src/cpu/x86/vm/assembler_x86.cpp

Fri, 03 Dec 2010 01:34:31 -0800

author
twisti
date
Fri, 03 Dec 2010 01:34:31 -0800
changeset 2350
2f644f85485d
parent 2314
f95d63e2154a
child 2356
4de5f4101cfd
permissions
-rw-r--r--

6961690: load oops from constant table on SPARC
Summary: oops should be loaded from the constant table of an nmethod instead of materializing them with a long code sequence.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // immediate-to-memory forms
   240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   if (is8bit(imm32)) {
   244     emit_byte(op1 | 0x02); // set sign bit
   245     emit_operand(rm, adr, 1);
   246     emit_byte(imm32 & 0xFF);
   247   } else {
   248     emit_byte(op1);
   249     emit_operand(rm, adr, 4);
   250     emit_long(imm32);
   251   }
   252 }
   254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   255   LP64_ONLY(ShouldNotReachHere());
   256   assert(isByte(op1) && isByte(op2), "wrong opcode");
   257   assert((op1 & 0x01) == 1, "should be 32bit operation");
   258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   259   InstructionMark im(this);
   260   emit_byte(op1);
   261   emit_byte(op2 | encode(dst));
   262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   263 }
   266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   267   assert(isByte(op1) && isByte(op2), "wrong opcode");
   268   emit_byte(op1);
   269   emit_byte(op2 | encode(dst) << 3 | encode(src));
   270 }
   273 void Assembler::emit_operand(Register reg, Register base, Register index,
   274                              Address::ScaleFactor scale, int disp,
   275                              RelocationHolder const& rspec,
   276                              int rip_relative_correction) {
   277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   279   // Encode the registers as needed in the fields they are used in
   281   int regenc = encode(reg) << 3;
   282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   283   int baseenc = base->is_valid() ? encode(base) : 0;
   285   if (base->is_valid()) {
   286     if (index->is_valid()) {
   287       assert(scale != Address::no_scale, "inconsistent address");
   288       // [base + index*scale + disp]
   289       if (disp == 0 && rtype == relocInfo::none  &&
   290           base != rbp LP64_ONLY(&& base != r13)) {
   291         // [base + index*scale]
   292         // [00 reg 100][ss index base]
   293         assert(index != rsp, "illegal addressing mode");
   294         emit_byte(0x04 | regenc);
   295         emit_byte(scale << 6 | indexenc | baseenc);
   296       } else if (is8bit(disp) && rtype == relocInfo::none) {
   297         // [base + index*scale + imm8]
   298         // [01 reg 100][ss index base] imm8
   299         assert(index != rsp, "illegal addressing mode");
   300         emit_byte(0x44 | regenc);
   301         emit_byte(scale << 6 | indexenc | baseenc);
   302         emit_byte(disp & 0xFF);
   303       } else {
   304         // [base + index*scale + disp32]
   305         // [10 reg 100][ss index base] disp32
   306         assert(index != rsp, "illegal addressing mode");
   307         emit_byte(0x84 | regenc);
   308         emit_byte(scale << 6 | indexenc | baseenc);
   309         emit_data(disp, rspec, disp32_operand);
   310       }
   311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   312       // [rsp + disp]
   313       if (disp == 0 && rtype == relocInfo::none) {
   314         // [rsp]
   315         // [00 reg 100][00 100 100]
   316         emit_byte(0x04 | regenc);
   317         emit_byte(0x24);
   318       } else if (is8bit(disp) && rtype == relocInfo::none) {
   319         // [rsp + imm8]
   320         // [01 reg 100][00 100 100] disp8
   321         emit_byte(0x44 | regenc);
   322         emit_byte(0x24);
   323         emit_byte(disp & 0xFF);
   324       } else {
   325         // [rsp + imm32]
   326         // [10 reg 100][00 100 100] disp32
   327         emit_byte(0x84 | regenc);
   328         emit_byte(0x24);
   329         emit_data(disp, rspec, disp32_operand);
   330       }
   331     } else {
   332       // [base + disp]
   333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   334       if (disp == 0 && rtype == relocInfo::none &&
   335           base != rbp LP64_ONLY(&& base != r13)) {
   336         // [base]
   337         // [00 reg base]
   338         emit_byte(0x00 | regenc | baseenc);
   339       } else if (is8bit(disp) && rtype == relocInfo::none) {
   340         // [base + disp8]
   341         // [01 reg base] disp8
   342         emit_byte(0x40 | regenc | baseenc);
   343         emit_byte(disp & 0xFF);
   344       } else {
   345         // [base + disp32]
   346         // [10 reg base] disp32
   347         emit_byte(0x80 | regenc | baseenc);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     }
   351   } else {
   352     if (index->is_valid()) {
   353       assert(scale != Address::no_scale, "inconsistent address");
   354       // [index*scale + disp]
   355       // [00 reg 100][ss index 101] disp32
   356       assert(index != rsp, "illegal addressing mode");
   357       emit_byte(0x04 | regenc);
   358       emit_byte(scale << 6 | indexenc | 0x05);
   359       emit_data(disp, rspec, disp32_operand);
   360     } else if (rtype != relocInfo::none ) {
   361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   362       // [00 000 101] disp32
   364       emit_byte(0x05 | regenc);
   365       // Note that the RIP-rel. correction applies to the generated
   366       // disp field, but _not_ to the target address in the rspec.
   368       // disp was created by converting the target address minus the pc
   369       // at the start of the instruction. That needs more correction here.
   370       // intptr_t disp = target - next_ip;
   371       assert(inst_mark() != NULL, "must be inside InstructionMark");
   372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   373       int64_t adjusted = disp;
   374       // Do rip-rel adjustment for 64bit
   375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   376       assert(is_simm32(adjusted),
   377              "must be 32bit offset (RIP relative address)");
   378       emit_data((int32_t) adjusted, rspec, disp32_operand);
   380     } else {
   381       // 32bit never did this, did everything as the rip-rel/disp code above
   382       // [disp] ABSOLUTE
   383       // [00 reg 100][00 100 101] disp32
   384       emit_byte(0x04 | regenc);
   385       emit_byte(0x25);
   386       emit_data(disp, rspec, disp32_operand);
   387     }
   388   }
   389 }
   391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   392                              Address::ScaleFactor scale, int disp,
   393                              RelocationHolder const& rspec) {
   394   emit_operand((Register)reg, base, index, scale, disp, rspec);
   395 }
   397 // Secret local extension to Assembler::WhichOperand:
   398 #define end_pc_operand (_WhichOperand_limit)
   400 address Assembler::locate_operand(address inst, WhichOperand which) {
   401   // Decode the given instruction, and return the address of
   402   // an embedded 32-bit operand word.
   404   // If "which" is disp32_operand, selects the displacement portion
   405   // of an effective address specifier.
   406   // If "which" is imm64_operand, selects the trailing immediate constant.
   407   // If "which" is call32_operand, selects the displacement of a call or jump.
   408   // Caller is responsible for ensuring that there is such an operand,
   409   // and that it is 32/64 bits wide.
   411   // If "which" is end_pc_operand, find the end of the instruction.
   413   address ip = inst;
   414   bool is_64bit = false;
   416   debug_only(bool has_disp32 = false);
   417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   419   again_after_prefix:
   420   switch (0xFF & *ip++) {
   422   // These convenience macros generate groups of "case" labels for the switch.
   423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   426 #define REP16(x) REP8((x)+0): \
   427               case REP8((x)+8)
   429   case CS_segment:
   430   case SS_segment:
   431   case DS_segment:
   432   case ES_segment:
   433   case FS_segment:
   434   case GS_segment:
   435     // Seems dubious
   436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   437     assert(ip == inst+1, "only one prefix allowed");
   438     goto again_after_prefix;
   440   case 0x67:
   441   case REX:
   442   case REX_B:
   443   case REX_X:
   444   case REX_XB:
   445   case REX_R:
   446   case REX_RB:
   447   case REX_RX:
   448   case REX_RXB:
   449     NOT_LP64(assert(false, "64bit prefixes"));
   450     goto again_after_prefix;
   452   case REX_W:
   453   case REX_WB:
   454   case REX_WX:
   455   case REX_WXB:
   456   case REX_WR:
   457   case REX_WRB:
   458   case REX_WRX:
   459   case REX_WRXB:
   460     NOT_LP64(assert(false, "64bit prefixes"));
   461     is_64bit = true;
   462     goto again_after_prefix;
   464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   465   case 0x88: // movb a, r
   466   case 0x89: // movl a, r
   467   case 0x8A: // movb r, a
   468   case 0x8B: // movl r, a
   469   case 0x8F: // popl a
   470     debug_only(has_disp32 = true);
   471     break;
   473   case 0x68: // pushq #32
   474     if (which == end_pc_operand) {
   475       return ip + 4;
   476     }
   477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   478     return ip;                  // not produced by emit_operand
   480   case 0x66: // movw ... (size prefix)
   481     again_after_size_prefix2:
   482     switch (0xFF & *ip++) {
   483     case REX:
   484     case REX_B:
   485     case REX_X:
   486     case REX_XB:
   487     case REX_R:
   488     case REX_RB:
   489     case REX_RX:
   490     case REX_RXB:
   491     case REX_W:
   492     case REX_WB:
   493     case REX_WX:
   494     case REX_WXB:
   495     case REX_WR:
   496     case REX_WRB:
   497     case REX_WRX:
   498     case REX_WRXB:
   499       NOT_LP64(assert(false, "64bit prefix found"));
   500       goto again_after_size_prefix2;
   501     case 0x8B: // movw r, a
   502     case 0x89: // movw a, r
   503       debug_only(has_disp32 = true);
   504       break;
   505     case 0xC7: // movw a, #16
   506       debug_only(has_disp32 = true);
   507       tail_size = 2;  // the imm16
   508       break;
   509     case 0x0F: // several SSE/SSE2 variants
   510       ip--;    // reparse the 0x0F
   511       goto again_after_prefix;
   512     default:
   513       ShouldNotReachHere();
   514     }
   515     break;
   517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   519     // these asserts are somewhat nonsensical
   520 #ifndef _LP64
   521     assert(which == imm_operand || which == disp32_operand, "");
   522 #else
   523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   524            which == narrow_oop_operand && !is_64bit, "");
   525 #endif // _LP64
   526     return ip;
   528   case 0x69: // imul r, a, #32
   529   case 0xC7: // movl a, #32(oop?)
   530     tail_size = 4;
   531     debug_only(has_disp32 = true); // has both kinds of operands!
   532     break;
   534   case 0x0F: // movx..., etc.
   535     switch (0xFF & *ip++) {
   536     case 0x12: // movlps
   537     case 0x28: // movaps
   538     case 0x2E: // ucomiss
   539     case 0x2F: // comiss
   540     case 0x54: // andps
   541     case 0x55: // andnps
   542     case 0x56: // orps
   543     case 0x57: // xorps
   544     case 0x6E: // movd
   545     case 0x7E: // movd
   546     case 0xAE: // ldmxcsr   a
   547       // 64bit side says it these have both operands but that doesn't
   548       // appear to be true
   549       debug_only(has_disp32 = true);
   550       break;
   552     case 0xAD: // shrd r, a, %cl
   553     case 0xAF: // imul r, a
   554     case 0xBE: // movsbl r, a (movsxb)
   555     case 0xBF: // movswl r, a (movsxw)
   556     case 0xB6: // movzbl r, a (movzxb)
   557     case 0xB7: // movzwl r, a (movzxw)
   558     case REP16(0x40): // cmovl cc, r, a
   559     case 0xB0: // cmpxchgb
   560     case 0xB1: // cmpxchg
   561     case 0xC1: // xaddl
   562     case 0xC7: // cmpxchg8
   563     case REP16(0x90): // setcc a
   564       debug_only(has_disp32 = true);
   565       // fall out of the switch to decode the address
   566       break;
   568     case 0xAC: // shrd r, a, #8
   569       debug_only(has_disp32 = true);
   570       tail_size = 1;  // the imm8
   571       break;
   573     case REP16(0x80): // jcc rdisp32
   574       if (which == end_pc_operand)  return ip + 4;
   575       assert(which == call32_operand, "jcc has no disp32 or imm");
   576       return ip;
   577     default:
   578       ShouldNotReachHere();
   579     }
   580     break;
   582   case 0x81: // addl a, #32; addl r, #32
   583     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   584     // on 32bit in the case of cmpl, the imm might be an oop
   585     tail_size = 4;
   586     debug_only(has_disp32 = true); // has both kinds of operands!
   587     break;
   589   case 0x83: // addl a, #8; addl r, #8
   590     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   591     debug_only(has_disp32 = true); // has both kinds of operands!
   592     tail_size = 1;
   593     break;
   595   case 0x9B:
   596     switch (0xFF & *ip++) {
   597     case 0xD9: // fnstcw a
   598       debug_only(has_disp32 = true);
   599       break;
   600     default:
   601       ShouldNotReachHere();
   602     }
   603     break;
   605   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   606   case REP4(0x10): // adc...
   607   case REP4(0x20): // and...
   608   case REP4(0x30): // xor...
   609   case REP4(0x08): // or...
   610   case REP4(0x18): // sbb...
   611   case REP4(0x28): // sub...
   612   case 0xF7: // mull a
   613   case 0x8D: // lea r, a
   614   case 0x87: // xchg r, a
   615   case REP4(0x38): // cmp...
   616   case 0x85: // test r, a
   617     debug_only(has_disp32 = true); // has both kinds of operands!
   618     break;
   620   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   621   case 0xC6: // movb a, #8
   622   case 0x80: // cmpb a, #8
   623   case 0x6B: // imul r, a, #8
   624     debug_only(has_disp32 = true); // has both kinds of operands!
   625     tail_size = 1; // the imm8
   626     break;
   628   case 0xE8: // call rdisp32
   629   case 0xE9: // jmp  rdisp32
   630     if (which == end_pc_operand)  return ip + 4;
   631     assert(which == call32_operand, "call has no disp32 or imm");
   632     return ip;
   634   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   635   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   636   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   637   case 0xDD: // fld_d a; fst_d a; fstp_d a
   638   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   639   case 0xDF: // fild_d a; fistp_d a
   640   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   641   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   642   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   643     debug_only(has_disp32 = true);
   644     break;
   646   case 0xF0:                    // Lock
   647     assert(os::is_MP(), "only on MP");
   648     goto again_after_prefix;
   650   case 0xF3:                    // For SSE
   651   case 0xF2:                    // For SSE2
   652     switch (0xFF & *ip++) {
   653     case REX:
   654     case REX_B:
   655     case REX_X:
   656     case REX_XB:
   657     case REX_R:
   658     case REX_RB:
   659     case REX_RX:
   660     case REX_RXB:
   661     case REX_W:
   662     case REX_WB:
   663     case REX_WX:
   664     case REX_WXB:
   665     case REX_WR:
   666     case REX_WRB:
   667     case REX_WRX:
   668     case REX_WRXB:
   669       NOT_LP64(assert(false, "found 64bit prefix"));
   670       ip++;
   671     default:
   672       ip++;
   673     }
   674     debug_only(has_disp32 = true); // has both kinds of operands!
   675     break;
   677   default:
   678     ShouldNotReachHere();
   680 #undef REP8
   681 #undef REP16
   682   }
   684   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   685 #ifdef _LP64
   686   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   687 #else
   688   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   689   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   690 #endif // LP64
   691   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   693   // parse the output of emit_operand
   694   int op2 = 0xFF & *ip++;
   695   int base = op2 & 0x07;
   696   int op3 = -1;
   697   const int b100 = 4;
   698   const int b101 = 5;
   699   if (base == b100 && (op2 >> 6) != 3) {
   700     op3 = 0xFF & *ip++;
   701     base = op3 & 0x07;   // refetch the base
   702   }
   703   // now ip points at the disp (if any)
   705   switch (op2 >> 6) {
   706   case 0:
   707     // [00 reg  100][ss index base]
   708     // [00 reg  100][00   100  esp]
   709     // [00 reg base]
   710     // [00 reg  100][ss index  101][disp32]
   711     // [00 reg  101]               [disp32]
   713     if (base == b101) {
   714       if (which == disp32_operand)
   715         return ip;              // caller wants the disp32
   716       ip += 4;                  // skip the disp32
   717     }
   718     break;
   720   case 1:
   721     // [01 reg  100][ss index base][disp8]
   722     // [01 reg  100][00   100  esp][disp8]
   723     // [01 reg base]               [disp8]
   724     ip += 1;                    // skip the disp8
   725     break;
   727   case 2:
   728     // [10 reg  100][ss index base][disp32]
   729     // [10 reg  100][00   100  esp][disp32]
   730     // [10 reg base]               [disp32]
   731     if (which == disp32_operand)
   732       return ip;                // caller wants the disp32
   733     ip += 4;                    // skip the disp32
   734     break;
   736   case 3:
   737     // [11 reg base]  (not a memory addressing mode)
   738     break;
   739   }
   741   if (which == end_pc_operand) {
   742     return ip + tail_size;
   743   }
   745 #ifdef _LP64
   746   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   747 #else
   748   assert(which == imm_operand, "instruction has only an imm field");
   749 #endif // LP64
   750   return ip;
   751 }
   753 address Assembler::locate_next_instruction(address inst) {
   754   // Secretly share code with locate_operand:
   755   return locate_operand(inst, end_pc_operand);
   756 }
   759 #ifdef ASSERT
   760 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   761   address inst = inst_mark();
   762   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   763   address opnd;
   765   Relocation* r = rspec.reloc();
   766   if (r->type() == relocInfo::none) {
   767     return;
   768   } else if (r->is_call() || format == call32_operand) {
   769     // assert(format == imm32_operand, "cannot specify a nonzero format");
   770     opnd = locate_operand(inst, call32_operand);
   771   } else if (r->is_data()) {
   772     assert(format == imm_operand || format == disp32_operand
   773            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   774     opnd = locate_operand(inst, (WhichOperand)format);
   775   } else {
   776     assert(format == imm_operand, "cannot specify a format");
   777     return;
   778   }
   779   assert(opnd == pc(), "must put operand where relocs can find it");
   780 }
   781 #endif // ASSERT
   783 void Assembler::emit_operand32(Register reg, Address adr) {
   784   assert(reg->encoding() < 8, "no extended registers");
   785   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   786   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   787                adr._rspec);
   788 }
   790 void Assembler::emit_operand(Register reg, Address adr,
   791                              int rip_relative_correction) {
   792   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   793                adr._rspec,
   794                rip_relative_correction);
   795 }
   797 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   798   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   799                adr._rspec);
   800 }
   802 // MMX operations
   803 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   804   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   805   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   806 }
   808 // work around gcc (3.2.1-7a) bug
   809 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   810   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   811   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   812 }
   815 void Assembler::emit_farith(int b1, int b2, int i) {
   816   assert(isByte(b1) && isByte(b2), "wrong opcode");
   817   assert(0 <= i &&  i < 8, "illegal stack offset");
   818   emit_byte(b1);
   819   emit_byte(b2 + i);
   820 }
   823 // Now the Assembler instruction (identical for 32/64 bits)
   825 void Assembler::adcl(Register dst, int32_t imm32) {
   826   prefix(dst);
   827   emit_arith(0x81, 0xD0, dst, imm32);
   828 }
   830 void Assembler::adcl(Register dst, Address src) {
   831   InstructionMark im(this);
   832   prefix(src, dst);
   833   emit_byte(0x13);
   834   emit_operand(dst, src);
   835 }
   837 void Assembler::adcl(Register dst, Register src) {
   838   (void) prefix_and_encode(dst->encoding(), src->encoding());
   839   emit_arith(0x13, 0xC0, dst, src);
   840 }
   842 void Assembler::addl(Address dst, int32_t imm32) {
   843   InstructionMark im(this);
   844   prefix(dst);
   845   emit_arith_operand(0x81, rax, dst, imm32);
   846 }
   848 void Assembler::addl(Address dst, Register src) {
   849   InstructionMark im(this);
   850   prefix(dst, src);
   851   emit_byte(0x01);
   852   emit_operand(src, dst);
   853 }
   855 void Assembler::addl(Register dst, int32_t imm32) {
   856   prefix(dst);
   857   emit_arith(0x81, 0xC0, dst, imm32);
   858 }
   860 void Assembler::addl(Register dst, Address src) {
   861   InstructionMark im(this);
   862   prefix(src, dst);
   863   emit_byte(0x03);
   864   emit_operand(dst, src);
   865 }
   867 void Assembler::addl(Register dst, Register src) {
   868   (void) prefix_and_encode(dst->encoding(), src->encoding());
   869   emit_arith(0x03, 0xC0, dst, src);
   870 }
   872 void Assembler::addr_nop_4() {
   873   // 4 bytes: NOP DWORD PTR [EAX+0]
   874   emit_byte(0x0F);
   875   emit_byte(0x1F);
   876   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   877   emit_byte(0);    // 8-bits offset (1 byte)
   878 }
   880 void Assembler::addr_nop_5() {
   881   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   882   emit_byte(0x0F);
   883   emit_byte(0x1F);
   884   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   885   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   886   emit_byte(0);    // 8-bits offset (1 byte)
   887 }
   889 void Assembler::addr_nop_7() {
   890   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   891   emit_byte(0x0F);
   892   emit_byte(0x1F);
   893   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   894   emit_long(0);    // 32-bits offset (4 bytes)
   895 }
   897 void Assembler::addr_nop_8() {
   898   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   899   emit_byte(0x0F);
   900   emit_byte(0x1F);
   901   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   902   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   903   emit_long(0);    // 32-bits offset (4 bytes)
   904 }
   906 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   907   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   908   emit_byte(0xF2);
   909   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   910   emit_byte(0x0F);
   911   emit_byte(0x58);
   912   emit_byte(0xC0 | encode);
   913 }
   915 void Assembler::addsd(XMMRegister dst, Address src) {
   916   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   917   InstructionMark im(this);
   918   emit_byte(0xF2);
   919   prefix(src, dst);
   920   emit_byte(0x0F);
   921   emit_byte(0x58);
   922   emit_operand(dst, src);
   923 }
   925 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   926   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   927   emit_byte(0xF3);
   928   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   929   emit_byte(0x0F);
   930   emit_byte(0x58);
   931   emit_byte(0xC0 | encode);
   932 }
   934 void Assembler::addss(XMMRegister dst, Address src) {
   935   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   936   InstructionMark im(this);
   937   emit_byte(0xF3);
   938   prefix(src, dst);
   939   emit_byte(0x0F);
   940   emit_byte(0x58);
   941   emit_operand(dst, src);
   942 }
   944 void Assembler::andl(Register dst, int32_t imm32) {
   945   prefix(dst);
   946   emit_arith(0x81, 0xE0, dst, imm32);
   947 }
   949 void Assembler::andl(Register dst, Address src) {
   950   InstructionMark im(this);
   951   prefix(src, dst);
   952   emit_byte(0x23);
   953   emit_operand(dst, src);
   954 }
   956 void Assembler::andl(Register dst, Register src) {
   957   (void) prefix_and_encode(dst->encoding(), src->encoding());
   958   emit_arith(0x23, 0xC0, dst, src);
   959 }
   961 void Assembler::andpd(XMMRegister dst, Address src) {
   962   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   963   InstructionMark im(this);
   964   emit_byte(0x66);
   965   prefix(src, dst);
   966   emit_byte(0x0F);
   967   emit_byte(0x54);
   968   emit_operand(dst, src);
   969 }
   971 void Assembler::bsfl(Register dst, Register src) {
   972   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   973   emit_byte(0x0F);
   974   emit_byte(0xBC);
   975   emit_byte(0xC0 | encode);
   976 }
   978 void Assembler::bsrl(Register dst, Register src) {
   979   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
   980   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   981   emit_byte(0x0F);
   982   emit_byte(0xBD);
   983   emit_byte(0xC0 | encode);
   984 }
   986 void Assembler::bswapl(Register reg) { // bswap
   987   int encode = prefix_and_encode(reg->encoding());
   988   emit_byte(0x0F);
   989   emit_byte(0xC8 | encode);
   990 }
   992 void Assembler::call(Label& L, relocInfo::relocType rtype) {
   993   // suspect disp32 is always good
   994   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
   996   if (L.is_bound()) {
   997     const int long_size = 5;
   998     int offs = (int)( target(L) - pc() );
   999     assert(offs <= 0, "assembler error");
  1000     InstructionMark im(this);
  1001     // 1110 1000 #32-bit disp
  1002     emit_byte(0xE8);
  1003     emit_data(offs - long_size, rtype, operand);
  1004   } else {
  1005     InstructionMark im(this);
  1006     // 1110 1000 #32-bit disp
  1007     L.add_patch_at(code(), locator());
  1009     emit_byte(0xE8);
  1010     emit_data(int(0), rtype, operand);
  1014 void Assembler::call(Register dst) {
  1015   // This was originally using a 32bit register encoding
  1016   // and surely we want 64bit!
  1017   // this is a 32bit encoding but in 64bit mode the default
  1018   // operand size is 64bit so there is no need for the
  1019   // wide prefix. So prefix only happens if we use the
  1020   // new registers. Much like push/pop.
  1021   int x = offset();
  1022   // this may be true but dbx disassembles it as if it
  1023   // were 32bits...
  1024   // int encode = prefix_and_encode(dst->encoding());
  1025   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  1026   int encode = prefixq_and_encode(dst->encoding());
  1028   emit_byte(0xFF);
  1029   emit_byte(0xD0 | encode);
  1033 void Assembler::call(Address adr) {
  1034   InstructionMark im(this);
  1035   prefix(adr);
  1036   emit_byte(0xFF);
  1037   emit_operand(rdx, adr);
  1040 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1041   assert(entry != NULL, "call most probably wrong");
  1042   InstructionMark im(this);
  1043   emit_byte(0xE8);
  1044   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1045   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1046   // Technically, should use call32_operand, but this format is
  1047   // implied by the fact that we're emitting a call instruction.
  1049   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1050   emit_data((int) disp, rspec, operand);
  1053 void Assembler::cdql() {
  1054   emit_byte(0x99);
  1057 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1058   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1059   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1060   emit_byte(0x0F);
  1061   emit_byte(0x40 | cc);
  1062   emit_byte(0xC0 | encode);
  1066 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1067   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1068   prefix(src, dst);
  1069   emit_byte(0x0F);
  1070   emit_byte(0x40 | cc);
  1071   emit_operand(dst, src);
  1074 void Assembler::cmpb(Address dst, int imm8) {
  1075   InstructionMark im(this);
  1076   prefix(dst);
  1077   emit_byte(0x80);
  1078   emit_operand(rdi, dst, 1);
  1079   emit_byte(imm8);
  1082 void Assembler::cmpl(Address dst, int32_t imm32) {
  1083   InstructionMark im(this);
  1084   prefix(dst);
  1085   emit_byte(0x81);
  1086   emit_operand(rdi, dst, 4);
  1087   emit_long(imm32);
  1090 void Assembler::cmpl(Register dst, int32_t imm32) {
  1091   prefix(dst);
  1092   emit_arith(0x81, 0xF8, dst, imm32);
  1095 void Assembler::cmpl(Register dst, Register src) {
  1096   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1097   emit_arith(0x3B, 0xC0, dst, src);
  1101 void Assembler::cmpl(Register dst, Address  src) {
  1102   InstructionMark im(this);
  1103   prefix(src, dst);
  1104   emit_byte(0x3B);
  1105   emit_operand(dst, src);
  1108 void Assembler::cmpw(Address dst, int imm16) {
  1109   InstructionMark im(this);
  1110   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1111   emit_byte(0x66);
  1112   emit_byte(0x81);
  1113   emit_operand(rdi, dst, 2);
  1114   emit_word(imm16);
  1117 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1118 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1119 // The ZF is set if the compared values were equal, and cleared otherwise.
  1120 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1121   if (Atomics & 2) {
  1122      // caveat: no instructionmark, so this isn't relocatable.
  1123      // Emit a synthetic, non-atomic, CAS equivalent.
