true ; //SOE
   838     case 'N': return false; //NS
   839     case 'A': return false; //AS
   840   }
   841   ShouldNotReachHere();
   842   return false;
   843 }
   845 //-----------------------------------------------------------------------
   846 // Exceptions
   847 //
   849 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   851 // The method is an entry that is always called by a C++ method not
   852 // directly from compiled code. Compiled code will call the C++ method following.
   853 // We can't allow async exception to be installed during  exception processing.
   854 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   856   // Do not confuse exception_oop with pending_exception. The exception_oop
   857   // is only used to pass arguments into the method. Not for general
   858   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   859   // the runtime stubs checks this on exit.
   860   assert(thread->exception_oop() != NULL, "exception oop is found");
   861   address handler_address = NULL;
   863   Handle exception(thread, thread->exception_oop());
   865   if (TraceExceptions) {
   866     trace_exception(exception(), thread->exception_pc(), "");
   867   }
   868   // for AbortVMOnException flag
   869   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   871   #ifdef ASSERT
   872     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   873       // should throw an exception here
   874       ShouldNotReachHere();
   875     }
   876   #endif
   879   // new exception handling: this method is entered only from adapters
   880   // exceptions from compiled java methods are handled in compiled code
   881   // using rethrow node
   883   address pc = thread->exception_pc();
   884   nm = CodeCache::find_nmethod(pc);
   885   assert(nm != NULL, "No NMethod found");
   886   if (nm->is_native_method()) {
   887     fatal("Native mathod should not have path to exception handling");
   888   } else {
   889     // we are switching to old paradigm: search for exception handler in caller_frame
   890     // instead in exception handler of caller_frame.sender()
   892     if (JvmtiExport::can_post_on_exceptions()) {
   893       // "Full-speed catching" is not necessary here,
   894       // since we're notifying the VM on every catch.
   895       // Force deoptimization and the rest of the lookup
   896       // will be fine.
   897       deoptimize_caller_frame(thread, true);
   898     }
   900     // Check the stack guard pages.  If enabled, look for handler in this frame;
   901     // otherwise, forcibly unwind the frame.
   902     //
   903     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   904     bool force_unwind = !thread->reguard_stack();
   905     bool deopting = false;
   906     if (nm->is_deopt_pc(pc)) {
   907       deopting = true;
   908       RegisterMap map(thread, false);
   909       frame deoptee = thread->last_frame().sender(&map);
   910       assert(deoptee.is_deoptimized_frame(), "must be deopted");
   911       // Adjust the pc back to the original throwing pc
   912       pc = deoptee.pc();
   913     }
   915     // If we are forcing an unwind because of stack overflow then deopt is
   916     // irrelevant sice we are throwing the frame away anyway.
   918     if (deopting && !force_unwind) {
   919       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   920     } else {
   922       handler_address =
   923         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
   925       if (handler_address == NULL) {
   926         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
   927         assert (handler_address != NULL, "must have compiled handler");
   928         // Update the exception cache only when the unwind was not forced.
   929         if (!force_unwind) {
   930           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
   931         }
   932       } else {
   933         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
   934       }
   935     }
   937     thread->set_exception_pc(pc);
   938     thread->set_exception_handler_pc(handler_address);
   939     thread->set_exception_stack_size(0);
   941     // Check if the exception PC is a MethodHandle call site.
   942     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   943   }
   945   // Restore correct return pc.  Was saved above.
   946   thread->set_exception_oop(exception());
   947   return handler_address;
   949 JRT_END
   951 // We are entering here from exception_blob
   952 // If there is a compiled exception handler in this method, we will continue there;
   953 // otherwise we will unwind the stack and continue at the caller of top frame method
   954 // Note we enter without the usual JRT wrapper. We will call a helper routine that
   955 // will do the normal VM entry. We do it this way so that we can see if the nmethod
   956 // we looked up the handler for has been deoptimized in the meantime. If it has been
   957 // we must not use the handler and instread return the deopt blob.
