src/share/vm/opto/memnode.cpp

Fri, 03 Dec 2010 01:34:31 -0800

author
twisti
date
Fri, 03 Dec 2010 01:34:31 -0800
changeset 2350
2f644f85485d
parent 2346
4da76e32c0be
child 2599
5a41a201d08c
permissions
-rw-r--r--

6961690: load oops from constant table on SPARC
Summary: oops should be loaded from the constant table of an nmethod instead of materializing them with a long code sequence.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
   108   if (tinst == NULL || !tinst->is_known_instance_field())
   109     return mchain;  // don't try to optimize non-instance types
   110   uint instance_id = tinst->instance_id();
   111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   112   Node *prev = NULL;
   113   Node *result = mchain;
   114   while (prev != result) {
   115     prev = result;
   116     if (result == start_mem)
   117       break;  // hit one of our sentinels
   118     // skip over a call which does not affect this memory slice
   119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   120       Node *proj_in = result->in(0);
   121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   122         break;  // hit one of our sentinels
   123       } else if (proj_in->is_Call()) {
   124         CallNode *call = proj_in->as_Call();
   125         if (!call->may_modify(t_adr, phase)) {
   126           result = call->in(TypeFunc::Memory);
   127         }
   128       } else if (proj_in->is_Initialize()) {
   129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   130         // Stop if this is the initialization for the object instance which
   131         // which contains this memory slice, otherwise skip over it.
   132         if (alloc != NULL && alloc->_idx != instance_id) {
   133           result = proj_in->in(TypeFunc::Memory);
   134         }
   135       } else if (proj_in->is_MemBar()) {
   136         result = proj_in->in(TypeFunc::Memory);
   137       } else {
   138         assert(false, "unexpected projection");
   139       }
   140     } else if (result->is_ClearArray()) {
   141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   142         // Can not bypass initialization of the instance
   143         // we are looking for.
   144         break;
   145       }
   146       // Otherwise skip it (the call updated 'result' value).
   147     } else if (result->is_MergeMem()) {
   148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   149     }
   150   }
   151   return result;
   152 }
   154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   157   PhaseIterGVN *igvn = phase->is_IterGVN();
   158   Node *result = mchain;
   159   result = optimize_simple_memory_chain(result, t_adr, phase);
   160   if (is_instance && igvn != NULL  && result->is_Phi()) {
   161     PhiNode *mphi = result->as_Phi();
   162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   163     const TypePtr *t = mphi->adr_type();
   164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   166         t->is_oopptr()->cast_to_exactness(true)
   167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   169       // clone the Phi with our address type
   170       result = mphi->split_out_instance(t_adr, igvn);
   171     } else {
   172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   173     }
   174   }
   175   return result;
   176 }
   178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   179   uint alias_idx = phase->C->get_alias_index(tp);
   180   Node *mem = mmem;
   181 #ifdef ASSERT
   182   {
   183     // Check that current type is consistent with the alias index used during graph construction
   184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   185     bool consistent =  adr_check == NULL || adr_check->empty() ||
   186                        phase->C->must_alias(adr_check, alias_idx );
   187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   194       // don't assert if it is dead code.
   195       consistent = true;
   196     }
   197     if( !consistent ) {
   198       st->print("alias_idx==%d, adr_check==", alias_idx);
   199       if( adr_check == NULL ) {
   200         st->print("NULL");
   201       } else {
   202         adr_check->dump();
   203       }
   204       st->cr();
   205       print_alias_types();
   206       assert(consistent, "adr_check must match alias idx");
   207     }
   208   }
   209 #endif
   210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   211   // means an array I have not precisely typed yet.  Do not do any
   212   // alias stuff with it any time soon.
   213   const TypeOopPtr *toop = tp->isa_oopptr();
   214   if( tp->base() != Type::AnyPtr &&
   215       !(toop &&
   216         toop->klass() != NULL &&
   217         toop->klass()->is_java_lang_Object() &&
   218         toop->offset() == Type::OffsetBot) ) {
   219     // compress paths and change unreachable cycles to TOP
   220     // If not, we can update the input infinitely along a MergeMem cycle
   221     // Equivalent code in PhiNode::Ideal
   222     Node* m  = phase->transform(mmem);
   223     // If transformed to a MergeMem, get the desired slice
   224     // Otherwise the returned node represents memory for every slice
   225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   226     // Update input if it is progress over what we have now
   227   }
   228   return mem;
   229 }
   231 //--------------------------Ideal_common---------------------------------------
   232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   233 // Unhook non-raw memories from complete (macro-expanded) initializations.
   234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   235   // If our control input is a dead region, kill all below the region
   236   Node *ctl = in(MemNode::Control);
   237   if (ctl && remove_dead_region(phase, can_reshape))
   238     return this;
   239   ctl = in(MemNode::Control);
   240   // Don't bother trying to transform a dead node
   241   if( ctl && ctl->is_top() )  return NodeSentinel;
   243   PhaseIterGVN *igvn = phase->is_IterGVN();
   244   // Wait if control on the worklist.
   245   if (ctl && can_reshape && igvn != NULL) {
   246     Node* bol = NULL;
   247     Node* cmp = NULL;
   248     if (ctl->in(0)->is_If()) {
   249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   250       bol = ctl->in(0)->in(1);
   251       if (bol->is_Bool())
   252         cmp = ctl->in(0)->in(1)->in(1);
   253     }
   254     if (igvn->_worklist.member(ctl) ||
   255         (bol != NULL && igvn->_worklist.member(bol)) ||
   256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   257       // This control path may be dead.
   258       // Delay this memory node transformation until the control is processed.
   259       phase->is_IterGVN()->_worklist.push(this);
   260       return NodeSentinel; // caller will return NULL
   261     }
   262   }
   263   // Ignore if memory is dead, or self-loop
   264   Node *mem = in(MemNode::Memory);
   265   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   266   assert( mem != this, "dead loop in MemNode::Ideal" );
   268   Node *address = in(MemNode::Address);
   269   const Type *t_adr = phase->type( address );
   270   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   272   if( can_reshape && igvn != NULL &&
   273       (igvn->_worklist.member(address) ||
   274        igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
   275     // The address's base and type may change when the address is processed.
   276     // Delay this mem node transformation until the address is processed.
   277     phase->is_IterGVN()->_worklist.push(this);
   278     return NodeSentinel; // caller will return NULL
   279   }
   281   // Do NOT remove or optimize the next lines: ensure a new alias index
   282   // is allocated for an oop pointer type before Escape Analysis.
   283   // Note: C++ will not remove it since the call has side effect.
   284   if ( t_adr->isa_oopptr() ) {
   285     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   286   }
   288 #ifdef ASSERT
   289   Node* base = NULL;
   290   if (address->is_AddP())
   291     base = address->in(AddPNode::Base);
   292   assert(base == NULL || t_adr->isa_rawptr() ||
   293         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   294 #endif
   296   // Avoid independent memory operations
   297   Node* old_mem = mem;
   299   // The code which unhooks non-raw memories from complete (macro-expanded)
   300   // initializations was removed. After macro-expansion all stores catched
   301   // by Initialize node became raw stores and there is no information
   302   // which memory slices they modify. So it is unsafe to move any memory
   303   // operation above these stores. Also in most cases hooked non-raw memories
   304   // were already unhooked by using information from detect_ptr_independence()
   305   // and find_previous_store().
   307   if (mem->is_MergeMem()) {
   308     MergeMemNode* mmem = mem->as_MergeMem();
   309     const TypePtr *tp = t_adr->is_ptr();
   311     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   312   }
   314   if (mem != old_mem) {
   315     set_req(MemNode::Memory, mem);
   316     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   317     return this;
   318   }
   320   // let the subclass continue analyzing...
   321   return NULL;
   322 }
   324 // Helper function for proving some simple control dominations.
   325 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   326 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   327 // is not a constant (dominated by the method's StartNode).
   328 // Used by MemNode::find_previous_store to prove that the
   329 // control input of a memory operation predates (dominates)
   330 // an allocation it wants to look past.
   331 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   332   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   333     return false; // Conservative answer for dead code
   335   // Check 'dom'. Skip Proj and CatchProj nodes.
   336   dom = dom->find_exact_control(dom);
   337   if (dom == NULL || dom->is_top())
   338     return false; // Conservative answer for dead code
   340   if (dom == sub) {
   341     // For the case when, for example, 'sub' is Initialize and the original
   342     // 'dom' is Proj node of the 'sub'.
   343     return false;
   344   }
   346   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   347     return true;
   349   // 'dom' dominates 'sub' if its control edge and control edges
   350   // of all its inputs dominate or equal to sub's control edge.
   352   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   353   // Or Region for the check in LoadNode::Ideal();
   354   // 'sub' should have sub->in(0) != NULL.
   355   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   356          sub->is_Region(), "expecting only these nodes");
   358   // Get control edge of 'sub'.
   359   Node* orig_sub = sub;
   360   sub = sub->find_exact_control(sub->in(0));
   361   if (sub == NULL || sub->is_top())
   362     return false; // Conservative answer for dead code
   364   assert(sub->is_CFG(), "expecting control");
   366   if (sub == dom)
   367     return true;
   369   if (sub->is_Start() || sub->is_Root())
   370     return false;
   372   {
   373     // Check all control edges of 'dom'.
   375     ResourceMark rm;
   376     Arena* arena = Thread::current()->resource_area();
   377     Node_List nlist(arena);
   378     Unique_Node_List dom_list(arena);
   380     dom_list.push(dom);
   381     bool only_dominating_controls = false;
   383     for (uint next = 0; next < dom_list.size(); next++) {
   384       Node* n = dom_list.at(next);
   385       if (n == orig_sub)
   386         return false; // One of dom's inputs dominated by sub.
   387       if (!n->is_CFG() && n->pinned()) {
   388         // Check only own control edge for pinned non-control nodes.
   389         n = n->find_exact_control(n->in(0));
   390         if (n == NULL || n->is_top())
   391           return false; // Conservative answer for dead code
   392         assert(n->is_CFG(), "expecting control");
   393         dom_list.push(n);
   394       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   395         only_dominating_controls = true;
   396       } else if (n->is_CFG()) {
   397         if (n->dominates(sub, nlist))
   398           only_dominating_controls = true;
   399         else
   400           return false;
   401       } else {
   402         // First, own control edge.
   403         Node* m = n->find_exact_control(n->in(0));
   404         if (m != NULL) {
   405           if (m->is_top())
   406             return false; // Conservative answer for dead code
   407           dom_list.push(m);
   408         }
   409         // Now, the rest of edges.
   410         uint cnt = n->req();
   411         for (uint i = 1; i < cnt; i++) {
   412           m = n->find_exact_control(n->in(i));
   413           if (m == NULL || m->is_top())
   414             continue;
   415           dom_list.push(m);
   416         }
   417       }
   418     }
   419     return only_dominating_controls;
   420   }
   421 }
   423 //---------------------detect_ptr_independence---------------------------------
   424 // Used by MemNode::find_previous_store to prove that two base
   425 // pointers are never equal.
   426 // The pointers are accompanied by their associated allocations,
   427 // if any, which have been previously discovered by the caller.
   428 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   429                                       Node* p2, AllocateNode* a2,
   430                                       PhaseTransform* phase) {
   431   // Attempt to prove that these two pointers cannot be aliased.
   432   // They may both manifestly be allocations, and they should differ.
   433   // Or, if they are not both allocations, they can be distinct constants.
   434   // Otherwise, one is an allocation and the other a pre-existing value.
   435   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   436     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   437   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   438     return (a1 != a2);
   439   } else if (a1 != NULL) {                  // one allocation a1
   440     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   441     return all_controls_dominate(p2, a1);
   442   } else { //(a2 != NULL)                   // one allocation a2
   443     return all_controls_dominate(p1, a2);
   444   }
   445   return false;
   446 }
   449 // The logic for reordering loads and stores uses four steps:
   450 // (a) Walk carefully past stores and initializations which we
   451 //     can prove are independent of this load.
   452 // (b) Observe that the next memory state makes an exact match
   453 //     with self (load or store), and locate the relevant store.
   454 // (c) Ensure that, if we were to wire self directly to the store,
   455 //     the optimizer would fold it up somehow.
   456 // (d) Do the rewiring, and return, depending on some other part of
   457 //     the optimizer to fold up the load.
   458 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   459 // specific to loads and stores, so they are handled by the callers.
   460 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   461 //
   462 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   463   Node*         ctrl   = in(MemNode::Control);
   464   Node*         adr    = in(MemNode::Address);
   465   intptr_t      offset = 0;
   466   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   467   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   469   if (offset == Type::OffsetBot)
   470     return NULL;            // cannot unalias unless there are precise offsets
   472   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   474   intptr_t size_in_bytes = memory_size();
   476   Node* mem = in(MemNode::Memory);   // start searching here...
   478   int cnt = 50;             // Cycle limiter
   479   for (;;) {                // While we can dance past unrelated stores...
   480     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   482     if (mem->is_Store()) {
   483       Node* st_adr = mem->in(MemNode::Address);
   484       intptr_t st_offset = 0;
   485       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   486       if (st_base == NULL)
   487         break;              // inscrutable pointer
   488       if (st_offset != offset && st_offset != Type::OffsetBot) {
   489         const int MAX_STORE = BytesPerLong;
   490         if (st_offset >= offset + size_in_bytes ||
   491             st_offset <= offset - MAX_STORE ||
   492             st_offset <= offset - mem->as_Store()->memory_size()) {
   493           // Success:  The offsets are provably independent.
   494           // (You may ask, why not just test st_offset != offset and be done?
   495           // The answer is that stores of different sizes can co-exist
   496           // in the same sequence of RawMem effects.  We sometimes initialize
   497           // a whole 'tile' of array elements with a single jint or jlong.)
   498           mem = mem->in(MemNode::Memory);
   499           continue;           // (a) advance through independent store memory
   500         }
   501       }
   502       if (st_base != base &&
   503           detect_ptr_independence(base, alloc,
   504                                   st_base,
   505                                   AllocateNode::Ideal_allocation(st_base, phase),
   506                                   phase)) {
   507         // Success:  The bases are provably independent.
   508         mem = mem->in(MemNode::Memory);
   509         continue;           // (a) advance through independent store memory
   510       }
   512       // (b) At this point, if the bases or offsets do not agree, we lose,
   513       // since we have not managed to prove 'this' and 'mem' independent.
   514       if (st_base == base && st_offset == offset) {
   515         return mem;         // let caller handle steps (c), (d)
   516       }
   518     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   519       InitializeNode* st_init = mem->in(0)->as_Initialize();
   520       AllocateNode*  st_alloc = st_init->allocation();
   521       if (st_alloc == NULL)
   522         break;              // something degenerated
   523       bool known_identical = false;
   524       bool known_independent = false;
   525       if (alloc == st_alloc)
   526         known_identical = true;
   527       else if (alloc != NULL)
   528         known_independent = true;
   529       else if (all_controls_dominate(this, st_alloc))
   530         known_independent = true;
   532       if (known_independent) {
   533         // The bases are provably independent: Either they are
   534         // manifestly distinct allocations, or else the control
   535         // of this load dominates the store's allocation.
   536         int alias_idx = phase->C->get_alias_index(adr_type());
   537         if (alias_idx == Compile::AliasIdxRaw) {
   538           mem = st_alloc->in(TypeFunc::Memory);
   539         } else {
   540           mem = st_init->memory(alias_idx);
   541         }
   542         continue;           // (a) advance through independent store memory
   543       }
   545       // (b) at this point, if we are not looking at a store initializing
   546       // the same allocation we are loading from, we lose.
   547       if (known_identical) {
   548         // From caller, can_see_stored_value will consult find_captured_store.
   549         return mem;         // let caller handle steps (c), (d)
   550       }
   552     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   553       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   554       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   555         CallNode *call = mem->in(0)->as_Call();
   556         if (!call->may_modify(addr_t, phase)) {
   557           mem = call->in(TypeFunc::Memory);
   558           continue;         // (a) advance through independent call memory
   559         }
   560       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   561         mem = mem->in(0)->in(TypeFunc::Memory);
   562         continue;           // (a) advance through independent MemBar memory
   563       } else if (mem->is_ClearArray()) {
   564         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   565           // (the call updated 'mem' value)
   566           continue;         // (a) advance through independent allocation memory
   567         } else {
   568           // Can not bypass initialization of the instance
   569           // we are looking for.
   570           return mem;
   571         }
   572       } else if (mem->is_MergeMem()) {
   573         int alias_idx = phase->C->get_alias_index(adr_type());
   574         mem = mem->as_MergeMem()->memory_at(alias_idx);
   575         continue;           // (a) advance through independent MergeMem memory
   576       }
   577     }
   579     // Unless there is an explicit 'continue', we must bail out here,
   580     // because 'mem' is an inscrutable memory state (e.g., a call).