  1124      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1125      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1126      cmpl(rax, adr);
  1127      movl(rax, adr);
  1128      if (reg != rax) {
  1129         Label L ;
  1130         jcc(Assembler::notEqual, L);
  1131         movl(adr, reg);
  1132         bind(L);
  1134   } else {
  1135      InstructionMark im(this);
  1136      prefix(adr, reg);
  1137      emit_byte(0x0F);
  1138      emit_byte(0xB1);
  1139      emit_operand(reg, adr);
  1143 void Assembler::comisd(XMMRegister dst, Address src) {
  1144   // NOTE: dbx seems to decode this as comiss even though the
  1145   // 0x66 is there. Strangly ucomisd comes out correct
  1146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1147   emit_byte(0x66);
  1148   comiss(dst, src);
  1151 void Assembler::comiss(XMMRegister dst, Address src) {
  1152   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1154   InstructionMark im(this);
  1155   prefix(src, dst);
  1156   emit_byte(0x0F);
  1157   emit_byte(0x2F);
  1158   emit_operand(dst, src);
  1161 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1163   emit_byte(0xF3);
  1164   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1165   emit_byte(0x0F);
  1166   emit_byte(0xE6);
  1167   emit_byte(0xC0 | encode);
  1170 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1171   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1172   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1173   emit_byte(0x0F);
  1174   emit_byte(0x5B);
  1175   emit_byte(0xC0 | encode);
  1178 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1179   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1180   emit_byte(0xF2);
  1181   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1182   emit_byte(0x0F);
  1183   emit_byte(0x5A);
  1184   emit_byte(0xC0 | encode);
  1187 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1188   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1189   emit_byte(0xF2);
  1190   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1191   emit_byte(0x0F);
  1192   emit_byte(0x2A);
  1193   emit_byte(0xC0 | encode);
  1196 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1197   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1198   emit_byte(0xF3);
  1199   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1200   emit_byte(0x0F);
  1201   emit_byte(0x2A);
  1202   emit_byte(0xC0 | encode);
  1205 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1206   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1207   emit_byte(0xF3);
  1208   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1209   emit_byte(0x0F);
  1210   emit_byte(0x5A);
  1211   emit_byte(0xC0 | encode);
  1214 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1215   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1216   emit_byte(0xF2);
  1217   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1218   emit_byte(0x0F);
  1219   emit_byte(0x2C);
  1220   emit_byte(0xC0 | encode);
  1223 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1224   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1225   emit_byte(0xF3);
  1226   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1227   emit_byte(0x0F);
  1228   emit_byte(0x2C);
  1229   emit_byte(0xC0 | encode);
  1232 void Assembler::decl(Address dst) {
  1233   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1234   InstructionMark im(this);
  1235   prefix(dst);
  1236   emit_byte(0xFF);
  1237   emit_operand(rcx, dst);
  1240 void Assembler::divsd(XMMRegister dst, Address src) {
  1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1242   InstructionMark im(this);
  1243   emit_byte(0xF2);
  1244   prefix(src, dst);
  1245   emit_byte(0x0F);
  1246   emit_byte(0x5E);
  1247   emit_operand(dst, src);
  1250 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1251   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1252   emit_byte(0xF2);
  1253   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1254   emit_byte(0x0F);
  1255   emit_byte(0x5E);
  1256   emit_byte(0xC0 | encode);
  1259 void Assembler::divss(XMMRegister dst, Address src) {
  1260   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1261   InstructionMark im(this);
  1262   emit_byte(0xF3);
  1263   prefix(src, dst);
  1264   emit_byte(0x0F);
  1265   emit_byte(0x5E);
  1266   emit_operand(dst, src);
  1269 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1270   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1271   emit_byte(0xF3);
  1272   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1273   emit_byte(0x0F);
  1274   emit_byte(0x5E);
  1275   emit_byte(0xC0 | encode);
  1278 void Assembler::emms() {
  1279   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1280   emit_byte(0x0F);
  1281   emit_byte(0x77);
  1284 void Assembler::hlt() {
  1285   emit_byte(0xF4);
  1288 void Assembler::idivl(Register src) {
  1289   int encode = prefix_and_encode(src->encoding());
  1290   emit_byte(0xF7);
  1291   emit_byte(0xF8 | encode);
  1294 void Assembler::divl(Register src) { // Unsigned
  1295   int encode = prefix_and_encode(src->encoding());
  1296   emit_byte(0xF7);
  1297   emit_byte(0xF0 | encode);
  1300 void Assembler::imull(Register dst, Register src) {
  1301   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1302   emit_byte(0x0F);
  1303   emit_byte(0xAF);
  1304   emit_byte(0xC0 | encode);
  1308 void Assembler::imull(Register dst, Register src, int value) {
  1309   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1310   if (is8bit(value)) {
  1311     emit_byte(0x6B);
  1312     emit_byte(0xC0 | encode);
  1313     emit_byte(value & 0xFF);
  1314   } else {
  1315     emit_byte(0x69);
  1316     emit_byte(0xC0 | encode);
  1317     emit_long(value);
  1321 void Assembler::incl(Address dst) {
  1322   // Don't use it directly. Use MacroAssembler::increment() instead.
  1323   InstructionMark im(this);
  1324   prefix(dst);
  1325   emit_byte(0xFF);
  1326   emit_operand(rax, dst);
  1329 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1330   InstructionMark im(this);
  1331   relocate(rtype);
  1332   assert((0 <= cc) && (cc < 16), "illegal cc");
  1333   if (L.is_bound()) {
  1334     address dst = target(L);
  1335     assert(dst != NULL, "jcc most probably wrong");
  1337     const int short_size = 2;
  1338     const int long_size = 6;
  1339     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1340     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1341       // 0111 tttn #8-bit disp
  1342       emit_byte(0x70 | cc);
  1343       emit_byte((offs - short_size) & 0xFF);
  1344     } else {
  1345       // 0000 1111 1000 tttn #32-bit disp
  1346       assert(is_simm32(offs - long_size),
  1347              "must be 32bit offset (call4)");
  1348       emit_byte(0x0F);
  1349       emit_byte(0x80 | cc);
  1350       emit_long(offs - long_size);
  1352   } else {
  1353     // Note: could eliminate cond. jumps to this jump if condition
  1354     //       is the same however, seems to be rather unlikely case.
  1355     // Note: use jccb() if label to be bound is very close to get
  1356     //       an 8-bit displacement
  1357     L.add_patch_at(code(), locator());
  1358     emit_byte(0x0F);
  1359     emit_byte(0x80 | cc);
  1360     emit_long(0);
  1364 void Assembler::jccb(Condition cc, Label& L) {
  1365   if (L.is_bound()) {
  1366     const int short_size = 2;
  1367     address entry = target(L);
  1368     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1369            "Dispacement too large for a short jmp");
  1370     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1371     // 0111 tttn #8-bit disp
  1372     emit_byte(0x70 | cc);
  1373     emit_byte((offs - short_size) & 0xFF);
  1374   } else {
  1375     InstructionMark im(this);
  1376     L.add_patch_at(code(), locator());
  1377     emit_byte(0x70 | cc);
  1378     emit_byte(0);
  1382 void Assembler::jmp(Address adr) {
  1383   InstructionMark im(this);
  1384   prefix(adr);
  1385   emit_byte(0xFF);
  1386   emit_operand(rsp, adr);
  1389 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1390   if (L.is_bound()) {
  1391     address entry = target(L);
  1392     assert(entry != NULL, "jmp most probably wrong");
  1393     InstructionMark im(this);
  1394     const int short_size = 2;
  1395     const int long_size = 5;
  1396     intptr_t offs = entry - _code_pos;
  1397     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1398       emit_byte(0xEB);
  1399       emit_byte((offs - short_size) & 0xFF);
  1400     } else {
  1401       emit_byte(0xE9);
  1402       emit_long(offs - long_size);
  1404   } else {
  1405     // By default, forward jumps are always 32-bit displacements, since
  1406     // we can't yet know where the label will be bound.  If you're sure that
  1407     // the forward jump will not run beyond 256 bytes, use jmpb to
  1408     // force an 8-bit displacement.
  1409     InstructionMark im(this);
  1410     relocate(rtype);
  1411     L.add_patch_at(code(), locator());
  1412     emit_byte(0xE9);
  1413     emit_long(0);
  1417 void Assembler::jmp(Register entry) {
  1418   int encode = prefix_and_encode(entry->encoding());
  1419   emit_byte(0xFF);
  1420   emit_byte(0xE0 | encode);
  1423 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1424   InstructionMark im(this);
  1425   emit_byte(0xE9);
  1426   assert(dest != NULL, "must have a target");
  1427   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1428   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1429   emit_data(disp, rspec.reloc(), call32_operand);
  1432 void Assembler::jmpb(Label& L) {
  1433   if (L.is_bound()) {
  1434     const int short_size = 2;
  1435     address entry = target(L);
  1436     assert(is8bit((entry - _code_pos) + short_size),
  1437            "Dispacement too large for a short jmp");
  1438     assert(entry != NULL, "jmp most probably wrong");
  1439     intptr_t offs = entry - _code_pos;
  1440     emit_byte(0xEB);
  1441     emit_byte((offs - short_size) & 0xFF);
  1442   } else {
  1443     InstructionMark im(this);
  1444     L.add_patch_at(code(), locator());
  1445     emit_byte(0xEB);
  1446     emit_byte(0);
  1450 void Assembler::ldmxcsr( Address src) {
  1451   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1452   InstructionMark im(this);
  1453   prefix(src);
  1454   emit_byte(0x0F);
  1455   emit_byte(0xAE);
  1456   emit_operand(as_Register(2), src);
  1459 void Assembler::leal(Register dst, Address src) {
  1460   InstructionMark im(this);
  1461 #ifdef _LP64
  1462   emit_byte(0x67); // addr32
  1463   prefix(src, dst);
  1464 #endif // LP64
  1465   emit_byte(0x8D);
  1466   emit_operand(dst, src);
  1469 void Assembler::lock() {
  1470   if (Atomics & 1) {
  1471      // Emit either nothing, a NOP, or a NOP: prefix
  1472      emit_byte(0x90) ;
  1473   } else {
  1474      emit_byte(0xF0);
  1478 void Assembler::lzcntl(Register dst, Register src) {
  1479   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1480   emit_byte(0xF3);
  1481   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1482   emit_byte(0x0F);
  1483   emit_byte(0xBD);
  1484   emit_byte(0xC0 | encode);
  1487 // Emit mfence instruction
  1488 void Assembler::mfence() {
  1489   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1490   emit_byte( 0x0F );
  1491   emit_byte( 0xAE );
  1492   emit_byte( 0xF0 );
  1495 void Assembler::mov(Register dst, Register src) {
  1496   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1499 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1501   int dstenc = dst->encoding();
  1502   int srcenc = src->encoding();
  1503   emit_byte(0x66);
  1504   if (dstenc < 8) {
  1505     if (srcenc >= 8) {
  1506       prefix(REX_B);
  1507       srcenc -= 8;
  1509   } else {
  1510     if (srcenc < 8) {
  1511       prefix(REX_R);
  1512     } else {
  1513       prefix(REX_RB);
  1514       srcenc -= 8;
  1516     dstenc -= 8;
  1518   emit_byte(0x0F);
  1519   emit_byte(0x28);
  1520   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1523 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1525   int dstenc = dst->encoding();
  1526   int srcenc = src->encoding();
  1527   if (dstenc < 8) {
  1528     if (srcenc >= 8) {
  1529       prefix(REX_B);
  1530       srcenc -= 8;
  1532   } else {
  1533     if (srcenc < 8) {
  1534       prefix(REX_R);
  1535     } else {
  1536       prefix(REX_RB);
  1537       srcenc -= 8;
  1539     dstenc -= 8;
  1541   emit_byte(0x0F);
  1542   emit_byte(0x28);
  1543   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1546 void Assembler::movb(Register dst, Address src) {
  1547   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1548   InstructionMark im(this);
  1549   prefix(src, dst, true);
  1550   emit_byte(0x8A);
  1551   emit_operand(dst, src);
  1555 void Assembler::movb(Address dst, int imm8) {
  1556   InstructionMark im(this);
  1557    prefix(dst);
  1558   emit_byte(0xC6);
  1559   emit_operand(rax, dst, 1);
  1560   emit_byte(imm8);
  1564 void Assembler::movb(Address dst, Register src) {
  1565   assert(src->has_byte_register(), "must have byte register");
  1566   InstructionMark im(this);
  1567   prefix(dst, src, true);
  1568   emit_byte(0x88);
  1569   emit_operand(src, dst);
  1572 void Assembler::movdl(XMMRegister dst, Register src) {
  1573   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1574   emit_byte(0x66);
  1575   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1576   emit_byte(0x0F);
  1577   emit_byte(0x6E);
  1578   emit_byte(0xC0 | encode);
  1581 void Assembler::movdl(Register dst, XMMRegister src) {
  1582   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1583   emit_byte(0x66);
  1584   // swap src/dst to get correct prefix
  1585   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1586   emit_byte(0x0F);
  1587   emit_byte(0x7E);
  1588   emit_byte(0xC0 | encode);
  1591 void Assembler::movdqa(XMMRegister dst, Address src) {
  1592   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1593   InstructionMark im(this);
  1594   emit_byte(0x66);
  1595   prefix(src, dst);
  1596   emit_byte(0x0F);
  1597   emit_byte(0x6F);
  1598   emit_operand(dst, src);
  1601 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1602   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1603   emit_byte(0x66);
  1604   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1605   emit_byte(0x0F);
  1606   emit_byte(0x6F);
  1607   emit_byte(0xC0 | encode);
  1610 void Assembler::movdqa(Address dst, XMMRegister src) {
  1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1612   InstructionMark im(this);
  1613   emit_byte(0x66);
  1614   prefix(dst, src);
  1615   emit_byte(0x0F);
  1616   emit_byte(0x7F);
  1617   emit_operand(src, dst);
  1620 void Assembler::movdqu(XMMRegister dst, Address src) {
  1621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1622   InstructionMark im(this);
  1623   emit_byte(0xF3);
  1624   prefix(src, dst);
  1625   emit_byte(0x0F);
  1626   emit_byte(0x6F);
  1627   emit_operand(dst, src);
  1630 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1632   emit_byte(0xF3);
  1633   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1634   emit_byte(0x0F);
  1635   emit_byte(0x6F);
  1636   emit_byte(0xC0 | encode);
  1639 void Assembler::movdqu(Address dst, XMMRegister src) {
  1640   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1641   InstructionMark im(this);
  1642   emit_byte(0xF3);
  1643   prefix(dst, src);
  1644   emit_byte(0x0F);
  1645   emit_byte(0x7F);
  1646   emit_operand(src, dst);
  1649 // Uses zero extension on 64bit
  1651 void Assembler::movl(Register dst, int32_t imm32) {
  1652   int encode = prefix_and_encode(dst->encoding());
  1653   emit_byte(0xB8 | encode);
  1654   emit_long(imm32);
  1657 void Assembler::movl(Register dst, Register src) {
  1658   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1659   emit_byte(0x8B);
  1660   emit_byte(0xC0 | encode);
  1663 void Assembler::movl(Register dst, Address src) {
  1664   InstructionMark im(this);
  1665   prefix(src, dst);
  1666   emit_byte(0x8B);
  1667   emit_operand(dst, src);
  1670 void Assembler::movl(Address dst, int32_t imm32) {
  1671   InstructionMark im(this);
  1672   prefix(dst);
  1673   emit_byte(0xC7);
  1674   emit_operand(rax, dst, 4);
  1675   emit_long(imm32);
  1678 void Assembler::movl(Address dst, Register src) {
  1679   InstructionMark im(this);
  1680   prefix(dst, src);
  1681   emit_byte(0x89);
  1682   emit_operand(src, dst);
  1685 // New cpus require to use movsd and movss to avoid partial register stall
  1686 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1687 // The selection is done in MacroAssembler::movdbl() and movflt().
  1688 void Assembler::movlpd(XMMRegister dst, Address src) {
  1689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1690   InstructionMark im(this);
  1691   emit_byte(0x66);
  1692   prefix(src, dst);
  1693   emit_byte(0x0F);
  1694   emit_byte(0x12);
  1695   emit_operand(dst, src);
  1698 void Assembler::movq( MMXRegister dst, Address src ) {
  1699   assert( VM_Version::supports_mmx(), "" );
  1700   emit_byte(0x0F);
  1701   emit_byte(0x6F);
  1702   emit_operand(dst, src);
  1705 void Assembler::movq( Address dst, MMXRegister src ) {
  1706   assert( VM_Version::supports_mmx(), "" );
  1707   emit_byte(0x0F);
  1708   emit_byte(0x7F);
  1709   // workaround gcc (3.2.1-7a) bug
  1710   // In that version of gcc with only an emit_operand(MMX, Address)
  1711   // gcc will tail jump and try and reverse the parameters completely
  1712   // obliterating dst in the process. By having a version available
  1713   // that doesn't need to swap the args at the tail jump the bug is
  1714   // avoided.
  1715   emit_operand(dst, src);
  1718 void Assembler::movq(XMMRegister dst, Address src) {
  1719   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1720   InstructionMark im(this);
  1721   emit_byte(0xF3);
  1722   prefix(src, dst);
  1723   emit_byte(0x0F);
  1724   emit_byte(0x7E);
  1725   emit_operand(dst, src);
  1728 void Assembler::movq(Address dst, XMMRegister src) {
  1729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1730   InstructionMark im(this);
  1731   emit_byte(0x66);
  1732   prefix(dst, src);
  1733   emit_byte(0x0F);
  1734   emit_byte(0xD6);
  1735   emit_operand(src, dst);
  1738 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1739   InstructionMark im(this);
  1740   prefix(src, dst);
  1741   emit_byte(0x0F);
  1742   emit_byte(0xBE);
  1743   emit_operand(dst, src);
  1746 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1747   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1748   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1749   emit_byte(0x0F);
  1750   emit_byte(0xBE);
  1751   emit_byte(0xC0 | encode);
  1754 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1756   emit_byte(0xF2);
  1757   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1758   emit_byte(0x0F);
  1759   emit_byte(0x10);
  1760   emit_byte(0xC0 | encode);
  1763 void Assembler::movsd(XMMRegister dst, Address src) {
  1764   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1765   InstructionMark im(this);
  1766   emit_byte(0xF2);
  1767   prefix(src, dst);
  1768   emit_byte(0x0F);
  1769   emit_byte(0x10);
  1770   emit_operand(dst, src);
  1773 void Assembler::movsd(Address dst, XMMRegister src) {
  1774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1775   InstructionMark im(this);
  1776   emit_byte(0xF2);
  1777   prefix(dst, src);
  1778   emit_byte(0x0F);
  1779   emit_byte(0x11);
  1780   emit_operand(src, dst);
  1783 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1784   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1785   emit_byte(0xF3);
  1786   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1787   emit_byte(0x0F);
  1788   emit_byte(0x10);
  1789   emit_byte(0xC0 | encode);
  1792 void Assembler::movss(XMMRegister dst, Address src) {
  1793   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1794   InstructionMark im(this);
  1795   emit_byte(0xF3);
  1796   prefix(src, dst);
  1797   emit_byte(0x0F);
  1798   emit_byte(0x10);
  1799   emit_operand(dst, src);
  1802 void Assembler::movss(Address dst, XMMRegister src) {
  1803   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1804   InstructionMark im(this);
  1805   emit_byte(0xF3);
  1806   prefix(dst, src);
  1807   emit_byte(0x0F);
  1808   emit_byte(0x11);
  1809   emit_operand(src, dst);
  1812 void Assembler::movswl(Register dst, Address src) { // movsxw
  1813   InstructionMark im(this);
  1814   prefix(src, dst);
  1815   emit_byte(0x0F);
  1816   emit_byte(0xBF);
  1817   emit_operand(dst, src);
  1820 void Assembler::movswl(Register dst, Register src) { // movsxw
  1821   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1822   emit_byte(0x0F);
  1823   emit_byte(0xBF);
  1824   emit_byte(0xC0 | encode);
  1827 void Assembler::movw(Address dst, int imm16) {
  1828   InstructionMark im(this);
  1830   emit_byte(0x66); // switch to 16-bit mode
  1831   prefix(dst);
  1832   emit_byte(0xC7);
  1833   emit_operand(rax, dst, 2);
  1834   emit_word(imm16);
  1837 void Assembler::movw(Register dst, Address src) {
  1838   InstructionMark im(this);
  1839   emit_byte(0x66);
  1840   prefix(src, dst);
  1841   emit_byte(0x8B);
  1842   emit_operand(dst, src);
  1845 void Assembler::movw(Address dst, Register src) {
  1846   InstructionMark im(this);
  1847   emit_byte(0x66);
  1848   prefix(dst, src);
  1849   emit_byte(0x89);
  1850   emit_operand(src, dst);
  1853 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1854   InstructionMark im(this);
  1855   prefix(src, dst);
  1856   emit_byte(0x0F);
  1857   emit_byte(0xB6);
  1858   emit_operand(dst, src);
  1861 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1862   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1863   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1864   emit_byte(0x0F);
  1865   emit_byte(0xB6);
  1866   emit_byte(0xC0 | encode);
  1869 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1870   InstructionMark im(this);
  1871   prefix(src, dst);
  1872   emit_byte(0x0F);
  1873   emit_byte(0xB7);
  1874   emit_operand(dst, src);
  1877 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1878   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1879   emit_byte(0x0F);
  1880   emit_byte(0xB7);
  1881   emit_byte(0xC0 | encode);
  1884 void Assembler::mull(Address src) {
  1885   InstructionMark im(this);
  1886   prefix(src);
  1887   emit_byte(0xF7);
  1888   emit_operand(rsp, src);
  1891 void Assembler::mull(Register src) {
  1892   int encode = prefix_and_encode(src->encoding());
  1893   emit_byte(0xF7);
  1894   emit_byte(0xE0 | encode);
  1897 void Assembler::mulsd(XMMRegister dst, Address src) {
  1898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1899   InstructionMark im(this);
  1900   emit_byte(0xF2);
  1901   prefix(src, dst);
  1902   emit_byte(0x0F);
  1903   emit_byte(0x59);
  1904   emit_operand(dst, src);
  1907 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1908   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1909   emit_byte(0xF2);
  1910   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1911   emit_byte(0x0F);
  1912   emit_byte(0x59);
  1913   emit_byte(0xC0 | encode);
  1916 void Assembler::mulss(XMMRegister dst, Address src) {
  1917   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1918   InstructionMark im(this);
  1919   emit_byte(0xF3);
  1920   prefix(src, dst);
  1921   emit_byte(0x0F);
  1922   emit_byte(0x59);
  1923   emit_operand(dst, src);
  1926 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1927   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1928   emit_byte(0xF3);
  1929   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1930   emit_byte(0x0F);
  1931   emit_byte(0x59);
  1932   emit_byte(0xC0 | encode);
  1935 void Assembler::negl(Register dst) {
  1936   int encode = prefix_and_encode(dst->encoding());
  1937   emit_byte(0xF7);
  1938   emit_byte(0xD8 | encode);
  1941 void Assembler::nop(int i) {
  1942 #ifdef ASSERT
  1943   assert(i > 0, " ");
  1944   // The fancy nops aren't currently recognized by debuggers making it a
  1945   // pain to disassemble code while debugging. If asserts are on clearly
  1946   // speed is not an issue so simply use the single byte traditional nop
  1947   // to do alignment.
  1949   for (; i > 0 ; i--) emit_byte(0x90);
  1950   return;
  1952 #endif // ASSERT
  1954   if (UseAddressNop && VM_Version::is_intel()) {
  1955     //
  1956     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1957     //  1: 0x90
  1958     //  2: 0x66 0x90
  1959     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1960     //  4: 0x0F 0x1F 0x40 0x00
  1961     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1962     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1963     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1964     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1965     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1966     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1967     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1969     // The rest coding is Intel specific - don't use consecutive address nops
  1971     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1972     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1973     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1974     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1976     while(i >= 15) {
  1977       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1978       i -= 15;
  1979       emit_byte(0x66);   // size prefix
  1980       emit_byte(0x66);   // size prefix
  1981       emit_byte(0x66);   // size prefix
  1982       addr_nop_8();
  1983       emit_byte(0x66);   // size prefix
  1984       emit_byte(0x66);   // size prefix
  1985       emit_byte(0x66);   // size prefix
  1986       emit_byte(0x90);   // nop
  1988     switch (i) {
  1989       case 14:
  1990         emit_byte(0x66); // size prefix
  1991       case 13:
  1992         emit_byte(0x66); // size prefix
  1993       case 12:
  1994         addr_nop_8();
  1995         emit_byte(0x66); // size prefix
  1996         emit_byte(0x66); // size prefix
  1997         emit_byte(0x66); // size prefix
  1998         emit_byte(0x90); // nop
  1999         break;
  2000       case 11:
  2001         emit_byte(0x66); // size prefix
  2002       case 10:
  2003         emit_byte(0x66); // size prefix
  2004       case 9:
  2005         emit_byte(0x66); // size prefix
  2006       case 8:
  2007         addr_nop_8();
  2008         break;
  2009       case 7:
  2010         addr_nop_7();
  2011         break;
  2012       case 6:
  2013         emit_byte(0x66); // size prefix
  2014       case 5:
  2015         addr_nop_5();
  2016         break;
  2017       case 4:
  2018         addr_nop_4();
  2019         break;
  2020       case 3:
  2021         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2022         emit_byte(0x66); // size prefix
  2023       case 2:
  2024         emit_byte(0x66); // size prefix
  2025       case 1:
  2026         emit_byte(0x90); // nop
  2027         break;
  2028       default:
  2029         assert(i == 0, " ");
  2031     return;
  2033   if (UseAddressNop && VM_Version::is_amd()) {
  2034     //
  2035     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2036     //  1: 0x90
  2037     //  2: 0x66 0x90
  2038     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2039     //  4: 0x0F 0x1F 0x40 0x00
  2040     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2041     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2042     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2043     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2044     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2045     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2046     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2048     // The rest coding is AMD specific - use consecutive address nops
  2050     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2051     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2052     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2053     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2054     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2055     //     Size prefixes (0x66) are added for larger sizes
  2057     while(i >= 22) {
  2058       i -= 11;
  2059       emit_byte(0x66); // size prefix
  2060       emit_byte(0x66); // size prefix
  2061       emit_byte(0x66); // size prefix
  2062       addr_nop_8();
  2064     // Generate first nop for size between 21-12
  2065     switch (i) {
  2066       case 21:
  2067         i -= 1;
  2068         emit_byte(0x66); // size prefix
  2069       case 20:
  2070       case 19:
  2071         i -= 1;
  2072         emit_byte(0x66); // size prefix
  2073       case 18:
  2074       case 17:
  2075         i -= 1;
  2076         emit_byte(0x66); // size prefix
  2077       case 16:
  2078       case 15:
  2079         i -= 8;
  2080         addr_nop_8();
  2081         break;
  2082       case 14:
  2083       case 13:
  2084         i -= 7;
  2085         addr_nop_7();
  2086         break;
  2087       case 12:
  2088         i -= 6;
  2089         emit_byte(0x66); // size prefix
  2090         addr_nop_5();
  2091         break;
  2092       default:
  2093         assert(i < 12, " ");
  2096     // Generate second nop for size between 11-1
  2097     switch (i) {
  2098       case 11:
  2099         emit_byte(0x66); // size prefix
  2100       case 10:
  2101         emit_byte(0x66); // size prefix
  2102       case 9:
  2103         emit_byte(0x66); // size prefix
  2104       case 8:
  2105         addr_nop_8();
  2106         break;
  2107       case 7:
  2108         addr_nop_7();
  2109         break;
  2110       case 6:
  2111         emit_byte(0x66); // size prefix
  2112       case 5:
  2113         addr_nop_5();
  2114         break;
  2115       case 4:
  2116         addr_nop_4();
  2117         break;
  2118       case 3:
  2119         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2120         emit_byte(0x66); // size prefix
  2121       case 2:
  2122         emit_byte(0x66); // size prefix
  2123       case 1:
  2124         emit_byte(0x90); // nop
  2125         break;
  2126       default:
  2127         assert(i == 0, " ");
  2129     return;
  2132   // Using nops with size prefixes "0x66 0x90".