   958 address OptoRuntime::handle_exception_C(JavaThread* thread) {
   959 //
   960 // We are in Java not VM and in debug mode we have a NoHandleMark
   961 //
   962 #ifndef PRODUCT
   963   SharedRuntime::_find_handler_ctr++;          // find exception handler
   964 #endif
   965   debug_only(NoHandleMark __hm;)
   966   nmethod* nm = NULL;
   967   address handler_address = NULL;
   968   {
   969     // Enter the VM
   971     ResetNoHandleMark rnhm;
   972     handler_address = handle_exception_C_helper(thread, nm);
   973   }
   975   // Back in java: Use no oops, DON'T safepoint
   977   // Now check to see if the handler we are returning is in a now
   978   // deoptimized frame
   980   if (nm != NULL) {
   981     RegisterMap map(thread, false);
   982     frame caller = thread->last_frame().sender(&map);
   983 #ifdef ASSERT
   984     assert(caller.is_compiled_frame(), "must be");
   985 #endif // ASSERT
   986     if (caller.is_deoptimized_frame()) {
   987       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   988     }
   989   }
   990   return handler_address;
   991 }
   993 //------------------------------rethrow----------------------------------------
   994 // We get here after compiled code has executed a 'RethrowNode'.  The callee
   995 // is either throwing or rethrowing an exception.  The callee-save registers
   996 // have been restored, synchronized objects have been unlocked and the callee
   997 // stack frame has been removed.  The return address was passed in.
   998 // Exception oop is passed as the 1st argument.  This routine is then called
   999 // from the stub.  On exit, we know where to jump in the caller's code.
  1000 // After this C code exits, the stub will pop his frame and end in a jump
  1001 // (instead of a return).  We enter the caller's default handler.
  1002 //
  1003 // This must be JRT_LEAF:
  1004 //     - caller will not change its state as we cannot block on exit,
  1005 //       therefore raw_exception_handler_for_return_address is all it takes
  1006 //       to handle deoptimized blobs
  1007 //
  1008 // However, there needs to be a safepoint check in the middle!  So compiled
  1009 // safepoints are completely watertight.
  1010 //
  1011 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1012 //
  1013 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1014 //
  1015 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1016 #ifndef PRODUCT
  1017   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1018 #endif
  1019   assert (exception != NULL, "should have thrown a NULLPointerException");
  1020 #ifdef ASSERT
  1021   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1022     // should throw an exception here
  1023     ShouldNotReachHere();
  1025 #endif
  1027   thread->set_vm_result(exception);
  1028   // Frame not compiled (handles deoptimization blob)
  1029   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1033 const TypeFunc *OptoRuntime::rethrow_Type() {
  1034   // create input type (domain)
  1035   const Type **fields = TypeTuple::fields(1);
  1036   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1037   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1039   // create result type (range)
  1040   fields = TypeTuple::fields(1);
  1041   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1042   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1044   return TypeFunc::make(domain, range);
  1048 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1049   // Deoptimize frame
  1050   if (doit) {
  1051     // Called from within the owner thread, so no need for safepoint
  1052     RegisterMap reg_map(thread);
  1053     frame stub_frame = thread->last_frame();
  1054     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1055     frame caller_frame = stub_frame.sender(&reg_map);
  1057     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
  1058     Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1063 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1064   // create input type (domain)
  1065   const Type **fields = TypeTuple::fields(1);
  1066   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1067   // // The JavaThread* is passed to each routine as the last argument
  1068   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1069   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1071   // create result type (range)
  1072   fields = TypeTuple::fields(0);
  1074   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1076   return TypeFunc::make(domain,range);
  1080 //-----------------------------------------------------------------------------
  1081 // Dtrace support.  entry and exit probes have the same signature
  1082 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1083   // create input type (domain)
  1084   const Type **fields = TypeTuple::fields(2);
  1085   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1086   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  1087   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1089   // create result type (range)
  1090   fields = TypeTuple::fields(0);
  1092   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1094   return TypeFunc::make(domain,range);
  1097 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1098   // create input type (domain)
  1099   const Type **fields = TypeTuple::fields(2);
  1100   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1101   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1103   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1105   // create result type (range)
  1106   fields = TypeTuple::fields(0);
  1108   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1110   return TypeFunc::make(domain,range);
  1114 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1115   assert(obj->is_oop(), "must be a valid oop");
  1116   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1117   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1118 JRT_END
  1120 //-----------------------------------------------------------------------------
  1122 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1124 //
  1125 // dump the collected NamedCounters.