   581     break;
   582   }
   584   return NULL;              // bail out
   585 }
   587 //----------------------calculate_adr_type-------------------------------------
   588 // Helper function.  Notices when the given type of address hits top or bottom.
   589 // Also, asserts a cross-check of the type against the expected address type.
   590 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   591   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   592   #ifdef PRODUCT
   593   cross_check = NULL;
   594   #else
   595   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   596   #endif
   597   const TypePtr* tp = t->isa_ptr();
   598   if (tp == NULL) {
   599     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   600     return TypePtr::BOTTOM;           // touches lots of memory
   601   } else {
   602     #ifdef ASSERT
   603     // %%%% [phh] We don't check the alias index if cross_check is
   604     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   605     if (cross_check != NULL &&
   606         cross_check != TypePtr::BOTTOM &&
   607         cross_check != TypeRawPtr::BOTTOM) {
   608       // Recheck the alias index, to see if it has changed (due to a bug).
   609       Compile* C = Compile::current();
   610       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   611              "must stay in the original alias category");
   612       // The type of the address must be contained in the adr_type,
   613       // disregarding "null"-ness.
   614       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   615       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   616       assert(cross_check->meet(tp_notnull) == cross_check,
   617              "real address must not escape from expected memory type");
   618     }
   619     #endif
   620     return tp;
   621   }
   622 }
   624 //------------------------adr_phi_is_loop_invariant----------------------------
   625 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   626 // loop is loop invariant. Make a quick traversal of Phi and associated
   627 // CastPP nodes, looking to see if they are a closed group within the loop.
   628 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   629   // The idea is that the phi-nest must boil down to only CastPP nodes
   630   // with the same data. This implies that any path into the loop already
   631   // includes such a CastPP, and so the original cast, whatever its input,
   632   // must be covered by an equivalent cast, with an earlier control input.
   633   ResourceMark rm;
   635   // The loop entry input of the phi should be the unique dominating
   636   // node for every Phi/CastPP in the loop.
   637   Unique_Node_List closure;
   638   closure.push(adr_phi->in(LoopNode::EntryControl));
   640   // Add the phi node and the cast to the worklist.
   641   Unique_Node_List worklist;
   642   worklist.push(adr_phi);
   643   if( cast != NULL ){
   644     if( !cast->is_ConstraintCast() ) return false;
   645     worklist.push(cast);
   646   }
   648   // Begin recursive walk of phi nodes.
   649   while( worklist.size() ){
   650     // Take a node off the worklist
   651     Node *n = worklist.pop();
   652     if( !closure.member(n) ){
   653       // Add it to the closure.
   654       closure.push(n);
   655       // Make a sanity check to ensure we don't waste too much time here.
   656       if( closure.size() > 20) return false;
   657       // This node is OK if:
   658       //  - it is a cast of an identical value
   659       //  - or it is a phi node (then we add its inputs to the worklist)
   660       // Otherwise, the node is not OK, and we presume the cast is not invariant
   661       if( n->is_ConstraintCast() ){
   662         worklist.push(n->in(1));
   663       } else if( n->is_Phi() ) {
   664         for( uint i = 1; i < n->req(); i++ ) {
   665           worklist.push(n->in(i));
   666         }
   667       } else {
   668         return false;
   669       }
   670     }
   671   }
   673   // Quit when the worklist is empty, and we've found no offending nodes.
   674   return true;
   675 }
   677 //------------------------------Ideal_DU_postCCP-------------------------------
   678 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   679 // going away in this pass and we need to make this memory op depend on the
   680 // gating null check.
   681 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   682   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   683 }
   685 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   686 // some sense; we get to keep around the knowledge that an oop is not-null
   687 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   688 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   689 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   690 // some of the more trivial cases in the optimizer.  Removing more useless
   691 // Phi's started allowing Loads to illegally float above null checks.  I gave
   692 // up on this approach.  CNC 10/20/2000
   693 // This static method may be called not from MemNode (EncodePNode calls it).
   694 // Only the control edge of the node 'n' might be updated.
   695 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   696   Node *skipped_cast = NULL;
   697   // Need a null check?  Regular static accesses do not because they are
   698   // from constant addresses.  Array ops are gated by the range check (which
   699   // always includes a NULL check).  Just check field ops.
   700   if( n->in(MemNode::Control) == NULL ) {
   701     // Scan upwards for the highest location we can place this memory op.
   702     while( true ) {
   703       switch( adr->Opcode() ) {
   705       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   706         adr = adr->in(AddPNode::Base);
   707         continue;
   709       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   710         adr = adr->in(1);
   711         continue;
   713       case Op_CastPP:
   714         // If the CastPP is useless, just peek on through it.
   715         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   716           // Remember the cast that we've peeked though. If we peek
   717           // through more than one, then we end up remembering the highest
   718           // one, that is, if in a loop, the one closest to the top.
   719           skipped_cast = adr;
   720           adr = adr->in(1);
   721           continue;
   722         }
   723         // CastPP is going away in this pass!  We need this memory op to be
   724         // control-dependent on the test that is guarding the CastPP.
   725         ccp->hash_delete(n);
   726         n->set_req(MemNode::Control, adr->in(0));
   727         ccp->hash_insert(n);
   728         return n;
   730       case Op_Phi:
   731         // Attempt to float above a Phi to some dominating point.
   732         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   733           // If we've already peeked through a Cast (which could have set the
   734           // control), we can't float above a Phi, because the skipped Cast
   735           // may not be loop invariant.
   736           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   737             adr = adr->in(1);
   738             continue;
   739           }
   740         }
   742         // Intentional fallthrough!
   744         // No obvious dominating point.  The mem op is pinned below the Phi
   745         // by the Phi itself.  If the Phi goes away (no true value is merged)
   746         // then the mem op can float, but not indefinitely.  It must be pinned
   747         // behind the controls leading to the Phi.
   748       case Op_CheckCastPP:
   749         // These usually stick around to change address type, however a
   750         // useless one can be elided and we still need to pick up a control edge
   751         if (adr->in(0) == NULL) {
   752           // This CheckCastPP node has NO control and is likely useless. But we
   753           // need check further up the ancestor chain for a control input to keep
   754           // the node in place. 4959717.
   755           skipped_cast = adr;
   756           adr = adr->in(1);
   757           continue;
   758         }
   759         ccp->hash_delete(n);
   760         n->set_req(MemNode::Control, adr->in(0));
   761         ccp->hash_insert(n);
   762         return n;
   764         // List of "safe" opcodes; those that implicitly block the memory
   765         // op below any null check.
   766       case Op_CastX2P:          // no null checks on native pointers
   767       case Op_Parm:             // 'this' pointer is not null
   768       case Op_LoadP:            // Loading from within a klass
   769       case Op_LoadN:            // Loading from within a klass
   770       case Op_LoadKlass:        // Loading from within a klass
   771       case Op_LoadNKlass:       // Loading from within a klass
   772       case Op_ConP:             // Loading from a klass
   773       case Op_ConN:             // Loading from a klass
   774       case Op_CreateEx:         // Sucking up the guts of an exception oop
   775       case Op_Con:              // Reading from TLS
   776       case Op_CMoveP:           // CMoveP is pinned
   777       case Op_CMoveN:           // CMoveN is pinned
   778         break;                  // No progress
   780       case Op_Proj:             // Direct call to an allocation routine
   781       case Op_SCMemProj:        // Memory state from store conditional ops
   782 #ifdef ASSERT
   783         {
   784           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   785           const Node* call = adr->in(0);
   786           if (call->is_CallJava()) {
   787             const CallJavaNode* call_java = call->as_CallJava();
   788             const TypeTuple *r = call_java->tf()->range();
   789             assert(r->cnt() > TypeFunc::Parms, "must return value");
   790             const Type* ret_type = r->field_at(TypeFunc::Parms);
   791             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   792             // We further presume that this is one of
   793             // new_instance_Java, new_array_Java, or
   794             // the like, but do not assert for this.
   795           } else if (call->is_Allocate()) {
   796             // similar case to new_instance_Java, etc.
   797           } else if (!call->is_CallLeaf()) {
   798             // Projections from fetch_oop (OSR) are allowed as well.
   799             ShouldNotReachHere();
   800           }
   801         }
   802 #endif
   803         break;
   804       default:
   805         ShouldNotReachHere();
   806       }
   807       break;
   808     }
   809   }
   811   return  NULL;               // No progress
   812 }
   815 //=============================================================================
   816 uint LoadNode::size_of() const { return sizeof(*this); }
   817 uint LoadNode::cmp( const Node &n ) const
   818 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   819 const Type *LoadNode::bottom_type() const { return _type; }
   820 uint LoadNode::ideal_reg() const {
   821   return Matcher::base2reg[_type->base()];
   822 }
   824 #ifndef PRODUCT
   825 void LoadNode::dump_spec(outputStream *st) const {
   826   MemNode::dump_spec(st);
   827   if( !Verbose && !WizardMode ) {
   828     // standard dump does this in Verbose and WizardMode
   829     st->print(" #"); _type->dump_on(st);
   830   }
   831 }
   832 #endif
   834 #ifdef ASSERT
   835 //----------------------------is_immutable_value-------------------------------
   836 // Helper function to allow a raw load without control edge for some cases
   837 bool LoadNode::is_immutable_value(Node* adr) {
   838   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   839           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   840           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   841            in_bytes(JavaThread::osthread_offset())));
   842 }
   843 #endif
   845 //----------------------------LoadNode::make-----------------------------------
   846 // Polymorphic factory method:
   847 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   848   Compile* C = gvn.C;
   850   // sanity check the alias category against the created node type
   851   assert(!(adr_type->isa_oopptr() &&
   852            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   853          "use LoadKlassNode instead");
   854   assert(!(adr_type->isa_aryptr() &&
   855            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   856          "use LoadRangeNode instead");
   857   // Check control edge of raw loads
   858   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   859           // oop will be recorded in oop map if load crosses safepoint
   860           rt->isa_oopptr() || is_immutable_value(adr),
   861           "raw memory operations should have control edge");
   862   switch (bt) {
   863   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   864   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   865   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   866   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   867   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   868   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   869   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   870   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   871   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   872   case T_OBJECT:
   873 #ifdef _LP64
   874     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   875       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   876       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   877     } else
   878 #endif
   879     {
   880       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   881       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   882     }
   883   }
   884   ShouldNotReachHere();
   885   return (LoadNode*)NULL;
   886 }
   888 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   889   bool require_atomic = true;
   890   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   891 }
   896 //------------------------------hash-------------------------------------------
   897 uint LoadNode::hash() const {
   898   // unroll addition of interesting fields
   899   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   900 }
   902 //---------------------------can_see_stored_value------------------------------
   903 // This routine exists to make sure this set of tests is done the same
   904 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   905 // will change the graph shape in a way which makes memory alive twice at the
   906 // same time (uses the Oracle model of aliasing), then some
   907 // LoadXNode::Identity will fold things back to the equivalence-class model
   908 // of aliasing.
   909 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   910   Node* ld_adr = in(MemNode::Address);
   912   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   913   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   914   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   915       atp->field() != NULL && !atp->field()->is_volatile()) {
   916     uint alias_idx = atp->index();
   917     bool final = atp->field()->is_final();
   918     Node* result = NULL;
   919     Node* current = st;
   920     // Skip through chains of MemBarNodes checking the MergeMems for
   921     // new states for the slice of this load.  Stop once any other
   922     // kind of node is encountered.  Loads from final memory can skip
   923     // through any kind of MemBar but normal loads shouldn't skip
   924     // through MemBarAcquire since the could allow them to move out of
   925     // a synchronized region.
   926     while (current->is_Proj()) {
   927       int opc = current->in(0)->Opcode();
   928       if ((final && opc == Op_MemBarAcquire) ||
   929           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   930         Node* mem = current->in(0)->in(TypeFunc::Memory);
   931         if (mem->is_MergeMem()) {
   932           MergeMemNode* merge = mem->as_MergeMem();
   933           Node* new_st = merge->memory_at(alias_idx);
   934           if (new_st == merge->base_memory()) {
   935             // Keep searching
   936             current = merge->base_memory();
   937             continue;
   938           }
   939           // Save the new memory state for the slice and fall through
   940           // to exit.
   941           result = new_st;
   942         }
   943       }
   944       break;
   945     }
   946     if (result != NULL) {
   947       st = result;
   948     }
   949   }
   952   // Loop around twice in the case Load -> Initialize -> Store.
   953   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   954   for (int trip = 0; trip <= 1; trip++) {
   956     if (st->is_Store()) {
   957       Node* st_adr = st->in(MemNode::Address);
   958       if (!phase->eqv(st_adr, ld_adr)) {
   959         // Try harder before giving up...  Match raw and non-raw pointers.
   960         intptr_t st_off = 0;
   961         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   962         if (alloc == NULL)       return NULL;
   963         intptr_t ld_off = 0;
   964         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   965         if (alloc != allo2)      return NULL;
   966         if (ld_off != st_off)    return NULL;
   967         // At this point we have proven something like this setup:
   968         //  A = Allocate(...)
   969         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   970         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   971         // (Actually, we haven't yet proven the Q's are the same.)
   972         // In other words, we are loading from a casted version of
   973         // the same pointer-and-offset that we stored to.
   974         // Thus, we are able to replace L by V.
   975       }
   976       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   977       if (store_Opcode() != st->Opcode())
   978         return NULL;
   979       return st->in(MemNode::ValueIn);
   980     }
   982     intptr_t offset = 0;  // scratch
   984     // A load from a freshly-created object always returns zero.
   985     // (This can happen after LoadNode::Ideal resets the load's memory input
   986     // to find_captured_store, which returned InitializeNode::zero_memory.)
   987     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   988         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   989         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   990       // return a zero value for the load's basic type
   991       // (This is one of the few places where a generic PhaseTransform
   992       // can create new nodes.  Think of it as lazily manifesting
   993       // virtually pre-existing constants.)
   994       return phase->zerocon(memory_type());
   995     }
   997     // A load from an initialization barrier can match a captured store.
   998     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   999       InitializeNode* init = st->in(0)->as_Initialize();
  1000       AllocateNode* alloc = init->allocation();
  1001       if (alloc != NULL &&
  1002           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
  1003         // examine a captured store value
  1004         st = init->find_captured_store(offset, memory_size(), phase);
  1005         if (st != NULL)
  1006           continue;             // take one more trip around
  1010     break;
  1013   return NULL;
  1016 //----------------------is_instance_field_load_with_local_phi------------------
  1017 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1018   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
  1019       in(MemNode::Address)->is_AddP() ) {
  1020     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
  1021     // Only instances.
  1022     if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1023         t_oop->offset() != Type::OffsetBot &&
  1024         t_oop->offset() != Type::OffsetTop) {
  1025       return true;
  1028   return false;
  1031 //------------------------------Identity---------------------------------------
  1032 // Loads are identity if previous store is to same address
  1033 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1034   // If the previous store-maker is the right kind of Store, and the store is
  1035   // to the same address, then we are equal to the value stored.
  1036   Node* mem = in(MemNode::Memory);
  1037   Node* value = can_see_stored_value(mem, phase);
  1038   if( value ) {
  1039     // byte, short & char stores truncate naturally.
  1040     // A load has to load the truncated value which requires
  1041     // some sort of masking operation and that requires an
  1042     // Ideal call instead of an Identity call.
  1043     if (memory_size() < BytesPerInt) {
  1044       // If the input to the store does not fit with the load's result type,
  1045       // it must be truncated via an Ideal call.
  1046       if (!phase->type(value)->higher_equal(phase->type(this)))
  1047         return this;
  1049     // (This works even when value is a Con, but LoadNode::Value
  1050     // usually runs first, producing the singleton type of the Con.)
  1051     return value;
  1054   // Search for an existing data phi which was generated before for the same
  1055   // instance's field to avoid infinite generation of phis in a loop.
  1056   Node *region = mem->in(0);
  1057   if (is_instance_field_load_with_local_phi(region)) {
  1058     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1059     int this_index  = phase->C->get_alias_index(addr_t);
  1060     int this_offset = addr_t->offset();
  1061     int this_id    = addr_t->is_oopptr()->instance_id();
  1062     const Type* this_type = bottom_type();
  1063     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1064       Node* phi = region->fast_out(i);
  1065       if (phi->is_Phi() && phi != mem &&
  1066           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1067         return phi;
  1072   return this;
  1076 // Returns true if the AliasType refers to the field that holds the
  1077 // cached box array.  Currently only handles the IntegerCache case.