  2133   // From AMD Optimization Guide:
  2134   //  1: 0x90
  2135   //  2: 0x66 0x90
  2136   //  3: 0x66 0x66 0x90
  2137   //  4: 0x66 0x66 0x66 0x90
  2138   //  5: 0x66 0x66 0x90 0x66 0x90
  2139   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2140   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2141   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2142   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2143   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2144   //
  2145   while(i > 12) {
  2146     i -= 4;
  2147     emit_byte(0x66); // size prefix
  2148     emit_byte(0x66);
  2149     emit_byte(0x66);
  2150     emit_byte(0x90); // nop
  2152   // 1 - 12 nops
  2153   if(i > 8) {
  2154     if(i > 9) {
  2155       i -= 1;
  2156       emit_byte(0x66);
  2158     i -= 3;
  2159     emit_byte(0x66);
  2160     emit_byte(0x66);
  2161     emit_byte(0x90);
  2163   // 1 - 8 nops
  2164   if(i > 4) {
  2165     if(i > 6) {
  2166       i -= 1;
  2167       emit_byte(0x66);
  2169     i -= 3;
  2170     emit_byte(0x66);
  2171     emit_byte(0x66);
  2172     emit_byte(0x90);
  2174   switch (i) {
  2175     case 4:
  2176       emit_byte(0x66);
  2177     case 3:
  2178       emit_byte(0x66);
  2179     case 2:
  2180       emit_byte(0x66);
  2181     case 1:
  2182       emit_byte(0x90);
  2183       break;
  2184     default:
  2185       assert(i == 0, " ");
  2189 void Assembler::notl(Register dst) {
  2190   int encode = prefix_and_encode(dst->encoding());
  2191   emit_byte(0xF7);
  2192   emit_byte(0xD0 | encode );
  2195 void Assembler::orl(Address dst, int32_t imm32) {
  2196   InstructionMark im(this);
  2197   prefix(dst);
  2198   emit_byte(0x81);
  2199   emit_operand(rcx, dst, 4);
  2200   emit_long(imm32);
  2203 void Assembler::orl(Register dst, int32_t imm32) {
  2204   prefix(dst);
  2205   emit_arith(0x81, 0xC8, dst, imm32);
  2209 void Assembler::orl(Register dst, Address src) {
  2210   InstructionMark im(this);
  2211   prefix(src, dst);
  2212   emit_byte(0x0B);
  2213   emit_operand(dst, src);
  2217 void Assembler::orl(Register dst, Register src) {
  2218   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2219   emit_arith(0x0B, 0xC0, dst, src);
  2222 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2223   assert(VM_Version::supports_sse4_2(), "");
  2225   InstructionMark im(this);
  2226   emit_byte(0x66);
  2227   prefix(src, dst);
  2228   emit_byte(0x0F);
  2229   emit_byte(0x3A);
  2230   emit_byte(0x61);
  2231   emit_operand(dst, src);
  2232   emit_byte(imm8);
  2235 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2236   assert(VM_Version::supports_sse4_2(), "");
  2238   emit_byte(0x66);
  2239   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2240   emit_byte(0x0F);
  2241   emit_byte(0x3A);
  2242   emit_byte(0x61);
  2243   emit_byte(0xC0 | encode);
  2244   emit_byte(imm8);
  2247 // generic
  2248 void Assembler::pop(Register dst) {
  2249   int encode = prefix_and_encode(dst->encoding());
  2250   emit_byte(0x58 | encode);
  2253 void Assembler::popcntl(Register dst, Address src) {
  2254   assert(VM_Version::supports_popcnt(), "must support");
  2255   InstructionMark im(this);
  2256   emit_byte(0xF3);
  2257   prefix(src, dst);
  2258   emit_byte(0x0F);
  2259   emit_byte(0xB8);
  2260   emit_operand(dst, src);
  2263 void Assembler::popcntl(Register dst, Register src) {
  2264   assert(VM_Version::supports_popcnt(), "must support");
  2265   emit_byte(0xF3);
  2266   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2267   emit_byte(0x0F);
  2268   emit_byte(0xB8);
  2269   emit_byte(0xC0 | encode);
  2272 void Assembler::popf() {
  2273   emit_byte(0x9D);
  2276 #ifndef _LP64 // no 32bit push/pop on amd64
  2277 void Assembler::popl(Address dst) {
  2278   // NOTE: this will adjust stack by 8byte on 64bits
  2279   InstructionMark im(this);
  2280   prefix(dst);
  2281   emit_byte(0x8F);
  2282   emit_operand(rax, dst);
  2284 #endif
  2286 void Assembler::prefetch_prefix(Address src) {
  2287   prefix(src);
  2288   emit_byte(0x0F);
  2291 void Assembler::prefetchnta(Address src) {
  2292   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2293   InstructionMark im(this);
  2294   prefetch_prefix(src);
  2295   emit_byte(0x18);
  2296   emit_operand(rax, src); // 0, src
  2299 void Assembler::prefetchr(Address src) {
  2300   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2301   InstructionMark im(this);
  2302   prefetch_prefix(src);
  2303   emit_byte(0x0D);
  2304   emit_operand(rax, src); // 0, src
  2307 void Assembler::prefetcht0(Address src) {
  2308   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2309   InstructionMark im(this);
  2310   prefetch_prefix(src);
  2311   emit_byte(0x18);
  2312   emit_operand(rcx, src); // 1, src
  2315 void Assembler::prefetcht1(Address src) {
  2316   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2317   InstructionMark im(this);
  2318   prefetch_prefix(src);
  2319   emit_byte(0x18);
  2320   emit_operand(rdx, src); // 2, src
  2323 void Assembler::prefetcht2(Address src) {
  2324   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2325   InstructionMark im(this);
  2326   prefetch_prefix(src);
  2327   emit_byte(0x18);
  2328   emit_operand(rbx, src); // 3, src
  2331 void Assembler::prefetchw(Address src) {
  2332   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2333   InstructionMark im(this);
  2334   prefetch_prefix(src);
  2335   emit_byte(0x0D);
  2336   emit_operand(rcx, src); // 1, src
  2339 void Assembler::prefix(Prefix p) {
  2340   a_byte(p);
  2343 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2344   assert(isByte(mode), "invalid value");
  2345   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2347   emit_byte(0x66);
  2348   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2349   emit_byte(0x0F);
  2350   emit_byte(0x70);
  2351   emit_byte(0xC0 | encode);
  2352   emit_byte(mode & 0xFF);
  2356 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2357   assert(isByte(mode), "invalid value");
  2358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2360   InstructionMark im(this);
  2361   emit_byte(0x66);
  2362   prefix(src, dst);
  2363   emit_byte(0x0F);
  2364   emit_byte(0x70);
  2365   emit_operand(dst, src);
  2366   emit_byte(mode & 0xFF);
  2369 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2370   assert(isByte(mode), "invalid value");
  2371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2373   emit_byte(0xF2);
  2374   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2375   emit_byte(0x0F);
  2376   emit_byte(0x70);
  2377   emit_byte(0xC0 | encode);
  2378   emit_byte(mode & 0xFF);
  2381 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2382   assert(isByte(mode), "invalid value");
  2383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2385   InstructionMark im(this);
  2386   emit_byte(0xF2);
  2387   prefix(src, dst); // QQ new
  2388   emit_byte(0x0F);
  2389   emit_byte(0x70);
  2390   emit_operand(dst, src);
  2391   emit_byte(mode & 0xFF);
  2394 void Assembler::psrlq(XMMRegister dst, int shift) {
  2395   // HMM Table D-1 says sse2 or mmx
  2396   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2398   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2399   emit_byte(0x66);
  2400   emit_byte(0x0F);
  2401   emit_byte(0x73);
  2402   emit_byte(0xC0 | encode);
  2403   emit_byte(shift);
  2406 void Assembler::ptest(XMMRegister dst, Address src) {
  2407   assert(VM_Version::supports_sse4_1(), "");
  2409   InstructionMark im(this);
  2410   emit_byte(0x66);
  2411   prefix(src, dst);
  2412   emit_byte(0x0F);
  2413   emit_byte(0x38);
  2414   emit_byte(0x17);
  2415   emit_operand(dst, src);
  2418 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2419   assert(VM_Version::supports_sse4_1(), "");
  2421   emit_byte(0x66);
  2422   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2423   emit_byte(0x0F);
  2424   emit_byte(0x38);
  2425   emit_byte(0x17);
  2426   emit_byte(0xC0 | encode);
  2429 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2431   emit_byte(0x66);
  2432   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2433   emit_byte(0x0F);
  2434   emit_byte(0x60);
  2435   emit_byte(0xC0 | encode);
  2438 void Assembler::push(int32_t imm32) {
  2439   // in 64bits we push 64bits onto the stack but only
  2440   // take a 32bit immediate
  2441   emit_byte(0x68);
  2442   emit_long(imm32);
  2445 void Assembler::push(Register src) {
  2446   int encode = prefix_and_encode(src->encoding());
  2448   emit_byte(0x50 | encode);
  2451 void Assembler::pushf() {
  2452   emit_byte(0x9C);
  2455 #ifndef _LP64 // no 32bit push/pop on amd64
  2456 void Assembler::pushl(Address src) {
  2457   // Note this will push 64bit on 64bit
  2458   InstructionMark im(this);
  2459   prefix(src);
  2460   emit_byte(0xFF);
  2461   emit_operand(rsi, src);
  2463 #endif
  2465 void Assembler::pxor(XMMRegister dst, Address src) {
  2466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2467   InstructionMark im(this);
  2468   emit_byte(0x66);
  2469   prefix(src, dst);
  2470   emit_byte(0x0F);
  2471   emit_byte(0xEF);
  2472   emit_operand(dst, src);
  2475 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2476   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2477   InstructionMark im(this);
  2478   emit_byte(0x66);
  2479   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2480   emit_byte(0x0F);
  2481   emit_byte(0xEF);
  2482   emit_byte(0xC0 | encode);
  2485 void Assembler::rcll(Register dst, int imm8) {
  2486   assert(isShiftCount(imm8), "illegal shift count");
  2487   int encode = prefix_and_encode(dst->encoding());
  2488   if (imm8 == 1) {
  2489     emit_byte(0xD1);
  2490     emit_byte(0xD0 | encode);
  2491   } else {
  2492     emit_byte(0xC1);
  2493     emit_byte(0xD0 | encode);
  2494     emit_byte(imm8);
  2498 // copies data from [esi] to [edi] using rcx pointer sized words
  2499 // generic
  2500 void Assembler::rep_mov() {
  2501   emit_byte(0xF3);
  2502   // MOVSQ
  2503   LP64_ONLY(prefix(REX_W));
  2504   emit_byte(0xA5);
  2507 // sets rcx pointer sized words with rax, value at [edi]
  2508 // generic
  2509 void Assembler::rep_set() { // rep_set
  2510   emit_byte(0xF3);
  2511   // STOSQ
  2512   LP64_ONLY(prefix(REX_W));
  2513   emit_byte(0xAB);
  2516 // scans rcx pointer sized words at [edi] for occurance of rax,
  2517 // generic
  2518 void Assembler::repne_scan() { // repne_scan
  2519   emit_byte(0xF2);
  2520   // SCASQ
  2521   LP64_ONLY(prefix(REX_W));
  2522   emit_byte(0xAF);
  2525 #ifdef _LP64
  2526 // scans rcx 4 byte words at [edi] for occurance of rax,
  2527 // generic
  2528 void Assembler::repne_scanl() { // repne_scan
  2529   emit_byte(0xF2);
  2530   // SCASL
  2531   emit_byte(0xAF);
  2533 #endif
  2535 void Assembler::ret(int imm16) {
  2536   if (imm16 == 0) {
  2537     emit_byte(0xC3);
  2538   } else {
  2539     emit_byte(0xC2);
  2540     emit_word(imm16);
  2544 void Assembler::sahf() {
  2545 #ifdef _LP64
  2546   // Not supported in 64bit mode
  2547   ShouldNotReachHere();
  2548 #endif
  2549   emit_byte(0x9E);
  2552 void Assembler::sarl(Register dst, int imm8) {
  2553   int encode = prefix_and_encode(dst->encoding());
  2554   assert(isShiftCount(imm8), "illegal shift count");
  2555   if (imm8 == 1) {
  2556     emit_byte(0xD1);
  2557     emit_byte(0xF8 | encode);
  2558   } else {
  2559     emit_byte(0xC1);
  2560     emit_byte(0xF8 | encode);
  2561     emit_byte(imm8);
  2565 void Assembler::sarl(Register dst) {
  2566   int encode = prefix_and_encode(dst->encoding());
  2567   emit_byte(0xD3);
  2568   emit_byte(0xF8 | encode);
  2571 void Assembler::sbbl(Address dst, int32_t imm32) {
  2572   InstructionMark im(this);
  2573   prefix(dst);
  2574   emit_arith_operand(0x81, rbx, dst, imm32);
  2577 void Assembler::sbbl(Register dst, int32_t imm32) {
  2578   prefix(dst);
  2579   emit_arith(0x81, 0xD8, dst, imm32);
  2583 void Assembler::sbbl(Register dst, Address src) {
  2584   InstructionMark im(this);
  2585   prefix(src, dst);
  2586   emit_byte(0x1B);
  2587   emit_operand(dst, src);
  2590 void Assembler::sbbl(Register dst, Register src) {
  2591   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2592   emit_arith(0x1B, 0xC0, dst, src);
  2595 void Assembler::setb(Condition cc, Register dst) {
  2596   assert(0 <= cc && cc < 16, "illegal cc");
  2597   int encode = prefix_and_encode(dst->encoding(), true);
  2598   emit_byte(0x0F);
  2599   emit_byte(0x90 | cc);
  2600   emit_byte(0xC0 | encode);
  2603 void Assembler::shll(Register dst, int imm8) {
  2604   assert(isShiftCount(imm8), "illegal shift count");
  2605   int encode = prefix_and_encode(dst->encoding());
  2606   if (imm8 == 1 ) {
  2607     emit_byte(0xD1);
  2608     emit_byte(0xE0 | encode);
  2609   } else {
  2610     emit_byte(0xC1);
  2611     emit_byte(0xE0 | encode);
  2612     emit_byte(imm8);
  2616 void Assembler::shll(Register dst) {
  2617   int encode = prefix_and_encode(dst->encoding());
  2618   emit_byte(0xD3);
  2619   emit_byte(0xE0 | encode);
  2622 void Assembler::shrl(Register dst, int imm8) {
  2623   assert(isShiftCount(imm8), "illegal shift count");
  2624   int encode = prefix_and_encode(dst->encoding());
  2625   emit_byte(0xC1);
  2626   emit_byte(0xE8 | encode);
  2627   emit_byte(imm8);
  2630 void Assembler::shrl(Register dst) {
  2631   int encode = prefix_and_encode(dst->encoding());
  2632   emit_byte(0xD3);
  2633   emit_byte(0xE8 | encode);
  2636 // copies a single word from [esi] to [edi]
  2637 void Assembler::smovl() {
  2638   emit_byte(0xA5);
  2641 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2642   // HMM Table D-1 says sse2
  2643   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2645   emit_byte(0xF2);
  2646   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2647   emit_byte(0x0F);
  2648   emit_byte(0x51);
  2649   emit_byte(0xC0 | encode);
  2652 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2654   InstructionMark im(this);
  2655   emit_byte(0xF2);
  2656   prefix(src, dst);
  2657   emit_byte(0x0F);
  2658   emit_byte(0x51);
  2659   emit_operand(dst, src);
  2662 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2663   // HMM Table D-1 says sse2
  2664   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2666   emit_byte(0xF3);
  2667   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2668   emit_byte(0x0F);
  2669   emit_byte(0x51);
  2670   emit_byte(0xC0 | encode);
  2673 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2675   InstructionMark im(this);
  2676   emit_byte(0xF3);
  2677   prefix(src, dst);
  2678   emit_byte(0x0F);
  2679   emit_byte(0x51);
  2680   emit_operand(dst, src);
  2683 void Assembler::stmxcsr( Address dst) {
  2684   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2685   InstructionMark im(this);
  2686   prefix(dst);
  2687   emit_byte(0x0F);
  2688   emit_byte(0xAE);
  2689   emit_operand(as_Register(3), dst);
  2692 void Assembler::subl(Address dst, int32_t imm32) {
  2693   InstructionMark im(this);
  2694   prefix(dst);
  2695   if (is8bit(imm32)) {
  2696     emit_byte(0x83);
  2697     emit_operand(rbp, dst, 1);
  2698     emit_byte(imm32 & 0xFF);
  2699   } else {
  2700     emit_byte(0x81);
  2701     emit_operand(rbp, dst, 4);
  2702     emit_long(imm32);
  2706 void Assembler::subl(Register dst, int32_t imm32) {
  2707   prefix(dst);
  2708   emit_arith(0x81, 0xE8, dst, imm32);
  2711 void Assembler::subl(Address dst, Register src) {
  2712   InstructionMark im(this);
  2713   prefix(dst, src);
  2714   emit_byte(0x29);
  2715   emit_operand(src, dst);
  2718 void Assembler::subl(Register dst, Address src) {
  2719   InstructionMark im(this);
  2720   prefix(src, dst);
  2721   emit_byte(0x2B);
  2722   emit_operand(dst, src);
  2725 void Assembler::subl(Register dst, Register src) {
  2726   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2727   emit_arith(0x2B, 0xC0, dst, src);
  2730 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2732   emit_byte(0xF2);
  2733   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2734   emit_byte(0x0F);
  2735   emit_byte(0x5C);
  2736   emit_byte(0xC0 | encode);
  2739 void Assembler::subsd(XMMRegister dst, Address src) {
  2740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2741   InstructionMark im(this);
  2742   emit_byte(0xF2);
  2743   prefix(src, dst);
  2744   emit_byte(0x0F);
  2745   emit_byte(0x5C);
  2746   emit_operand(dst, src);
  2749 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2750   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2751   emit_byte(0xF3);
  2752   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2753   emit_byte(0x0F);
  2754   emit_byte(0x5C);
  2755   emit_byte(0xC0 | encode);
  2758 void Assembler::subss(XMMRegister dst, Address src) {
  2759   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2760   InstructionMark im(this);
  2761   emit_byte(0xF3);
  2762   prefix(src, dst);
  2763   emit_byte(0x0F);
  2764   emit_byte(0x5C);
  2765   emit_operand(dst, src);
  2768 void Assembler::testb(Register dst, int imm8) {
  2769   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2770   (void) prefix_and_encode(dst->encoding(), true);
  2771   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2774 void Assembler::testl(Register dst, int32_t imm32) {
  2775   // not using emit_arith because test
  2776   // doesn't support sign-extension of
  2777   // 8bit operands
  2778   int encode = dst->encoding();
  2779   if (encode == 0) {
  2780     emit_byte(0xA9);
  2781   } else {
  2782     encode = prefix_and_encode(encode);
  2783     emit_byte(0xF7);
  2784     emit_byte(0xC0 | encode);
  2786   emit_long(imm32);
  2789 void Assembler::testl(Register dst, Register src) {
  2790   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2791   emit_arith(0x85, 0xC0, dst, src);
  2794 void Assembler::testl(Register dst, Address  src) {
  2795   InstructionMark im(this);
  2796   prefix(src, dst);
  2797   emit_byte(0x85);
  2798   emit_operand(dst, src);
  2801 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2803   emit_byte(0x66);
  2804   ucomiss(dst, src);
  2807 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2809   emit_byte(0x66);
  2810   ucomiss(dst, src);
  2813 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2814   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2816   InstructionMark im(this);
  2817   prefix(src, dst);
  2818   emit_byte(0x0F);
  2819   emit_byte(0x2E);
  2820   emit_operand(dst, src);
  2823 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2824   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2825   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2826   emit_byte(0x0F);
  2827   emit_byte(0x2E);
  2828   emit_byte(0xC0 | encode);
  2832 void Assembler::xaddl(Address dst, Register src) {
  2833   InstructionMark im(this);
  2834   prefix(dst, src);
  2835   emit_byte(0x0F);
  2836   emit_byte(0xC1);
  2837   emit_operand(src, dst);
  2840 void Assembler::xchgl(Register dst, Address src) { // xchg
  2841   InstructionMark im(this);
  2842   prefix(src, dst);
  2843   emit_byte(0x87);
  2844   emit_operand(dst, src);
  2847 void Assembler::xchgl(Register dst, Register src) {
  2848   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2849   emit_byte(0x87);
  2850   emit_byte(0xc0 | encode);
  2853 void Assembler::xorl(Register dst, int32_t imm32) {
  2854   prefix(dst);
  2855   emit_arith(0x81, 0xF0, dst, imm32);
  2858 void Assembler::xorl(Register dst, Address src) {
  2859   InstructionMark im(this);
  2860   prefix(src, dst);
  2861   emit_byte(0x33);
  2862   emit_operand(dst, src);
  2865 void Assembler::xorl(Register dst, Register src) {
  2866   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2867   emit_arith(0x33, 0xC0, dst, src);
  2870 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2871   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2872   emit_byte(0x66);
  2873   xorps(dst, src);
  2876 void Assembler::xorpd(XMMRegister dst, Address src) {
  2877   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2878   InstructionMark im(this);
  2879   emit_byte(0x66);
  2880   prefix(src, dst);
  2881   emit_byte(0x0F);
  2882   emit_byte(0x57);
  2883   emit_operand(dst, src);
  2887 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2888   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2889   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2890   emit_byte(0x0F);
  2891   emit_byte(0x57);
  2892   emit_byte(0xC0 | encode);
  2895 void Assembler::xorps(XMMRegister dst, Address src) {
  2896   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2897   InstructionMark im(this);
  2898   prefix(src, dst);
  2899   emit_byte(0x0F);
  2900   emit_byte(0x57);
  2901   emit_operand(dst, src);
  2904 #ifndef _LP64
  2905 // 32bit only pieces of the assembler
  2907 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2908   // NO PREFIX AS NEVER 64BIT
  2909   InstructionMark im(this);
  2910   emit_byte(0x81);
  2911   emit_byte(0xF8 | src1->encoding());
  2912   emit_data(imm32, rspec, 0);
  2915 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2916   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2917   InstructionMark im(this);
  2918   emit_byte(0x81);
  2919   emit_operand(rdi, src1);
  2920   emit_data(imm32, rspec, 0);
  2923 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2924 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2925 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2926 void Assembler::cmpxchg8(Address adr) {
  2927   InstructionMark im(this);
  2928   emit_byte(0x0F);
  2929   emit_byte(0xc7);
  2930   emit_operand(rcx, adr);
  2933 void Assembler::decl(Register dst) {
  2934   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2935  emit_byte(0x48 | dst->encoding());
  2938 #endif // _LP64
  2940 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2942 void Assembler::fabs() {
  2943   emit_byte(0xD9);
  2944   emit_byte(0xE1);
  2947 void Assembler::fadd(int i) {
  2948   emit_farith(0xD8, 0xC0, i);
  2951 void Assembler::fadd_d(Address src) {
  2952   InstructionMark im(this);
  2953   emit_byte(0xDC);
  2954   emit_operand32(rax, src);
  2957 void Assembler::fadd_s(Address src) {
  2958   InstructionMark im(this);
  2959   emit_byte(0xD8);
  2960   emit_operand32(rax, src);
  2963 void Assembler::fadda(int i) {
  2964   emit_farith(0xDC, 0xC0, i);
  2967 void Assembler::faddp(int i) {
  2968   emit_farith(0xDE, 0xC0, i);
  2971 void Assembler::fchs() {
  2972   emit_byte(0xD9);
  2973   emit_byte(0xE0);
  2976 void Assembler::fcom(int i) {
  2977   emit_farith(0xD8, 0xD0, i);
  2980 void Assembler::fcomp(int i) {
  2981   emit_farith(0xD8, 0xD8, i);
  2984 void Assembler::fcomp_d(Address src) {
  2985   InstructionMark im(this);
  2986   emit_byte(0xDC);
  2987   emit_operand32(rbx, src);
  2990 void Assembler::fcomp_s(Address src) {
  2991   InstructionMark im(this);
  2992   emit_byte(0xD8);
  2993   emit_operand32(rbx, src);
  2996 void Assembler::fcompp() {
  2997   emit_byte(0xDE);
  2998   emit_byte(0xD9);
  3001 void Assembler::fcos() {
  3002   emit_byte(0xD9);
  3003   emit_byte(0xFF);
  3006 void Assembler::fdecstp() {
  3007   emit_byte(0xD9);
  3008   emit_byte(0xF6);
  3011 void Assembler::fdiv(int i) {
  3012   emit_farith(0xD8, 0xF0, i);
  3015 void Assembler::fdiv_d(Address src) {
  3016   InstructionMark im(this);
  3017   emit_byte(0xDC);
  3018   emit_operand32(rsi, src);
  3021 void Assembler::fdiv_s(Address src) {
  3022   InstructionMark im(this);
  3023   emit_byte(0xD8);
  3024   emit_operand32(rsi, src);
  3027 void Assembler::fdiva(int i) {
  3028   emit_farith(0xDC, 0xF8, i);
  3031 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3032 //       is erroneous for some of the floating-point instructions below.