  1126 //
  1127 void OptoRuntime::print_named_counters() {
  1128   int total_lock_count = 0;
  1129   int eliminated_lock_count = 0;
  1131   NamedCounter* c = _named_counters;
  1132   while (c) {
  1133     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1134       int count = c->count();
  1135       if (count > 0) {
  1136         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1137         if (Verbose) {
  1138           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1140         total_lock_count += count;
  1141         if (eliminated) {
  1142           eliminated_lock_count += count;
  1145     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1146       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1147       if (blc->nonzero()) {
  1148         tty->print_cr("%s", c->name());
  1149         blc->print_on(tty);
  1152     c = c->next();
  1154   if (total_lock_count > 0) {
  1155     tty->print_cr("dynamic locks: %d", total_lock_count);
  1156     if (eliminated_lock_count) {
  1157       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1158                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1163 //
  1164 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1165 //  name which consists of method@line for the inlining tree.
  1166 //
  1168 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1169   int max_depth = youngest_jvms->depth();
  1171   // Visit scopes from youngest to oldest.
  1172   bool first = true;
  1173   stringStream st;
  1174   for (int depth = max_depth; depth >= 1; depth--) {
  1175     JVMState* jvms = youngest_jvms->of_depth(depth);
  1176     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1177     if (!first) {
  1178       st.print(" ");
  1179     } else {
  1180       first = false;
  1182     int bci = jvms->bci();
  1183     if (bci < 0) bci = 0;
  1184     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1185     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1187   NamedCounter* c;
  1188   if (tag == NamedCounter::BiasedLockingCounter) {
  1189     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1190   } else {
  1191     c = new NamedCounter(strdup(st.as_string()), tag);
  1194   // atomically add the new counter to the head of the list.  We only
  1195   // add counters so this is safe.
  1196   NamedCounter* head;
  1197   do {
  1198     head = _named_counters;
  1199     c->set_next(head);
  1200   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1201   return c;
  1204 //-----------------------------------------------------------------------------
  1205 // Non-product code
  1206 #ifndef PRODUCT
  1208 int trace_exception_counter = 0;
  1209 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1210   ttyLocker ttyl;
  1211   trace_exception_counter++;
  1212   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1213   exception_oop->print_value();
  1214   tty->print(" in ");
  1215   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1216   if (blob->is_nmethod()) {
  1217     ((nmethod*)blob)->method()->print_value();
  1218   } else if (blob->is_runtime_stub()) {
  1219     tty->print("<runtime-stub>");
  1220   } else {
  1221     tty->print("<unknown>");
  1223   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1224   tty->print_cr("]");
  1227 #endif  // PRODUCT
  1230 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1231 // Called from call sites in compiled code with oop maps (actually safepoints)
  1232 // Zaps dead locals in first java frame.
  1233 // Is entry because may need to lock to generate oop maps
  1234 // Currently, only used for compiler frames, but someday may be used
  1235 // for interpreter frames, too.
  1237 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1239 // avoid pointers to member funcs with these helpers
  1240 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1241 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1244 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1245                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1246   assert(JavaThread::current() == thread, "is this needed?");
  1248   if ( !ZapDeadCompiledLocals )  return;
  1250   bool skip = false;
  1252        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1253   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1254   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1255     warning("starting zapping after skipping");
  1257        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1258   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1259   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1260     warning("about to zap last zap");
  1262   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1264   if ( skip )  return;
  1266   // find java frame and zap it
  1268   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1269     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1270       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1271       return;
  1274   warning("no frame found to zap in zap_dead_Java_locals_C");
  1277 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1278   zap_dead_java_or_native_locals(thread, is_java_frame);
  1279 JRT_END
  1281 // The following does not work because for one thing, the
  1282 // thread state is wrong; it expects java, but it is native.
  1283 // Also, the invariants in a native stub are different and
  1284 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1285 // in there.
  1286 // So for now, we do not zap in native stubs.
  1288 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1289   zap_dead_java_or_native_locals(thread, is_native_frame);
  1290 JRT_END
  1292 # endif

mercurial