  1078 static bool is_autobox_cache(Compile::AliasType* atp) {
  1079   if (atp != NULL && atp->field() != NULL) {
  1080     ciField* field = atp->field();
  1081     ciSymbol* klass = field->holder()->name();
  1082     if (field->name() == ciSymbol::cache_field_name() &&
  1083         field->holder()->uses_default_loader() &&
  1084         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1085       return true;
  1088   return false;
  1091 // Fetch the base value in the autobox array
  1092 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1093   if (atp != NULL && atp->field() != NULL) {
  1094     ciField* field = atp->field();
  1095     ciSymbol* klass = field->holder()->name();
  1096     if (field->name() == ciSymbol::cache_field_name() &&
  1097         field->holder()->uses_default_loader() &&
  1098         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1099       assert(field->is_constant(), "what?");
  1100       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1101       // Fetch the box object at the base of the array and get its value
  1102       ciInstance* box = array->obj_at(0)->as_instance();
  1103       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1104       if (ik->nof_nonstatic_fields() == 1) {
  1105         // This should be true nonstatic_field_at requires calling
  1106         // nof_nonstatic_fields so check it anyway
  1107         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1108         cache_offset = c.as_int();
  1110       return true;
  1113   return false;
  1116 // Returns true if the AliasType refers to the value field of an
  1117 // autobox object.  Currently only handles Integer.
  1118 static bool is_autobox_object(Compile::AliasType* atp) {
  1119   if (atp != NULL && atp->field() != NULL) {
  1120     ciField* field = atp->field();
  1121     ciSymbol* klass = field->holder()->name();
  1122     if (field->name() == ciSymbol::value_name() &&
  1123         field->holder()->uses_default_loader() &&
  1124         klass == ciSymbol::java_lang_Integer()) {
  1125       return true;
  1128   return false;
  1132 // We're loading from an object which has autobox behaviour.
  1133 // If this object is result of a valueOf call we'll have a phi
  1134 // merging a newly allocated object and a load from the cache.
  1135 // We want to replace this load with the original incoming
  1136 // argument to the valueOf call.
  1137 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1138   Node* base = in(Address)->in(AddPNode::Base);
  1139   if (base->is_Phi() && base->req() == 3) {
  1140     AllocateNode* allocation = NULL;
  1141     int allocation_index = -1;
  1142     int load_index = -1;
  1143     for (uint i = 1; i < base->req(); i++) {
  1144       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1145       if (allocation != NULL) {
  1146         allocation_index = i;
  1147         load_index = 3 - allocation_index;
  1148         break;
  1151     bool has_load = ( allocation != NULL &&
  1152                       (base->in(load_index)->is_Load() ||
  1153                        base->in(load_index)->is_DecodeN() &&
  1154                        base->in(load_index)->in(1)->is_Load()) );
  1155     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1156       // Push the loads from the phi that comes from valueOf up
  1157       // through it to allow elimination of the loads and the recovery
  1158       // of the original value.
  1159       Node* mem_phi = in(Memory);
  1160       Node* offset = in(Address)->in(AddPNode::Offset);
  1161       Node* region = base->in(0);
  1163       Node* in1 = clone();
  1164       Node* in1_addr = in1->in(Address)->clone();
  1165       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1166       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1167       in1_addr->set_req(AddPNode::Offset, offset);
  1168       in1->set_req(0, region->in(allocation_index));
  1169       in1->set_req(Address, in1_addr);
  1170       in1->set_req(Memory, mem_phi->in(allocation_index));
  1172       Node* in2 = clone();
  1173       Node* in2_addr = in2->in(Address)->clone();
  1174       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1175       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1176       in2_addr->set_req(AddPNode::Offset, offset);
  1177       in2->set_req(0, region->in(load_index));
  1178       in2->set_req(Address, in2_addr);
  1179       in2->set_req(Memory, mem_phi->in(load_index));
  1181       in1_addr = phase->transform(in1_addr);
  1182       in1 =      phase->transform(in1);
  1183       in2_addr = phase->transform(in2_addr);
  1184       in2 =      phase->transform(in2);
  1186       PhiNode* result = PhiNode::make_blank(region, this);
  1187       result->set_req(allocation_index, in1);
  1188       result->set_req(load_index, in2);
  1189       return result;
  1191   } else if (base->is_Load() ||
  1192              base->is_DecodeN() && base->in(1)->is_Load()) {
  1193     if (base->is_DecodeN()) {
  1194       // Get LoadN node which loads cached Integer object
  1195       base = base->in(1);
  1197     // Eliminate the load of Integer.value for integers from the cache
  1198     // array by deriving the value from the index into the array.
  1199     // Capture the offset of the load and then reverse the computation.
  1200     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1201     if (load_base->is_DecodeN()) {
  1202       // Get LoadN node which loads IntegerCache.cache field
  1203       load_base = load_base->in(1);
  1205     if (load_base != NULL) {
  1206       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1207       intptr_t cache_offset;
  1208       int shift = -1;
  1209       Node* cache = NULL;
  1210       if (is_autobox_cache(atp)) {
  1211         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1212         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1214       if (cache != NULL && base->in(Address)->is_AddP()) {
  1215         Node* elements[4];
  1216         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1217         int cache_low;
  1218         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1219           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1220           // Add up all the offsets making of the address of the load
  1221           Node* result = elements[0];
  1222           for (int i = 1; i < count; i++) {
  1223             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1225           // Remove the constant offset from the address and then
  1226           // remove the scaling of the offset to recover the original index.
  1227           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1228           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1229             // Peel the shift off directly but wrap it in a dummy node
  1230             // since Ideal can't return existing nodes
  1231             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1232           } else {
  1233             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1235 #ifdef _LP64
  1236           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1237 #endif
  1238           return result;
  1243   return NULL;
  1246 //------------------------------split_through_phi------------------------------
  1247 // Split instance field load through Phi.
  1248 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1249   Node* mem     = in(MemNode::Memory);
  1250   Node* address = in(MemNode::Address);
  1251   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1252   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1254   assert(mem->is_Phi() && (t_oop != NULL) &&
  1255          t_oop->is_known_instance_field(), "invalide conditions");
  1257   Node *region = mem->in(0);
  1258   if (region == NULL) {
  1259     return NULL; // Wait stable graph
  1261   uint cnt = mem->req();
  1262   for( uint i = 1; i < cnt; i++ ) {
  1263     Node *in = mem->in(i);
  1264     if( in == NULL ) {
  1265       return NULL; // Wait stable graph
  1268   // Check for loop invariant.
  1269   if (cnt == 3) {
  1270     for( uint i = 1; i < cnt; i++ ) {
  1271       Node *in = mem->in(i);
  1272       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1273       if (m == mem) {
  1274         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1275         return this;
  1279   // Split through Phi (see original code in loopopts.cpp).
  1280   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1282   // Do nothing here if Identity will find a value
  1283   // (to avoid infinite chain of value phis generation).
  1284   if ( !phase->eqv(this, this->Identity(phase)) )
  1285     return NULL;
  1287   // Skip the split if the region dominates some control edge of the address.
  1288   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1289     return NULL;
  1291   const Type* this_type = this->bottom_type();
  1292   int this_index  = phase->C->get_alias_index(addr_t);
  1293   int this_offset = addr_t->offset();
  1294   int this_iid    = addr_t->is_oopptr()->instance_id();
  1295   int wins = 0;
  1296   PhaseIterGVN *igvn = phase->is_IterGVN();
  1297   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1298   for( uint i = 1; i < region->req(); i++ ) {
  1299     Node *x;
  1300     Node* the_clone = NULL;
  1301     if( region->in(i) == phase->C->top() ) {
  1302       x = phase->C->top();      // Dead path?  Use a dead data op
  1303     } else {
  1304       x = this->clone();        // Else clone up the data op
  1305       the_clone = x;            // Remember for possible deletion.
  1306       // Alter data node to use pre-phi inputs
  1307       if( this->in(0) == region ) {
  1308         x->set_req( 0, region->in(i) );
  1309       } else {
  1310         x->set_req( 0, NULL );
  1312       for( uint j = 1; j < this->req(); j++ ) {
  1313         Node *in = this->in(j);
  1314         if( in->is_Phi() && in->in(0) == region )
  1315           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1318     // Check for a 'win' on some paths
  1319     const Type *t = x->Value(igvn);
  1321     bool singleton = t->singleton();
  1323     // See comments in PhaseIdealLoop::split_thru_phi().
  1324     if( singleton && t == Type::TOP ) {
  1325       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1328     if( singleton ) {
  1329       wins++;
  1330       x = igvn->makecon(t);
  1331     } else {
  1332       // We now call Identity to try to simplify the cloned node.
  1333       // Note that some Identity methods call phase->type(this).
  1334       // Make sure that the type array is big enough for
  1335       // our new node, even though we may throw the node away.
  1336       // (This tweaking with igvn only works because x is a new node.)
  1337       igvn->set_type(x, t);
  1338       // If x is a TypeNode, capture any more-precise type permanently into Node
  1339       // otherwise it will be not updated during igvn->transform since
  1340       // igvn->type(x) is set to x->Value() already.
  1341       x->raise_bottom_type(t);
  1342       Node *y = x->Identity(igvn);
  1343       if( y != x ) {
  1344         wins++;
  1345         x = y;
  1346       } else {
  1347         y = igvn->hash_find(x);
  1348         if( y ) {
  1349           wins++;
  1350           x = y;
  1351         } else {
  1352           // Else x is a new node we are keeping
  1353           // We do not need register_new_node_with_optimizer
  1354           // because set_type has already been called.
  1355           igvn->_worklist.push(x);
  1359     if (x != the_clone && the_clone != NULL)
  1360       igvn->remove_dead_node(the_clone);
  1361     phi->set_req(i, x);
  1363   if( wins > 0 ) {
  1364     // Record Phi
  1365     igvn->register_new_node_with_optimizer(phi);
  1366     return phi;
  1368   igvn->remove_dead_node(phi);
  1369   return NULL;
  1372 //------------------------------Ideal------------------------------------------
  1373 // If the load is from Field memory and the pointer is non-null, we can
  1374 // zero out the control input.
  1375 // If the offset is constant and the base is an object allocation,
  1376 // try to hook me up to the exact initializing store.
  1377 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1378   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1379   if (p)  return (p == NodeSentinel) ? NULL : p;
  1381   Node* ctrl    = in(MemNode::Control);
  1382   Node* address = in(MemNode::Address);
  1384   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1385   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1386   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1387       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1388     ctrl = ctrl->in(0);
  1389     set_req(MemNode::Control,ctrl);
  1392   intptr_t ignore = 0;
  1393   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1394   if (base != NULL
  1395       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1396     // Check for useless control edge in some common special cases
  1397     if (in(MemNode::Control) != NULL
  1398         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1399         && all_controls_dominate(base, phase->C->start())) {
  1400       // A method-invariant, non-null address (constant or 'this' argument).
  1401       set_req(MemNode::Control, NULL);
  1404     if (EliminateAutoBox && can_reshape) {
  1405       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1406       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1407       if (is_autobox_object(atp)) {
  1408         Node* result = eliminate_autobox(phase);
  1409         if (result != NULL) return result;
  1414   Node* mem = in(MemNode::Memory);
  1415   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1417   if (addr_t != NULL) {
  1418     // try to optimize our memory input
  1419     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1420     if (opt_mem != mem) {
  1421       set_req(MemNode::Memory, opt_mem);
  1422       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1423       return this;
  1425     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1426     if (can_reshape && opt_mem->is_Phi() &&
  1427         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1428       // Split instance field load through Phi.
  1429       Node* result = split_through_phi(phase);
  1430       if (result != NULL) return result;
  1434   // Check for prior store with a different base or offset; make Load
  1435   // independent.  Skip through any number of them.  Bail out if the stores
  1436   // are in an endless dead cycle and report no progress.  This is a key
  1437   // transform for Reflection.  However, if after skipping through the Stores
  1438   // we can't then fold up against a prior store do NOT do the transform as
  1439   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1440   // array memory alive twice: once for the hoisted Load and again after the
  1441   // bypassed Store.  This situation only works if EVERYBODY who does
  1442   // anti-dependence work knows how to bypass.  I.e. we need all
  1443   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1444   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1445   // fold up, do so.
  1446   Node* prev_mem = find_previous_store(phase);
  1447   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1448   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1449     // (c) See if we can fold up on the spot, but don't fold up here.
  1450     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1451     // just return a prior value, which is done by Identity calls.
  1452     if (can_see_stored_value(prev_mem, phase)) {
  1453       // Make ready for step (d):
  1454       set_req(MemNode::Memory, prev_mem);
  1455       return this;
  1459   return NULL;                  // No further progress
  1462 // Helper to recognize certain Klass fields which are invariant across
  1463 // some group of array types (e.g., int[] or all T[] where T < Object).
  1464 const Type*
  1465 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1466                                  ciKlass* klass) const {
  1467   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1468     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1469     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1470     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1471     return TypeInt::make(klass->modifier_flags());
  1473   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1474     // The field is Klass::_access_flags.  Return its (constant) value.
  1475     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1476     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1477     return TypeInt::make(klass->access_flags());
  1479   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1480     // The field is Klass::_layout_helper.  Return its constant value if known.
  1481     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1482     return TypeInt::make(klass->layout_helper());
  1485   // No match.
  1486   return NULL;
  1489 //------------------------------Value-----------------------------------------
  1490 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1491   // Either input is TOP ==> the result is TOP
  1492   Node* mem = in(MemNode::Memory);
  1493   const Type *t1 = phase->type(mem);
  1494   if (t1 == Type::TOP)  return Type::TOP;
  1495   Node* adr = in(MemNode::Address);
  1496   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1497   if (tp == NULL || tp->empty())  return Type::TOP;
  1498   int off = tp->offset();
  1499   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1501   // Try to guess loaded type from pointer type
  1502   if (tp->base() == Type::AryPtr) {
  1503     const Type *t = tp->is_aryptr()->elem();
  1504     // Don't do this for integer types. There is only potential profit if
  1505     // the element type t is lower than _type; that is, for int types, if _type is
  1506     // more restrictive than t.  This only happens here if one is short and the other
  1507     // char (both 16 bits), and in those cases we've made an intentional decision
  1508     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1509     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1510     //
  1511     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1512     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1513     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1514     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1515     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1516     // In fact, that could have been the original type of p1, and p1 could have
  1517     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1518     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1519     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1520         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1521       // t might actually be lower than _type, if _type is a unique
  1522       // concrete subclass of abstract class t.
  1523       // Make sure the reference is not into the header, by comparing
  1524       // the offset against the offset of the start of the array's data.
  1525       // Different array types begin at slightly different offsets (12 vs. 16).
  1526       // We choose T_BYTE as an example base type that is least restrictive
  1527       // as to alignment, which will therefore produce the smallest
  1528       // possible base offset.
  1529       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1530       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1531         const Type* jt = t->join(_type);
  1532         // In any case, do not allow the join, per se, to empty out the type.
  1533         if (jt->empty() && !t->empty()) {
  1534           // This can happen if a interface-typed array narrows to a class type.
  1535           jt = _type;
  1538         if (EliminateAutoBox && adr->is_AddP()) {
  1539           // The pointers in the autobox arrays are always non-null
  1540           Node* base = adr->in(AddPNode::Base);
  1541           if (base != NULL &&
  1542               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1543             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1544             if (is_autobox_cache(atp)) {
  1545               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1549         return jt;
  1552   } else if (tp->base() == Type::InstPtr) {
  1553     const TypeInstPtr* tinst = tp->is_instptr();
  1554     ciKlass* klass = tinst->klass();
  1555     assert( off != Type::OffsetBot ||
  1556             // arrays can be cast to Objects
  1557             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1558             // unsafe field access may not have a constant offset
  1559             phase->C->has_unsafe_access(),
  1560             "Field accesses must be precise" );
  1561     // For oop loads, we expect the _type to be precise
  1562     if (OptimizeStringConcat && klass == phase->C->env()->String_klass() &&
  1563         adr->is_AddP() && off != Type::OffsetBot) {
  1564       // For constant Strings treat the fields as compile time constants.
  1565       Node* base = adr->in(AddPNode::Base);
  1566       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1567       if (t != NULL && t->singleton()) {
  1568         ciObject* string = t->const_oop();
  1569         ciConstant constant = string->as_instance()->field_value_by_offset(off);
  1570         if (constant.basic_type() == T_INT) {
  1571           return TypeInt::make(constant.as_int());
  1572         } else if (constant.basic_type() == T_ARRAY) {
  1573           if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1574             return TypeNarrowOop::make_from_constant(constant.as_object());
  1575           } else {
  1576             return TypeOopPtr::make_from_constant(constant.as_object());
  1581   } else if (tp->base() == Type::KlassPtr) {
  1582     assert( off != Type::OffsetBot ||
  1583             // arrays can be cast to Objects
  1584             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1585             // also allow array-loading from the primary supertype
  1586             // array during subtype checks
  1587             Opcode() == Op_LoadKlass,
  1588             "Field accesses must be precise" );
  1589     // For klass/static loads, we expect the _type to be precise
  1592   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1593   if (tkls != NULL && !StressReflectiveCode) {
  1594     ciKlass* klass = tkls->klass();
  1595     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1596       // We are loading a field from a Klass metaobject whose identity
  1597       // is known at compile time (the type is "exact" or "precise").