  3034 void Assembler::fdivp(int i) {
  3035   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3038 void Assembler::fdivr(int i) {
  3039   emit_farith(0xD8, 0xF8, i);
  3042 void Assembler::fdivr_d(Address src) {
  3043   InstructionMark im(this);
  3044   emit_byte(0xDC);
  3045   emit_operand32(rdi, src);
  3048 void Assembler::fdivr_s(Address src) {
  3049   InstructionMark im(this);
  3050   emit_byte(0xD8);
  3051   emit_operand32(rdi, src);
  3054 void Assembler::fdivra(int i) {
  3055   emit_farith(0xDC, 0xF0, i);
  3058 void Assembler::fdivrp(int i) {
  3059   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3062 void Assembler::ffree(int i) {
  3063   emit_farith(0xDD, 0xC0, i);
  3066 void Assembler::fild_d(Address adr) {
  3067   InstructionMark im(this);
  3068   emit_byte(0xDF);
  3069   emit_operand32(rbp, adr);
  3072 void Assembler::fild_s(Address adr) {
  3073   InstructionMark im(this);
  3074   emit_byte(0xDB);
  3075   emit_operand32(rax, adr);
  3078 void Assembler::fincstp() {
  3079   emit_byte(0xD9);
  3080   emit_byte(0xF7);
  3083 void Assembler::finit() {
  3084   emit_byte(0x9B);
  3085   emit_byte(0xDB);
  3086   emit_byte(0xE3);
  3089 void Assembler::fist_s(Address adr) {
  3090   InstructionMark im(this);
  3091   emit_byte(0xDB);
  3092   emit_operand32(rdx, adr);
  3095 void Assembler::fistp_d(Address adr) {
  3096   InstructionMark im(this);
  3097   emit_byte(0xDF);
  3098   emit_operand32(rdi, adr);
  3101 void Assembler::fistp_s(Address adr) {
  3102   InstructionMark im(this);
  3103   emit_byte(0xDB);
  3104   emit_operand32(rbx, adr);
  3107 void Assembler::fld1() {
  3108   emit_byte(0xD9);
  3109   emit_byte(0xE8);
  3112 void Assembler::fld_d(Address adr) {
  3113   InstructionMark im(this);
  3114   emit_byte(0xDD);
  3115   emit_operand32(rax, adr);
  3118 void Assembler::fld_s(Address adr) {
  3119   InstructionMark im(this);
  3120   emit_byte(0xD9);
  3121   emit_operand32(rax, adr);
  3125 void Assembler::fld_s(int index) {
  3126   emit_farith(0xD9, 0xC0, index);
  3129 void Assembler::fld_x(Address adr) {
  3130   InstructionMark im(this);
  3131   emit_byte(0xDB);
  3132   emit_operand32(rbp, adr);
  3135 void Assembler::fldcw(Address src) {
  3136   InstructionMark im(this);
  3137   emit_byte(0xd9);
  3138   emit_operand32(rbp, src);
  3141 void Assembler::fldenv(Address src) {
  3142   InstructionMark im(this);
  3143   emit_byte(0xD9);
  3144   emit_operand32(rsp, src);
  3147 void Assembler::fldlg2() {
  3148   emit_byte(0xD9);
  3149   emit_byte(0xEC);
  3152 void Assembler::fldln2() {
  3153   emit_byte(0xD9);
  3154   emit_byte(0xED);
  3157 void Assembler::fldz() {
  3158   emit_byte(0xD9);
  3159   emit_byte(0xEE);
  3162 void Assembler::flog() {
  3163   fldln2();
  3164   fxch();
  3165   fyl2x();
  3168 void Assembler::flog10() {
  3169   fldlg2();
  3170   fxch();
  3171   fyl2x();
  3174 void Assembler::fmul(int i) {
  3175   emit_farith(0xD8, 0xC8, i);
  3178 void Assembler::fmul_d(Address src) {
  3179   InstructionMark im(this);
  3180   emit_byte(0xDC);
  3181   emit_operand32(rcx, src);
  3184 void Assembler::fmul_s(Address src) {
  3185   InstructionMark im(this);
  3186   emit_byte(0xD8);
  3187   emit_operand32(rcx, src);
  3190 void Assembler::fmula(int i) {
  3191   emit_farith(0xDC, 0xC8, i);
  3194 void Assembler::fmulp(int i) {
  3195   emit_farith(0xDE, 0xC8, i);
  3198 void Assembler::fnsave(Address dst) {
  3199   InstructionMark im(this);
  3200   emit_byte(0xDD);
  3201   emit_operand32(rsi, dst);
  3204 void Assembler::fnstcw(Address src) {
  3205   InstructionMark im(this);
  3206   emit_byte(0x9B);
  3207   emit_byte(0xD9);
  3208   emit_operand32(rdi, src);
  3211 void Assembler::fnstsw_ax() {
  3212   emit_byte(0xdF);
  3213   emit_byte(0xE0);
  3216 void Assembler::fprem() {
  3217   emit_byte(0xD9);
  3218   emit_byte(0xF8);
  3221 void Assembler::fprem1() {
  3222   emit_byte(0xD9);
  3223   emit_byte(0xF5);
  3226 void Assembler::frstor(Address src) {
  3227   InstructionMark im(this);
  3228   emit_byte(0xDD);
  3229   emit_operand32(rsp, src);
  3232 void Assembler::fsin() {
  3233   emit_byte(0xD9);
  3234   emit_byte(0xFE);
  3237 void Assembler::fsqrt() {
  3238   emit_byte(0xD9);
  3239   emit_byte(0xFA);
  3242 void Assembler::fst_d(Address adr) {
  3243   InstructionMark im(this);
  3244   emit_byte(0xDD);
  3245   emit_operand32(rdx, adr);
  3248 void Assembler::fst_s(Address adr) {
  3249   InstructionMark im(this);
  3250   emit_byte(0xD9);
  3251   emit_operand32(rdx, adr);
  3254 void Assembler::fstp_d(Address adr) {
  3255   InstructionMark im(this);
  3256   emit_byte(0xDD);
  3257   emit_operand32(rbx, adr);
  3260 void Assembler::fstp_d(int index) {
  3261   emit_farith(0xDD, 0xD8, index);
  3264 void Assembler::fstp_s(Address adr) {
  3265   InstructionMark im(this);
  3266   emit_byte(0xD9);
  3267   emit_operand32(rbx, adr);
  3270 void Assembler::fstp_x(Address adr) {
  3271   InstructionMark im(this);
  3272   emit_byte(0xDB);
  3273   emit_operand32(rdi, adr);
  3276 void Assembler::fsub(int i) {
  3277   emit_farith(0xD8, 0xE0, i);
  3280 void Assembler::fsub_d(Address src) {
  3281   InstructionMark im(this);
  3282   emit_byte(0xDC);
  3283   emit_operand32(rsp, src);
  3286 void Assembler::fsub_s(Address src) {
  3287   InstructionMark im(this);
  3288   emit_byte(0xD8);
  3289   emit_operand32(rsp, src);
  3292 void Assembler::fsuba(int i) {
  3293   emit_farith(0xDC, 0xE8, i);
  3296 void Assembler::fsubp(int i) {
  3297   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3300 void Assembler::fsubr(int i) {
  3301   emit_farith(0xD8, 0xE8, i);
  3304 void Assembler::fsubr_d(Address src) {
  3305   InstructionMark im(this);
  3306   emit_byte(0xDC);
  3307   emit_operand32(rbp, src);
  3310 void Assembler::fsubr_s(Address src) {
  3311   InstructionMark im(this);
  3312   emit_byte(0xD8);
  3313   emit_operand32(rbp, src);
  3316 void Assembler::fsubra(int i) {
  3317   emit_farith(0xDC, 0xE0, i);
  3320 void Assembler::fsubrp(int i) {
  3321   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3324 void Assembler::ftan() {
  3325   emit_byte(0xD9);
  3326   emit_byte(0xF2);
  3327   emit_byte(0xDD);
  3328   emit_byte(0xD8);
  3331 void Assembler::ftst() {
  3332   emit_byte(0xD9);
  3333   emit_byte(0xE4);
  3336 void Assembler::fucomi(int i) {
  3337   // make sure the instruction is supported (introduced for P6, together with cmov)
  3338   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3339   emit_farith(0xDB, 0xE8, i);
  3342 void Assembler::fucomip(int i) {
  3343   // make sure the instruction is supported (introduced for P6, together with cmov)
  3344   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3345   emit_farith(0xDF, 0xE8, i);
  3348 void Assembler::fwait() {
  3349   emit_byte(0x9B);
  3352 void Assembler::fxch(int i) {
  3353   emit_farith(0xD9, 0xC8, i);
  3356 void Assembler::fyl2x() {
  3357   emit_byte(0xD9);
  3358   emit_byte(0xF1);
  3362 #ifndef _LP64
  3364 void Assembler::incl(Register dst) {
  3365   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3366  emit_byte(0x40 | dst->encoding());
  3369 void Assembler::lea(Register dst, Address src) {
  3370   leal(dst, src);
  3373 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3374   InstructionMark im(this);
  3375   emit_byte(0xC7);
  3376   emit_operand(rax, dst);
  3377   emit_data((int)imm32, rspec, 0);
  3380 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3381   InstructionMark im(this);
  3382   int encode = prefix_and_encode(dst->encoding());
  3383   emit_byte(0xB8 | encode);
  3384   emit_data((int)imm32, rspec, 0);
  3387 void Assembler::popa() { // 32bit
  3388   emit_byte(0x61);
  3391 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3392   InstructionMark im(this);
  3393   emit_byte(0x68);
  3394   emit_data(imm32, rspec, 0);
  3397 void Assembler::pusha() { // 32bit
  3398   emit_byte(0x60);
  3401 void Assembler::set_byte_if_not_zero(Register dst) {
  3402   emit_byte(0x0F);
  3403   emit_byte(0x95);
  3404   emit_byte(0xE0 | dst->encoding());
  3407 void Assembler::shldl(Register dst, Register src) {
  3408   emit_byte(0x0F);
  3409   emit_byte(0xA5);
  3410   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3413 void Assembler::shrdl(Register dst, Register src) {
  3414   emit_byte(0x0F);
  3415   emit_byte(0xAD);
  3416   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3419 #else // LP64
  3421 void Assembler::set_byte_if_not_zero(Register dst) {
  3422   int enc = prefix_and_encode(dst->encoding(), true);
  3423   emit_byte(0x0F);
  3424   emit_byte(0x95);
  3425   emit_byte(0xE0 | enc);
  3428 // 64bit only pieces of the assembler
  3429 // This should only be used by 64bit instructions that can use rip-relative
  3430 // it cannot be used by instructions that want an immediate value.
  3432 bool Assembler::reachable(AddressLiteral adr) {
  3433   int64_t disp;
  3434   // None will force a 64bit literal to the code stream. Likely a placeholder
  3435   // for something that will be patched later and we need to certain it will
  3436   // always be reachable.
  3437   if (adr.reloc() == relocInfo::none) {
  3438     return false;
  3440   if (adr.reloc() == relocInfo::internal_word_type) {
  3441     // This should be rip relative and easily reachable.
  3442     return true;
  3444   if (adr.reloc() == relocInfo::virtual_call_type ||
  3445       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3446       adr.reloc() == relocInfo::static_call_type ||
  3447       adr.reloc() == relocInfo::static_stub_type ) {
  3448     // This should be rip relative within the code cache and easily
  3449     // reachable until we get huge code caches. (At which point
  3450     // ic code is going to have issues).
  3451     return true;
  3453   if (adr.reloc() != relocInfo::external_word_type &&
  3454       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3455       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3456       adr.reloc() != relocInfo::runtime_call_type ) {
  3457     return false;
  3460   // Stress the correction code
  3461   if (ForceUnreachable) {
  3462     // Must be runtimecall reloc, see if it is in the codecache
  3463     // Flipping stuff in the codecache to be unreachable causes issues
  3464     // with things like inline caches where the additional instructions
  3465     // are not handled.
  3466     if (CodeCache::find_blob(adr._target) == NULL) {
  3467       return false;
  3470   // For external_word_type/runtime_call_type if it is reachable from where we
  3471   // are now (possibly a temp buffer) and where we might end up
  3472   // anywhere in the codeCache then we are always reachable.
  3473   // This would have to change if we ever save/restore shared code
  3474   // to be more pessimistic.
  3476   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3477   if (!is_simm32(disp)) return false;
  3478   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3479   if (!is_simm32(disp)) return false;
  3481   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3483   // Because rip relative is a disp + address_of_next_instruction and we
  3484   // don't know the value of address_of_next_instruction we apply a fudge factor
  3485   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3486   // We don't have to fudge the checks above here because they are already worst case.
  3488   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3489   // + 4 because better safe than sorry.
  3490   const int fudge = 12 + 4;
  3491   if (disp < 0) {
  3492     disp -= fudge;
  3493   } else {
  3494     disp += fudge;
  3496   return is_simm32(disp);
  3499 void Assembler::emit_data64(jlong data,
  3500                             relocInfo::relocType rtype,
  3501                             int format) {
  3502   if (rtype == relocInfo::none) {
  3503     emit_long64(data);
  3504   } else {
  3505     emit_data64(data, Relocation::spec_simple(rtype), format);
  3509 void Assembler::emit_data64(jlong data,
  3510                             RelocationHolder const& rspec,
  3511                             int format) {
  3512   assert(imm_operand == 0, "default format must be immediate in this file");
  3513   assert(imm_operand == format, "must be immediate");
  3514   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3515   // Do not use AbstractAssembler::relocate, which is not intended for
  3516   // embedded words.  Instead, relocate to the enclosing instruction.
  3517   code_section()->relocate(inst_mark(), rspec, format);
  3518 #ifdef ASSERT
  3519   check_relocation(rspec, format);
  3520 #endif
  3521   emit_long64(data);
  3524 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3525   if (reg_enc >= 8) {
  3526     prefix(REX_B);
  3527     reg_enc -= 8;
  3528   } else if (byteinst && reg_enc >= 4) {
  3529     prefix(REX);
  3531   return reg_enc;
  3534 int Assembler::prefixq_and_encode(int reg_enc) {
  3535   if (reg_enc < 8) {
  3536     prefix(REX_W);
  3537   } else {
  3538     prefix(REX_WB);
  3539     reg_enc -= 8;
  3541   return reg_enc;
  3544 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3545   if (dst_enc < 8) {
  3546     if (src_enc >= 8) {
  3547       prefix(REX_B);
  3548       src_enc -= 8;
  3549     } else if (byteinst && src_enc >= 4) {
  3550       prefix(REX);
  3552   } else {
  3553     if (src_enc < 8) {
  3554       prefix(REX_R);
  3555     } else {
  3556       prefix(REX_RB);
  3557       src_enc -= 8;
  3559     dst_enc -= 8;
  3561   return dst_enc << 3 | src_enc;
  3564 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3565   if (dst_enc < 8) {
  3566     if (src_enc < 8) {
  3567       prefix(REX_W);
  3568     } else {
  3569       prefix(REX_WB);
  3570       src_enc -= 8;
  3572   } else {
  3573     if (src_enc < 8) {
  3574       prefix(REX_WR);
  3575     } else {
  3576       prefix(REX_WRB);
  3577       src_enc -= 8;
  3579     dst_enc -= 8;
  3581   return dst_enc << 3 | src_enc;
  3584 void Assembler::prefix(Register reg) {
  3585   if (reg->encoding() >= 8) {
  3586     prefix(REX_B);
  3590 void Assembler::prefix(Address adr) {
  3591   if (adr.base_needs_rex()) {
  3592     if (adr.index_needs_rex()) {
  3593       prefix(REX_XB);
  3594     } else {
  3595       prefix(REX_B);
  3597   } else {
  3598     if (adr.index_needs_rex()) {
  3599       prefix(REX_X);
  3604 void Assembler::prefixq(Address adr) {
  3605   if (adr.base_needs_rex()) {
  3606     if (adr.index_needs_rex()) {
  3607       prefix(REX_WXB);
  3608     } else {
  3609       prefix(REX_WB);
  3611   } else {
  3612     if (adr.index_needs_rex()) {
  3613       prefix(REX_WX);
  3614     } else {
  3615       prefix(REX_W);
  3621 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3622   if (reg->encoding() < 8) {
  3623     if (adr.base_needs_rex()) {
  3624       if (adr.index_needs_rex()) {
  3625         prefix(REX_XB);
  3626       } else {
  3627         prefix(REX_B);
  3629     } else {
  3630       if (adr.index_needs_rex()) {
  3631         prefix(REX_X);
  3632       } else if (reg->encoding() >= 4 ) {
  3633         prefix(REX);
  3636   } else {
  3637     if (adr.base_needs_rex()) {
  3638       if (adr.index_needs_rex()) {
  3639         prefix(REX_RXB);
  3640       } else {
  3641         prefix(REX_RB);
  3643     } else {
  3644       if (adr.index_needs_rex()) {
  3645         prefix(REX_RX);
  3646       } else {
  3647         prefix(REX_R);
  3653 void Assembler::prefixq(Address adr, Register src) {
  3654   if (src->encoding() < 8) {
  3655     if (adr.base_needs_rex()) {
  3656       if (adr.index_needs_rex()) {
  3657         prefix(REX_WXB);
  3658       } else {
  3659         prefix(REX_WB);
  3661     } else {
  3662       if (adr.index_needs_rex()) {
  3663         prefix(REX_WX);
  3664       } else {
  3665         prefix(REX_W);
  3668   } else {
  3669     if (adr.base_needs_rex()) {
  3670       if (adr.index_needs_rex()) {
  3671         prefix(REX_WRXB);
  3672       } else {
  3673         prefix(REX_WRB);
  3675     } else {
  3676       if (adr.index_needs_rex()) {
  3677         prefix(REX_WRX);
  3678       } else {
  3679         prefix(REX_WR);
  3685 void Assembler::prefix(Address adr, XMMRegister reg) {
  3686   if (reg->encoding() < 8) {
  3687     if (adr.base_needs_rex()) {
  3688       if (adr.index_needs_rex()) {
  3689         prefix(REX_XB);
  3690       } else {
  3691         prefix(REX_B);
  3693     } else {
  3694       if (adr.index_needs_rex()) {
  3695         prefix(REX_X);
  3698   } else {
  3699     if (adr.base_needs_rex()) {
  3700       if (adr.index_needs_rex()) {
  3701         prefix(REX_RXB);
  3702       } else {
  3703         prefix(REX_RB);
  3705     } else {
  3706       if (adr.index_needs_rex()) {
  3707         prefix(REX_RX);
  3708       } else {
  3709         prefix(REX_R);
  3715 void Assembler::adcq(Register dst, int32_t imm32) {
  3716   (void) prefixq_and_encode(dst->encoding());
  3717   emit_arith(0x81, 0xD0, dst, imm32);
  3720 void Assembler::adcq(Register dst, Address src) {
  3721   InstructionMark im(this);
  3722   prefixq(src, dst);
  3723   emit_byte(0x13);
  3724   emit_operand(dst, src);
  3727 void Assembler::adcq(Register dst, Register src) {
  3728   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3729   emit_arith(0x13, 0xC0, dst, src);
  3732 void Assembler::addq(Address dst, int32_t imm32) {
  3733   InstructionMark im(this);
  3734   prefixq(dst);
  3735   emit_arith_operand(0x81, rax, dst,imm32);
  3738 void Assembler::addq(Address dst, Register src) {
  3739   InstructionMark im(this);
  3740   prefixq(dst, src);
  3741   emit_byte(0x01);
  3742   emit_operand(src, dst);
  3745 void Assembler::addq(Register dst, int32_t imm32) {
  3746   (void) prefixq_and_encode(dst->encoding());
  3747   emit_arith(0x81, 0xC0, dst, imm32);
  3750 void Assembler::addq(Register dst, Address src) {
  3751   InstructionMark im(this);
  3752   prefixq(src, dst);
  3753   emit_byte(0x03);
  3754   emit_operand(dst, src);
  3757 void Assembler::addq(Register dst, Register src) {
  3758   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3759   emit_arith(0x03, 0xC0, dst, src);
  3762 void Assembler::andq(Register dst, int32_t imm32) {
  3763   (void) prefixq_and_encode(dst->encoding());
  3764   emit_arith(0x81, 0xE0, dst, imm32);
  3767 void Assembler::andq(Register dst, Address src) {
  3768   InstructionMark im(this);
  3769   prefixq(src, dst);
  3770   emit_byte(0x23);
  3771   emit_operand(dst, src);
  3774 void Assembler::andq(Register dst, Register src) {
  3775   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3776   emit_arith(0x23, 0xC0, dst, src);
  3779 void Assembler::bsfq(Register dst, Register src) {
  3780   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3781   emit_byte(0x0F);
  3782   emit_byte(0xBC);
  3783   emit_byte(0xC0 | encode);
  3786 void Assembler::bsrq(Register dst, Register src) {
  3787   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  3788   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3789   emit_byte(0x0F);
  3790   emit_byte(0xBD);
  3791   emit_byte(0xC0 | encode);
  3794 void Assembler::bswapq(Register reg) {
  3795   int encode = prefixq_and_encode(reg->encoding());
  3796   emit_byte(0x0F);
  3797   emit_byte(0xC8 | encode);
  3800 void Assembler::cdqq() {
  3801   prefix(REX_W);
  3802   emit_byte(0x99);
  3805 void Assembler::clflush(Address adr) {
  3806   prefix(adr);
  3807   emit_byte(0x0F);
  3808   emit_byte(0xAE);
  3809   emit_operand(rdi, adr);
  3812 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3813   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3814   emit_byte(0x0F);
  3815   emit_byte(0x40 | cc);
  3816   emit_byte(0xC0 | encode);
  3819 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3820   InstructionMark im(this);
  3821   prefixq(src, dst);
  3822   emit_byte(0x0F);
  3823   emit_byte(0x40 | cc);
  3824   emit_operand(dst, src);
  3827 void Assembler::cmpq(Address dst, int32_t imm32) {
  3828   InstructionMark im(this);
  3829   prefixq(dst);
  3830   emit_byte(0x81);
  3831   emit_operand(rdi, dst, 4);
  3832   emit_long(imm32);
  3835 void Assembler::cmpq(Register dst, int32_t imm32) {
  3836   (void) prefixq_and_encode(dst->encoding());
  3837   emit_arith(0x81, 0xF8, dst, imm32);
  3840 void Assembler::cmpq(Address dst, Register src) {
  3841   InstructionMark im(this);
  3842   prefixq(dst, src);
  3843   emit_byte(0x3B);
  3844   emit_operand(src, dst);
  3847 void Assembler::cmpq(Register dst, Register src) {
  3848   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3849   emit_arith(0x3B, 0xC0, dst, src);
  3852 void Assembler::cmpq(Register dst, Address  src) {
  3853   InstructionMark im(this);
  3854   prefixq(src, dst);
  3855   emit_byte(0x3B);
  3856   emit_operand(dst, src);
  3859 void Assembler::cmpxchgq(Register reg, Address adr) {
  3860   InstructionMark im(this);
  3861   prefixq(adr, reg);
  3862   emit_byte(0x0F);
  3863   emit_byte(0xB1);
  3864   emit_operand(reg, adr);
  3867 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3868   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3869   emit_byte(0xF2);
  3870   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3871   emit_byte(0x0F);
  3872   emit_byte(0x2A);
  3873   emit_byte(0xC0 | encode);
  3876 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3877   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3878   emit_byte(0xF3);
  3879   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3880   emit_byte(0x0F);
  3881   emit_byte(0x2A);
  3882   emit_byte(0xC0 | encode);
  3885 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3887   emit_byte(0xF2);
  3888   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3889   emit_byte(0x0F);
  3890   emit_byte(0x2C);
  3891   emit_byte(0xC0 | encode);
  3894 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3895   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3896   emit_byte(0xF3);
  3897   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3898   emit_byte(0x0F);
  3899   emit_byte(0x2C);
  3900   emit_byte(0xC0 | encode);
  3903 void Assembler::decl(Register dst) {
  3904   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3905   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3906   int encode = prefix_and_encode(dst->encoding());
  3907   emit_byte(0xFF);
  3908   emit_byte(0xC8 | encode);
  3911 void Assembler::decq(Register dst) {
  3912   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3913   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3914   int encode = prefixq_and_encode(dst->encoding());
  3915   emit_byte(0xFF);
  3916   emit_byte(0xC8 | encode);
  3919 void Assembler::decq(Address dst) {
  3920   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3921   InstructionMark im(this);
  3922   prefixq(dst);
  3923   emit_byte(0xFF);
  3924   emit_operand(rcx, dst);
  3927 void Assembler::fxrstor(Address src) {
  3928   prefixq(src);
  3929   emit_byte(0x0F);
  3930   emit_byte(0xAE);
  3931   emit_operand(as_Register(1), src);
  3934 void Assembler::fxsave(Address dst) {
  3935   prefixq(dst);
  3936   emit_byte(0x0F);
  3937   emit_byte(0xAE);
  3938   emit_operand(as_Register(0), dst);
  3941 void Assembler::idivq(Register src) {
  3942   int encode = prefixq_and_encode(src->encoding());
  3943   emit_byte(0xF7);
  3944   emit_byte(0xF8 | encode);
  3947 void Assembler::imulq(Register dst, Register src) {
  3948   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3949   emit_byte(0x0F);
  3950   emit_byte(0xAF);
  3951   emit_byte(0xC0 | encode);
  3954 void Assembler::imulq(Register dst, Register src, int value) {
  3955   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3956   if (is8bit(value)) {
  3957     emit_byte(0x6B);
  3958     emit_byte(0xC0 | encode);
  3959     emit_byte(value & 0xFF);
  3960   } else {
  3961     emit_byte(0x69);
  3962     emit_byte(0xC0 | encode);
  3963     emit_long(value);
  3967 void Assembler::incl(Register dst) {
  3968   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3969   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3970   int encode = prefix_and_encode(dst->encoding());
  3971   emit_byte(0xFF);
  3972   emit_byte(0xC0 | encode);
  3975 void Assembler::incq(Register dst) {
  3976   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3977   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3978   int encode = prefixq_and_encode(dst->encoding());
  3979   emit_byte(0xFF);
  3980   emit_byte(0xC0 | encode);
  3983 void Assembler::incq(Address dst) {
  3984   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3985   InstructionMark im(this);
  3986   prefixq(dst);
  3987   emit_byte(0xFF);
  3988   emit_operand(rax, dst);
  3991 void Assembler::lea(Register dst, Address src) {
  3992   leaq(dst, src);
  3995 void Assembler::leaq(Register dst, Address src) {
  3996   InstructionMark im(this);
  3997   prefixq(src, dst);
  3998   emit_byte(0x8D);
  3999   emit_operand(dst, src);
  4002 void Assembler::mov64(Register dst, int64_t imm64) {
  4003   InstructionMark im(this);
  4004   int encode = prefixq_and_encode(dst->encoding());
  4005   emit_byte(0xB8 | encode);
  4006   emit_long64(imm64);
  4009 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4010   InstructionMark im(this);
  4011   int encode = prefixq_and_encode(dst->encoding());
  4012   emit_byte(0xB8 | encode);
  4013   emit_data64(imm64, rspec);
  4016 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4017   InstructionMark im(this);
  4018   int encode = prefix_and_encode(dst->encoding());
  4019   emit_byte(0xB8 | encode);
  4020   emit_data((int)imm32, rspec, narrow_oop_operand);
  4023 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4024   InstructionMark im(this);
  4025   prefix(dst);
  4026   emit_byte(0xC7);
  4027   emit_operand(rax, dst, 4);
  4028   emit_data((int)imm32, rspec, narrow_oop_operand);
  4031 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4032   InstructionMark im(this);
  4033   int encode = prefix_and_encode(src1->encoding());
  4034   emit_byte(0x81);
  4035   emit_byte(0xF8 | encode);
  4036   emit_data((int)imm32, rspec, narrow_oop_operand);
  4039 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4040   InstructionMark im(this);
  4041   prefix(src1);
  4042   emit_byte(0x81);
  4043   emit_operand(rax, src1, 4);
  4044   emit_data((int)imm32, rspec, narrow_oop_operand);
  4047 void Assembler::lzcntq(Register dst, Register src) {
  4048   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4049   emit_byte(0xF3);
  4050   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4051   emit_byte(0x0F);
  4052   emit_byte(0xBD);
  4053   emit_byte(0xC0 | encode);
  4056 void Assembler::movdq(XMMRegister dst, Register src) {
  4057   // table D-1 says MMX/SSE2
  4058   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4059   emit_byte(0x66);
  4060   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4061   emit_byte(0x0F);
  4062   emit_byte(0x6E);
  4063   emit_byte(0xC0 | encode);
  4066 void Assembler::movdq(Register dst, XMMRegister src) {
  4067   // table D-1 says MMX/SSE2
  4068   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4069   emit_byte(0x66);
  4070   // swap src/dst to get correct prefix
  4071   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  4072   emit_byte(0x0F);
  4073   emit_byte(0x7E);
  4074   emit_byte(0xC0 | encode);
  4077 void Assembler::movq(Register dst, Register src) {
  4078   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4079   emit_byte(0x8B);
  4080   emit_byte(0xC0 | encode);
  4083 void Assembler::movq(Register dst, Address src) {
  4084   InstructionMark im(this);
  4085   prefixq(src, dst);
  4086   emit_byte(0x8B);
  4087   emit_operand(dst, src);
  4090 void Assembler::movq(Address dst, Register src) {
  4091   InstructionMark im(this);
  4092   prefixq(dst, src);
  4093   emit_byte(0x89);
  4094   emit_operand(src, dst);
  4097 void Assembler::movsbq(Register dst, Address src) {
  4098   InstructionMark im(this);
  4099   prefixq(src, dst);
  4100   emit_byte(0x0F);
  4101   emit_byte(0xBE);
  4102   emit_operand(dst, src);
  4105 void Assembler::movsbq(Register dst, Register src) {
  4106   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4107   emit_byte(0x0F);
  4108   emit_byte(0xBE);
  4109   emit_byte(0xC0 | encode);
  4112 void Assembler::movslq(Register dst, int32_t imm32) {
  4113   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4114   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4115   // as a result we shouldn't use until tested at runtime...
  4116   ShouldNotReachHere();
  4117   InstructionMark im(this);
  4118   int encode = prefixq_and_encode(dst->encoding());
  4119   emit_byte(0xC7 | encode);
  4120   emit_long(imm32);
  4123 void Assembler::movslq(Address dst, int32_t imm32) {
  4124   assert(is_simm32(imm32), "lost bits");
  4125   InstructionMark im(this);
  4126   prefixq(dst);
  4127   emit_byte(0xC7);
  4128   emit_operand(rax, dst, 4);
  4129   emit_long(imm32);
  4132 void Assembler::movslq(Register dst, Address src) {
  4133   InstructionMark im(this);
  4134   prefixq(src, dst);
  4135   emit_byte(0x63);
  4136   emit_operand(dst, src);
  4139 void Assembler::movslq(Register dst, Register src) {
  4140   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4141   emit_byte(0x63);
  4142   emit_byte(0xC0 | encode);
  4145 void Assembler::movswq(Register dst, Address src) {
  4146   InstructionMark im(this);
  4147   prefixq(src, dst);
  4148   emit_byte(0x0F);
  4149   emit_byte(0xBF);
  4150   emit_operand(dst, src);
  4153 void Assembler::movswq(Register dst, Register src) {
  4154   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4155   emit_byte(0x0F);
  4156   emit_byte(0xBF);
  4157   emit_byte(0xC0 | encode);
  4160 void Assembler::movzbq(Register dst, Address src) {
  4161   InstructionMark im(this);
  4162   prefixq(src, dst);
  4163   emit_byte(0x0F);
  4164   emit_byte(0xB6);
  4165   emit_operand(dst, src);
  4168 void Assembler::movzbq(Register dst, Register src) {
  4169   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4170   emit_byte(0x0F);
  4171   emit_byte(0xB6);
  4172   emit_byte(0xC0 | encode);
  4175 void Assembler::movzwq(Register dst, Address src) {
  4176   InstructionMark im(this);
  4177   prefixq(src, dst);
  4178   emit_byte(0x0F);
  4179   emit_byte(0xB7);
  4180   emit_operand(dst, src);
  4183 void Assembler::movzwq(Register dst, Register src) {
  4184   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4185   emit_byte(0x0F);
  4186   emit_byte(0xB7);
  4187   emit_byte(0xC0 | encode);
  4190 void Assembler::negq(Register dst) {
  4191   int encode = prefixq_and_encode(dst->encoding());
  4192   emit_byte(0xF7);
  4193   emit_byte(0xD8 | encode);
  4196 void Assembler::notq(Register dst) {
  4197   int encode = prefixq_and_encode(dst->encoding());
  4198   emit_byte(0xF7);
  4199   emit_byte(0xD0 | encode);
  4202 void Assembler::orq(Address dst, int32_t imm32) {
  4203   InstructionMark im(this);
  4204   prefixq(dst);
  4205   emit_byte(0x81);
  4206   emit_operand(rcx, dst, 4);
  4207   emit_long(imm32);
  4210 void Assembler::orq(Register dst, int32_t imm32) {
  4211   (void) prefixq_and_encode(dst->encoding());
  4212   emit_arith(0x81, 0xC8, dst, imm32);
  4215 void Assembler::orq(Register dst, Address src) {
  4216   InstructionMark im(this);
  4217   prefixq(src, dst);
  4218   emit_byte(0x0B);
  4219   emit_operand(dst, src);
  4222 void Assembler::orq(Register dst, Register src) {
  4223   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4224   emit_arith(0x0B, 0xC0, dst, src);
  4227 void Assembler::popa() { // 64bit
  4228   movq(r15, Address(rsp, 0));
  4229   movq(r14, Address(rsp, wordSize));
  4230   movq(r13, Address(rsp, 2 * wordSize));
  4231   movq(r12, Address(rsp, 3 * wordSize));
  4232   movq(r11, Address(rsp, 4 * wordSize));
  4233   movq(r10, Address(rsp, 5 * wordSize));
  4234   movq(r9,  Address(rsp, 6 * wordSize));
  4235   movq(r8,  Address(rsp, 7 * wordSize));
  4236   movq(rdi, Address(rsp, 8 * wordSize));
  4237   movq(rsi, Address(rsp, 9 * wordSize));
  4238   movq(rbp, Address(rsp, 10 * wordSize));
  4239   // skip rsp
  4240   movq(rbx, Address(rsp, 12 * wordSize));
  4241   movq(rdx, Address(rsp, 13 * wordSize));
  4242   movq(rcx, Address(rsp, 14 * wordSize));
  4243   movq(rax, Address(rsp, 15 * wordSize));
  4245   addq(rsp, 16 * wordSize);
  4248 void Assembler::popcntq(Register dst, Address src) {
  4249   assert(VM_Version::supports_popcnt(), "must support");
  4250   InstructionMark im(this);
  4251   emit_byte(0xF3);
  4252   prefixq(src, dst);
  4253   emit_byte(0x0F);
  4254   emit_byte(0xB8);
  4255   emit_operand(dst, src);
  4258 void Assembler::popcntq(Register dst, Register src) {
  4259   assert(VM_Version::supports_popcnt(), "must support");
  4260   emit_byte(0xF3);
  4261   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4262   emit_byte(0x0F);
  4263   emit_byte(0xB8);
  4264   emit_byte(0xC0 | encode);
  4267 void Assembler::popq(Address dst) {
  4268   InstructionMark im(this);
  4269   prefixq(dst);
  4270   emit_byte(0x8F);
  4271   emit_operand(rax, dst);
  4274 void Assembler::pusha() { // 64bit
  4275   // we have to store original rsp.  ABI says that 128 bytes
  4276   // below rsp are local scratch.