  1598       // Check for fields we know are maintained as constants by the VM.
  1599       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1600         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1601         // (Folds up type checking code.)
  1602         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1603         return TypeInt::make(klass->super_check_offset());
  1605       // Compute index into primary_supers array
  1606       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1607       // Check for overflowing; use unsigned compare to handle the negative case.
  1608       if( depth < ciKlass::primary_super_limit() ) {
  1609         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1610         // (Folds up type checking code.)
  1611         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1612         ciKlass *ss = klass->super_of_depth(depth);
  1613         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1615       const Type* aift = load_array_final_field(tkls, klass);
  1616       if (aift != NULL)  return aift;
  1617       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1618           && klass->is_array_klass()) {
  1619         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1620         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1621         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1622         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1624       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1625         // The field is Klass::_java_mirror.  Return its (constant) value.
  1626         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1627         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1628         return TypeInstPtr::make(klass->java_mirror());
  1632     // We can still check if we are loading from the primary_supers array at a
  1633     // shallow enough depth.  Even though the klass is not exact, entries less
  1634     // than or equal to its super depth are correct.
  1635     if (klass->is_loaded() ) {
  1636       ciType *inner = klass->klass();
  1637       while( inner->is_obj_array_klass() )
  1638         inner = inner->as_obj_array_klass()->base_element_type();
  1639       if( inner->is_instance_klass() &&
  1640           !inner->as_instance_klass()->flags().is_interface() ) {
  1641         // Compute index into primary_supers array
  1642         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1643         // Check for overflowing; use unsigned compare to handle the negative case.
  1644         if( depth < ciKlass::primary_super_limit() &&
  1645             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1646           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1647           // (Folds up type checking code.)
  1648           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1649           ciKlass *ss = klass->super_of_depth(depth);
  1650           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1655     // If the type is enough to determine that the thing is not an array,
  1656     // we can give the layout_helper a positive interval type.
  1657     // This will help short-circuit some reflective code.
  1658     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1659         && !klass->is_array_klass() // not directly typed as an array
  1660         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1661         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1662         ) {
  1663       // Note:  When interfaces are reliable, we can narrow the interface
  1664       // test to (klass != Serializable && klass != Cloneable).
  1665       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1666       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1667       // The key property of this type is that it folds up tests
  1668       // for array-ness, since it proves that the layout_helper is positive.
  1669       // Thus, a generic value like the basic object layout helper works fine.
  1670       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1674   // If we are loading from a freshly-allocated object, produce a zero,
  1675   // if the load is provably beyond the header of the object.
  1676   // (Also allow a variable load from a fresh array to produce zero.)
  1677   if (ReduceFieldZeroing) {
  1678     Node* value = can_see_stored_value(mem,phase);
  1679     if (value != NULL && value->is_Con())
  1680       return value->bottom_type();
  1683   const TypeOopPtr *tinst = tp->isa_oopptr();
  1684   if (tinst != NULL && tinst->is_known_instance_field()) {
  1685     // If we have an instance type and our memory input is the
  1686     // programs's initial memory state, there is no matching store,
  1687     // so just return a zero of the appropriate type
  1688     Node *mem = in(MemNode::Memory);
  1689     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1690       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1691       return Type::get_zero_type(_type->basic_type());
  1694   return _type;
  1697 //------------------------------match_edge-------------------------------------
  1698 // Do we Match on this edge index or not?  Match only the address.
  1699 uint LoadNode::match_edge(uint idx) const {
  1700   return idx == MemNode::Address;
  1703 //--------------------------LoadBNode::Ideal--------------------------------------
  1704 //
  1705 //  If the previous store is to the same address as this load,
  1706 //  and the value stored was larger than a byte, replace this load
  1707 //  with the value stored truncated to a byte.  If no truncation is
  1708 //  needed, the replacement is done in LoadNode::Identity().
  1709 //
  1710 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1711   Node* mem = in(MemNode::Memory);
  1712   Node* value = can_see_stored_value(mem,phase);
  1713   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1714     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1715     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1717   // Identity call will handle the case where truncation is not needed.
  1718   return LoadNode::Ideal(phase, can_reshape);
  1721 //--------------------------LoadUBNode::Ideal-------------------------------------
  1722 //
  1723 //  If the previous store is to the same address as this load,
  1724 //  and the value stored was larger than a byte, replace this load
  1725 //  with the value stored truncated to a byte.  If no truncation is
  1726 //  needed, the replacement is done in LoadNode::Identity().
  1727 //
  1728 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1729   Node* mem = in(MemNode::Memory);
  1730   Node* value = can_see_stored_value(mem, phase);
  1731   if (value && !phase->type(value)->higher_equal(_type))
  1732     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1733   // Identity call will handle the case where truncation is not needed.
  1734   return LoadNode::Ideal(phase, can_reshape);
  1737 //--------------------------LoadUSNode::Ideal-------------------------------------
  1738 //
  1739 //  If the previous store is to the same address as this load,
  1740 //  and the value stored was larger than a char, replace this load
  1741 //  with the value stored truncated to a char.  If no truncation is
  1742 //  needed, the replacement is done in LoadNode::Identity().
  1743 //
  1744 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1745   Node* mem = in(MemNode::Memory);
  1746   Node* value = can_see_stored_value(mem,phase);
  1747   if( value && !phase->type(value)->higher_equal( _type ) )
  1748     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1749   // Identity call will handle the case where truncation is not needed.
  1750   return LoadNode::Ideal(phase, can_reshape);
  1753 //--------------------------LoadSNode::Ideal--------------------------------------
  1754 //
  1755 //  If the previous store is to the same address as this load,
  1756 //  and the value stored was larger than a short, replace this load
  1757 //  with the value stored truncated to a short.  If no truncation is
  1758 //  needed, the replacement is done in LoadNode::Identity().
  1759 //
  1760 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1761   Node* mem = in(MemNode::Memory);
  1762   Node* value = can_see_stored_value(mem,phase);
  1763   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1764     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1765     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1767   // Identity call will handle the case where truncation is not needed.
  1768   return LoadNode::Ideal(phase, can_reshape);
  1771 //=============================================================================
  1772 //----------------------------LoadKlassNode::make------------------------------
  1773 // Polymorphic factory method:
  1774 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1775   Compile* C = gvn.C;
  1776   Node *ctl = NULL;
  1777   // sanity check the alias category against the created node type
  1778   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1779   assert(adr_type != NULL, "expecting TypeOopPtr");
  1780 #ifdef _LP64
  1781   if (adr_type->is_ptr_to_narrowoop()) {
  1782     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1783     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1785 #endif
  1786   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1787   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1790 //------------------------------Value------------------------------------------
  1791 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1792   return klass_value_common(phase);
  1795 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1796   // Either input is TOP ==> the result is TOP
  1797   const Type *t1 = phase->type( in(MemNode::Memory) );
  1798   if (t1 == Type::TOP)  return Type::TOP;
  1799   Node *adr = in(MemNode::Address);
  1800   const Type *t2 = phase->type( adr );
  1801   if (t2 == Type::TOP)  return Type::TOP;
  1802   const TypePtr *tp = t2->is_ptr();
  1803   if (TypePtr::above_centerline(tp->ptr()) ||
  1804       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1806   // Return a more precise klass, if possible
  1807   const TypeInstPtr *tinst = tp->isa_instptr();
  1808   if (tinst != NULL) {
  1809     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1810     int offset = tinst->offset();
  1811     if (ik == phase->C->env()->Class_klass()
  1812         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1813             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1814       // We are loading a special hidden field from a Class mirror object,
  1815       // the field which points to the VM's Klass metaobject.
  1816       ciType* t = tinst->java_mirror_type();
  1817       // java_mirror_type returns non-null for compile-time Class constants.
  1818       if (t != NULL) {
  1819         // constant oop => constant klass
  1820         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1821           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1823         if (!t->is_klass()) {
  1824           // a primitive Class (e.g., int.class) has NULL for a klass field
  1825           return TypePtr::NULL_PTR;
  1827         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1828         return TypeKlassPtr::make(t->as_klass());
  1830       // non-constant mirror, so we can't tell what's going on
  1832     if( !ik->is_loaded() )
  1833       return _type;             // Bail out if not loaded
  1834     if (offset == oopDesc::klass_offset_in_bytes()) {
  1835       if (tinst->klass_is_exact()) {
  1836         return TypeKlassPtr::make(ik);
  1838       // See if we can become precise: no subklasses and no interface
  1839       // (Note:  We need to support verified interfaces.)
  1840       if (!ik->is_interface() && !ik->has_subklass()) {
  1841         //assert(!UseExactTypes, "this code should be useless with exact types");
  1842         // Add a dependence; if any subclass added we need to recompile
  1843         if (!ik->is_final()) {
  1844           // %%% should use stronger assert_unique_concrete_subtype instead
  1845           phase->C->dependencies()->assert_leaf_type(ik);
  1847         // Return precise klass
  1848         return TypeKlassPtr::make(ik);
  1851       // Return root of possible klass
  1852       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1856   // Check for loading klass from an array
  1857   const TypeAryPtr *tary = tp->isa_aryptr();
  1858   if( tary != NULL ) {
  1859     ciKlass *tary_klass = tary->klass();
  1860     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1861         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1862       if (tary->klass_is_exact()) {
  1863         return TypeKlassPtr::make(tary_klass);
  1865       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1866       // If the klass is an object array, we defer the question to the
  1867       // array component klass.
  1868       if( ak->is_obj_array_klass() ) {
  1869         assert( ak->is_loaded(), "" );
  1870         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1871         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1872           ciInstanceKlass* ik = base_k->as_instance_klass();
  1873           // See if we can become precise: no subklasses and no interface
  1874           if (!ik->is_interface() && !ik->has_subklass()) {
  1875             //assert(!UseExactTypes, "this code should be useless with exact types");
  1876             // Add a dependence; if any subclass added we need to recompile
  1877             if (!ik->is_final()) {
  1878               phase->C->dependencies()->assert_leaf_type(ik);
  1880             // Return precise array klass
  1881             return TypeKlassPtr::make(ak);
  1884         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1885       } else {                  // Found a type-array?
  1886         //assert(!UseExactTypes, "this code should be useless with exact types");
  1887         assert( ak->is_type_array_klass(), "" );
  1888         return TypeKlassPtr::make(ak); // These are always precise
  1893   // Check for loading klass from an array klass
  1894   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1895   if (tkls != NULL && !StressReflectiveCode) {
  1896     ciKlass* klass = tkls->klass();
  1897     if( !klass->is_loaded() )
  1898       return _type;             // Bail out if not loaded
  1899     if( klass->is_obj_array_klass() &&
  1900         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1901       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1902       // // Always returning precise element type is incorrect,
  1903       // // e.g., element type could be object and array may contain strings
  1904       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1906       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1907       // according to the element type's subclassing.
  1908       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1910     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1911         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1912       ciKlass* sup = klass->as_instance_klass()->super();
  1913       // The field is Klass::_super.  Return its (constant) value.
  1914       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1915       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1919   // Bailout case
  1920   return LoadNode::Value(phase);
  1923 //------------------------------Identity---------------------------------------
  1924 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1925 // Also feed through the klass in Allocate(...klass...)._klass.
  1926 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1927   return klass_identity_common(phase);
  1930 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1931   Node* x = LoadNode::Identity(phase);
  1932   if (x != this)  return x;
  1934   // Take apart the address into an oop and and offset.
  1935   // Return 'this' if we cannot.
  1936   Node*    adr    = in(MemNode::Address);
  1937   intptr_t offset = 0;
  1938   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1939   if (base == NULL)     return this;
  1940   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1941   if (toop == NULL)     return this;
  1943   // We can fetch the klass directly through an AllocateNode.
  1944   // This works even if the klass is not constant (clone or newArray).
  1945   if (offset == oopDesc::klass_offset_in_bytes()) {
  1946     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1947     if (allocated_klass != NULL) {
  1948       return allocated_klass;
  1952   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1953   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1954   // See inline_native_Class_query for occurrences of these patterns.
  1955   // Java Example:  x.getClass().isAssignableFrom(y)
  1956   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1957   //
  1958   // This improves reflective code, often making the Class
  1959   // mirror go completely dead.  (Current exception:  Class
  1960   // mirrors may appear in debug info, but we could clean them out by
  1961   // introducing a new debug info operator for klassOop.java_mirror).
  1962   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1963       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1964           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1965     // We are loading a special hidden field from a Class mirror,
  1966     // the field which points to its Klass or arrayKlass metaobject.
  1967     if (base->is_Load()) {
  1968       Node* adr2 = base->in(MemNode::Address);
  1969       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1970       if (tkls != NULL && !tkls->empty()
  1971           && (tkls->klass()->is_instance_klass() ||
  1972               tkls->klass()->is_array_klass())
  1973           && adr2->is_AddP()
  1974           ) {
  1975         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1976         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1977           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1979         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1980           return adr2->in(AddPNode::Base);
  1986   return this;
  1990 //------------------------------Value------------------------------------------
  1991 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1992   const Type *t = klass_value_common(phase);
  1993   if (t == Type::TOP)
  1994     return t;
  1996   return t->make_narrowoop();
  1999 //------------------------------Identity---------------------------------------
  2000 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2001 // Also feed through the klass in Allocate(...klass...)._klass.
  2002 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2003   Node *x = klass_identity_common(phase);
  2005   const Type *t = phase->type( x );
  2006   if( t == Type::TOP ) return x;
  2007   if( t->isa_narrowoop()) return x;
  2009   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  2012 //------------------------------Value-----------------------------------------
  2013 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2014   // Either input is TOP ==> the result is TOP
  2015   const Type *t1 = phase->type( in(MemNode::Memory) );
  2016   if( t1 == Type::TOP ) return Type::TOP;
  2017   Node *adr = in(MemNode::Address);
  2018   const Type *t2 = phase->type( adr );
  2019   if( t2 == Type::TOP ) return Type::TOP;
  2020   const TypePtr *tp = t2->is_ptr();
  2021   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2022   const TypeAryPtr *tap = tp->isa_aryptr();
  2023   if( !tap ) return _type;
  2024   return tap->size();
  2027 //-------------------------------Ideal---------------------------------------
  2028 // Feed through the length in AllocateArray(...length...)._length.
  2029 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2030   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2031   if (p)  return (p == NodeSentinel) ? NULL : p;
  2033   // Take apart the address into an oop and and offset.
  2034   // Return 'this' if we cannot.
  2035   Node*    adr    = in(MemNode::Address);
  2036   intptr_t offset = 0;
  2037   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2038   if (base == NULL)     return NULL;
  2039   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2040   if (tary == NULL)     return NULL;
  2042   // We can fetch the length directly through an AllocateArrayNode.
  2043   // This works even if the length is not constant (clone or newArray).
  2044   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2045     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2046     if (alloc != NULL) {
  2047       Node* allocated_length = alloc->Ideal_length();
  2048       Node* len = alloc->make_ideal_length(tary, phase);
  2049       if (allocated_length != len) {
  2050         // New CastII improves on this.
  2051         return len;
  2056   return NULL;
  2059 //------------------------------Identity---------------------------------------
  2060 // Feed through the length in AllocateArray(...length...)._length.
  2061 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2062   Node* x = LoadINode::Identity(phase);
  2063   if (x != this)  return x;
  2065   // Take apart the address into an oop and and offset.
  2066   // Return 'this' if we cannot.
  2067   Node*    adr    = in(MemNode::Address);
  2068   intptr_t offset = 0;
  2069   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2070   if (base == NULL)     return this;
  2071   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2072   if (tary == NULL)     return this;
  2074   // We can fetch the length directly through an AllocateArrayNode.
  2075   // This works even if the length is not constant (clone or newArray).
  2076   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2077     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2078     if (alloc != NULL) {
  2079       Node* allocated_length = alloc->Ideal_length();
  2080       // Do not allow make_ideal_length to allocate a CastII node.
  2081       Node* len = alloc->make_ideal_length(tary, phase, false);
  2082       if (allocated_length == len) {
  2083         // Return allocated_length only if it would not be improved by a CastII.
  2084         return allocated_length;
  2089   return this;
  2093 //=============================================================================
  2094 //---------------------------StoreNode::make-----------------------------------
  2095 // Polymorphic factory method:
  2096 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2097   Compile* C = gvn.C;
  2098   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2099           ctl != NULL, "raw memory operations should have control edge");
  2101   switch (bt) {
  2102   case T_BOOLEAN:
  2103   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2104   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2105   case T_CHAR:
  2106   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2107   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2108   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2109   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2110   case T_ADDRESS:
  2111   case T_OBJECT:
  2112 #ifdef _LP64
  2113     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2114         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2115          adr->bottom_type()->isa_rawptr())) {
  2116       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2117       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2118     } else
  2119 #endif
  2121       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2124   ShouldNotReachHere();
  2125   return (StoreNode*)NULL;
  2128 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2129   bool require_atomic = true;
  2130   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2134 //--------------------------bottom_type----------------------------------------
  2135 const Type *StoreNode::bottom_type() const {
  2136   return Type::MEMORY;
  2139 //------------------------------hash-------------------------------------------
  2140 uint StoreNode::hash() const {
  2141   // unroll addition of interesting fields
  2142   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2144   // Since they are not commoned, do not hash them:
  2145   return NO_HASH;
  2148 //------------------------------Ideal------------------------------------------
  2149 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2150 // When a store immediately follows a relevant allocation/initialization,
  2151 // try to capture it into the initialization, or hoist it above.
  2152 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2153   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2154   if (p)  return (p == NodeSentinel) ? NULL : p;
  2156   Node* mem     = in(MemNode::Memory);
  2157   Node* address = in(MemNode::Address);
  2159   // Back-to-back stores to same address?  Fold em up.
  2160   // Generally unsafe if I have intervening uses...
  2161   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  2162     // Looking at a dead closed cycle of memory?
  2163     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2165     assert(Opcode() == mem->Opcode() ||
  2166            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2167            "no mismatched stores, except on raw memory");
  2169     if (mem->outcnt() == 1 &&           // check for intervening uses
  2170         mem->as_Store()->memory_size() <= this->memory_size()) {
  2171       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2172       // For example, 'mem' might be the final state at a conditional return.
  2173       // Or, 'mem' might be used by some node which is live at the same time
  2174       // 'this' is live, which might be unschedulable.  So, require exactly
  2175       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2176       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2177       if (can_reshape) {  // (%%% is this an anachronism?)
  2178         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2179                   phase->is_IterGVN());
  2180       } else {
  2181         // It's OK to do this in the parser, since DU info is always accurate,
  2182         // and the parser always refers to nodes via SafePointNode maps.
  2183         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2185       return this;
  2189   // Capture an unaliased, unconditional, simple store into an initializer.
  2190   // Or, if it is independent of the allocation, hoist it above the allocation.
  2191   if (ReduceFieldZeroing && /*can_reshape &&*/
  2192       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2193     InitializeNode* init = mem->in(0)->as_Initialize();
  2194     intptr_t offset = init->can_capture_store(this, phase);
  2195     if (offset > 0) {
  2196       Node* moved = init->capture_store(this, offset, phase);
  2197       // If the InitializeNode captured me, it made a raw copy of me,
  2198       // and I need to disappear.
  2199       if (moved != NULL) {
  2200         // %%% hack to ensure that Ideal returns a new node:
  2201         mem = MergeMemNode::make(phase->C, mem);
  2202         return mem;             // fold me away
  2207   return NULL;                  // No further progress
  2210 //------------------------------Value-----------------------------------------
  2211 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2212   // Either input is TOP ==> the result is TOP
  2213   const Type *t1 = phase->type( in(MemNode::Memory) );
  2214   if( t1 == Type::TOP ) return Type::TOP;
  2215   const Type *t2 = phase->type( in(MemNode::Address) );
  2216   if( t2 == Type::TOP ) return Type::TOP;
  2217   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2218   if( t3 == Type::TOP ) return Type::TOP;
  2219   return Type::MEMORY;
  2222 //------------------------------Identity---------------------------------------
  2223 // Remove redundant stores:
  2224 //   Store(m, p, Load(m, p)) changes to m.
  2225 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2226 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2227   Node* mem = in(MemNode::Memory);
  2228   Node* adr = in(MemNode::Address);
  2229   Node* val = in(MemNode::ValueIn);
  2231   // Load then Store?  Then the Store is useless
  2232   if (val->is_Load() &&
  2233       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2234       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2235       val->as_Load()->store_Opcode() == Opcode()) {
  2236     return mem;
  2239   // Two stores in a row of the same value?
  2240   if (mem->is_Store() &&
  2241       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2242       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2243       mem->Opcode() == Opcode()) {
  2244     return mem;
  2247   // Store of zero anywhere into a freshly-allocated object?
  2248   // Then the store is useless.
  2249   // (It must already have been captured by the InitializeNode.)
  2250   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2251     // a newly allocated object is already all-zeroes everywhere
  2252     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2253       return mem;
  2256     // the store may also apply to zero-bits in an earlier object
  2257     Node* prev_mem = find_previous_store(phase);
  2258     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2259     if (prev_mem != NULL) {
  2260       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2261       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2262         // prev_val and val might differ by a cast; it would be good
  2263         // to keep the more informative of the two.
  2264         return mem;
  2269   return this;
  2272 //------------------------------match_edge-------------------------------------
  2273 // Do we Match on this edge index or not?  Match only memory & value
  2274 uint StoreNode::match_edge(uint idx) const {
  2275   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2278 //------------------------------cmp--------------------------------------------
  2279 // Do not common stores up together.  They generally have to be split
  2280 // back up anyways, so do not bother.
  2281 uint StoreNode::cmp( const Node &n ) const {
  2282   return (&n == this);          // Always fail except on self
  2285 //------------------------------Ideal_masked_input-----------------------------
  2286 // Check for a useless mask before a partial-word store
  2287 // (StoreB ... (AndI valIn conIa) )
  2288 // If (conIa & mask == mask) this simplifies to
  2289 // (StoreB ... (valIn) )
  2290 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2291   Node *val = in(MemNode::ValueIn);
  2292   if( val->Opcode() == Op_AndI ) {
  2293     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2294     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2295       set_req(MemNode::ValueIn, val->in(1));
  2296       return this;
  2299   return NULL;
  2303 //------------------------------Ideal_sign_extended_input----------------------
  2304 // Check for useless sign-extension before a partial-word store
  2305 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2306 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2307 // (StoreB ... (valIn) )
  2308 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2309   Node *val = in(MemNode::ValueIn);
  2310   if( val->Opcode() == Op_RShiftI ) {
  2311     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2312     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2313       Node *shl = val->in(1);
  2314       if( shl->Opcode() == Op_LShiftI ) {
  2315         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2316         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2317           set_req(MemNode::ValueIn, shl->in(1));
  2318           return this;
  2323   return NULL;
  2326 //------------------------------value_never_loaded-----------------------------------
  2327 // Determine whether there are any possible loads of the value stored.
  2328 // For simplicity, we actually check if there are any loads from the
  2329 // address stored to, not just for loads of the value stored by this node.
  2330 //
  2331 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2332   Node *adr = in(Address);
  2333   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2334   if (adr_oop == NULL)
  2335     return false;
  2336   if (!adr_oop->is_known_instance_field())
  2337     return false; // if not a distinct instance, there may be aliases of the address
  2338   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2339     Node *use = adr->fast_out(i);
  2340     int opc = use->Opcode();
  2341     if (use->is_Load() || use->is_LoadStore()) {
  2342       return false;
  2345   return true;
  2348 //=============================================================================
  2349 //------------------------------Ideal------------------------------------------
  2350 // If the store is from an AND mask that leaves the low bits untouched, then
  2351 // we can skip the AND operation.  If the store is from a sign-extension
  2352 // (a left shift, then right shift) we can skip both.
  2353 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2354   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2355   if( progress != NULL ) return progress;
  2357   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2358   if( progress != NULL ) return progress;
  2360   // Finally check the default case
  2361   return StoreNode::Ideal(phase, can_reshape);
  2364 //=============================================================================
  2365 //------------------------------Ideal------------------------------------------
  2366 // If the store is from an AND mask that leaves the low bits untouched, then
  2367 // we can skip the AND operation
  2368 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2369   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2370   if( progress != NULL ) return progress;
  2372   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2373   if( progress != NULL ) return progress;
  2375   // Finally check the default case
  2376   return StoreNode::Ideal(phase, can_reshape);
  2379 //=============================================================================
  2380 //------------------------------Identity---------------------------------------
  2381 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2382   // No need to card mark when storing a null ptr
  2383   Node* my_store = in(MemNode::OopStore);
  2384   if (my_store->is_Store()) {
  2385     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2386     if( t1 == TypePtr::NULL_PTR ) {
  2387       return in(MemNode::Memory);
  2390   return this;
  2393 //=============================================================================
  2394 //------------------------------Ideal---------------------------------------
  2395 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2396   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2397   if (progress != NULL) return progress;
  2399   Node* my_store = in(MemNode::OopStore);
  2400   if (my_store->is_MergeMem()) {
  2401     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2402     set_req(MemNode::OopStore, mem);
  2403     return this;
  2406   return NULL;
  2409 //------------------------------Value-----------------------------------------
  2410 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2411   // Either input is TOP ==> the result is TOP
  2412   const Type *t = phase->type( in(MemNode::Memory) );
  2413   if( t == Type::TOP ) return Type::TOP;
  2414   t = phase->type( in(MemNode::Address) );
  2415   if( t == Type::TOP ) return Type::TOP;
  2416   t = phase->type( in(MemNode::ValueIn) );
  2417   if( t == Type::TOP ) return Type::TOP;
  2418   // If extra input is TOP ==> the result is TOP
  2419   t = phase->type( in(MemNode::OopStore) );
  2420   if( t == Type::TOP ) return Type::TOP;
  2422   return StoreNode::Value( phase );
  2426 //=============================================================================
  2427 //----------------------------------SCMemProjNode------------------------------
  2428 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2430   return bottom_type();
  2433 //=============================================================================
  2434 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2435   init_req(MemNode::Control, c  );
  2436   init_req(MemNode::Memory , mem);
  2437   init_req(MemNode::Address, adr);
  2438   init_req(MemNode::ValueIn, val);
  2439   init_req(         ExpectedIn, ex );
  2440   init_class_id(Class_LoadStore);
  2444 //=============================================================================
  2445 //-------------------------------adr_type--------------------------------------
  2446 // Do we Match on this edge index or not?  Do not match memory
  2447 const TypePtr* ClearArrayNode::adr_type() const {
  2448   Node *adr = in(3);
  2449   return MemNode::calculate_adr_type(adr->bottom_type());
  2452 //------------------------------match_edge-------------------------------------
  2453 // Do we Match on this edge index or not?  Do not match memory
  2454 uint ClearArrayNode::match_edge(uint idx) const {
  2455   return idx > 1;
  2458 //------------------------------Identity---------------------------------------
  2459 // Clearing a zero length array does nothing
  2460 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2461   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2464 //------------------------------Idealize---------------------------------------
  2465 // Clearing a short array is faster with stores
  2466 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2467   const int unit = BytesPerLong;
  2468   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2469   if (!t)  return NULL;
  2470   if (!t->is_con())  return NULL;
  2471   intptr_t raw_count = t->get_con();
  2472   intptr_t size = raw_count;
  2473   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2474   // Clearing nothing uses the Identity call.
  2475   // Negative clears are possible on dead ClearArrays
  2476   // (see jck test stmt114.stmt11402.val).
  2477   if (size <= 0 || size % unit != 0)  return NULL;
  2478   intptr_t count = size / unit;
  2479   // Length too long; use fast hardware clear
  2480   if (size > Matcher::init_array_short_size)  return NULL;
  2481   Node *mem = in(1);
  2482   if( phase->type(mem)==Type::TOP ) return NULL;
  2483   Node *adr = in(3);
  2484   const Type* at = phase->type(adr);
  2485   if( at==Type::TOP ) return NULL;
  2486   const TypePtr* atp = at->isa_ptr();
  2487   // adjust atp to be the correct array element address type
  2488   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2489   else              atp = atp->add_offset(Type::OffsetBot);
  2490   // Get base for derived pointer purposes
  2491   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2492   Node *base = adr->in(1);
  2494   Node *zero = phase->makecon(TypeLong::ZERO);
  2495   Node *off  = phase->MakeConX(BytesPerLong);
  2496   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2497   count--;
  2498   while( count-- ) {
  2499     mem = phase->transform(mem);
  2500     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2501     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2503   return mem;
  2506 //----------------------------step_through----------------------------------
  2507 // Return allocation input memory edge if it is different instance
  2508 // or itself if it is the one we are looking for.
  2509 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2510   Node* n = *np;
  2511   assert(n->is_ClearArray(), "sanity");
  2512   intptr_t offset;
  2513   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2514   // This method is called only before Allocate nodes are expanded during
  2515   // macro nodes expansion. Before that ClearArray nodes are only generated
  2516   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2517   assert(alloc != NULL, "should have allocation");
  2518   if (alloc->_idx == instance_id) {
  2519     // Can not bypass initialization of the instance we are looking for.
  2520     return false;
  2522   // Otherwise skip it.
  2523   InitializeNode* init = alloc->initialization();
  2524   if (init != NULL)
  2525     *np = init->in(TypeFunc::Memory);
  2526   else
  2527     *np = alloc->in(TypeFunc::Memory);
  2528   return true;
  2531 //----------------------------clear_memory-------------------------------------
  2532 // Generate code to initialize object storage to zero.
  2533 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2534                                    intptr_t start_offset,
  2535                                    Node* end_offset,
  2536                                    PhaseGVN* phase) {
  2537   Compile* C = phase->C;
  2538   intptr_t offset = start_offset;
  2540   int unit = BytesPerLong;
  2541   if ((offset % unit) != 0) {
  2542     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2543     adr = phase->transform(adr);
  2544     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2545     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2546     mem = phase->transform(mem);
  2547     offset += BytesPerInt;
  2549   assert((offset % unit) == 0, "");
  2551   // Initialize the remaining stuff, if any, with a ClearArray.
  2552   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2555 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2556                                    Node* start_offset,
  2557                                    Node* end_offset,
  2558                                    PhaseGVN* phase) {
  2559   if (start_offset == end_offset) {
  2560     // nothing to do
  2561     return mem;
  2564   Compile* C = phase->C;
  2565   int unit = BytesPerLong;
  2566   Node* zbase = start_offset;
  2567   Node* zend  = end_offset;
  2569   // Scale to the unit required by the CPU:
  2570   if (!Matcher::init_array_count_is_in_bytes) {
  2571     Node* shift = phase->intcon(exact_log2(unit));
  2572     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2573     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2576   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2577   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2579   // Bulk clear double-words
  2580   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2581   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2582   return phase->transform(mem);
  2585 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2586                                    intptr_t start_offset,
  2587                                    intptr_t end_offset,
  2588                                    PhaseGVN* phase) {
  2589   if (start_offset == end_offset) {
  2590     // nothing to do
  2591     return mem;
  2594   Compile* C = phase->C;
  2595   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2596   intptr_t done_offset = end_offset;
  2597   if ((done_offset % BytesPerLong) != 0) {
  2598     done_offset -= BytesPerInt;
  2600   if (done_offset > start_offset) {
  2601     mem = clear_memory(ctl, mem, dest,
  2602                        start_offset, phase->MakeConX(done_offset), phase);
  2604   if (done_offset < end_offset) { // emit the final 32-bit store
  2605     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2606     adr = phase->transform(adr);
  2607     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2608     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2609     mem = phase->transform(mem);
  2610     done_offset += BytesPerInt;
  2612   assert(done_offset == end_offset, "");
  2613   return mem;
  2616 //=============================================================================
  2617 // Do we match on this edge? No memory edges
  2618 uint StrCompNode::match_edge(uint idx) const {
  2619   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
  2622 //------------------------------Ideal------------------------------------------
  2623 // Return a node which is more "ideal" than the current node.  Strip out
  2624 // control copies
  2625 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2626   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2629 //=============================================================================
  2630 // Do we match on this edge? No memory edges
  2631 uint StrEqualsNode::match_edge(uint idx) const {
  2632   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
  2635 //------------------------------Ideal------------------------------------------
  2636 // Return a node which is more "ideal" than the current node.  Strip out
  2637 // control copies
  2638 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2639   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2642 //=============================================================================
  2643 // Do we match on this edge? No memory edges
  2644 uint StrIndexOfNode::match_edge(uint idx) const {
  2645   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
  2648 //------------------------------Ideal------------------------------------------
  2649 // Return a node which is more "ideal" than the current node.  Strip out
  2650 // control copies
  2651 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2652   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2655 //=============================================================================
  2656 // Do we match on this edge? No memory edges
  2657 uint AryEqNode::match_edge(uint idx) const {
  2658   return idx == 2 || idx == 3; // StrEquals ary1 ary2
  2660 //------------------------------Ideal------------------------------------------
  2661 // Return a node which is more "ideal" than the current node.  Strip out
  2662 // control copies
  2663 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2664   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2667 //=============================================================================
  2668 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2669   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2670     _adr_type(C->get_adr_type(alias_idx))
  2672   init_class_id(Class_MemBar);
  2673   Node* top = C->top();
  2674   init_req(TypeFunc::I_O,top);
  2675   init_req(TypeFunc::FramePtr,top);
  2676   init_req(TypeFunc::ReturnAdr,top);
  2677   if (precedent != NULL)
  2678     init_req(TypeFunc::Parms, precedent);
  2681 //------------------------------cmp--------------------------------------------
  2682 uint MemBarNode::hash() const { return NO_HASH; }
  2683 uint MemBarNode::cmp( const Node &n ) const {
  2684   return (&n == this);          // Always fail except on self
  2687 //------------------------------make-------------------------------------------
  2688 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2689   int len = Precedent + (pn == NULL? 0: 1);
  2690   switch (opcode) {
  2691   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2692   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2693   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2694   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2695   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2696   default:                 ShouldNotReachHere(); return NULL;
  2700 //------------------------------Ideal------------------------------------------
  2701 // Return a node which is more "ideal" than the current node.  Strip out
  2702 // control copies
  2703 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2704   if (remove_dead_region(phase, can_reshape)) return this;
  2706   // Eliminate volatile MemBars for scalar replaced objects.