  4277   movq(Address(rsp, -5 * wordSize), rsp);
  4279   subq(rsp, 16 * wordSize);
  4281   movq(Address(rsp, 15 * wordSize), rax);
  4282   movq(Address(rsp, 14 * wordSize), rcx);
  4283   movq(Address(rsp, 13 * wordSize), rdx);
  4284   movq(Address(rsp, 12 * wordSize), rbx);
  4285   // skip rsp
  4286   movq(Address(rsp, 10 * wordSize), rbp);
  4287   movq(Address(rsp, 9 * wordSize), rsi);
  4288   movq(Address(rsp, 8 * wordSize), rdi);
  4289   movq(Address(rsp, 7 * wordSize), r8);
  4290   movq(Address(rsp, 6 * wordSize), r9);
  4291   movq(Address(rsp, 5 * wordSize), r10);
  4292   movq(Address(rsp, 4 * wordSize), r11);
  4293   movq(Address(rsp, 3 * wordSize), r12);
  4294   movq(Address(rsp, 2 * wordSize), r13);
  4295   movq(Address(rsp, wordSize), r14);
  4296   movq(Address(rsp, 0), r15);
  4299 void Assembler::pushq(Address src) {
  4300   InstructionMark im(this);
  4301   prefixq(src);
  4302   emit_byte(0xFF);
  4303   emit_operand(rsi, src);
  4306 void Assembler::rclq(Register dst, int imm8) {
  4307   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4308   int encode = prefixq_and_encode(dst->encoding());
  4309   if (imm8 == 1) {
  4310     emit_byte(0xD1);
  4311     emit_byte(0xD0 | encode);
  4312   } else {
  4313     emit_byte(0xC1);
  4314     emit_byte(0xD0 | encode);
  4315     emit_byte(imm8);
  4318 void Assembler::sarq(Register dst, int imm8) {
  4319   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4320   int encode = prefixq_and_encode(dst->encoding());
  4321   if (imm8 == 1) {
  4322     emit_byte(0xD1);
  4323     emit_byte(0xF8 | encode);
  4324   } else {
  4325     emit_byte(0xC1);
  4326     emit_byte(0xF8 | encode);
  4327     emit_byte(imm8);
  4331 void Assembler::sarq(Register dst) {
  4332   int encode = prefixq_and_encode(dst->encoding());
  4333   emit_byte(0xD3);
  4334   emit_byte(0xF8 | encode);
  4336 void Assembler::sbbq(Address dst, int32_t imm32) {
  4337   InstructionMark im(this);
  4338   prefixq(dst);
  4339   emit_arith_operand(0x81, rbx, dst, imm32);
  4342 void Assembler::sbbq(Register dst, int32_t imm32) {
  4343   (void) prefixq_and_encode(dst->encoding());
  4344   emit_arith(0x81, 0xD8, dst, imm32);
  4347 void Assembler::sbbq(Register dst, Address src) {
  4348   InstructionMark im(this);
  4349   prefixq(src, dst);
  4350   emit_byte(0x1B);
  4351   emit_operand(dst, src);
  4354 void Assembler::sbbq(Register dst, Register src) {
  4355   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4356   emit_arith(0x1B, 0xC0, dst, src);
  4359 void Assembler::shlq(Register dst, int imm8) {
  4360   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4361   int encode = prefixq_and_encode(dst->encoding());
  4362   if (imm8 == 1) {
  4363     emit_byte(0xD1);
  4364     emit_byte(0xE0 | encode);
  4365   } else {
  4366     emit_byte(0xC1);
  4367     emit_byte(0xE0 | encode);
  4368     emit_byte(imm8);
  4372 void Assembler::shlq(Register dst) {
  4373   int encode = prefixq_and_encode(dst->encoding());
  4374   emit_byte(0xD3);
  4375   emit_byte(0xE0 | encode);
  4378 void Assembler::shrq(Register dst, int imm8) {
  4379   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4380   int encode = prefixq_and_encode(dst->encoding());
  4381   emit_byte(0xC1);
  4382   emit_byte(0xE8 | encode);
  4383   emit_byte(imm8);
  4386 void Assembler::shrq(Register dst) {
  4387   int encode = prefixq_and_encode(dst->encoding());
  4388   emit_byte(0xD3);
  4389   emit_byte(0xE8 | encode);
  4392 void Assembler::subq(Address dst, int32_t imm32) {
  4393   InstructionMark im(this);
  4394   prefixq(dst);
  4395   if (is8bit(imm32)) {
  4396     emit_byte(0x83);
  4397     emit_operand(rbp, dst, 1);
  4398     emit_byte(imm32 & 0xFF);
  4399   } else {
  4400     emit_byte(0x81);
  4401     emit_operand(rbp, dst, 4);
  4402     emit_long(imm32);
  4406 void Assembler::subq(Register dst, int32_t imm32) {
  4407   (void) prefixq_and_encode(dst->encoding());
  4408   emit_arith(0x81, 0xE8, dst, imm32);
  4411 void Assembler::subq(Address dst, Register src) {
  4412   InstructionMark im(this);
  4413   prefixq(dst, src);
  4414   emit_byte(0x29);
  4415   emit_operand(src, dst);
  4418 void Assembler::subq(Register dst, Address src) {
  4419   InstructionMark im(this);
  4420   prefixq(src, dst);
  4421   emit_byte(0x2B);
  4422   emit_operand(dst, src);
  4425 void Assembler::subq(Register dst, Register src) {
  4426   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4427   emit_arith(0x2B, 0xC0, dst, src);
  4430 void Assembler::testq(Register dst, int32_t imm32) {
  4431   // not using emit_arith because test
  4432   // doesn't support sign-extension of
  4433   // 8bit operands
  4434   int encode = dst->encoding();
  4435   if (encode == 0) {
  4436     prefix(REX_W);
  4437     emit_byte(0xA9);
  4438   } else {
  4439     encode = prefixq_and_encode(encode);
  4440     emit_byte(0xF7);
  4441     emit_byte(0xC0 | encode);
  4443   emit_long(imm32);
  4446 void Assembler::testq(Register dst, Register src) {
  4447   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4448   emit_arith(0x85, 0xC0, dst, src);
  4451 void Assembler::xaddq(Address dst, Register src) {
  4452   InstructionMark im(this);
  4453   prefixq(dst, src);
  4454   emit_byte(0x0F);
  4455   emit_byte(0xC1);
  4456   emit_operand(src, dst);
  4459 void Assembler::xchgq(Register dst, Address src) {
  4460   InstructionMark im(this);
  4461   prefixq(src, dst);
  4462   emit_byte(0x87);
  4463   emit_operand(dst, src);
  4466 void Assembler::xchgq(Register dst, Register src) {
  4467   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4468   emit_byte(0x87);
  4469   emit_byte(0xc0 | encode);
  4472 void Assembler::xorq(Register dst, Register src) {
  4473   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4474   emit_arith(0x33, 0xC0, dst, src);
  4477 void Assembler::xorq(Register dst, Address src) {
  4478   InstructionMark im(this);
  4479   prefixq(src, dst);
  4480   emit_byte(0x33);
  4481   emit_operand(dst, src);
  4484 #endif // !LP64
  4486 static Assembler::Condition reverse[] = {
  4487     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4488     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4489     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4490     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4491     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4492     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4493     Assembler::above          /* belowEqual    = 0x6 */ ,
  4494     Assembler::belowEqual     /* above         = 0x7 */ ,
  4495     Assembler::positive       /* negative      = 0x8 */ ,
  4496     Assembler::negative       /* positive      = 0x9 */ ,
  4497     Assembler::noParity       /* parity        = 0xa */ ,
  4498     Assembler::parity         /* noParity      = 0xb */ ,
  4499     Assembler::greaterEqual   /* less          = 0xc */ ,
  4500     Assembler::less           /* greaterEqual  = 0xd */ ,
  4501     Assembler::greater        /* lessEqual     = 0xe */ ,
  4502     Assembler::lessEqual      /* greater       = 0xf, */
  4504 };
  4507 // Implementation of MacroAssembler
  4509 // First all the versions that have distinct versions depending on 32/64 bit
  4510 // Unless the difference is trivial (1 line or so).
  4512 #ifndef _LP64
  4514 // 32bit versions
  4516 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4517   return Address(adr.target(), adr.rspec());
  4520 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4521   return Address::make_array(adr);
  4524 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4525                                          Register obj_reg,
  4526                                          Register swap_reg,
  4527                                          Register tmp_reg,
  4528                                          bool swap_reg_contains_mark,
  4529                                          Label& done,
  4530                                          Label* slow_case,
  4531                                          BiasedLockingCounters* counters) {
  4532   assert(UseBiasedLocking, "why call this otherwise?");
  4533   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4534   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4536   if (PrintBiasedLockingStatistics && counters == NULL)
  4537     counters = BiasedLocking::counters();
  4539   bool need_tmp_reg = false;
  4540   if (tmp_reg == noreg) {
  4541     need_tmp_reg = true;
  4542     tmp_reg = lock_reg;
  4543   } else {
  4544     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4546   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4547   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4548   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4549   Address saved_mark_addr(lock_reg, 0);
  4551   // Biased locking
  4552   // See whether the lock is currently biased toward our thread and
  4553   // whether the epoch is still valid
  4554   // Note that the runtime guarantees sufficient alignment of JavaThread
  4555   // pointers to allow age to be placed into low bits
  4556   // First check to see whether biasing is even enabled for this object
  4557   Label cas_label;
  4558   int null_check_offset = -1;
  4559   if (!swap_reg_contains_mark) {
  4560     null_check_offset = offset();
  4561     movl(swap_reg, mark_addr);
  4563   if (need_tmp_reg) {
  4564     push(tmp_reg);
  4566   movl(tmp_reg, swap_reg);
  4567   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4568   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4569   if (need_tmp_reg) {
  4570     pop(tmp_reg);
  4572   jcc(Assembler::notEqual, cas_label);
  4573   // The bias pattern is present in the object's header. Need to check
  4574   // whether the bias owner and the epoch are both still current.
  4575   // Note that because there is no current thread register on x86 we
  4576   // need to store off the mark word we read out of the object to
  4577   // avoid reloading it and needing to recheck invariants below. This
  4578   // store is unfortunate but it makes the overall code shorter and
  4579   // simpler.
  4580   movl(saved_mark_addr, swap_reg);
  4581   if (need_tmp_reg) {
  4582     push(tmp_reg);
  4584   get_thread(tmp_reg);
  4585   xorl(swap_reg, tmp_reg);
  4586   if (swap_reg_contains_mark) {
  4587     null_check_offset = offset();
  4589   movl(tmp_reg, klass_addr);
  4590   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4591   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4592   if (need_tmp_reg) {
  4593     pop(tmp_reg);
  4595   if (counters != NULL) {
  4596     cond_inc32(Assembler::zero,
  4597                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4599   jcc(Assembler::equal, done);
  4601   Label try_revoke_bias;
  4602   Label try_rebias;
  4604   // At this point we know that the header has the bias pattern and
  4605   // that we are not the bias owner in the current epoch. We need to
  4606   // figure out more details about the state of the header in order to
  4607   // know what operations can be legally performed on the object's
  4608   // header.
  4610   // If the low three bits in the xor result aren't clear, that means
  4611   // the prototype header is no longer biased and we have to revoke
  4612   // the bias on this object.
  4613   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4614   jcc(Assembler::notZero, try_revoke_bias);
  4616   // Biasing is still enabled for this data type. See whether the
  4617   // epoch of the current bias is still valid, meaning that the epoch
  4618   // bits of the mark word are equal to the epoch bits of the
  4619   // prototype header. (Note that the prototype header's epoch bits
  4620   // only change at a safepoint.) If not, attempt to rebias the object
  4621   // toward the current thread. Note that we must be absolutely sure
  4622   // that the current epoch is invalid in order to do this because
  4623   // otherwise the manipulations it performs on the mark word are
  4624   // illegal.
  4625   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4626   jcc(Assembler::notZero, try_rebias);
  4628   // The epoch of the current bias is still valid but we know nothing
  4629   // about the owner; it might be set or it might be clear. Try to
  4630   // acquire the bias of the object using an atomic operation. If this
  4631   // fails we will go in to the runtime to revoke the object's bias.
  4632   // Note that we first construct the presumed unbiased header so we
  4633   // don't accidentally blow away another thread's valid bias.
  4634   movl(swap_reg, saved_mark_addr);
  4635   andl(swap_reg,
  4636        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4637   if (need_tmp_reg) {
  4638     push(tmp_reg);
  4640   get_thread(tmp_reg);
  4641   orl(tmp_reg, swap_reg);
  4642   if (os::is_MP()) {
  4643     lock();
  4645   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4646   if (need_tmp_reg) {
  4647     pop(tmp_reg);
  4649   // If the biasing toward our thread failed, this means that
  4650   // another thread succeeded in biasing it toward itself and we
  4651   // need to revoke that bias. The revocation will occur in the
  4652   // interpreter runtime in the slow case.
  4653   if (counters != NULL) {
  4654     cond_inc32(Assembler::zero,
  4655                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4657   if (slow_case != NULL) {
  4658     jcc(Assembler::notZero, *slow_case);
  4660   jmp(done);
  4662   bind(try_rebias);
  4663   // At this point we know the epoch has expired, meaning that the
  4664   // current "bias owner", if any, is actually invalid. Under these
  4665   // circumstances _only_, we are allowed to use the current header's
  4666   // value as the comparison value when doing the cas to acquire the
  4667   // bias in the current epoch. In other words, we allow transfer of
  4668   // the bias from one thread to another directly in this situation.
  4669   //
  4670   // FIXME: due to a lack of registers we currently blow away the age
  4671   // bits in this situation. Should attempt to preserve them.
  4672   if (need_tmp_reg) {
  4673     push(tmp_reg);
  4675   get_thread(tmp_reg);
  4676   movl(swap_reg, klass_addr);
  4677   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4678   movl(swap_reg, saved_mark_addr);
  4679   if (os::is_MP()) {
  4680     lock();
  4682   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4683   if (need_tmp_reg) {
  4684     pop(tmp_reg);
  4686   // If the biasing toward our thread failed, then another thread
  4687   // succeeded in biasing it toward itself and we need to revoke that
  4688   // bias. The revocation will occur in the runtime in the slow case.
  4689   if (counters != NULL) {
  4690     cond_inc32(Assembler::zero,
  4691                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4693   if (slow_case != NULL) {
  4694     jcc(Assembler::notZero, *slow_case);
  4696   jmp(done);
  4698   bind(try_revoke_bias);
  4699   // The prototype mark in the klass doesn't have the bias bit set any
  4700   // more, indicating that objects of this data type are not supposed
  4701   // to be biased any more. We are going to try to reset the mark of
  4702   // this object to the prototype value and fall through to the
  4703   // CAS-based locking scheme. Note that if our CAS fails, it means
  4704   // that another thread raced us for the privilege of revoking the
  4705   // bias of this particular object, so it's okay to continue in the
  4706   // normal locking code.
  4707   //
  4708   // FIXME: due to a lack of registers we currently blow away the age
  4709   // bits in this situation. Should attempt to preserve them.
  4710   movl(swap_reg, saved_mark_addr);
  4711   if (need_tmp_reg) {
  4712     push(tmp_reg);
  4714   movl(tmp_reg, klass_addr);
  4715   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4716   if (os::is_MP()) {
  4717     lock();
  4719   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4720   if (need_tmp_reg) {
  4721     pop(tmp_reg);
  4723   // Fall through to the normal CAS-based lock, because no matter what
  4724   // the result of the above CAS, some thread must have succeeded in
  4725   // removing the bias bit from the object's header.
  4726   if (counters != NULL) {
  4727     cond_inc32(Assembler::zero,
  4728                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4731   bind(cas_label);
  4733   return null_check_offset;
  4735 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4736                                        int number_of_arguments) {
  4737   call(RuntimeAddress(entry_point));
  4738   increment(rsp, number_of_arguments * wordSize);
  4741 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4742   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4745 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4746   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4749 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4750   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4751   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4752     cdql();
  4753   } else {
  4754     movl(hi, lo);
  4755     sarl(hi, 31);
  4759 void MacroAssembler::fat_nop() {
  4760   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4761   emit_byte(0x26); // es:
  4762   emit_byte(0x2e); // cs:
  4763   emit_byte(0x64); // fs:
  4764   emit_byte(0x65); // gs:
  4765   emit_byte(0x90);
  4768 void MacroAssembler::jC2(Register tmp, Label& L) {
  4769   // set parity bit if FPU flag C2 is set (via rax)
  4770   save_rax(tmp);
  4771   fwait(); fnstsw_ax();
  4772   sahf();
  4773   restore_rax(tmp);
  4774   // branch
  4775   jcc(Assembler::parity, L);
  4778 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4779   // set parity bit if FPU flag C2 is set (via rax)
  4780   save_rax(tmp);
  4781   fwait(); fnstsw_ax();
  4782   sahf();
  4783   restore_rax(tmp);
  4784   // branch
  4785   jcc(Assembler::noParity, L);
  4788 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4789 // to be installed in the Address class
  4790 void MacroAssembler::jump(ArrayAddress entry) {
  4791   jmp(as_Address(entry));
  4794 // Note: y_lo will be destroyed
  4795 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4796   // Long compare for Java (semantics as described in JVM spec.)
  4797   Label high, low, done;
  4799   cmpl(x_hi, y_hi);
  4800   jcc(Assembler::less, low);
  4801   jcc(Assembler::greater, high);
  4802   // x_hi is the return register
  4803   xorl(x_hi, x_hi);
  4804   cmpl(x_lo, y_lo);
  4805   jcc(Assembler::below, low);
  4806   jcc(Assembler::equal, done);
  4808   bind(high);
  4809   xorl(x_hi, x_hi);
  4810   increment(x_hi);
  4811   jmp(done);
  4813   bind(low);
  4814   xorl(x_hi, x_hi);
  4815   decrementl(x_hi);
  4817   bind(done);
  4820 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4821     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4824 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4825   // leal(dst, as_Address(adr));
  4826   // see note in movl as to why we must use a move
  4827   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4830 void MacroAssembler::leave() {
  4831   mov(rsp, rbp);
  4832   pop(rbp);
  4835 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4836   // Multiplication of two Java long values stored on the stack
  4837   // as illustrated below. Result is in rdx:rax.
  4838   //
  4839   // rsp ---> [  ??  ] \               \
  4840   //            ....    | y_rsp_offset  |
  4841   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4842   //          [ y_hi ]                  | (in bytes)
  4843   //            ....                    |
  4844   //          [ x_lo ]                 /
  4845   //          [ x_hi ]
  4846   //            ....
  4847   //
  4848   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4849   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4850   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4851   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4852   Label quick;
  4853   // load x_hi, y_hi and check if quick
  4854   // multiplication is possible
  4855   movl(rbx, x_hi);
  4856   movl(rcx, y_hi);
  4857   movl(rax, rbx);
  4858   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4859   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4860   // do full multiplication
  4861   // 1st step
  4862   mull(y_lo);                                    // x_hi * y_lo
  4863   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4864   // 2nd step
  4865   movl(rax, x_lo);
  4866   mull(rcx);                                     // x_lo * y_hi
  4867   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4868   // 3rd step
  4869   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4870   movl(rax, x_lo);
  4871   mull(y_lo);                                    // x_lo * y_lo
  4872   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4875 void MacroAssembler::lneg(Register hi, Register lo) {
  4876   negl(lo);
  4877   adcl(hi, 0);
  4878   negl(hi);
  4881 void MacroAssembler::lshl(Register hi, Register lo) {
  4882   // Java shift left long support (semantics as described in JVM spec., p.305)
  4883   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4884   // shift value is in rcx !
  4885   assert(hi != rcx, "must not use rcx");
  4886   assert(lo != rcx, "must not use rcx");
  4887   const Register s = rcx;                        // shift count
  4888   const int      n = BitsPerWord;
  4889   Label L;
  4890   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4891   cmpl(s, n);                                    // if (s < n)
  4892   jcc(Assembler::less, L);                       // else (s >= n)
  4893   movl(hi, lo);                                  // x := x << n
  4894   xorl(lo, lo);
  4895   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4896   bind(L);                                       // s (mod n) < n
  4897   shldl(hi, lo);                                 // x := x << s
  4898   shll(lo);
  4902 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4903   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4904   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4905   assert(hi != rcx, "must not use rcx");
  4906   assert(lo != rcx, "must not use rcx");
  4907   const Register s = rcx;                        // shift count
  4908   const int      n = BitsPerWord;
  4909   Label L;
  4910   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4911   cmpl(s, n);                                    // if (s < n)
  4912   jcc(Assembler::less, L);                       // else (s >= n)
  4913   movl(lo, hi);                                  // x := x >> n
  4914   if (sign_extension) sarl(hi, 31);
  4915   else                xorl(hi, hi);
  4916   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4917   bind(L);                                       // s (mod n) < n
  4918   shrdl(lo, hi);                                 // x := x >> s
  4919   if (sign_extension) sarl(hi);
  4920   else                shrl(hi);
  4923 void MacroAssembler::movoop(Register dst, jobject obj) {
  4924   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4927 void MacroAssembler::movoop(Address dst, jobject obj) {
  4928   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4931 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4932   if (src.is_lval()) {
  4933     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4934   } else {
  4935     movl(dst, as_Address(src));
  4939 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4940   movl(as_Address(dst), src);
  4943 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4944   movl(dst, as_Address(src));
  4947 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4948 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4949   movl(dst, src);
  4953 void MacroAssembler::pop_callee_saved_registers() {
  4954   pop(rcx);
  4955   pop(rdx);
  4956   pop(rdi);
  4957   pop(rsi);
  4960 void MacroAssembler::pop_fTOS() {
  4961   fld_d(Address(rsp, 0));
  4962   addl(rsp, 2 * wordSize);
  4965 void MacroAssembler::push_callee_saved_registers() {
  4966   push(rsi);
  4967   push(rdi);
  4968   push(rdx);
  4969   push(rcx);
  4972 void MacroAssembler::push_fTOS() {
  4973   subl(rsp, 2 * wordSize);
  4974   fstp_d(Address(rsp, 0));
  4978 void MacroAssembler::pushoop(jobject obj) {
  4979   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  4983 void MacroAssembler::pushptr(AddressLiteral src) {
  4984   if (src.is_lval()) {
  4985     push_literal32((int32_t)src.target(), src.rspec());
  4986   } else {
  4987     pushl(as_Address(src));
  4991 void MacroAssembler::set_word_if_not_zero(Register dst) {
  4992   xorl(dst, dst);
  4993   set_byte_if_not_zero(dst);
  4996 static void pass_arg0(MacroAssembler* masm, Register arg) {
  4997   masm->push(arg);
  5000 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5001   masm->push(arg);
  5004 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5005   masm->push(arg);
  5008 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5009   masm->push(arg);
  5012 #ifndef PRODUCT
  5013 extern "C" void findpc(intptr_t x);
  5014 #endif
  5016 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5017   // In order to get locks to work, we need to fake a in_VM state
  5018   JavaThread* thread = JavaThread::current();
  5019   JavaThreadState saved_state = thread->thread_state();
  5020   thread->set_thread_state(_thread_in_vm);
  5021   if (ShowMessageBoxOnError) {
  5022     JavaThread* thread = JavaThread::current();
  5023     JavaThreadState saved_state = thread->thread_state();
  5024     thread->set_thread_state(_thread_in_vm);
  5025     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5026       ttyLocker ttyl;
  5027       BytecodeCounter::print();
  5029     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5030     // This is the value of eip which points to where verify_oop will return.
  5031     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5032       ttyLocker ttyl;
  5033       tty->print_cr("eip = 0x%08x", eip);
  5034 #ifndef PRODUCT
  5035       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5036         tty->cr();
  5037         findpc(eip);
  5038         tty->cr();
  5040 #endif
  5041       tty->print_cr("rax = 0x%08x", rax);
  5042       tty->print_cr("rbx = 0x%08x", rbx);
  5043       tty->print_cr("rcx = 0x%08x", rcx);
  5044       tty->print_cr("rdx = 0x%08x", rdx);
  5045       tty->print_cr("rdi = 0x%08x", rdi);
  5046       tty->print_cr("rsi = 0x%08x", rsi);
  5047       tty->print_cr("rbp = 0x%08x", rbp);
  5048       tty->print_cr("rsp = 0x%08x", rsp);
  5049       BREAKPOINT;
  5050       assert(false, "start up GDB");
  5052   } else {
  5053     ttyLocker ttyl;
  5054     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5055     assert(false, "DEBUG MESSAGE");
  5057   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5060 void MacroAssembler::stop(const char* msg) {
  5061   ExternalAddress message((address)msg);
  5062   // push address of message
  5063   pushptr(message.addr());
  5064   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5065   pusha();                                           // push registers
  5066   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5067   hlt();
  5070 void MacroAssembler::warn(const char* msg) {
  5071   push_CPU_state();
  5073   ExternalAddress message((address) msg);
  5074   // push address of message
  5075   pushptr(message.addr());
  5077   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5078   addl(rsp, wordSize);       // discard argument
  5079   pop_CPU_state();
  5082 #else // _LP64
  5084 // 64 bit versions
  5086 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5087   // amd64 always does this as a pc-rel
  5088   // we can be absolute or disp based on the instruction type
  5089   // jmp/call are displacements others are absolute
  5090   assert(!adr.is_lval(), "must be rval");
  5091   assert(reachable(adr), "must be");
  5092   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5096 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5097   AddressLiteral base = adr.base();
  5098   lea(rscratch1, base);
  5099   Address index = adr.index();
  5100   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5101   Address array(rscratch1, index._index, index._scale, index._disp);
  5102   return array;
  5105 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5106                                          Register obj_reg,
  5107                                          Register swap_reg,
  5108                                          Register tmp_reg,
  5109                                          bool swap_reg_contains_mark,
  5110                                          Label& done,
  5111                                          Label* slow_case,
  5112                                          BiasedLockingCounters* counters) {
  5113   assert(UseBiasedLocking, "why call this otherwise?");
  5114   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5115   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5116   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5117   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5118   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5119   Address saved_mark_addr(lock_reg, 0);
  5121   if (PrintBiasedLockingStatistics && counters == NULL)
  5122     counters = BiasedLocking::counters();
  5124   // Biased locking
  5125   // See whether the lock is currently biased toward our thread and
  5126   // whether the epoch is still valid
  5127   // Note that the runtime guarantees sufficient alignment of JavaThread
  5128   // pointers to allow age to be placed into low bits
  5129   // First check to see whether biasing is even enabled for this object
  5130   Label cas_label;
  5131   int null_check_offset = -1;
  5132   if (!swap_reg_contains_mark) {
  5133     null_check_offset = offset();
  5134     movq(swap_reg, mark_addr);
  5136   movq(tmp_reg, swap_reg);
  5137   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5138   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5139   jcc(Assembler::notEqual, cas_label);
  5140   // The bias pattern is present in the object's header. Need to check
  5141   // whether the bias owner and the epoch are both still current.