  2707   if (can_reshape && req() == (Precedent+1) &&
  2708       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2709     // Volatile field loads and stores.
  2710     Node* my_mem = in(MemBarNode::Precedent);
  2711     if (my_mem != NULL && my_mem->is_Mem()) {
  2712       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2713       // Check for scalar replaced object reference.
  2714       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2715           t_oop->offset() != Type::OffsetBot &&
  2716           t_oop->offset() != Type::OffsetTop) {
  2717         // Replace MemBar projections by its inputs.
  2718         PhaseIterGVN* igvn = phase->is_IterGVN();
  2719         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2720         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2721         // Must return either the original node (now dead) or a new node
  2722         // (Do not return a top here, since that would break the uniqueness of top.)
  2723         return new (phase->C, 1) ConINode(TypeInt::ZERO);
  2727   return NULL;
  2730 //------------------------------Value------------------------------------------
  2731 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2732   if( !in(0) ) return Type::TOP;
  2733   if( phase->type(in(0)) == Type::TOP )
  2734     return Type::TOP;
  2735   return TypeTuple::MEMBAR;
  2738 //------------------------------match------------------------------------------
  2739 // Construct projections for memory.
  2740 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2741   switch (proj->_con) {
  2742   case TypeFunc::Control:
  2743   case TypeFunc::Memory:
  2744     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2746   ShouldNotReachHere();
  2747   return NULL;
  2750 //===========================InitializeNode====================================
  2751 // SUMMARY:
  2752 // This node acts as a memory barrier on raw memory, after some raw stores.
  2753 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2754 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2755 // It can coalesce related raw stores into larger units (called 'tiles').
  2756 // It can avoid zeroing new storage for memory units which have raw inits.
  2757 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2758 //
  2759 // EXAMPLE:
  2760 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2761 //   ctl = incoming control; mem* = incoming memory
  2762 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2763 // First allocate uninitialized memory and fill in the header:
  2764 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2765 //   ctl := alloc.Control; mem* := alloc.Memory*
  2766 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2767 // Then initialize to zero the non-header parts of the raw memory block:
  2768 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2769 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2770 // After the initialize node executes, the object is ready for service:
  2771 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2772 // Suppose its body is immediately initialized as {1,2}:
  2773 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2774 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2775 //   mem.SLICE(#short[*]) := store2
  2776 //
  2777 // DETAILS:
  2778 // An InitializeNode collects and isolates object initialization after
  2779 // an AllocateNode and before the next possible safepoint.  As a
  2780 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2781 // down past any safepoint or any publication of the allocation.
  2782 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2783 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2784 //
  2785 // The semantics of the InitializeNode include an implicit zeroing of
  2786 // the new object from object header to the end of the object.
  2787 // (The object header and end are determined by the AllocateNode.)
  2788 //
  2789 // Certain stores may be added as direct inputs to the InitializeNode.
  2790 // These stores must update raw memory, and they must be to addresses
  2791 // derived from the raw address produced by AllocateNode, and with
  2792 // a constant offset.  They must be ordered by increasing offset.
  2793 // The first one is at in(RawStores), the last at in(req()-1).
  2794 // Unlike most memory operations, they are not linked in a chain,
  2795 // but are displayed in parallel as users of the rawmem output of
  2796 // the allocation.
  2797 //
  2798 // (See comments in InitializeNode::capture_store, which continue
  2799 // the example given above.)
  2800 //
  2801 // When the associated Allocate is macro-expanded, the InitializeNode
  2802 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2803 // may also be created at that point to represent any required zeroing.
  2804 // The InitializeNode is then marked 'complete', prohibiting further
  2805 // capturing of nearby memory operations.
  2806 //
  2807 // During macro-expansion, all captured initializations which store
  2808 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2809 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2810 // initialized in fewer memory operations.  Memory words which are
  2811 // covered by neither tiles nor non-constant stores are pre-zeroed
  2812 // by explicit stores of zero.  (The code shape happens to do all
  2813 // zeroing first, then all other stores, with both sequences occurring
  2814 // in order of ascending offsets.)
  2815 //
  2816 // Alternatively, code may be inserted between an AllocateNode and its
  2817 // InitializeNode, to perform arbitrary initialization of the new object.
  2818 // E.g., the object copying intrinsics insert complex data transfers here.
  2819 // The initialization must then be marked as 'complete' disable the
  2820 // built-in zeroing semantics and the collection of initializing stores.
  2821 //
  2822 // While an InitializeNode is incomplete, reads from the memory state
  2823 // produced by it are optimizable if they match the control edge and
  2824 // new oop address associated with the allocation/initialization.
  2825 // They return a stored value (if the offset matches) or else zero.
  2826 // A write to the memory state, if it matches control and address,
  2827 // and if it is to a constant offset, may be 'captured' by the
  2828 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2829 // inside the initialization, to the raw oop produced by the allocation.
  2830 // Operations on addresses which are provably distinct (e.g., to
  2831 // other AllocateNodes) are allowed to bypass the initialization.
  2832 //
  2833 // The effect of all this is to consolidate object initialization
  2834 // (both arrays and non-arrays, both piecewise and bulk) into a
  2835 // single location, where it can be optimized as a unit.
  2836 //
  2837 // Only stores with an offset less than TrackedInitializationLimit words
  2838 // will be considered for capture by an InitializeNode.  This puts a
  2839 // reasonable limit on the complexity of optimized initializations.
  2841 //---------------------------InitializeNode------------------------------------
  2842 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2843   : _is_complete(false),
  2844     MemBarNode(C, adr_type, rawoop)
  2846   init_class_id(Class_Initialize);
  2848   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2849   assert(in(RawAddress) == rawoop, "proper init");
  2850   // Note:  allocation() can be NULL, for secondary initialization barriers
  2853 // Since this node is not matched, it will be processed by the
  2854 // register allocator.  Declare that there are no constraints
  2855 // on the allocation of the RawAddress edge.
  2856 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2857   // This edge should be set to top, by the set_complete.  But be conservative.
  2858   if (idx == InitializeNode::RawAddress)
  2859     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2860   return RegMask::Empty;
  2863 Node* InitializeNode::memory(uint alias_idx) {
  2864   Node* mem = in(Memory);
  2865   if (mem->is_MergeMem()) {
  2866     return mem->as_MergeMem()->memory_at(alias_idx);
  2867   } else {
  2868     // incoming raw memory is not split
  2869     return mem;
  2873 bool InitializeNode::is_non_zero() {
  2874   if (is_complete())  return false;
  2875   remove_extra_zeroes();
  2876   return (req() > RawStores);
  2879 void InitializeNode::set_complete(PhaseGVN* phase) {
  2880   assert(!is_complete(), "caller responsibility");
  2881   _is_complete = true;
  2883   // After this node is complete, it contains a bunch of
  2884   // raw-memory initializations.  There is no need for
  2885   // it to have anything to do with non-raw memory effects.
  2886   // Therefore, tell all non-raw users to re-optimize themselves,
  2887   // after skipping the memory effects of this initialization.
  2888   PhaseIterGVN* igvn = phase->is_IterGVN();
  2889   if (igvn)  igvn->add_users_to_worklist(this);
  2892 // convenience function
  2893 // return false if the init contains any stores already
  2894 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2895   InitializeNode* init = initialization();
  2896   if (init == NULL || init->is_complete())  return false;
  2897   init->remove_extra_zeroes();
  2898   // for now, if this allocation has already collected any inits, bail:
  2899   if (init->is_non_zero())  return false;
  2900   init->set_complete(phase);
  2901   return true;
  2904 void InitializeNode::remove_extra_zeroes() {
  2905   if (req() == RawStores)  return;
  2906   Node* zmem = zero_memory();
  2907   uint fill = RawStores;
  2908   for (uint i = fill; i < req(); i++) {
  2909     Node* n = in(i);
  2910     if (n->is_top() || n == zmem)  continue;  // skip
  2911     if (fill < i)  set_req(fill, n);          // compact
  2912     ++fill;
  2914   // delete any empty spaces created:
  2915   while (fill < req()) {
  2916     del_req(fill);
  2920 // Helper for remembering which stores go with which offsets.
  2921 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2922   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2923   intptr_t offset = -1;
  2924   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2925                                                phase, offset);
  2926   if (base == NULL)     return -1;  // something is dead,
  2927   if (offset < 0)       return -1;  //        dead, dead
  2928   return offset;
  2931 // Helper for proving that an initialization expression is
  2932 // "simple enough" to be folded into an object initialization.
  2933 // Attempts to prove that a store's initial value 'n' can be captured
  2934 // within the initialization without creating a vicious cycle, such as:
  2935 //     { Foo p = new Foo(); p.next = p; }
  2936 // True for constants and parameters and small combinations thereof.
  2937 bool InitializeNode::detect_init_independence(Node* n,
  2938                                               bool st_is_pinned,
  2939                                               int& count) {
  2940   if (n == NULL)      return true;   // (can this really happen?)
  2941   if (n->is_Proj())   n = n->in(0);
  2942   if (n == this)      return false;  // found a cycle
  2943   if (n->is_Con())    return true;
  2944   if (n->is_Start())  return true;   // params, etc., are OK
  2945   if (n->is_Root())   return true;   // even better
  2947   Node* ctl = n->in(0);
  2948   if (ctl != NULL && !ctl->is_top()) {
  2949     if (ctl->is_Proj())  ctl = ctl->in(0);
  2950     if (ctl == this)  return false;
  2952     // If we already know that the enclosing memory op is pinned right after
  2953     // the init, then any control flow that the store has picked up
  2954     // must have preceded the init, or else be equal to the init.
  2955     // Even after loop optimizations (which might change control edges)
  2956     // a store is never pinned *before* the availability of its inputs.
  2957     if (!MemNode::all_controls_dominate(n, this))
  2958       return false;                  // failed to prove a good control
  2962   // Check data edges for possible dependencies on 'this'.
  2963   if ((count += 1) > 20)  return false;  // complexity limit
  2964   for (uint i = 1; i < n->req(); i++) {
  2965     Node* m = n->in(i);
  2966     if (m == NULL || m == n || m->is_top())  continue;
  2967     uint first_i = n->find_edge(m);
  2968     if (i != first_i)  continue;  // process duplicate edge just once
  2969     if (!detect_init_independence(m, st_is_pinned, count)) {
  2970       return false;
  2974   return true;
  2977 // Here are all the checks a Store must pass before it can be moved into
  2978 // an initialization.  Returns zero if a check fails.
  2979 // On success, returns the (constant) offset to which the store applies,
  2980 // within the initialized memory.
  2981 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2982   const int FAIL = 0;
  2983   if (st->req() != MemNode::ValueIn + 1)
  2984     return FAIL;                // an inscrutable StoreNode (card mark?)
  2985   Node* ctl = st->in(MemNode::Control);
  2986   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2987     return FAIL;                // must be unconditional after the initialization
  2988   Node* mem = st->in(MemNode::Memory);
  2989   if (!(mem->is_Proj() && mem->in(0) == this))
  2990     return FAIL;                // must not be preceded by other stores
  2991   Node* adr = st->in(MemNode::Address);
  2992   intptr_t offset;
  2993   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2994   if (alloc == NULL)
  2995     return FAIL;                // inscrutable address
  2996   if (alloc != allocation())
  2997     return FAIL;                // wrong allocation!  (store needs to float up)
  2998   Node* val = st->in(MemNode::ValueIn);
  2999   int complexity_count = 0;
  3000   if (!detect_init_independence(val, true, complexity_count))
  3001     return FAIL;                // stored value must be 'simple enough'
  3003   return offset;                // success
  3006 // Find the captured store in(i) which corresponds to the range
  3007 // [start..start+size) in the initialized object.
  3008 // If there is one, return its index i.  If there isn't, return the
  3009 // negative of the index where it should be inserted.
  3010 // Return 0 if the queried range overlaps an initialization boundary
  3011 // or if dead code is encountered.
  3012 // If size_in_bytes is zero, do not bother with overlap checks.
  3013 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3014                                                    int size_in_bytes,
  3015                                                    PhaseTransform* phase) {
  3016   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3018   if (is_complete())
  3019     return FAIL;                // arraycopy got here first; punt
  3021   assert(allocation() != NULL, "must be present");
  3023   // no negatives, no header fields:
  3024   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3026   // after a certain size, we bail out on tracking all the stores:
  3027   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3028   if (start >= ti_limit)  return FAIL;
  3030   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3031     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3033     Node*    st     = in(i);
  3034     intptr_t st_off = get_store_offset(st, phase);
  3035     if (st_off < 0) {
  3036       if (st != zero_memory()) {
  3037         return FAIL;            // bail out if there is dead garbage
  3039     } else if (st_off > start) {
  3040       // ...we are done, since stores are ordered
  3041       if (st_off < start + size_in_bytes) {
  3042         return FAIL;            // the next store overlaps
  3044       return -(int)i;           // not found; here is where to put it
  3045     } else if (st_off < start) {
  3046       if (size_in_bytes != 0 &&
  3047           start < st_off + MAX_STORE &&
  3048           start < st_off + st->as_Store()->memory_size()) {
  3049         return FAIL;            // the previous store overlaps
  3051     } else {
  3052       if (size_in_bytes != 0 &&
  3053           st->as_Store()->memory_size() != size_in_bytes) {
  3054         return FAIL;            // mismatched store size
  3056       return i;
  3059     ++i;
  3063 // Look for a captured store which initializes at the offset 'start'
  3064 // with the given size.  If there is no such store, and no other
  3065 // initialization interferes, then return zero_memory (the memory
  3066 // projection of the AllocateNode).
  3067 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3068                                           PhaseTransform* phase) {
  3069   assert(stores_are_sane(phase), "");
  3070   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3071   if (i == 0) {
  3072     return NULL;                // something is dead
  3073   } else if (i < 0) {
  3074     return zero_memory();       // just primordial zero bits here
  3075   } else {
  3076     Node* st = in(i);           // here is the store at this position
  3077     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3078     return st;
  3082 // Create, as a raw pointer, an address within my new object at 'offset'.
  3083 Node* InitializeNode::make_raw_address(intptr_t offset,
  3084                                        PhaseTransform* phase) {
  3085   Node* addr = in(RawAddress);
  3086   if (offset != 0) {
  3087     Compile* C = phase->C;
  3088     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  3089                                                  phase->MakeConX(offset)) );
  3091   return addr;
  3094 // Clone the given store, converting it into a raw store
  3095 // initializing a field or element of my new object.
  3096 // Caller is responsible for retiring the original store,
  3097 // with subsume_node or the like.
  3098 //
  3099 // From the example above InitializeNode::InitializeNode,
  3100 // here are the old stores to be captured:
  3101 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3102 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3103 //
  3104 // Here is the changed code; note the extra edges on init:
  3105 //   alloc = (Allocate ...)
  3106 //   rawoop = alloc.RawAddress
  3107 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3108 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3109 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3110 //                      rawstore1 rawstore2)
  3111 //
  3112 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3113                                     PhaseTransform* phase) {
  3114   assert(stores_are_sane(phase), "");
  3116   if (start < 0)  return NULL;
  3117   assert(can_capture_store(st, phase) == start, "sanity");
  3119   Compile* C = phase->C;
  3120   int size_in_bytes = st->memory_size();
  3121   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3122   if (i == 0)  return NULL;     // bail out
  3123   Node* prev_mem = NULL;        // raw memory for the captured store
  3124   if (i > 0) {
  3125     prev_mem = in(i);           // there is a pre-existing store under this one
  3126     set_req(i, C->top());       // temporarily disconnect it
  3127     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3128   } else {
  3129     i = -i;                     // no pre-existing store
  3130     prev_mem = zero_memory();   // a slice of the newly allocated object
  3131     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3132       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3133     else
  3134       ins_req(i, C->top());     // build a new edge
  3136   Node* new_st = st->clone();
  3137   new_st->set_req(MemNode::Control, in(Control));
  3138   new_st->set_req(MemNode::Memory,  prev_mem);
  3139   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3140   new_st = phase->transform(new_st);
  3142   // At this point, new_st might have swallowed a pre-existing store
  3143   // at the same offset, or perhaps new_st might have disappeared,
  3144   // if it redundantly stored the same value (or zero to fresh memory).
  3146   // In any case, wire it in:
  3147   set_req(i, new_st);
  3149   // The caller may now kill the old guy.
  3150   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3151   assert(check_st == new_st || check_st == NULL, "must be findable");
  3152   assert(!is_complete(), "");
  3153   return new_st;
  3156 static bool store_constant(jlong* tiles, int num_tiles,
  3157                            intptr_t st_off, int st_size,
  3158                            jlong con) {
  3159   if ((st_off & (st_size-1)) != 0)
  3160     return false;               // strange store offset (assume size==2**N)
  3161   address addr = (address)tiles + st_off;
  3162   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3163   switch (st_size) {
  3164   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3165   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3166   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3167   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3168   default: return false;        // strange store size (detect size!=2**N here)
  3170   return true;                  // return success to caller
  3173 // Coalesce subword constants into int constants and possibly
  3174 // into long constants.  The goal, if the CPU permits,
  3175 // is to initialize the object with a small number of 64-bit tiles.
  3176 // Also, convert floating-point constants to bit patterns.
  3177 // Non-constants are not relevant to this pass.
  3178 //
  3179 // In terms of the running example on InitializeNode::InitializeNode
  3180 // and InitializeNode::capture_store, here is the transformation
  3181 // of rawstore1 and rawstore2 into rawstore12:
  3182 //   alloc = (Allocate ...)
  3183 //   rawoop = alloc.RawAddress
  3184 //   tile12 = 0x00010002
  3185 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3186 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3187 //
  3188 void
  3189 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3190                                         Node* size_in_bytes,
  3191                                         PhaseGVN* phase) {
  3192   Compile* C = phase->C;
  3194   assert(stores_are_sane(phase), "");
  3195   // Note:  After this pass, they are not completely sane,
  3196   // since there may be some overlaps.
  3198   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3200   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3201   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3202   size_limit = MIN2(size_limit, ti_limit);
  3203   size_limit = align_size_up(size_limit, BytesPerLong);
  3204   int num_tiles = size_limit / BytesPerLong;
  3206   // allocate space for the tile map:
  3207   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3208   jlong  tiles_buf[small_len];
  3209   Node*  nodes_buf[small_len];
  3210   jlong  inits_buf[small_len];
  3211   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3212                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3213   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3214                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3215   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3216                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3217   // tiles: exact bitwise model of all primitive constants
  3218   // nodes: last constant-storing node subsumed into the tiles model
  3219   // inits: which bytes (in each tile) are touched by any initializations
  3221   //// Pass A: Fill in the tile model with any relevant stores.
  3223   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3224   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3225   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3226   Node* zmem = zero_memory(); // initially zero memory state
  3227   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3228     Node* st = in(i);
  3229     intptr_t st_off = get_store_offset(st, phase);
  3231     // Figure out the store's offset and constant value:
  3232     if (st_off < header_size)             continue; //skip (ignore header)
  3233     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3234     int st_size = st->as_Store()->memory_size();
  3235     if (st_off + st_size > size_limit)    break;
  3237     // Record which bytes are touched, whether by constant or not.
  3238     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3239       continue;                 // skip (strange store size)
  3241     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3242     if (!val->singleton())                continue; //skip (non-con store)
  3243     BasicType type = val->basic_type();
  3245     jlong con = 0;
  3246     switch (type) {
  3247     case T_INT:    con = val->is_int()->get_con();  break;
  3248     case T_LONG:   con = val->is_long()->get_con(); break;
  3249     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3250     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3251     default:                              continue; //skip (odd store type)
  3254     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3255         st->Opcode() == Op_StoreL) {
  3256       continue;                 // This StoreL is already optimal.
  3259     // Store down the constant.
  3260     store_constant(tiles, num_tiles, st_off, st_size, con);
  3262     intptr_t j = st_off >> LogBytesPerLong;
  3264     if (type == T_INT && st_size == BytesPerInt
  3265         && (st_off & BytesPerInt) == BytesPerInt) {
  3266       jlong lcon = tiles[j];
  3267       if (!Matcher::isSimpleConstant64(lcon) &&
  3268           st->Opcode() == Op_StoreI) {
  3269         // This StoreI is already optimal by itself.
  3270         jint* intcon = (jint*) &tiles[j];
  3271         intcon[1] = 0;  // undo the store_constant()
  3273         // If the previous store is also optimal by itself, back up and
  3274         // undo the action of the previous loop iteration... if we can.
  3275         // But if we can't, just let the previous half take care of itself.
  3276         st = nodes[j];
  3277         st_off -= BytesPerInt;
  3278         con = intcon[0];
  3279         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3280           assert(st_off >= header_size, "still ignoring header");
  3281           assert(get_store_offset(st, phase) == st_off, "must be");
  3282           assert(in(i-1) == zmem, "must be");
  3283           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3284           assert(con == tcon->is_int()->get_con(), "must be");
  3285           // Undo the effects of the previous loop trip, which swallowed st:
  3286           intcon[0] = 0;        // undo store_constant()
  3287           set_req(i-1, st);     // undo set_req(i, zmem)
  3288           nodes[j] = NULL;      // undo nodes[j] = st
  3289           --old_subword;        // undo ++old_subword
  3291         continue;               // This StoreI is already optimal.
  3295     // This store is not needed.
  3296     set_req(i, zmem);
  3297     nodes[j] = st;              // record for the moment
  3298     if (st_size < BytesPerLong) // something has changed
  3299           ++old_subword;        // includes int/float, but who's counting...
  3300     else  ++old_long;
  3303   if ((old_subword + old_long) == 0)
  3304     return;                     // nothing more to do
  3306   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3307   // Be sure to insert them before overlapping non-constant stores.
  3308   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3309   for (int j = 0; j < num_tiles; j++) {
  3310     jlong con  = tiles[j];
  3311     jlong init = inits[j];
  3312     if (con == 0)  continue;
  3313     jint con0,  con1;           // split the constant, address-wise
  3314     jint init0, init1;          // split the init map, address-wise
  3315     { union { jlong con; jint intcon[2]; } u;
  3316       u.con = con;
  3317       con0  = u.intcon[0];
  3318       con1  = u.intcon[1];
  3319       u.con = init;
  3320       init0 = u.intcon[0];
  3321       init1 = u.intcon[1];
  3324     Node* old = nodes[j];
  3325     assert(old != NULL, "need the prior store");
  3326     intptr_t offset = (j * BytesPerLong);
  3328     bool split = !Matcher::isSimpleConstant64(con);
  3330     if (offset < header_size) {
  3331       assert(offset + BytesPerInt >= header_size, "second int counts");
  3332       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3333       split = true;             // only the second word counts
  3334       // Example:  int a[] = { 42 ... }
  3335     } else if (con0 == 0 && init0 == -1) {
  3336       split = true;             // first word is covered by full inits
  3337       // Example:  int a[] = { ... foo(), 42 ... }
  3338     } else if (con1 == 0 && init1 == -1) {
  3339       split = true;             // second word is covered by full inits
  3340       // Example:  int a[] = { ... 42, foo() ... }
  3343     // Here's a case where init0 is neither 0 nor -1:
  3344     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3345     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3346     // In this case the tile is not split; it is (jlong)42.
  3347     // The big tile is stored down, and then the foo() value is inserted.
  3348     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3350     Node* ctl = old->in(MemNode::Control);
  3351     Node* adr = make_raw_address(offset, phase);
  3352     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3354     // One or two coalesced stores to plop down.
  3355     Node*    st[2];
  3356     intptr_t off[2];
  3357     int  nst = 0;
  3358     if (!split) {
  3359       ++new_long;
  3360       off[nst] = offset;
  3361       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3362                                   phase->longcon(con), T_LONG);
  3363     } else {
  3364       // Omit either if it is a zero.
  3365       if (con0 != 0) {
  3366         ++new_int;
  3367         off[nst]  = offset;
  3368         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3369                                     phase->intcon(con0), T_INT);
  3371       if (con1 != 0) {
  3372         ++new_int;
  3373         offset += BytesPerInt;
  3374         adr = make_raw_address(offset, phase);
  3375         off[nst]  = offset;
  3376         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3377                                     phase->intcon(con1), T_INT);
  3381     // Insert second store first, then the first before the second.
  3382     // Insert each one just before any overlapping non-constant stores.
  3383     while (nst > 0) {
  3384       Node* st1 = st[--nst];
  3385       C->copy_node_notes_to(st1, old);
  3386       st1 = phase->transform(st1);
  3387       offset = off[nst];
  3388       assert(offset >= header_size, "do not smash header");
  3389       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3390       guarantee(ins_idx != 0, "must re-insert constant store");
  3391       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3392       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3393         set_req(--ins_idx, st1);
  3394       else
  3395         ins_req(ins_idx, st1);
  3399   if (PrintCompilation && WizardMode)
  3400     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3401                   old_subword, old_long, new_int, new_long);
  3402   if (C->log() != NULL)
  3403     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3404                    old_subword, old_long, new_int, new_long);
  3406   // Clean up any remaining occurrences of zmem:
  3407   remove_extra_zeroes();
  3410 // Explore forward from in(start) to find the first fully initialized
  3411 // word, and return its offset.  Skip groups of subword stores which
  3412 // together initialize full words.  If in(start) is itself part of a
  3413 // fully initialized word, return the offset of in(start).  If there
  3414 // are no following full-word stores, or if something is fishy, return
  3415 // a negative value.
  3416 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3417   int       int_map = 0;
  3418   intptr_t  int_map_off = 0;
  3419   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3421   for (uint i = start, limit = req(); i < limit; i++) {
  3422     Node* st = in(i);
  3424     intptr_t st_off = get_store_offset(st, phase);
  3425     if (st_off < 0)  break;  // return conservative answer
  3427     int st_size = st->as_Store()->memory_size();
  3428     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3429       return st_off;            // we found a complete word init
  3432     // update the map:
  3434     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3435     if (this_int_off != int_map_off) {
  3436       // reset the map:
  3437       int_map = 0;
  3438       int_map_off = this_int_off;
  3441     int subword_off = st_off - this_int_off;
  3442     int_map |= right_n_bits(st_size) << subword_off;
  3443     if ((int_map & FULL_MAP) == FULL_MAP) {
  3444       return this_int_off;      // we found a complete word init
  3447     // Did this store hit or cross the word boundary?
  3448     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3449     if (next_int_off == this_int_off + BytesPerInt) {
  3450       // We passed the current int, without fully initializing it.
  3451       int_map_off = next_int_off;
  3452       int_map >>= BytesPerInt;
  3453     } else if (next_int_off > this_int_off + BytesPerInt) {
  3454       // We passed the current and next int.
  3455       return this_int_off + BytesPerInt;
  3459   return -1;
  3463 // Called when the associated AllocateNode is expanded into CFG.
  3464 // At this point, we may perform additional optimizations.
  3465 // Linearize the stores by ascending offset, to make memory
  3466 // activity as coherent as possible.
  3467 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3468                                       intptr_t header_size,
  3469                                       Node* size_in_bytes,
  3470                                       PhaseGVN* phase) {
  3471   assert(!is_complete(), "not already complete");
  3472   assert(stores_are_sane(phase), "");
  3473   assert(allocation() != NULL, "must be present");
  3475   remove_extra_zeroes();
  3477   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3478     // reduce instruction count for common initialization patterns
  3479     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3481   Node* zmem = zero_memory();   // initially zero memory state
  3482   Node* inits = zmem;           // accumulating a linearized chain of inits
  3483   #ifdef ASSERT
  3484   intptr_t first_offset = allocation()->minimum_header_size();
  3485   intptr_t last_init_off = first_offset;  // previous init offset
  3486   intptr_t last_init_end = first_offset;  // previous init offset+size
  3487   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3488   #endif
  3489   intptr_t zeroes_done = header_size;
  3491   bool do_zeroing = true;       // we might give up if inits are very sparse
  3492   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3494   if (ZeroTLAB)  do_zeroing = false;
  3495   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3497   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3498     Node* st = in(i);
  3499     intptr_t st_off = get_store_offset(st, phase);
  3500     if (st_off < 0)
  3501       break;                    // unknown junk in the inits
  3502     if (st->in(MemNode::Memory) != zmem)
  3503       break;                    // complicated store chains somehow in list
  3505     int st_size = st->as_Store()->memory_size();
  3506     intptr_t next_init_off = st_off + st_size;
  3508     if (do_zeroing && zeroes_done < next_init_off) {
  3509       // See if this store needs a zero before it or under it.
  3510       intptr_t zeroes_needed = st_off;
  3512       if (st_size < BytesPerInt) {
  3513         // Look for subword stores which only partially initialize words.
  3514         // If we find some, we must lay down some word-level zeroes first,
  3515         // underneath the subword stores.
  3516         //
  3517         // Examples:
  3518         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3519         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3520         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3521         //
  3522         // Note:  coalesce_subword_stores may have already done this,
  3523         // if it was prompted by constant non-zero subword initializers.
  3524         // But this case can still arise with non-constant stores.
  3526         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3528         // In the examples above:
  3529         //   in(i)          p   q   r   s     x   y     z
  3530         //   st_off        12  13  14  15    12  13    14
  3531         //   st_size        1   1   1   1     1   1     1
  3532         //   next_full_s.  12  16  16  16    16  16    16
  3533         //   z's_done      12  16  16  16    12  16    12
  3534         //   z's_needed    12  16  16  16    16  16    16
  3535         //   zsize          0   0   0   0     4   0     4
  3536         if (next_full_store < 0) {
  3537           // Conservative tack:  Zero to end of current word.
  3538           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3539         } else {
  3540           // Zero to beginning of next fully initialized word.
  3541           // Or, don't zero at all, if we are already in that word.
  3542           assert(next_full_store >= zeroes_needed, "must go forward");
  3543           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3544           zeroes_needed = next_full_store;
  3548       if (zeroes_needed > zeroes_done) {
  3549         intptr_t zsize = zeroes_needed - zeroes_done;
  3550         // Do some incremental zeroing on rawmem, in parallel with inits.
  3551         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3552         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3553                                               zeroes_done, zeroes_needed,
  3554                                               phase);
  3555         zeroes_done = zeroes_needed;
  3556         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3557           do_zeroing = false;   // leave the hole, next time
  3561     // Collect the store and move on:
  3562     st->set_req(MemNode::Memory, inits);
  3563     inits = st;                 // put it on the linearized chain
  3564     set_req(i, zmem);           // unhook from previous position
  3566     if (zeroes_done == st_off)
  3567       zeroes_done = next_init_off;
  3569     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3571     #ifdef ASSERT
  3572     // Various order invariants.  Weaker than stores_are_sane because
  3573     // a large constant tile can be filled in by smaller non-constant stores.
  3574     assert(st_off >= last_init_off, "inits do not reverse");
  3575     last_init_off = st_off;
  3576     const Type* val = NULL;
  3577     if (st_size >= BytesPerInt &&
  3578         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3579         (int)val->basic_type() < (int)T_OBJECT) {
  3580       assert(st_off >= last_tile_end, "tiles do not overlap");
  3581       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3582       last_tile_end = MAX2(last_tile_end, next_init_off);
  3583     } else {
  3584       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3585       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3586       assert(st_off      >= last_init_end, "inits do not overlap");
  3587       last_init_end = next_init_off;  // it's a non-tile
  3589     #endif //ASSERT
  3592   remove_extra_zeroes();        // clear out all the zmems left over
  3593   add_req(inits);
  3595   if (!ZeroTLAB) {
  3596     // If anything remains to be zeroed, zero it all now.
  3597     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3598     // if it is the last unused 4 bytes of an instance, forget about it
  3599     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3600     if (zeroes_done + BytesPerLong >= size_limit) {
  3601       assert(allocation() != NULL, "");
  3602       if (allocation()->Opcode() == Op_Allocate) {
  3603         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3604         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3605         if (zeroes_done == k->layout_helper())
  3606           zeroes_done = size_limit;
  3609     if (zeroes_done < size_limit) {
  3610       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3611                                             zeroes_done, size_in_bytes, phase);
  3615   set_complete(phase);
  3616   return rawmem;
  3620 #ifdef ASSERT
  3621 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3622   if (is_complete())
  3623     return true;                // stores could be anything at this point
  3624   assert(allocation() != NULL, "must be present");
  3625   intptr_t last_off = allocation()->minimum_header_size();
  3626   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3627     Node* st = in(i);
  3628     intptr_t st_off = get_store_offset(st, phase);
  3629     if (st_off < 0)  continue;  // ignore dead garbage
  3630     if (last_off > st_off) {
  3631       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3632       this->dump(2);
  3633       assert(false, "ascending store offsets");
  3634       return false;
  3636     last_off = st_off + st->as_Store()->memory_size();
  3638   return true;
  3640 #endif //ASSERT
  3645 //============================MergeMemNode=====================================
  3646 //
  3647 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3648 // contributing store or call operations.  Each contributor provides the memory
  3649 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3650 // if a MergeMem has an input X for alias category #6, then any memory reference
  3651 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3652 // to using the MergeMem as a whole.