  5142   load_prototype_header(tmp_reg, obj_reg);
  5143   orq(tmp_reg, r15_thread);
  5144   xorq(tmp_reg, swap_reg);
  5145   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5146   if (counters != NULL) {
  5147     cond_inc32(Assembler::zero,
  5148                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5150   jcc(Assembler::equal, done);
  5152   Label try_revoke_bias;
  5153   Label try_rebias;
  5155   // At this point we know that the header has the bias pattern and
  5156   // that we are not the bias owner in the current epoch. We need to
  5157   // figure out more details about the state of the header in order to
  5158   // know what operations can be legally performed on the object's
  5159   // header.
  5161   // If the low three bits in the xor result aren't clear, that means
  5162   // the prototype header is no longer biased and we have to revoke
  5163   // the bias on this object.
  5164   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5165   jcc(Assembler::notZero, try_revoke_bias);
  5167   // Biasing is still enabled for this data type. See whether the
  5168   // epoch of the current bias is still valid, meaning that the epoch
  5169   // bits of the mark word are equal to the epoch bits of the
  5170   // prototype header. (Note that the prototype header's epoch bits
  5171   // only change at a safepoint.) If not, attempt to rebias the object
  5172   // toward the current thread. Note that we must be absolutely sure
  5173   // that the current epoch is invalid in order to do this because
  5174   // otherwise the manipulations it performs on the mark word are
  5175   // illegal.
  5176   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5177   jcc(Assembler::notZero, try_rebias);
  5179   // The epoch of the current bias is still valid but we know nothing
  5180   // about the owner; it might be set or it might be clear. Try to
  5181   // acquire the bias of the object using an atomic operation. If this
  5182   // fails we will go in to the runtime to revoke the object's bias.
  5183   // Note that we first construct the presumed unbiased header so we
  5184   // don't accidentally blow away another thread's valid bias.
  5185   andq(swap_reg,
  5186        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5187   movq(tmp_reg, swap_reg);
  5188   orq(tmp_reg, r15_thread);
  5189   if (os::is_MP()) {
  5190     lock();
  5192   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5193   // If the biasing toward our thread failed, this means that
  5194   // another thread succeeded in biasing it toward itself and we
  5195   // need to revoke that bias. The revocation will occur in the
  5196   // interpreter runtime in the slow case.
  5197   if (counters != NULL) {
  5198     cond_inc32(Assembler::zero,
  5199                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5201   if (slow_case != NULL) {
  5202     jcc(Assembler::notZero, *slow_case);
  5204   jmp(done);
  5206   bind(try_rebias);
  5207   // At this point we know the epoch has expired, meaning that the
  5208   // current "bias owner", if any, is actually invalid. Under these
  5209   // circumstances _only_, we are allowed to use the current header's
  5210   // value as the comparison value when doing the cas to acquire the
  5211   // bias in the current epoch. In other words, we allow transfer of
  5212   // the bias from one thread to another directly in this situation.
  5213   //
  5214   // FIXME: due to a lack of registers we currently blow away the age
  5215   // bits in this situation. Should attempt to preserve them.
  5216   load_prototype_header(tmp_reg, obj_reg);
  5217   orq(tmp_reg, r15_thread);
  5218   if (os::is_MP()) {
  5219     lock();
  5221   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5222   // If the biasing toward our thread failed, then another thread
  5223   // succeeded in biasing it toward itself and we need to revoke that
  5224   // bias. The revocation will occur in the runtime in the slow case.
  5225   if (counters != NULL) {
  5226     cond_inc32(Assembler::zero,
  5227                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5229   if (slow_case != NULL) {
  5230     jcc(Assembler::notZero, *slow_case);
  5232   jmp(done);
  5234   bind(try_revoke_bias);
  5235   // The prototype mark in the klass doesn't have the bias bit set any
  5236   // more, indicating that objects of this data type are not supposed
  5237   // to be biased any more. We are going to try to reset the mark of
  5238   // this object to the prototype value and fall through to the
  5239   // CAS-based locking scheme. Note that if our CAS fails, it means
  5240   // that another thread raced us for the privilege of revoking the
  5241   // bias of this particular object, so it's okay to continue in the
  5242   // normal locking code.
  5243   //
  5244   // FIXME: due to a lack of registers we currently blow away the age
  5245   // bits in this situation. Should attempt to preserve them.
  5246   load_prototype_header(tmp_reg, obj_reg);
  5247   if (os::is_MP()) {
  5248     lock();
  5250   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5251   // Fall through to the normal CAS-based lock, because no matter what
  5252   // the result of the above CAS, some thread must have succeeded in
  5253   // removing the bias bit from the object's header.
  5254   if (counters != NULL) {
  5255     cond_inc32(Assembler::zero,
  5256                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5259   bind(cas_label);
  5261   return null_check_offset;
  5264 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5265   Label L, E;
  5267 #ifdef _WIN64
  5268   // Windows always allocates space for it's register args
  5269   assert(num_args <= 4, "only register arguments supported");
  5270   subq(rsp,  frame::arg_reg_save_area_bytes);
  5271 #endif
  5273   // Align stack if necessary
  5274   testl(rsp, 15);
  5275   jcc(Assembler::zero, L);
  5277   subq(rsp, 8);
  5279     call(RuntimeAddress(entry_point));
  5281   addq(rsp, 8);
  5282   jmp(E);
  5284   bind(L);
  5286     call(RuntimeAddress(entry_point));
  5289   bind(E);
  5291 #ifdef _WIN64
  5292   // restore stack pointer
  5293   addq(rsp, frame::arg_reg_save_area_bytes);
  5294 #endif
  5298 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5299   assert(!src2.is_lval(), "should use cmpptr");
  5301   if (reachable(src2)) {
  5302     cmpq(src1, as_Address(src2));
  5303   } else {
  5304     lea(rscratch1, src2);
  5305     Assembler::cmpq(src1, Address(rscratch1, 0));
  5309 int MacroAssembler::corrected_idivq(Register reg) {
  5310   // Full implementation of Java ldiv and lrem; checks for special
  5311   // case as described in JVM spec., p.243 & p.271.  The function
  5312   // returns the (pc) offset of the idivl instruction - may be needed
  5313   // for implicit exceptions.
  5314   //
  5315   //         normal case                           special case
  5316   //
  5317   // input : rax: dividend                         min_long
  5318   //         reg: divisor   (may not be eax/edx)   -1
  5319   //
  5320   // output: rax: quotient  (= rax idiv reg)       min_long
  5321   //         rdx: remainder (= rax irem reg)       0
  5322   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5323   static const int64_t min_long = 0x8000000000000000;
  5324   Label normal_case, special_case;
  5326   // check for special case
  5327   cmp64(rax, ExternalAddress((address) &min_long));
  5328   jcc(Assembler::notEqual, normal_case);
  5329   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5330                   // remainder = 0)
  5331   cmpq(reg, -1);
  5332   jcc(Assembler::equal, special_case);
  5334   // handle normal case
  5335   bind(normal_case);
  5336   cdqq();
  5337   int idivq_offset = offset();
  5338   idivq(reg);
  5340   // normal and special case exit
  5341   bind(special_case);
  5343   return idivq_offset;
  5346 void MacroAssembler::decrementq(Register reg, int value) {
  5347   if (value == min_jint) { subq(reg, value); return; }
  5348   if (value <  0) { incrementq(reg, -value); return; }
  5349   if (value == 0) {                        ; return; }
  5350   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5351   /* else */      { subq(reg, value)       ; return; }
  5354 void MacroAssembler::decrementq(Address dst, int value) {
  5355   if (value == min_jint) { subq(dst, value); return; }
  5356   if (value <  0) { incrementq(dst, -value); return; }
  5357   if (value == 0) {                        ; return; }
  5358   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5359   /* else */      { subq(dst, value)       ; return; }
  5362 void MacroAssembler::fat_nop() {
  5363   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5364   // Recommened sequence from 'Software Optimization Guide for the AMD
  5365   // Hammer Processor'
  5366   emit_byte(0x66);
  5367   emit_byte(0x66);
  5368   emit_byte(0x90);
  5369   emit_byte(0x66);
  5370   emit_byte(0x90);
  5373 void MacroAssembler::incrementq(Register reg, int value) {
  5374   if (value == min_jint) { addq(reg, value); return; }
  5375   if (value <  0) { decrementq(reg, -value); return; }
  5376   if (value == 0) {                        ; return; }
  5377   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5378   /* else */      { addq(reg, value)       ; return; }
  5381 void MacroAssembler::incrementq(Address dst, int value) {
  5382   if (value == min_jint) { addq(dst, value); return; }
  5383   if (value <  0) { decrementq(dst, -value); return; }
  5384   if (value == 0) {                        ; return; }
  5385   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5386   /* else */      { addq(dst, value)       ; return; }
  5389 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5390 // to be installed in the Address class
  5391 void MacroAssembler::jump(ArrayAddress entry) {
  5392   lea(rscratch1, entry.base());
  5393   Address dispatch = entry.index();
  5394   assert(dispatch._base == noreg, "must be");
  5395   dispatch._base = rscratch1;
  5396   jmp(dispatch);
  5399 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5400   ShouldNotReachHere(); // 64bit doesn't use two regs
  5401   cmpq(x_lo, y_lo);
  5404 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5405     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5408 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5409   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5410   movptr(dst, rscratch1);
  5413 void MacroAssembler::leave() {
  5414   // %%% is this really better? Why not on 32bit too?
  5415   emit_byte(0xC9); // LEAVE
  5418 void MacroAssembler::lneg(Register hi, Register lo) {
  5419   ShouldNotReachHere(); // 64bit doesn't use two regs
  5420   negq(lo);
  5423 void MacroAssembler::movoop(Register dst, jobject obj) {
  5424   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5427 void MacroAssembler::movoop(Address dst, jobject obj) {
  5428   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5429   movq(dst, rscratch1);
  5432 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5433   if (src.is_lval()) {
  5434     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5435   } else {
  5436     if (reachable(src)) {
  5437       movq(dst, as_Address(src));
  5438     } else {
  5439       lea(rscratch1, src);
  5440       movq(dst, Address(rscratch1,0));
  5445 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5446   movq(as_Address(dst), src);
  5449 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5450   movq(dst, as_Address(src));
  5453 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5454 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5455   mov64(rscratch1, src);
  5456   movq(dst, rscratch1);
  5459 // These are mostly for initializing NULL
  5460 void MacroAssembler::movptr(Address dst, int32_t src) {
  5461   movslq(dst, src);
  5464 void MacroAssembler::movptr(Register dst, int32_t src) {
  5465   mov64(dst, (intptr_t)src);
  5468 void MacroAssembler::pushoop(jobject obj) {
  5469   movoop(rscratch1, obj);
  5470   push(rscratch1);
  5473 void MacroAssembler::pushptr(AddressLiteral src) {
  5474   lea(rscratch1, src);
  5475   if (src.is_lval()) {
  5476     push(rscratch1);
  5477   } else {
  5478     pushq(Address(rscratch1, 0));
  5482 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5483                                            bool clear_pc) {
  5484   // we must set sp to zero to clear frame
  5485   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5486   // must clear fp, so that compiled frames are not confused; it is
  5487   // possible that we need it only for debugging
  5488   if (clear_fp) {
  5489     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5492   if (clear_pc) {
  5493     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5497 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5498                                          Register last_java_fp,
  5499                                          address  last_java_pc) {
  5500   // determine last_java_sp register
  5501   if (!last_java_sp->is_valid()) {
  5502     last_java_sp = rsp;
  5505   // last_java_fp is optional
  5506   if (last_java_fp->is_valid()) {
  5507     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5508            last_java_fp);
  5511   // last_java_pc is optional
  5512   if (last_java_pc != NULL) {
  5513     Address java_pc(r15_thread,
  5514                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5515     lea(rscratch1, InternalAddress(last_java_pc));
  5516     movptr(java_pc, rscratch1);
  5519   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5522 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5523   if (c_rarg0 != arg ) {
  5524     masm->mov(c_rarg0, arg);
  5528 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5529   if (c_rarg1 != arg ) {
  5530     masm->mov(c_rarg1, arg);
  5534 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5535   if (c_rarg2 != arg ) {
  5536     masm->mov(c_rarg2, arg);
  5540 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5541   if (c_rarg3 != arg ) {
  5542     masm->mov(c_rarg3, arg);
  5546 void MacroAssembler::stop(const char* msg) {
  5547   address rip = pc();
  5548   pusha(); // get regs on stack
  5549   lea(c_rarg0, ExternalAddress((address) msg));
  5550   lea(c_rarg1, InternalAddress(rip));
  5551   movq(c_rarg2, rsp); // pass pointer to regs array
  5552   andq(rsp, -16); // align stack as required by ABI
  5553   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5554   hlt();
  5557 void MacroAssembler::warn(const char* msg) {
  5558   push(r12);
  5559   movq(r12, rsp);
  5560   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5562   push_CPU_state();   // keeps alignment at 16 bytes
  5563   lea(c_rarg0, ExternalAddress((address) msg));
  5564   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5565   pop_CPU_state();
  5567   movq(rsp, r12);
  5568   pop(r12);
  5571 #ifndef PRODUCT
  5572 extern "C" void findpc(intptr_t x);
  5573 #endif
  5575 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5576   // In order to get locks to work, we need to fake a in_VM state
  5577   if (ShowMessageBoxOnError ) {
  5578     JavaThread* thread = JavaThread::current();
  5579     JavaThreadState saved_state = thread->thread_state();
  5580     thread->set_thread_state(_thread_in_vm);
  5581 #ifndef PRODUCT
  5582     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5583       ttyLocker ttyl;
  5584       BytecodeCounter::print();
  5586 #endif
  5587     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5588     // XXX correct this offset for amd64
  5589     // This is the value of eip which points to where verify_oop will return.
  5590     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5591       ttyLocker ttyl;
  5592       tty->print_cr("rip = 0x%016lx", pc);
  5593 #ifndef PRODUCT
  5594       tty->cr();
  5595       findpc(pc);
  5596       tty->cr();
  5597 #endif
  5598       tty->print_cr("rax = 0x%016lx", regs[15]);
  5599       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5600       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5601       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5602       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5603       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5604       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5605       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5606       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5607       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5608       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5609       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5610       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5611       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5612       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5613       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5614       BREAKPOINT;
  5616     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5617   } else {
  5618     ttyLocker ttyl;
  5619     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5620                     msg);
  5624 #endif // _LP64
  5626 // Now versions that are common to 32/64 bit
  5628 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5629   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5632 void MacroAssembler::addptr(Register dst, Register src) {
  5633   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5636 void MacroAssembler::addptr(Address dst, Register src) {
  5637   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5640 void MacroAssembler::align(int modulus) {
  5641   if (offset() % modulus != 0) {
  5642     nop(modulus - (offset() % modulus));
  5646 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5647   if (reachable(src)) {
  5648     andpd(dst, as_Address(src));
  5649   } else {
  5650     lea(rscratch1, src);
  5651     andpd(dst, Address(rscratch1, 0));
  5655 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5656   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5659 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5660   pushf();
  5661   if (os::is_MP())
  5662     lock();
  5663   incrementl(counter_addr);
  5664   popf();
  5667 // Writes to stack successive pages until offset reached to check for
  5668 // stack overflow + shadow pages.  This clobbers tmp.
  5669 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5670   movptr(tmp, rsp);
  5671   // Bang stack for total size given plus shadow page size.
  5672   // Bang one page at a time because large size can bang beyond yellow and
  5673   // red zones.
  5674   Label loop;
  5675   bind(loop);
  5676   movl(Address(tmp, (-os::vm_page_size())), size );
  5677   subptr(tmp, os::vm_page_size());
  5678   subl(size, os::vm_page_size());
  5679   jcc(Assembler::greater, loop);
  5681   // Bang down shadow pages too.
  5682   // The -1 because we already subtracted 1 page.
  5683   for (int i = 0; i< StackShadowPages-1; i++) {
  5684     // this could be any sized move but this is can be a debugging crumb
  5685     // so the bigger the better.
  5686     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5690 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5691   assert(UseBiasedLocking, "why call this otherwise?");
  5693   // Check for biased locking unlock case, which is a no-op
  5694   // Note: we do not have to check the thread ID for two reasons.
  5695   // First, the interpreter checks for IllegalMonitorStateException at
  5696   // a higher level. Second, if the bias was revoked while we held the
  5697   // lock, the object could not be rebiased toward another thread, so
  5698   // the bias bit would be clear.
  5699   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5700   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5701   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5702   jcc(Assembler::equal, done);
  5705 void MacroAssembler::c2bool(Register x) {
  5706   // implements x == 0 ? 0 : 1
  5707   // note: must only look at least-significant byte of x
  5708   //       since C-style booleans are stored in one byte
  5709   //       only! (was bug)
  5710   andl(x, 0xFF);
  5711   setb(Assembler::notZero, x);
  5714 // Wouldn't need if AddressLiteral version had new name
  5715 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5716   Assembler::call(L, rtype);
  5719 void MacroAssembler::call(Register entry) {
  5720   Assembler::call(entry);
  5723 void MacroAssembler::call(AddressLiteral entry) {
  5724   if (reachable(entry)) {
  5725     Assembler::call_literal(entry.target(), entry.rspec());
  5726   } else {
  5727     lea(rscratch1, entry);
  5728     Assembler::call(rscratch1);
  5732 // Implementation of call_VM versions
  5734 void MacroAssembler::call_VM(Register oop_result,
  5735                              address entry_point,
  5736                              bool check_exceptions) {
  5737   Label C, E;
  5738   call(C, relocInfo::none);
  5739   jmp(E);
  5741   bind(C);
  5742   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5743   ret(0);
  5745   bind(E);
  5748 void MacroAssembler::call_VM(Register oop_result,
  5749                              address entry_point,
  5750                              Register arg_1,
  5751                              bool check_exceptions) {
  5752   Label C, E;
  5753   call(C, relocInfo::none);
  5754   jmp(E);
  5756   bind(C);
  5757   pass_arg1(this, arg_1);
  5758   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5759   ret(0);
  5761   bind(E);
  5764 void MacroAssembler::call_VM(Register oop_result,
  5765                              address entry_point,
  5766                              Register arg_1,
  5767                              Register arg_2,
  5768                              bool check_exceptions) {
  5769   Label C, E;
  5770   call(C, relocInfo::none);
  5771   jmp(E);
  5773   bind(C);
  5775   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5777   pass_arg2(this, arg_2);
  5778   pass_arg1(this, arg_1);
  5779   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5780   ret(0);
  5782   bind(E);
  5785 void MacroAssembler::call_VM(Register oop_result,
  5786                              address entry_point,
  5787                              Register arg_1,
  5788                              Register arg_2,
  5789                              Register arg_3,
  5790                              bool check_exceptions) {
  5791   Label C, E;
  5792   call(C, relocInfo::none);
  5793   jmp(E);
  5795   bind(C);
  5797   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5798   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5799   pass_arg3(this, arg_3);
  5801   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5802   pass_arg2(this, arg_2);
  5804   pass_arg1(this, arg_1);
  5805   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5806   ret(0);
  5808   bind(E);
  5811 void MacroAssembler::call_VM(Register oop_result,
  5812                              Register last_java_sp,
  5813                              address entry_point,
  5814                              int number_of_arguments,
  5815                              bool check_exceptions) {
  5816   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5817   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5820 void MacroAssembler::call_VM(Register oop_result,
  5821                              Register last_java_sp,
  5822                              address entry_point,
  5823                              Register arg_1,
  5824                              bool check_exceptions) {
  5825   pass_arg1(this, arg_1);
  5826   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5829 void MacroAssembler::call_VM(Register oop_result,
  5830                              Register last_java_sp,
  5831                              address entry_point,
  5832                              Register arg_1,
  5833                              Register arg_2,
  5834                              bool check_exceptions) {
  5836   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5837   pass_arg2(this, arg_2);
  5838   pass_arg1(this, arg_1);
  5839   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5842 void MacroAssembler::call_VM(Register oop_result,
  5843                              Register last_java_sp,
  5844                              address entry_point,
  5845                              Register arg_1,
  5846                              Register arg_2,
  5847                              Register arg_3,
  5848                              bool check_exceptions) {
  5849   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5850   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5851   pass_arg3(this, arg_3);
  5852   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5853   pass_arg2(this, arg_2);
  5854   pass_arg1(this, arg_1);
  5855   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5858 void MacroAssembler::call_VM_base(Register oop_result,
  5859                                   Register java_thread,
  5860                                   Register last_java_sp,
  5861                                   address  entry_point,
  5862                                   int      number_of_arguments,
  5863                                   bool     check_exceptions) {
  5864   // determine java_thread register
  5865   if (!java_thread->is_valid()) {
  5866 #ifdef _LP64
  5867     java_thread = r15_thread;
  5868 #else
  5869     java_thread = rdi;
  5870     get_thread(java_thread);
  5871 #endif // LP64
  5873   // determine last_java_sp register
  5874   if (!last_java_sp->is_valid()) {
  5875     last_java_sp = rsp;
  5877   // debugging support
  5878   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5879   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5880   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5881   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5883   // push java thread (becomes first argument of C function)
  5885   NOT_LP64(push(java_thread); number_of_arguments++);
  5886   LP64_ONLY(mov(c_rarg0, r15_thread));
  5888   // set last Java frame before call
  5889   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5891   // Only interpreter should have to set fp
  5892   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5894   // do the call, remove parameters
  5895   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5897   // restore the thread (cannot use the pushed argument since arguments
  5898   // may be overwritten by C code generated by an optimizing compiler);
  5899   // however can use the register value directly if it is callee saved.
  5900   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5901     // rdi & rsi (also r15) are callee saved -> nothing to do
  5902 #ifdef ASSERT
  5903     guarantee(java_thread != rax, "change this code");
  5904     push(rax);
  5905     { Label L;
  5906       get_thread(rax);
  5907       cmpptr(java_thread, rax);
  5908       jcc(Assembler::equal, L);
  5909       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5910       bind(L);
  5912     pop(rax);
  5913 #endif
  5914   } else {
  5915     get_thread(java_thread);
  5917   // reset last Java frame
  5918   // Only interpreter should have to clear fp
  5919   reset_last_Java_frame(java_thread, true, false);
  5921 #ifndef CC_INTERP
  5922    // C++ interp handles this in the interpreter
  5923   check_and_handle_popframe(java_thread);
  5924   check_and_handle_earlyret(java_thread);
  5925 #endif /* CC_INTERP */
  5927   if (check_exceptions) {
  5928     // check for pending exceptions (java_thread is set upon return)
  5929     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5930 #ifndef _LP64
  5931     jump_cc(Assembler::notEqual,
  5932             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5933 #else
  5934     // This used to conditionally jump to forward_exception however it is
  5935     // possible if we relocate that the branch will not reach. So we must jump
  5936     // around so we can always reach
  5938     Label ok;
  5939     jcc(Assembler::equal, ok);
  5940     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5941     bind(ok);
  5942 #endif // LP64
  5945   // get oop result if there is one and reset the value in the thread
  5946   if (oop_result->is_valid()) {
  5947     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5948     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5949     verify_oop(oop_result, "broken oop in call_VM_base");
  5953 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5955   // Calculate the value for last_Java_sp
  5956   // somewhat subtle. call_VM does an intermediate call
  5957   // which places a return address on the stack just under the
  5958   // stack pointer as the user finsihed with it. This allows
  5959   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5960   // On 32bit we then have to push additional args on the stack to accomplish
  5961   // the actual requested call. On 64bit call_VM only can use register args
  5962   // so the only extra space is the return address that call_VM created.
  5963   // This hopefully explains the calculations here.
  5965 #ifdef _LP64
  5966   // We've pushed one address, correct last_Java_sp
  5967   lea(rax, Address(rsp, wordSize));
  5968 #else
  5969   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  5970 #endif // LP64
  5972   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  5976 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  5977   call_VM_leaf_base(entry_point, number_of_arguments);
  5980 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  5981   pass_arg0(this, arg_0);
  5982   call_VM_leaf(entry_point, 1);
  5985 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  5987   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5988   pass_arg1(this, arg_1);
  5989   pass_arg0(this, arg_0);
  5990   call_VM_leaf(entry_point, 2);
  5993 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  5994   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  5995   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5996   pass_arg2(this, arg_2);
  5997   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5998   pass_arg1(this, arg_1);
  5999   pass_arg0(this, arg_0);
  6000   call_VM_leaf(entry_point, 3);
  6003 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6006 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6009 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6010   if (reachable(src1)) {
  6011     cmpl(as_Address(src1), imm);
  6012   } else {
  6013     lea(rscratch1, src1);
  6014     cmpl(Address(rscratch1, 0), imm);
  6018 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6019   assert(!src2.is_lval(), "use cmpptr");
  6020   if (reachable(src2)) {
  6021     cmpl(src1, as_Address(src2));
  6022   } else {
  6023     lea(rscratch1, src2);
  6024     cmpl(src1, Address(rscratch1, 0));
  6028 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6029   Assembler::cmpl(src1, imm);
  6032 void MacroAssembler::cmp32(Register src1, Address src2) {
  6033   Assembler::cmpl(src1, src2);
  6036 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6037   ucomisd(opr1, opr2);
  6039   Label L;
  6040   if (unordered_is_less) {
  6041     movl(dst, -1);
  6042     jcc(Assembler::parity, L);
  6043     jcc(Assembler::below , L);
  6044     movl(dst, 0);
  6045     jcc(Assembler::equal , L);
  6046     increment(dst);
  6047   } else { // unordered is greater
  6048     movl(dst, 1);
  6049     jcc(Assembler::parity, L);
  6050     jcc(Assembler::above , L);
  6051     movl(dst, 0);
  6052     jcc(Assembler::equal , L);
  6053     decrementl(dst);
  6055   bind(L);
  6058 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6059   ucomiss(opr1, opr2);
  6061   Label L;
  6062   if (unordered_is_less) {
  6063     movl(dst, -1);
  6064     jcc(Assembler::parity, L);
  6065     jcc(Assembler::below , L);
  6066     movl(dst, 0);
  6067     jcc(Assembler::equal , L);
  6068     increment(dst);
  6069   } else { // unordered is greater
  6070     movl(dst, 1);
  6071     jcc(Assembler::parity, L);
  6072     jcc(Assembler::above , L);
  6073     movl(dst, 0);
  6074     jcc(Assembler::equal , L);
  6075     decrementl(dst);
  6077   bind(L);
  6081 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6082   if (reachable(src1)) {
  6083     cmpb(as_Address(src1), imm);
  6084   } else {
  6085     lea(rscratch1, src1);
  6086     cmpb(Address(rscratch1, 0), imm);
  6090 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6091 #ifdef _LP64
  6092   if (src2.is_lval()) {
  6093     movptr(rscratch1, src2);
  6094     Assembler::cmpq(src1, rscratch1);
  6095   } else if (reachable(src2)) {
  6096     cmpq(src1, as_Address(src2));
  6097   } else {
  6098     lea(rscratch1, src2);
  6099     Assembler::cmpq(src1, Address(rscratch1, 0));
  6101 #else
  6102   if (src2.is_lval()) {
  6103     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6104   } else {
  6105     cmpl(src1, as_Address(src2));
  6107 #endif // _LP64
  6110 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6111   assert(src2.is_lval(), "not a mem-mem compare");
  6112 #ifdef _LP64
  6113   // moves src2's literal address
  6114   movptr(rscratch1, src2);
  6115   Assembler::cmpq(src1, rscratch1);
  6116 #else
  6117   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6118 #endif // _LP64
  6121 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6122   if (reachable(adr)) {
  6123     if (os::is_MP())
  6124       lock();
  6125     cmpxchgptr(reg, as_Address(adr));
  6126   } else {
  6127     lea(rscratch1, adr);
  6128     if (os::is_MP())
  6129       lock();
  6130     cmpxchgptr(reg, Address(rscratch1, 0));
  6134 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6135   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6138 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6139   if (reachable(src)) {
  6140     comisd(dst, as_Address(src));
  6141   } else {
  6142     lea(rscratch1, src);
  6143     comisd(dst, Address(rscratch1, 0));
  6147 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6148   if (reachable(src)) {
  6149     comiss(dst, as_Address(src));
  6150   } else {
  6151     lea(rscratch1, src);
  6152     comiss(dst, Address(rscratch1, 0));
  6157 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6158   Condition negated_cond = negate_condition(cond);
  6159   Label L;
  6160   jcc(negated_cond, L);
  6161   atomic_incl(counter_addr);
  6162   bind(L);
  6165 int MacroAssembler::corrected_idivl(Register reg) {
  6166   // Full implementation of Java idiv and irem; checks for
  6167   // special case as described in JVM spec., p.243 & p.271.
  6168   // The function returns the (pc) offset of the idivl
  6169   // instruction - may be needed for implicit exceptions.