  3653 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3654 //
  3655 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3656 //
  3657 // In one special case (and more cases in the future), alias categories overlap.
  3658 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3659 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3660 // it is exactly equivalent to that state W:
  3661 //   MergeMem(<Bot>: W) <==> W
  3662 //
  3663 // Usually, the merge has more than one input.  In that case, where inputs
  3664 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3665 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3666 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3667 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3668 //
  3669 // A merge can take a "wide" memory state as one of its narrow inputs.
  3670 // This simply means that the merge observes out only the relevant parts of
  3671 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3672 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3673 //
  3674 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3675 // and that memory slices "leak through":
  3676 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3677 //
  3678 // But, in such a cascade, repeated memory slices can "block the leak":
  3679 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3680 //
  3681 // In the last example, Y is not part of the combined memory state of the
  3682 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3683 // memory states from arising, so you can be sure that the state Y is somehow
  3684 // a precursor to state Y'.
  3685 //
  3686 //
  3687 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3688 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3689 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3690 // Compile::alias_type (and kin) produce and manage these indexes.
  3691 //
  3692 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3693 // (Note that this provides quick access to the top node inside MergeMem methods,
  3694 // without the need to reach out via TLS to Compile::current.)
  3695 //
  3696 // As a consequence of what was just described, a MergeMem that represents a full
  3697 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3698 // containing all alias categories.
  3699 //
  3700 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3701 //
  3702 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3703 // a memory state for the alias type <N>, or else the top node, meaning that
  3704 // there is no particular input for that alias type.  Note that the length of
  3705 // a MergeMem is variable, and may be extended at any time to accommodate new
  3706 // memory states at larger alias indexes.  When merges grow, they are of course
  3707 // filled with "top" in the unused in() positions.
  3708 //
  3709 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3710 // (Top was chosen because it works smoothly with passes like GCM.)
  3711 //
  3712 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3713 // the type of random VM bits like TLS references.)  Since it is always the
  3714 // first non-Bot memory slice, some low-level loops use it to initialize an
  3715 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3716 //
  3717 //
  3718 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3719 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3720 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3721 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3722 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3723 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3724 //
  3725 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3726 // really that different from the other memory inputs.  An abbreviation called
  3727 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3728 //
  3729 //
  3730 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3731 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3732 // that "emerges though" the base memory will be marked as excluding the alias types
  3733 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3734 //
  3735 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3736 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3737 //
  3738 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3739 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3740 // actually a disjoint union of memory states, rather than an overlay.
  3741 //
  3743 //------------------------------MergeMemNode-----------------------------------
  3744 Node* MergeMemNode::make_empty_memory() {
  3745   Node* empty_memory = (Node*) Compile::current()->top();
  3746   assert(empty_memory->is_top(), "correct sentinel identity");
  3747   return empty_memory;
  3750 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3751   init_class_id(Class_MergeMem);
  3752   // all inputs are nullified in Node::Node(int)
  3753   // set_input(0, NULL);  // no control input
  3755   // Initialize the edges uniformly to top, for starters.
  3756   Node* empty_mem = make_empty_memory();
  3757   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3758     init_req(i,empty_mem);
  3760   assert(empty_memory() == empty_mem, "");
  3762   if( new_base != NULL && new_base->is_MergeMem() ) {
  3763     MergeMemNode* mdef = new_base->as_MergeMem();
  3764     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3765     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3766       mms.set_memory(mms.memory2());
  3768     assert(base_memory() == mdef->base_memory(), "");
  3769   } else {
  3770     set_base_memory(new_base);
  3774 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3775 // If mem is itself a MergeMem, populate the result with the same edges.
  3776 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3777   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3780 //------------------------------cmp--------------------------------------------
  3781 uint MergeMemNode::hash() const { return NO_HASH; }
  3782 uint MergeMemNode::cmp( const Node &n ) const {
  3783   return (&n == this);          // Always fail except on self
  3786 //------------------------------Identity---------------------------------------
  3787 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3788   // Identity if this merge point does not record any interesting memory
  3789   // disambiguations.
  3790   Node* base_mem = base_memory();
  3791   Node* empty_mem = empty_memory();
  3792   if (base_mem != empty_mem) {  // Memory path is not dead?
  3793     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3794       Node* mem = in(i);
  3795       if (mem != empty_mem && mem != base_mem) {
  3796         return this;            // Many memory splits; no change
  3800   return base_mem;              // No memory splits; ID on the one true input
  3803 //------------------------------Ideal------------------------------------------
  3804 // This method is invoked recursively on chains of MergeMem nodes
  3805 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3806   // Remove chain'd MergeMems
  3807   //
  3808   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3809   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3810   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3811   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3812   Node *progress = NULL;
  3815   Node* old_base = base_memory();
  3816   Node* empty_mem = empty_memory();
  3817   if (old_base == empty_mem)
  3818     return NULL; // Dead memory path.
  3820   MergeMemNode* old_mbase;
  3821   if (old_base != NULL && old_base->is_MergeMem())
  3822     old_mbase = old_base->as_MergeMem();
  3823   else
  3824     old_mbase = NULL;
  3825   Node* new_base = old_base;
  3827   // simplify stacked MergeMems in base memory
  3828   if (old_mbase)  new_base = old_mbase->base_memory();
  3830   // the base memory might contribute new slices beyond my req()
  3831   if (old_mbase)  grow_to_match(old_mbase);
  3833   // Look carefully at the base node if it is a phi.
  3834   PhiNode* phi_base;
  3835   if (new_base != NULL && new_base->is_Phi())
  3836     phi_base = new_base->as_Phi();
  3837   else
  3838     phi_base = NULL;
  3840   Node*    phi_reg = NULL;
  3841   uint     phi_len = (uint)-1;
  3842   if (phi_base != NULL && !phi_base->is_copy()) {
  3843     // do not examine phi if degraded to a copy
  3844     phi_reg = phi_base->region();
  3845     phi_len = phi_base->req();
  3846     // see if the phi is unfinished
  3847     for (uint i = 1; i < phi_len; i++) {
  3848       if (phi_base->in(i) == NULL) {
  3849         // incomplete phi; do not look at it yet!
  3850         phi_reg = NULL;
  3851         phi_len = (uint)-1;
  3852         break;
  3857   // Note:  We do not call verify_sparse on entry, because inputs
  3858   // can normalize to the base_memory via subsume_node or similar
  3859   // mechanisms.  This method repairs that damage.
  3861   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3863   // Look at each slice.
  3864   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3865     Node* old_in = in(i);
  3866     // calculate the old memory value
  3867     Node* old_mem = old_in;
  3868     if (old_mem == empty_mem)  old_mem = old_base;
  3869     assert(old_mem == memory_at(i), "");
  3871     // maybe update (reslice) the old memory value
  3873     // simplify stacked MergeMems
  3874     Node* new_mem = old_mem;
  3875     MergeMemNode* old_mmem;
  3876     if (old_mem != NULL && old_mem->is_MergeMem())
  3877       old_mmem = old_mem->as_MergeMem();
  3878     else
  3879       old_mmem = NULL;
  3880     if (old_mmem == this) {
  3881       // This can happen if loops break up and safepoints disappear.
  3882       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3883       // safepoint can be rewritten to a merge of the same BotPtr with
  3884       // the BotPtr phi coming into the loop.  If that phi disappears
  3885       // also, we can end up with a self-loop of the mergemem.
  3886       // In general, if loops degenerate and memory effects disappear,
  3887       // a mergemem can be left looking at itself.  This simply means
  3888       // that the mergemem's default should be used, since there is
  3889       // no longer any apparent effect on this slice.
  3890       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3891       //       from start.  Update the input to TOP.
  3892       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3894     else if (old_mmem != NULL) {
  3895       new_mem = old_mmem->memory_at(i);
  3897     // else preceding memory was not a MergeMem
  3899     // replace equivalent phis (unfortunately, they do not GVN together)
  3900     if (new_mem != NULL && new_mem != new_base &&
  3901         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3902       if (new_mem->is_Phi()) {
  3903         PhiNode* phi_mem = new_mem->as_Phi();
  3904         for (uint i = 1; i < phi_len; i++) {
  3905           if (phi_base->in(i) != phi_mem->in(i)) {
  3906             phi_mem = NULL;
  3907             break;
  3910         if (phi_mem != NULL) {
  3911           // equivalent phi nodes; revert to the def
  3912           new_mem = new_base;
  3917     // maybe store down a new value
  3918     Node* new_in = new_mem;
  3919     if (new_in == new_base)  new_in = empty_mem;
  3921     if (new_in != old_in) {
  3922       // Warning:  Do not combine this "if" with the previous "if"
  3923       // A memory slice might have be be rewritten even if it is semantically
  3924       // unchanged, if the base_memory value has changed.
  3925       set_req(i, new_in);
  3926       progress = this;          // Report progress
  3930   if (new_base != old_base) {
  3931     set_req(Compile::AliasIdxBot, new_base);
  3932     // Don't use set_base_memory(new_base), because we need to update du.
  3933     assert(base_memory() == new_base, "");
  3934     progress = this;
  3937   if( base_memory() == this ) {
  3938     // a self cycle indicates this memory path is dead
  3939     set_req(Compile::AliasIdxBot, empty_mem);
  3942   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3943   // Recursion must occur after the self cycle check above
  3944   if( base_memory()->is_MergeMem() ) {
  3945     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3946     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3947     if( m != NULL && (m->is_top() ||
  3948         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3949       // propagate rollup of dead cycle to self
  3950       set_req(Compile::AliasIdxBot, empty_mem);
  3954   if( base_memory() == empty_mem ) {
  3955     progress = this;
  3956     // Cut inputs during Parse phase only.
  3957     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3958     if( !can_reshape ) {
  3959       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3960         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3965   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3966     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3967     // transform should be attempted. Look for this->phi->this cycle.
  3968     uint merge_width = req();
  3969     if (merge_width > Compile::AliasIdxRaw) {
  3970       PhiNode* phi = base_memory()->as_Phi();
  3971       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3972         if (phi->in(i) == this) {
  3973           phase->is_IterGVN()->_worklist.push(phi);
  3974           break;
  3980   assert(progress || verify_sparse(), "please, no dups of base");
  3981   return progress;
  3984 //-------------------------set_base_memory-------------------------------------
  3985 void MergeMemNode::set_base_memory(Node *new_base) {
  3986   Node* empty_mem = empty_memory();
  3987   set_req(Compile::AliasIdxBot, new_base);
  3988   assert(memory_at(req()) == new_base, "must set default memory");
  3989   // Clear out other occurrences of new_base:
  3990   if (new_base != empty_mem) {
  3991     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3992       if (in(i) == new_base)  set_req(i, empty_mem);
  3997 //------------------------------out_RegMask------------------------------------
  3998 const RegMask &MergeMemNode::out_RegMask() const {
  3999   return RegMask::Empty;
  4002 //------------------------------dump_spec--------------------------------------
  4003 #ifndef PRODUCT
  4004 void MergeMemNode::dump_spec(outputStream *st) const {
  4005   st->print(" {");
  4006   Node* base_mem = base_memory();
  4007   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4008     Node* mem = memory_at(i);
  4009     if (mem == base_mem) { st->print(" -"); continue; }
  4010     st->print( " N%d:", mem->_idx );
  4011     Compile::current()->get_adr_type(i)->dump_on(st);
  4013   st->print(" }");
  4015 #endif // !PRODUCT
  4018 #ifdef ASSERT
  4019 static bool might_be_same(Node* a, Node* b) {
  4020   if (a == b)  return true;
  4021   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4022   // phis shift around during optimization
  4023   return true;  // pretty stupid...
  4026 // verify a narrow slice (either incoming or outgoing)
  4027 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4028   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4029   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4030   if (Node::in_dump())      return;  // muzzle asserts when printing
  4031   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4032   assert(n != NULL, "");
  4033   // Elide intervening MergeMem's
  4034   while (n->is_MergeMem()) {
  4035     n = n->as_MergeMem()->memory_at(alias_idx);
  4037   Compile* C = Compile::current();
  4038   const TypePtr* n_adr_type = n->adr_type();
  4039   if (n == m->empty_memory()) {
  4040     // Implicit copy of base_memory()
  4041   } else if (n_adr_type != TypePtr::BOTTOM) {
  4042     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4043     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4044   } else {
  4045     // A few places like make_runtime_call "know" that VM calls are narrow,
  4046     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4047     bool expected_wide_mem = false;
  4048     if (n == m->base_memory()) {
  4049       expected_wide_mem = true;
  4050     } else if (alias_idx == Compile::AliasIdxRaw ||
  4051                n == m->memory_at(Compile::AliasIdxRaw)) {
  4052       expected_wide_mem = true;
  4053     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4054       // memory can "leak through" calls on channels that
  4055       // are write-once.  Allow this also.
  4056       expected_wide_mem = true;
  4058     assert(expected_wide_mem, "expected narrow slice replacement");
  4061 #else // !ASSERT
  4062 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4063 #endif
  4066 //-----------------------------memory_at---------------------------------------
  4067 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4068   assert(alias_idx >= Compile::AliasIdxRaw ||
  4069          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4070          "must avoid base_memory and AliasIdxTop");
  4072   // Otherwise, it is a narrow slice.
  4073   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4074   Compile *C = Compile::current();
  4075   if (is_empty_memory(n)) {
  4076     // the array is sparse; empty slots are the "top" node
  4077     n = base_memory();
  4078     assert(Node::in_dump()
  4079            || n == NULL || n->bottom_type() == Type::TOP
  4080            || n->adr_type() == TypePtr::BOTTOM
  4081            || n->adr_type() == TypeRawPtr::BOTTOM
  4082            || Compile::current()->AliasLevel() == 0,
  4083            "must be a wide memory");
  4084     // AliasLevel == 0 if we are organizing the memory states manually.
  4085     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4086   } else {
  4087     // make sure the stored slice is sane
  4088     #ifdef ASSERT
  4089     if (is_error_reported() || Node::in_dump()) {
  4090     } else if (might_be_same(n, base_memory())) {
  4091       // Give it a pass:  It is a mostly harmless repetition of the base.
  4092       // This can arise normally from node subsumption during optimization.
  4093     } else {
  4094       verify_memory_slice(this, alias_idx, n);
  4096     #endif
  4098   return n;
  4101 //---------------------------set_memory_at-------------------------------------
  4102 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4103   verify_memory_slice(this, alias_idx, n);
  4104   Node* empty_mem = empty_memory();
  4105   if (n == base_memory())  n = empty_mem;  // collapse default
  4106   uint need_req = alias_idx+1;
  4107   if (req() < need_req) {
  4108     if (n == empty_mem)  return;  // already the default, so do not grow me
  4109     // grow the sparse array
  4110     do {
  4111       add_req(empty_mem);
  4112     } while (req() < need_req);
  4114   set_req( alias_idx, n );
  4119 //--------------------------iteration_setup------------------------------------
  4120 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4121   if (other != NULL) {
  4122     grow_to_match(other);
  4123     // invariant:  the finite support of mm2 is within mm->req()
  4124     #ifdef ASSERT
  4125     for (uint i = req(); i < other->req(); i++) {
  4126       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4128     #endif
  4130   // Replace spurious copies of base_memory by top.
  4131   Node* base_mem = base_memory();
  4132   if (base_mem != NULL && !base_mem->is_top()) {
  4133     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4134       if (in(i) == base_mem)
  4135         set_req(i, empty_memory());
  4140 //---------------------------grow_to_match-------------------------------------
  4141 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4142   Node* empty_mem = empty_memory();
  4143   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4144   // look for the finite support of the other memory
  4145   for (uint i = other->req(); --i >= req(); ) {
  4146     if (other->in(i) != empty_mem) {
  4147       uint new_len = i+1;
  4148       while (req() < new_len)  add_req(empty_mem);
  4149       break;
  4154 //---------------------------verify_sparse-------------------------------------
  4155 #ifndef PRODUCT
  4156 bool MergeMemNode::verify_sparse() const {
  4157   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4158   Node* base_mem = base_memory();
  4159   // The following can happen in degenerate cases, since empty==top.
  4160   if (is_empty_memory(base_mem))  return true;
  4161   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4162     assert(in(i) != NULL, "sane slice");
  4163     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4165   return true;
  4168 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4169   Node* n;
  4170   n = mm->in(idx);
  4171   if (mem == n)  return true;  // might be empty_memory()
  4172   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4173   if (mem == n)  return true;
  4174   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4175     if (mem == n)  return true;
  4176     if (n == NULL)  break;
  4178   return false;
  4180 #endif // !PRODUCT

mercurial