  6170   //
  6171   //         normal case                           special case
  6172   //
  6173   // input : rax,: dividend                         min_int
  6174   //         reg: divisor   (may not be rax,/rdx)   -1
  6175   //
  6176   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6177   //         rdx: remainder (= rax, irem reg)       0
  6178   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6179   const int min_int = 0x80000000;
  6180   Label normal_case, special_case;
  6182   // check for special case
  6183   cmpl(rax, min_int);
  6184   jcc(Assembler::notEqual, normal_case);
  6185   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6186   cmpl(reg, -1);
  6187   jcc(Assembler::equal, special_case);
  6189   // handle normal case
  6190   bind(normal_case);
  6191   cdql();
  6192   int idivl_offset = offset();
  6193   idivl(reg);
  6195   // normal and special case exit
  6196   bind(special_case);
  6198   return idivl_offset;
  6203 void MacroAssembler::decrementl(Register reg, int value) {
  6204   if (value == min_jint) {subl(reg, value) ; return; }
  6205   if (value <  0) { incrementl(reg, -value); return; }
  6206   if (value == 0) {                        ; return; }
  6207   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6208   /* else */      { subl(reg, value)       ; return; }
  6211 void MacroAssembler::decrementl(Address dst, int value) {
  6212   if (value == min_jint) {subl(dst, value) ; return; }
  6213   if (value <  0) { incrementl(dst, -value); return; }
  6214   if (value == 0) {                        ; return; }
  6215   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6216   /* else */      { subl(dst, value)       ; return; }
  6219 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6220   assert (shift_value > 0, "illegal shift value");
  6221   Label _is_positive;
  6222   testl (reg, reg);
  6223   jcc (Assembler::positive, _is_positive);
  6224   int offset = (1 << shift_value) - 1 ;
  6226   if (offset == 1) {
  6227     incrementl(reg);
  6228   } else {
  6229     addl(reg, offset);
  6232   bind (_is_positive);
  6233   sarl(reg, shift_value);
  6236 // !defined(COMPILER2) is because of stupid core builds
  6237 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6238 void MacroAssembler::empty_FPU_stack() {
  6239   if (VM_Version::supports_mmx()) {
  6240     emms();
  6241   } else {
  6242     for (int i = 8; i-- > 0; ) ffree(i);
  6245 #endif // !LP64 || C1 || !C2
  6248 // Defines obj, preserves var_size_in_bytes
  6249 void MacroAssembler::eden_allocate(Register obj,
  6250                                    Register var_size_in_bytes,
  6251                                    int con_size_in_bytes,
  6252                                    Register t1,
  6253                                    Label& slow_case) {
  6254   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6255   assert_different_registers(obj, var_size_in_bytes, t1);
  6256   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6257     jmp(slow_case);
  6258   } else {
  6259     Register end = t1;
  6260     Label retry;
  6261     bind(retry);
  6262     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6263     movptr(obj, heap_top);
  6264     if (var_size_in_bytes == noreg) {
  6265       lea(end, Address(obj, con_size_in_bytes));
  6266     } else {
  6267       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6269     // if end < obj then we wrapped around => object too long => slow case
  6270     cmpptr(end, obj);
  6271     jcc(Assembler::below, slow_case);
  6272     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6273     jcc(Assembler::above, slow_case);
  6274     // Compare obj with the top addr, and if still equal, store the new top addr in
  6275     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6276     // it otherwise. Use lock prefix for atomicity on MPs.
  6277     locked_cmpxchgptr(end, heap_top);
  6278     jcc(Assembler::notEqual, retry);
  6282 void MacroAssembler::enter() {
  6283   push(rbp);
  6284   mov(rbp, rsp);
  6287 void MacroAssembler::fcmp(Register tmp) {
  6288   fcmp(tmp, 1, true, true);
  6291 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6292   assert(!pop_right || pop_left, "usage error");
  6293   if (VM_Version::supports_cmov()) {
  6294     assert(tmp == noreg, "unneeded temp");
  6295     if (pop_left) {
  6296       fucomip(index);
  6297     } else {
  6298       fucomi(index);
  6300     if (pop_right) {
  6301       fpop();
  6303   } else {
  6304     assert(tmp != noreg, "need temp");
  6305     if (pop_left) {
  6306       if (pop_right) {
  6307         fcompp();
  6308       } else {
  6309         fcomp(index);
  6311     } else {
  6312       fcom(index);
  6314     // convert FPU condition into eflags condition via rax,
  6315     save_rax(tmp);
  6316     fwait(); fnstsw_ax();
  6317     sahf();
  6318     restore_rax(tmp);
  6320   // condition codes set as follows:
  6321   //
  6322   // CF (corresponds to C0) if x < y
  6323   // PF (corresponds to C2) if unordered
  6324   // ZF (corresponds to C3) if x = y
  6327 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6328   fcmp2int(dst, unordered_is_less, 1, true, true);
  6331 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6332   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6333   Label L;
  6334   if (unordered_is_less) {
  6335     movl(dst, -1);
  6336     jcc(Assembler::parity, L);
  6337     jcc(Assembler::below , L);
  6338     movl(dst, 0);
  6339     jcc(Assembler::equal , L);
  6340     increment(dst);
  6341   } else { // unordered is greater
  6342     movl(dst, 1);
  6343     jcc(Assembler::parity, L);
  6344     jcc(Assembler::above , L);
  6345     movl(dst, 0);
  6346     jcc(Assembler::equal , L);
  6347     decrementl(dst);
  6349   bind(L);
  6352 void MacroAssembler::fld_d(AddressLiteral src) {
  6353   fld_d(as_Address(src));
  6356 void MacroAssembler::fld_s(AddressLiteral src) {
  6357   fld_s(as_Address(src));
  6360 void MacroAssembler::fld_x(AddressLiteral src) {
  6361   Assembler::fld_x(as_Address(src));
  6364 void MacroAssembler::fldcw(AddressLiteral src) {
  6365   Assembler::fldcw(as_Address(src));
  6368 void MacroAssembler::fpop() {
  6369   ffree();
  6370   fincstp();
  6373 void MacroAssembler::fremr(Register tmp) {
  6374   save_rax(tmp);
  6375   { Label L;
  6376     bind(L);
  6377     fprem();
  6378     fwait(); fnstsw_ax();
  6379 #ifdef _LP64
  6380     testl(rax, 0x400);
  6381     jcc(Assembler::notEqual, L);
  6382 #else
  6383     sahf();
  6384     jcc(Assembler::parity, L);
  6385 #endif // _LP64
  6387   restore_rax(tmp);
  6388   // Result is in ST0.
  6389   // Note: fxch & fpop to get rid of ST1
  6390   // (otherwise FPU stack could overflow eventually)
  6391   fxch(1);
  6392   fpop();
  6396 void MacroAssembler::incrementl(AddressLiteral dst) {
  6397   if (reachable(dst)) {
  6398     incrementl(as_Address(dst));
  6399   } else {
  6400     lea(rscratch1, dst);
  6401     incrementl(Address(rscratch1, 0));
  6405 void MacroAssembler::incrementl(ArrayAddress dst) {
  6406   incrementl(as_Address(dst));
  6409 void MacroAssembler::incrementl(Register reg, int value) {
  6410   if (value == min_jint) {addl(reg, value) ; return; }
  6411   if (value <  0) { decrementl(reg, -value); return; }
  6412   if (value == 0) {                        ; return; }
  6413   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6414   /* else */      { addl(reg, value)       ; return; }
  6417 void MacroAssembler::incrementl(Address dst, int value) {
  6418   if (value == min_jint) {addl(dst, value) ; return; }
  6419   if (value <  0) { decrementl(dst, -value); return; }
  6420   if (value == 0) {                        ; return; }
  6421   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6422   /* else */      { addl(dst, value)       ; return; }
  6425 void MacroAssembler::jump(AddressLiteral dst) {
  6426   if (reachable(dst)) {
  6427     jmp_literal(dst.target(), dst.rspec());
  6428   } else {
  6429     lea(rscratch1, dst);
  6430     jmp(rscratch1);
  6434 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6435   if (reachable(dst)) {
  6436     InstructionMark im(this);
  6437     relocate(dst.reloc());
  6438     const int short_size = 2;
  6439     const int long_size = 6;
  6440     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6441     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6442       // 0111 tttn #8-bit disp
  6443       emit_byte(0x70 | cc);
  6444       emit_byte((offs - short_size) & 0xFF);
  6445     } else {
  6446       // 0000 1111 1000 tttn #32-bit disp
  6447       emit_byte(0x0F);
  6448       emit_byte(0x80 | cc);
  6449       emit_long(offs - long_size);
  6451   } else {
  6452 #ifdef ASSERT
  6453     warning("reversing conditional branch");
  6454 #endif /* ASSERT */
  6455     Label skip;
  6456     jccb(reverse[cc], skip);
  6457     lea(rscratch1, dst);
  6458     Assembler::jmp(rscratch1);
  6459     bind(skip);
  6463 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6464   if (reachable(src)) {
  6465     Assembler::ldmxcsr(as_Address(src));
  6466   } else {
  6467     lea(rscratch1, src);
  6468     Assembler::ldmxcsr(Address(rscratch1, 0));
  6472 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6473   int off;
  6474   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6475     off = offset();
  6476     movsbl(dst, src); // movsxb
  6477   } else {
  6478     off = load_unsigned_byte(dst, src);
  6479     shll(dst, 24);
  6480     sarl(dst, 24);
  6482   return off;
  6485 // Note: load_signed_short used to be called load_signed_word.
  6486 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6487 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6488 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6489 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6490   int off;
  6491   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6492     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6493     // version but this is what 64bit has always done. This seems to imply
  6494     // that users are only using 32bits worth.
  6495     off = offset();
  6496     movswl(dst, src); // movsxw
  6497   } else {
  6498     off = load_unsigned_short(dst, src);
  6499     shll(dst, 16);
  6500     sarl(dst, 16);
  6502   return off;
  6505 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6506   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6507   // and "3.9 Partial Register Penalties", p. 22).
  6508   int off;
  6509   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6510     off = offset();
  6511     movzbl(dst, src); // movzxb
  6512   } else {
  6513     xorl(dst, dst);
  6514     off = offset();
  6515     movb(dst, src);
  6517   return off;
  6520 // Note: load_unsigned_short used to be called load_unsigned_word.
  6521 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6522   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6523   // and "3.9 Partial Register Penalties", p. 22).
  6524   int off;
  6525   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6526     off = offset();
  6527     movzwl(dst, src); // movzxw
  6528   } else {
  6529     xorl(dst, dst);
  6530     off = offset();
  6531     movw(dst, src);
  6533   return off;
  6536 void MacroAssembler::load_sized_value(Register dst, Address src,
  6537                                       size_t size_in_bytes, bool is_signed) {
  6538   switch (size_in_bytes) {
  6539 #ifndef _LP64
  6540   // For case 8, caller is responsible for manually loading
  6541   // the second word into another register.
  6542   case  8: movl(dst, src); break;
  6543 #else
  6544   case  8: movq(dst, src); break;
  6545 #endif
  6546   case  4: movl(dst, src); break;
  6547   case  2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  6548   case  1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  6549   default: ShouldNotReachHere();
  6553 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6554   if (reachable(dst)) {
  6555     movl(as_Address(dst), src);
  6556   } else {
  6557     lea(rscratch1, dst);
  6558     movl(Address(rscratch1, 0), src);
  6562 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6563   if (reachable(src)) {
  6564     movl(dst, as_Address(src));
  6565   } else {
  6566     lea(rscratch1, src);
  6567     movl(dst, Address(rscratch1, 0));
  6571 // C++ bool manipulation
  6573 void MacroAssembler::movbool(Register dst, Address src) {
  6574   if(sizeof(bool) == 1)
  6575     movb(dst, src);
  6576   else if(sizeof(bool) == 2)
  6577     movw(dst, src);
  6578   else if(sizeof(bool) == 4)
  6579     movl(dst, src);
  6580   else
  6581     // unsupported
  6582     ShouldNotReachHere();
  6585 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6586   if(sizeof(bool) == 1)
  6587     movb(dst, (int) boolconst);
  6588   else if(sizeof(bool) == 2)
  6589     movw(dst, (int) boolconst);
  6590   else if(sizeof(bool) == 4)
  6591     movl(dst, (int) boolconst);
  6592   else
  6593     // unsupported
  6594     ShouldNotReachHere();
  6597 void MacroAssembler::movbool(Address dst, Register src) {
  6598   if(sizeof(bool) == 1)
  6599     movb(dst, src);
  6600   else if(sizeof(bool) == 2)
  6601     movw(dst, src);
  6602   else if(sizeof(bool) == 4)
  6603     movl(dst, src);
  6604   else
  6605     // unsupported
  6606     ShouldNotReachHere();
  6609 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6610   movb(as_Address(dst), src);
  6613 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6614   if (reachable(src)) {
  6615     if (UseXmmLoadAndClearUpper) {
  6616       movsd (dst, as_Address(src));
  6617     } else {
  6618       movlpd(dst, as_Address(src));
  6620   } else {
  6621     lea(rscratch1, src);
  6622     if (UseXmmLoadAndClearUpper) {
  6623       movsd (dst, Address(rscratch1, 0));
  6624     } else {
  6625       movlpd(dst, Address(rscratch1, 0));
  6630 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6631   if (reachable(src)) {
  6632     movss(dst, as_Address(src));
  6633   } else {
  6634     lea(rscratch1, src);
  6635     movss(dst, Address(rscratch1, 0));
  6639 void MacroAssembler::movptr(Register dst, Register src) {
  6640   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6643 void MacroAssembler::movptr(Register dst, Address src) {
  6644   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6647 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6648 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6649   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6652 void MacroAssembler::movptr(Address dst, Register src) {
  6653   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6656 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6657   if (reachable(src)) {
  6658     movss(dst, as_Address(src));
  6659   } else {
  6660     lea(rscratch1, src);
  6661     movss(dst, Address(rscratch1, 0));
  6665 void MacroAssembler::null_check(Register reg, int offset) {
  6666   if (needs_explicit_null_check(offset)) {
  6667     // provoke OS NULL exception if reg = NULL by
  6668     // accessing M[reg] w/o changing any (non-CC) registers
  6669     // NOTE: cmpl is plenty here to provoke a segv
  6670     cmpptr(rax, Address(reg, 0));
  6671     // Note: should probably use testl(rax, Address(reg, 0));
  6672     //       may be shorter code (however, this version of
  6673     //       testl needs to be implemented first)
  6674   } else {
  6675     // nothing to do, (later) access of M[reg + offset]
  6676     // will provoke OS NULL exception if reg = NULL
  6680 void MacroAssembler::os_breakpoint() {
  6681   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6682   // (e.g., MSVC can't call ps() otherwise)
  6683   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6686 void MacroAssembler::pop_CPU_state() {
  6687   pop_FPU_state();
  6688   pop_IU_state();
  6691 void MacroAssembler::pop_FPU_state() {
  6692   NOT_LP64(frstor(Address(rsp, 0));)
  6693   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6694   addptr(rsp, FPUStateSizeInWords * wordSize);
  6697 void MacroAssembler::pop_IU_state() {
  6698   popa();
  6699   LP64_ONLY(addq(rsp, 8));
  6700   popf();
  6703 // Save Integer and Float state
  6704 // Warning: Stack must be 16 byte aligned (64bit)
  6705 void MacroAssembler::push_CPU_state() {
  6706   push_IU_state();
  6707   push_FPU_state();
  6710 void MacroAssembler::push_FPU_state() {
  6711   subptr(rsp, FPUStateSizeInWords * wordSize);
  6712 #ifndef _LP64
  6713   fnsave(Address(rsp, 0));
  6714   fwait();
  6715 #else
  6716   fxsave(Address(rsp, 0));
  6717 #endif // LP64
  6720 void MacroAssembler::push_IU_state() {
  6721   // Push flags first because pusha kills them
  6722   pushf();
  6723   // Make sure rsp stays 16-byte aligned
  6724   LP64_ONLY(subq(rsp, 8));
  6725   pusha();
  6728 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6729   // determine java_thread register
  6730   if (!java_thread->is_valid()) {
  6731     java_thread = rdi;
  6732     get_thread(java_thread);
  6734   // we must set sp to zero to clear frame
  6735   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6736   if (clear_fp) {
  6737     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6740   if (clear_pc)
  6741     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6745 void MacroAssembler::restore_rax(Register tmp) {
  6746   if (tmp == noreg) pop(rax);
  6747   else if (tmp != rax) mov(rax, tmp);
  6750 void MacroAssembler::round_to(Register reg, int modulus) {
  6751   addptr(reg, modulus - 1);
  6752   andptr(reg, -modulus);
  6755 void MacroAssembler::save_rax(Register tmp) {
  6756   if (tmp == noreg) push(rax);
  6757   else if (tmp != rax) mov(tmp, rax);
  6760 // Write serialization page so VM thread can do a pseudo remote membar.
  6761 // We use the current thread pointer to calculate a thread specific
  6762 // offset to write to within the page. This minimizes bus traffic
  6763 // due to cache line collision.
  6764 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6765   movl(tmp, thread);
  6766   shrl(tmp, os::get_serialize_page_shift_count());
  6767   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6769   Address index(noreg, tmp, Address::times_1);
  6770   ExternalAddress page(os::get_memory_serialize_page());
  6772   // Size of store must match masking code above
  6773   movl(as_Address(ArrayAddress(page, index)), tmp);
  6776 // Calls to C land
  6777 //
  6778 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6779 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6780 // has to be reset to 0. This is required to allow proper stack traversal.
  6781 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6782                                          Register last_java_sp,
  6783                                          Register last_java_fp,
  6784                                          address  last_java_pc) {
  6785   // determine java_thread register
  6786   if (!java_thread->is_valid()) {
  6787     java_thread = rdi;
  6788     get_thread(java_thread);
  6790   // determine last_java_sp register
  6791   if (!last_java_sp->is_valid()) {
  6792     last_java_sp = rsp;
  6795   // last_java_fp is optional
  6797   if (last_java_fp->is_valid()) {
  6798     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6801   // last_java_pc is optional
  6803   if (last_java_pc != NULL) {
  6804     lea(Address(java_thread,
  6805                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6806         InternalAddress(last_java_pc));
  6809   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6812 void MacroAssembler::shlptr(Register dst, int imm8) {
  6813   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6816 void MacroAssembler::shrptr(Register dst, int imm8) {
  6817   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6820 void MacroAssembler::sign_extend_byte(Register reg) {
  6821   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6822     movsbl(reg, reg); // movsxb
  6823   } else {
  6824     shll(reg, 24);
  6825     sarl(reg, 24);
  6829 void MacroAssembler::sign_extend_short(Register reg) {
  6830   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6831     movswl(reg, reg); // movsxw
  6832   } else {
  6833     shll(reg, 16);
  6834     sarl(reg, 16);
  6838 //////////////////////////////////////////////////////////////////////////////////
  6839 #ifndef SERIALGC
  6841 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6842 #ifndef _LP64
  6843                                           Register thread,
  6844 #endif
  6845                                           Register tmp,
  6846                                           Register tmp2,
  6847                                           bool tosca_live) {
  6848   LP64_ONLY(Register thread = r15_thread;)
  6849   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6850                                        PtrQueue::byte_offset_of_active()));
  6852   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6853                                        PtrQueue::byte_offset_of_index()));
  6854   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6855                                        PtrQueue::byte_offset_of_buf()));
  6858   Label done;
  6859   Label runtime;
  6861   // if (!marking_in_progress) goto done;
  6862   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6863     cmpl(in_progress, 0);
  6864   } else {
  6865     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6866     cmpb(in_progress, 0);
  6868   jcc(Assembler::equal, done);
  6870   // if (x.f == NULL) goto done;
  6871 #ifdef _LP64
  6872   load_heap_oop(tmp2, Address(obj, 0));
  6873 #else
  6874   movptr(tmp2, Address(obj, 0));
  6875 #endif
  6876   cmpptr(tmp2, (int32_t) NULL_WORD);
  6877   jcc(Assembler::equal, done);
  6879   // Can we store original value in the thread's buffer?
  6881 #ifdef _LP64
  6882   movslq(tmp, index);
  6883   cmpq(tmp, 0);
  6884 #else
  6885   cmpl(index, 0);
  6886 #endif
  6887   jcc(Assembler::equal, runtime);
  6888 #ifdef _LP64
  6889   subq(tmp, wordSize);
  6890   movl(index, tmp);
  6891   addq(tmp, buffer);
  6892 #else
  6893   subl(index, wordSize);
  6894   movl(tmp, buffer);
  6895   addl(tmp, index);
  6896 #endif
  6897   movptr(Address(tmp, 0), tmp2);
  6898   jmp(done);
  6899   bind(runtime);
  6900   // save the live input values
  6901   if(tosca_live) push(rax);
  6902   push(obj);
  6903 #ifdef _LP64
  6904   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, r15_thread);
  6905 #else
  6906   push(thread);
  6907   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6908   pop(thread);
  6909 #endif
  6910   pop(obj);
  6911   if(tosca_live) pop(rax);
  6912   bind(done);
  6916 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6917                                            Register new_val,
  6918 #ifndef _LP64
  6919                                            Register thread,
  6920 #endif
  6921                                            Register tmp,
  6922                                            Register tmp2) {
  6924   LP64_ONLY(Register thread = r15_thread;)
  6925   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6926                                        PtrQueue::byte_offset_of_index()));
  6927   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6928                                        PtrQueue::byte_offset_of_buf()));
  6929   BarrierSet* bs = Universe::heap()->barrier_set();
  6930   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6931   Label done;
  6932   Label runtime;
  6934   // Does store cross heap regions?
  6936   movptr(tmp, store_addr);
  6937   xorptr(tmp, new_val);
  6938   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  6939   jcc(Assembler::equal, done);
  6941   // crosses regions, storing NULL?
  6943   cmpptr(new_val, (int32_t) NULL_WORD);
  6944   jcc(Assembler::equal, done);
  6946   // storing region crossing non-NULL, is card already dirty?
  6948   ExternalAddress cardtable((address) ct->byte_map_base);
  6949   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6950 #ifdef _LP64
  6951   const Register card_addr = tmp;
  6953   movq(card_addr, store_addr);
  6954   shrq(card_addr, CardTableModRefBS::card_shift);
  6956   lea(tmp2, cardtable);
  6958   // get the address of the card
  6959   addq(card_addr, tmp2);
  6960 #else
  6961   const Register card_index = tmp;
  6963   movl(card_index, store_addr);
  6964   shrl(card_index, CardTableModRefBS::card_shift);
  6966   Address index(noreg, card_index, Address::times_1);
  6967   const Register card_addr = tmp;
  6968   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  6969 #endif
  6970   cmpb(Address(card_addr, 0), 0);
  6971   jcc(Assembler::equal, done);
  6973   // storing a region crossing, non-NULL oop, card is clean.
  6974   // dirty card and log.
  6976   movb(Address(card_addr, 0), 0);
  6978   cmpl(queue_index, 0);
  6979   jcc(Assembler::equal, runtime);
  6980   subl(queue_index, wordSize);
  6981   movptr(tmp2, buffer);
  6982 #ifdef _LP64
  6983   movslq(rscratch1, queue_index);
  6984   addq(tmp2, rscratch1);
  6985   movq(Address(tmp2, 0), card_addr);
  6986 #else
  6987   addl(tmp2, queue_index);
  6988   movl(Address(tmp2, 0), card_index);
  6989 #endif
  6990   jmp(done);
  6992   bind(runtime);
  6993   // save the live input values
  6994   push(store_addr);
  6995   push(new_val);
  6996 #ifdef _LP64
  6997   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  6998 #else
  6999   push(thread);
  7000   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  7001   pop(thread);
  7002 #endif
  7003   pop(new_val);
  7004   pop(store_addr);
  7006   bind(done);
  7010 #endif // SERIALGC
  7011 //////////////////////////////////////////////////////////////////////////////////
  7014 void MacroAssembler::store_check(Register obj) {
  7015   // Does a store check for the oop in register obj. The content of
  7016   // register obj is destroyed afterwards.
  7017   store_check_part_1(obj);
  7018   store_check_part_2(obj);
  7021 void MacroAssembler::store_check(Register obj, Address dst) {
  7022   store_check(obj);
  7026 // split the store check operation so that other instructions can be scheduled inbetween
  7027 void MacroAssembler::store_check_part_1(Register obj) {
  7028   BarrierSet* bs = Universe::heap()->barrier_set();
  7029   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7030   shrptr(obj, CardTableModRefBS::card_shift);
  7033 void MacroAssembler::store_check_part_2(Register obj) {
  7034   BarrierSet* bs = Universe::heap()->barrier_set();
  7035   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7036   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7037   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7039   // The calculation for byte_map_base is as follows:
  7040   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7041   // So this essentially converts an address to a displacement and
  7042   // it will never need to be relocated. On 64bit however the value may be too
  7043   // large for a 32bit displacement
  7045   intptr_t disp = (intptr_t) ct->byte_map_base;
  7046   if (is_simm32(disp)) {
  7047     Address cardtable(noreg, obj, Address::times_1, disp);
  7048     movb(cardtable, 0);
  7049   } else {
  7050     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7051     // displacement and done in a single instruction given favorable mapping and
  7052     // a smarter version of as_Address. Worst case it is two instructions which
  7053     // is no worse off then loading disp into a register and doing as a simple
  7054     // Address() as above.
  7055     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7056     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7057     // in some cases we'll get a single instruction version.
  7059     ExternalAddress cardtable((address)disp);
  7060     Address index(noreg, obj, Address::times_1);
  7061     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7065 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7066   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7069 void MacroAssembler::subptr(Register dst, Register src) {
  7070   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7073 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  7074   // src2 must be rval
  7076   if (reachable(src2)) {
  7077     testl(src1, as_Address(src2));
  7078   } else {
  7079     lea(rscratch1, src2);
  7080     testl(src1, Address(rscratch1, 0));
  7084 // C++ bool manipulation
  7085 void MacroAssembler::testbool(Register dst) {
  7086   if(sizeof(bool) == 1)
  7087     testb(dst, 0xff);
  7088   else if(sizeof(bool) == 2) {
  7089     // testw implementation needed for two byte bools
  7090     ShouldNotReachHere();
  7091   } else if(sizeof(bool) == 4)
  7092     testl(dst, dst);
  7093   else
  7094     // unsupported
  7095     ShouldNotReachHere();
  7098 void MacroAssembler::testptr(Register dst, Register src) {
  7099   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7102 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7103 void MacroAssembler::tlab_allocate(Register obj,
  7104                                    Register var_size_in_bytes,
  7105                                    int con_size_in_bytes,
  7106                                    Register t1,
  7107                                    Register t2,
  7108                                    Label& slow_case) {
  7109   assert_different_registers(obj, t1, t2);
  7110   assert_different_registers(obj, var_size_in_bytes, t1);
  7111   Register end = t2;
  7112   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7114   verify_tlab();
  7116   NOT_LP64(get_thread(thread));
  7118   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7119   if (var_size_in_bytes == noreg) {
  7120     lea(end, Address(obj, con_size_in_bytes));
  7121   } else {
  7122     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7124   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7125   jcc(Assembler::above, slow_case);
  7127   // update the tlab top pointer
  7128   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7130   // recover var_size_in_bytes if necessary
  7131   if (var_size_in_bytes == end) {
  7132     subptr(var_size_in_bytes, obj);
  7134   verify_tlab();
  7137 // Preserves rbx, and rdx.
  7138 void MacroAssembler::tlab_refill(Label& retry,
  7139                                  Label& try_eden,
  7140                                  Label& slow_case) {
  7141   Register top = rax;
  7142   Register t1  = rcx;
  7143   Register t2  = rsi;
  7144   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7145   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7146   Label do_refill, discard_tlab;
  7148   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7149     // No allocation in the shared eden.
  7150     jmp(slow_case);
  7153   NOT_LP64(get_thread(thread_reg));
  7155   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7156   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7158   // calculate amount of free space
  7159   subptr(t1, top);
  7160   shrptr(t1, LogHeapWordSize);
  7162   // Retain tlab and allocate object in shared space if
  7163   // the amount free in the tlab is too large to discard.
  7164   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7165   jcc(Assembler::lessEqual, discard_tlab);
  7167   // Retain
  7168   // %%% yuck as movptr...
  7169   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7170   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7171   if (TLABStats) {
  7172     // increment number of slow_allocations
  7173     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7175   jmp(try_eden);
  7177   bind(discard_tlab);
  7178   if (TLABStats) {
  7179     // increment number of refills
  7180     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7181     // accumulate wastage -- t1 is amount free in tlab
  7182     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7185   // if tlab is currently allocated (top or end != null) then
  7186   // fill [top, end + alignment_reserve) with array object
  7187   testptr (top, top);
  7188   jcc(Assembler::zero, do_refill);
  7190   // set up the mark word
  7191   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7192   // set the length to the remaining space
  7193   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7194   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7195   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7196   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7197   // set klass to intArrayKlass
  7198   // dubious reloc why not an oop reloc?
  7199   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  7200   // store klass last.  concurrent gcs assumes klass length is valid if
  7201   // klass field is not null.
  7202   store_klass(top, t1);
  7204   // refill the tlab with an eden allocation
  7205   bind(do_refill);
  7206   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7207   shlptr(t1, LogHeapWordSize);
  7208   // add object_size ??
  7209   eden_allocate(top, t1, 0, t2, slow_case);
  7211   // Check that t1 was preserved in eden_allocate.
  7212 #ifdef ASSERT
  7213   if (UseTLAB) {
  7214     Label ok;
  7215     Register tsize = rsi;
  7216     assert_different_registers(tsize, thread_reg, t1);
  7217     push(tsize);
  7218     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7219     shlptr(tsize, LogHeapWordSize);
  7220     cmpptr(t1, tsize);
  7221     jcc(Assembler::equal, ok);
  7222     stop("assert(t1 != tlab size)");
  7223     should_not_reach_here();
  7225     bind(ok);
  7226     pop(tsize);
  7228 #endif
  7229   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7230   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7231   addptr(top, t1);
  7232   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7233   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7234   verify_tlab();
  7235   jmp(retry);
  7238 static const double     pi_4 =  0.7853981633974483;
  7240 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7241   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7242   // was attempted in this code; unfortunately it appears that the
  7243   // switch to 80-bit precision and back causes this to be
  7244   // unprofitable compared with simply performing a runtime call if
  7245   // the argument is out of the (-pi/4, pi/4) range.
  7247   Register tmp = noreg;
  7248   if (!VM_Version::supports_cmov()) {
  7249     // fcmp needs a temporary so preserve rbx,
  7250     tmp = rbx;
  7251     push(tmp);
  7254   Label slow_case, done;
  7256   ExternalAddress pi4_adr = (address)&pi_4;
  7257   if (reachable(pi4_adr)) {
  7258     // x ?<= pi/4
  7259     fld_d(pi4_adr);
  7260     fld_s(1);                // Stack:  X  PI/4  X
  7261     fabs();                  // Stack: |X| PI/4  X
  7262     fcmp(tmp);
  7263     jcc(Assembler::above, slow_case);
  7265     // fastest case: -pi/4 <= x <= pi/4
  7266     switch(trig) {
  7267     case 's':
  7268       fsin();
  7269       break;
  7270     case 'c':
  7271       fcos();
  7272       break;
  7273     case 't':
  7274       ftan();
  7275       break;
  7276     default:
  7277       assert(false, "bad intrinsic");
  7278       break;
  7280     jmp(done);
  7283   // slow case: runtime call
  7284   bind(slow_case);
  7285   // Preserve registers across runtime call
  7286   pusha();
  7287   int incoming_argument_and_return_value_offset = -1;
  7288   if (num_fpu_regs_in_use > 1) {
  7289     // Must preserve all other FPU regs (could alternatively convert
  7290     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7291     // FPU state, but can not trust C compiler)
  7292     NEEDS_CLEANUP;
  7293     // NOTE that in this case we also push the incoming argument to
  7294     // the stack and restore it later; we also use this stack slot to
  7295     // hold the return value from dsin or dcos.
  7296     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7297       subptr(rsp, sizeof(jdouble));
  7298       fstp_d(Address(rsp, 0));
  7300     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7301     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7303   subptr(rsp, sizeof(jdouble));
  7304   fstp_d(Address(rsp, 0));
  7305 #ifdef _LP64
  7306   movdbl(xmm0, Address(rsp, 0));
  7307 #endif // _LP64
  7309   // NOTE: we must not use call_VM_leaf here because that requires a
  7310   // complete interpreter frame in debug mode -- same bug as 4387334
  7311   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7312   // do proper 64bit abi
  7314   NEEDS_CLEANUP;
  7315   // Need to add stack banging before this runtime call if it needs to
  7316   // be taken; however, there is no generic stack banging routine at
  7317   // the MacroAssembler level
  7318   switch(trig) {
  7319   case 's':
  7321       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7323     break;
  7324   case 'c':
  7326       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7328     break;
  7329   case 't':
  7331       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7333     break;
  7334   default:
  7335     assert(false, "bad intrinsic");
  7336     break;
  7338 #ifdef _LP64
  7339     movsd(Address(rsp, 0), xmm0);
  7340     fld_d(Address(rsp, 0));
  7341 #endif // _LP64
  7342   addptr(rsp, sizeof(jdouble));
  7343   if (num_fpu_regs_in_use > 1) {
  7344     // Must save return value to stack and then restore entire FPU stack
  7345     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7346     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7347       fld_d(Address(rsp, 0));
  7348       addptr(rsp, sizeof(jdouble));
  7351   popa();
  7353   // Come here with result in F-TOS
  7354   bind(done);
  7356   if (tmp != noreg) {
  7357     pop(tmp);
  7362 // Look up the method for a megamorphic invokeinterface call.
  7363 // The target method is determined by <intf_klass, itable_index>.
  7364 // The receiver klass is in recv_klass.
  7365 // On success, the result will be in method_result, and execution falls through.
  7366 // On failure, execution transfers to the given label.
  7367 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7368                                              Register intf_klass,
  7369                                              RegisterOrConstant itable_index,
  7370                                              Register method_result,
  7371                                              Register scan_temp,
  7372                                              Label& L_no_such_interface) {
  7373   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7374   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7375          "caller must use same register for non-constant itable index as for method");
  7377   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7378   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7379   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7380   int scan_step   = itableOffsetEntry::size() * wordSize;
  7381   int vte_size    = vtableEntry::size() * wordSize;
  7382   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7383   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7385   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7387   // %%% Could store the aligned, prescaled offset in the klassoop.
  7388   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7389   if (HeapWordsPerLong > 1) {
  7390     // Round up to align_object_offset boundary
  7391     // see code for instanceKlass::start_of_itable!
  7392     round_to(scan_temp, BytesPerLong);
  7395   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7396   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7397   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7399   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7400   //   if (scan->interface() == intf) {
  7401   //     result = (klass + scan->offset() + itable_index);
  7402   //   }
  7403   // }
  7404   Label search, found_method;
  7406   for (int peel = 1; peel >= 0; peel--) {
  7407     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7408     cmpptr(intf_klass, method_result);
  7410     if (peel) {
  7411       jccb(Assembler::equal, found_method);
  7412     } else {
  7413       jccb(Assembler::notEqual, search);
  7414       // (invert the test to fall through to found_method...)
  7417     if (!peel)  break;
  7419     bind(search);
  7421     // Check that the previous entry is non-null.  A null entry means that
  7422     // the receiver class doesn't implement the interface, and wasn't the
  7423     // same as when the caller was compiled.
  7424     testptr(method_result, method_result);
  7425     jcc(Assembler::zero, L_no_such_interface);
  7426     addptr(scan_temp, scan_step);
  7429   bind(found_method);
  7431   // Got a hit.
  7432   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7433   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7437 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7438                            Register super_klass,
  7439                            Register temp_reg,
  7440                            Label& L_success) {
  7441   Label L_failure;
  7442   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7443   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7444   bind(L_failure);
  7448 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7449                                                    Register super_klass,
  7450                                                    Register temp_reg,
  7451                                                    Label* L_success,
  7452                                                    Label* L_failure,
  7453                                                    Label* L_slow_path,
  7454                                         RegisterOrConstant super_check_offset) {
  7455   assert_different_registers(sub_klass, super_klass, temp_reg);
  7456   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7457   if (super_check_offset.is_register()) {
  7458     assert_different_registers(sub_klass, super_klass,
  7459                                super_check_offset.as_register());
  7460   } else if (must_load_sco) {
  7461     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7464   Label L_fallthrough;
  7465   int label_nulls = 0;
  7466   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7467   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7468   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7469   assert(label_nulls <= 1, "at most one NULL in the batch");
  7471   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7472                    Klass::secondary_super_cache_offset_in_bytes());
  7473   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7474                     Klass::super_check_offset_offset_in_bytes());
  7475   Address super_check_offset_addr(super_klass, sco_offset);
  7477   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7478   // range of a jccb.  If this routine grows larger, reconsider at
  7479   // least some of these.
  7480 #define local_jcc(assembler_cond, label)                                \
  7481   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7482   else                             jcc( assembler_cond, label) /*omit semi*/
  7484   // Hacked jmp, which may only be used just before L_fallthrough.
  7485 #define final_jmp(label)                                                \
  7486   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7487   else                            jmp(label)                /*omit semi*/
  7489   // If the pointers are equal, we are done (e.g., String[] elements).
  7490   // This self-check enables sharing of secondary supertype arrays among
  7491   // non-primary types such as array-of-interface.  Otherwise, each such
  7492   // type would need its own customized SSA.
  7493   // We move this check to the front of the fast path because many
  7494   // type checks are in fact trivially successful in this manner,
  7495   // so we get a nicely predicted branch right at the start of the check.
  7496   cmpptr(sub_klass, super_klass);
  7497   local_jcc(Assembler::equal, *L_success);
  7499   // Check the supertype display:
  7500   if (must_load_sco) {
  7501     // Positive movl does right thing on LP64.
  7502     movl(temp_reg, super_check_offset_addr);
  7503     super_check_offset = RegisterOrConstant(temp_reg);
  7505   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7506   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7508   // This check has worked decisively for primary supers.
  7509   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7510   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7511   // This works in the same check above because of a tricky aliasing
  7512   // between the super_cache and the primary super display elements.
  7513   // (The 'super_check_addr' can address either, as the case requires.)
  7514   // Note that the cache is updated below if it does not help us find
  7515   // what we need immediately.
  7516   // So if it was a primary super, we can just fail immediately.
  7517   // Otherwise, it's the slow path for us (no success at this point).
  7519   if (super_check_offset.is_register()) {
  7520     local_jcc(Assembler::equal, *L_success);
  7521     cmpl(super_check_offset.as_register(), sc_offset);
  7522     if (L_failure == &L_fallthrough) {
  7523       local_jcc(Assembler::equal, *L_slow_path);
  7524     } else {
  7525       local_jcc(Assembler::notEqual, *L_failure);
  7526       final_jmp(*L_slow_path);
  7528   } else if (super_check_offset.as_constant() == sc_offset) {
  7529     // Need a slow path; fast failure is impossible.
  7530     if (L_slow_path == &L_fallthrough) {
  7531       local_jcc(Assembler::equal, *L_success);
  7532     } else {
  7533       local_jcc(Assembler::notEqual, *L_slow_path);
  7534       final_jmp(*L_success);
  7536   } else {
  7537     // No slow path; it's a fast decision.
  7538     if (L_failure == &L_fallthrough) {
  7539       local_jcc(Assembler::equal, *L_success);
  7540     } else {
  7541       local_jcc(Assembler::notEqual, *L_failure);
  7542       final_jmp(*L_success);
  7546   bind(L_fallthrough);
  7548 #undef local_jcc
  7549 #undef final_jmp
  7553 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7554                                                    Register super_klass,
  7555                                                    Register temp_reg,
  7556                                                    Register temp2_reg,
  7557                                                    Label* L_success,
  7558                                                    Label* L_failure,
  7559                                                    bool set_cond_codes) {
  7560   assert_different_registers(sub_klass, super_klass, temp_reg);
  7561   if (temp2_reg != noreg)
  7562     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7563 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7565   Label L_fallthrough;
  7566   int label_nulls = 0;
  7567   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7568   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7569   assert(label_nulls <= 1, "at most one NULL in the batch");
  7571   // a couple of useful fields in sub_klass:
  7572   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7573                    Klass::secondary_supers_offset_in_bytes());
  7574   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7575                    Klass::secondary_super_cache_offset_in_bytes());
  7576   Address secondary_supers_addr(sub_klass, ss_offset);
  7577   Address super_cache_addr(     sub_klass, sc_offset);
  7579   // Do a linear scan of the secondary super-klass chain.
  7580   // This code is rarely used, so simplicity is a virtue here.
  7581   // The repne_scan instruction uses fixed registers, which we must spill.
  7582   // Don't worry too much about pre-existing connections with the input regs.
  7584   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7585   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7587   // Get super_klass value into rax (even if it was in rdi or rcx).
  7588   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7589   if (super_klass != rax || UseCompressedOops) {
  7590     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7591     mov(rax, super_klass);
  7593   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7594   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7596 #ifndef PRODUCT
  7597   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7598   ExternalAddress pst_counter_addr((address) pst_counter);
  7599   NOT_LP64(  incrementl(pst_counter_addr) );
  7600   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7601   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7602 #endif //PRODUCT
  7604   // We will consult the secondary-super array.
  7605   movptr(rdi, secondary_supers_addr);
  7606   // Load the array length.  (Positive movl does right thing on LP64.)
  7607   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7608   // Skip to start of data.
  7609   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7611   // Scan RCX words at [RDI] for an occurrence of RAX.
  7612   // Set NZ/Z based on last compare.
  7613   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  7614   // not change flags (only scas instruction which is repeated sets flags).
  7615   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  7616 #ifdef _LP64
  7617   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7618   // and we store values in objArrays always encoded, thus we need to encode
  7619   // the value of rax before repne.  Note that rax is dead after the repne.
  7620   if (UseCompressedOops) {
  7621     encode_heap_oop_not_null(rax); // Changes flags.
  7622     // The superclass is never null; it would be a basic system error if a null
  7623     // pointer were to sneak in here.  Note that we have already loaded the
  7624     // Klass::super_check_offset from the super_klass in the fast path,
  7625     // so if there is a null in that register, we are already in the afterlife.
  7626     testl(rax,rax); // Set Z = 0
  7627     repne_scanl();
  7628   } else
  7629 #endif // _LP64
  7631     testptr(rax,rax); // Set Z = 0
  7632     repne_scan();
  7634   // Unspill the temp. registers:
  7635   if (pushed_rdi)  pop(rdi);
  7636   if (pushed_rcx)  pop(rcx);
  7637   if (pushed_rax)  pop(rax);
  7639   if (set_cond_codes) {
  7640     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7641     assert(!pushed_rdi, "rdi must be left non-NULL");
  7642     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7645   if (L_failure == &L_fallthrough)
  7646         jccb(Assembler::notEqual, *L_failure);
  7647   else  jcc(Assembler::notEqual, *L_failure);
  7649   // Success.  Cache the super we found and proceed in triumph.
  7650   movptr(super_cache_addr, super_klass);
  7652   if (L_success != &L_fallthrough) {
  7653     jmp(*L_success);
  7656 #undef IS_A_TEMP
  7658   bind(L_fallthrough);
  7662 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7663   ucomisd(dst, as_Address(src));
  7666 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7667   ucomiss(dst, as_Address(src));
  7670 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7671   if (reachable(src)) {
  7672     xorpd(dst, as_Address(src));
  7673   } else {
  7674     lea(rscratch1, src);
  7675     xorpd(dst, Address(rscratch1, 0));
  7679 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7680   if (reachable(src)) {
  7681     xorps(dst, as_Address(src));
  7682   } else {
  7683     lea(rscratch1, src);
  7684     xorps(dst, Address(rscratch1, 0));
  7688 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7689   if (!VerifyOops) return;
  7691   // Pass register number to verify_oop_subroutine
  7692   char* b = new char[strlen(s) + 50];
  7693   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7694 #ifdef _LP64
  7695   push(rscratch1);                    // save r10, trashed by movptr()
  7696 #endif
  7697   push(rax);                          // save rax,
  7698   push(reg);                          // pass register argument
  7699   ExternalAddress buffer((address) b);
  7700   // avoid using pushptr, as it modifies scratch registers
  7701   // and our contract is not to modify anything
  7702   movptr(rax, buffer.addr());
  7703   push(rax);
  7704   // call indirectly to solve generation ordering problem
  7705   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7706   call(rax);
  7707   // Caller pops the arguments (oop, message) and restores rax, r10
  7711 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7712                                                       Register tmp,
  7713                                                       int offset) {
  7714   intptr_t value = *delayed_value_addr;
  7715   if (value != 0)
  7716     return RegisterOrConstant(value + offset);
  7718   // load indirectly to solve generation ordering problem
  7719   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7721 #ifdef ASSERT
  7722   { Label L;
  7723     testptr(tmp, tmp);
  7724     if (WizardMode) {
  7725       jcc(Assembler::notZero, L);
  7726       char* buf = new char[40];
  7727       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  7728       stop(buf);
  7729     } else {
  7730       jccb(Assembler::notZero, L);
  7731       hlt();
  7733     bind(L);
  7735 #endif
  7737   if (offset != 0)
  7738     addptr(tmp, offset);
  7740   return RegisterOrConstant(tmp);
  7744 // registers on entry:
  7745 //  - rax ('check' register): required MethodType
  7746 //  - rcx: method handle
  7747 //  - rdx, rsi, or ?: killable temp
  7748 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  7749                                               Register temp_reg,
  7750                                               Label& wrong_method_type) {
  7751   Address type_addr(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg));
  7752   // compare method type against that of the receiver
  7753   if (UseCompressedOops) {
  7754     load_heap_oop(temp_reg, type_addr);
  7755     cmpptr(mtype_reg, temp_reg);
  7756   } else {
  7757     cmpptr(mtype_reg, type_addr);
  7759   jcc(Assembler::notEqual, wrong_method_type);
  7763 // A method handle has a "vmslots" field which gives the size of its
  7764 // argument list in JVM stack slots.  This field is either located directly
  7765 // in every method handle, or else is indirectly accessed through the
  7766 // method handle's MethodType.  This macro hides the distinction.
  7767 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  7768                                                 Register temp_reg) {
  7769   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  7770   // load mh.type.form.vmslots
  7771   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
  7772     // hoist vmslots into every mh to avoid dependent load chain
  7773     movl(vmslots_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
  7774   } else {
  7775     Register temp2_reg = vmslots_reg;
  7776     load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
  7777     load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)));
  7778     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  7783 // registers on entry:
  7784 //  - rcx: method handle
  7785 //  - rdx: killable temp (interpreted only)
  7786 //  - rax: killable temp (compiled only)
  7787 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  7788   assert(mh_reg == rcx, "caller must put MH object in rcx");
  7789   assert_different_registers(mh_reg, temp_reg);
  7791   // pick out the interpreted side of the handler
  7792   // NOTE: vmentry is not an oop!
  7793   movptr(temp_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  7795   // off we go...
  7796   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  7798   // for the various stubs which take control at this point,
  7799   // see MethodHandles::generate_method_handle_stub
  7803 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  7804                                          int extra_slot_offset) {
  7805   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  7806   int stackElementSize = Interpreter::stackElementSize;
  7807   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  7808 #ifdef ASSERT
  7809   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  7810   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  7811 #endif
  7812   Register             scale_reg    = noreg;
  7813   Address::ScaleFactor scale_factor = Address::no_scale;
  7814   if (arg_slot.is_constant()) {
  7815     offset += arg_slot.as_constant() * stackElementSize;
  7816   } else {
  7817     scale_reg    = arg_slot.as_register();
  7818     scale_factor = Address::times(stackElementSize);
  7820   offset += wordSize;           // return PC is on stack
  7821   return Address(rsp, scale_reg, scale_factor, offset);
  7825 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7826   if (!VerifyOops) return;
  7828   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7829   // Pass register number to verify_oop_subroutine
  7830   char* b = new char[strlen(s) + 50];
  7831   sprintf(b, "verify_oop_addr: %s", s);
  7833 #ifdef _LP64
  7834   push(rscratch1);                    // save r10, trashed by movptr()
  7835 #endif
  7836   push(rax);                          // save rax,
  7837   // addr may contain rsp so we will have to adjust it based on the push
  7838   // we just did
  7839   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7840   // stores rax into addr which is backwards of what was intended.
  7841   if (addr.uses(rsp)) {
  7842     lea(rax, addr);
  7843     pushptr(Address(rax, BytesPerWord));
  7844   } else {
  7845     pushptr(addr);
  7848   ExternalAddress buffer((address) b);
  7849   // pass msg argument
  7850   // avoid using pushptr, as it modifies scratch registers
  7851   // and our contract is not to modify anything
  7852   movptr(rax, buffer.addr());
  7853   push(rax);
  7855   // call indirectly to solve generation ordering problem
  7856   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7857   call(rax);
  7858   // Caller pops the arguments (addr, message) and restores rax, r10.
  7861 void MacroAssembler::verify_tlab() {
  7862 #ifdef ASSERT
  7863   if (UseTLAB && VerifyOops) {
  7864     Label next, ok;
  7865     Register t1 = rsi;
  7866     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7868     push(t1);
  7869     NOT_LP64(push(thread_reg));
  7870     NOT_LP64(get_thread(thread_reg));
  7872     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7873     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7874     jcc(Assembler::aboveEqual, next);
  7875     stop("assert(top >= start)");
  7876     should_not_reach_here();
  7878     bind(next);
  7879     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7880     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7881     jcc(Assembler::aboveEqual, ok);
  7882     stop("assert(top <= end)");
  7883     should_not_reach_here();
  7885     bind(ok);
  7886     NOT_LP64(pop(thread_reg));
  7887     pop(t1);
  7889 #endif
  7892 class ControlWord {
  7893  public:
  7894   int32_t _value;
  7896   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  7897   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  7898   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7899   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7900   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7901   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7902   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7903   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7905   void print() const {
  7906     // rounding control
  7907     const char* rc;
  7908     switch (rounding_control()) {
  7909       case 0: rc = "round near"; break;
  7910       case 1: rc = "round down"; break;
  7911       case 2: rc = "round up  "; break;
  7912       case 3: rc = "chop      "; break;
  7913     };
  7914     // precision control
  7915     const char* pc;
  7916     switch (precision_control()) {
  7917       case 0: pc = "24 bits "; break;
  7918       case 1: pc = "reserved"; break;
  7919       case 2: pc = "53 bits "; break;
  7920       case 3: pc = "64 bits "; break;
  7921     };
  7922     // flags
  7923     char f[9];
  7924     f[0] = ' ';
  7925     f[1] = ' ';
  7926     f[2] = (precision   ()) ? 'P' : 'p';
  7927     f[3] = (underflow   ()) ? 'U' : 'u';
  7928     f[4] = (overflow    ()) ? 'O' : 'o';
  7929     f[5] = (zero_divide ()) ? 'Z' : 'z';
  7930     f[6] = (denormalized()) ? 'D' : 'd';
  7931     f[7] = (invalid     ()) ? 'I' : 'i';
  7932     f[8] = '\x0';
  7933     // output
  7934     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  7937 };
  7939 class StatusWord {
  7940  public:
  7941   int32_t _value;
  7943   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  7944   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  7945   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  7946   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  7947   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  7948   int  top() const                     { return  (_value >> 11) & 7      ; }
  7949   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  7950   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  7951   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7952   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7953   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7954   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7955   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7956   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7958   void print() const {
  7959     // condition codes
  7960     char c[5];
  7961     c[0] = (C3()) ? '3' : '-';
  7962     c[1] = (C2()) ? '2' : '-';
  7963     c[2] = (C1()) ? '1' : '-';
  7964     c[3] = (C0()) ? '0' : '-';
  7965     c[4] = '\x0';
  7966     // flags
  7967     char f[9];
  7968     f[0] = (error_status()) ? 'E' : '-';
  7969     f[1] = (stack_fault ()) ? 'S' : '-';
  7970     f[2] = (precision   ()) ? 'P' : '-';
  7971     f[3] = (underflow   ()) ? 'U' : '-';
  7972     f[4] = (overflow    ()) ? 'O' : '-';
  7973     f[5] = (zero_divide ()) ? 'Z' : '-';
  7974     f[6] = (denormalized()) ? 'D' : '-';
  7975     f[7] = (invalid     ()) ? 'I' : '-';
  7976     f[8] = '\x0';
  7977     // output
  7978     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  7981 };
  7983 class TagWord {
  7984  public:
  7985   int32_t _value;
  7987   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  7989   void print() const {
  7990     printf("%04x", _value & 0xFFFF);
  7993 };
  7995 class FPU_Register {
  7996  public:
  7997   int32_t _m0;
  7998   int32_t _m1;
  7999   int16_t _ex;
  8001   bool is_indefinite() const           {
  8002     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  8005   void print() const {
  8006     char  sign = (_ex < 0) ? '-' : '+';
  8007     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  8008     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  8009   };
  8011 };
  8013 class FPU_State {
  8014  public:
  8015   enum {
  8016     register_size       = 10,
  8017     number_of_registers =  8,
  8018     register_mask       =  7
  8019   };
  8021   ControlWord  _control_word;
  8022   StatusWord   _status_word;
  8023   TagWord      _tag_word;
  8024   int32_t      _error_offset;
  8025   int32_t      _error_selector;
  8026   int32_t      _data_offset;
  8027   int32_t      _data_selector;
  8028   int8_t       _register[register_size * number_of_registers];
  8030   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  8031   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  8033   const char* tag_as_string(int tag) const {
  8034     switch (tag) {
  8035       case 0: return "valid";
  8036       case 1: return "zero";
  8037       case 2: return "special";
  8038       case 3: return "empty";
  8040     ShouldNotReachHere();
  8041     return NULL;
  8044   void print() const {
  8045     // print computation registers
  8046     { int t = _status_word.top();
  8047       for (int i = 0; i < number_of_registers; i++) {
  8048         int j = (i - t) & register_mask;
  8049         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8050         st(j)->print();
  8051         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8054     printf("\n");
  8055     // print control registers
  8056     printf("ctrl = "); _control_word.print(); printf("\n");
  8057     printf("stat = "); _status_word .print(); printf("\n");
  8058     printf("tags = "); _tag_word    .print(); printf("\n");
  8061 };
  8063 class Flag_Register {
  8064  public:
  8065   int32_t _value;
  8067   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8068   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8069   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8070   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8071   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8072   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8073   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8075   void print() const {
  8076     // flags
  8077     char f[8];
  8078     f[0] = (overflow       ()) ? 'O' : '-';
  8079     f[1] = (direction      ()) ? 'D' : '-';
  8080     f[2] = (sign           ()) ? 'S' : '-';
  8081     f[3] = (zero           ()) ? 'Z' : '-';
  8082     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8083     f[5] = (parity         ()) ? 'P' : '-';
  8084     f[6] = (carry          ()) ? 'C' : '-';
  8085     f[7] = '\x0';
  8086     // output
  8087     printf("%08x  flags = %s", _value, f);
  8090 };
  8092 class IU_Register {
  8093  public:
  8094   int32_t _value;
  8096   void print() const {
  8097     printf("%08x  %11d", _value, _value);
  8100 };
  8102 class IU_State {
  8103  public:
  8104   Flag_Register _eflags;
  8105   IU_Register   _rdi;
  8106   IU_Register   _rsi;
  8107   IU_Register   _rbp;
  8108   IU_Register   _rsp;
  8109   IU_Register   _rbx;
  8110   IU_Register   _rdx;
  8111   IU_Register   _rcx;
  8112   IU_Register   _rax;
  8114   void print() const {
  8115     // computation registers
  8116     printf("rax,  = "); _rax.print(); printf("\n");
  8117     printf("rbx,  = "); _rbx.print(); printf("\n");
  8118     printf("rcx  = "); _rcx.print(); printf("\n");
  8119     printf("rdx  = "); _rdx.print(); printf("\n");
  8120     printf("rdi  = "); _rdi.print(); printf("\n");
  8121     printf("rsi  = "); _rsi.print(); printf("\n");
  8122     printf("rbp,  = "); _rbp.print(); printf("\n");
  8123     printf("rsp  = "); _rsp.print(); printf("\n");
  8124     printf("\n");
  8125     // control registers
  8126     printf("flgs = "); _eflags.print(); printf("\n");
  8128 };
  8131 class CPU_State {
  8132  public:
  8133   FPU_State _fpu_state;
  8134   IU_State  _iu_state;
  8136   void print() const {
  8137     printf("--------------------------------------------------\n");
  8138     _iu_state .print();
  8139     printf("\n");
  8140     _fpu_state.print();
  8141     printf("--------------------------------------------------\n");
  8144 };
  8147 static void _print_CPU_state(CPU_State* state) {
  8148   state->print();
  8149 };
  8152 void MacroAssembler::print_CPU_state() {
  8153   push_CPU_state();
  8154   push(rsp);                // pass CPU state
  8155   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8156   addptr(rsp, wordSize);       // discard argument
  8157   pop_CPU_state();
  8161 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8162   static int counter = 0;
  8163   FPU_State* fs = &state->_fpu_state;
  8164   counter++;
  8165   // For leaf calls, only verify that the top few elements remain empty.
  8166   // We only need 1 empty at the top for C2 code.
  8167   if( stack_depth < 0 ) {
  8168     if( fs->tag_for_st(7) != 3 ) {
  8169       printf("FPR7 not empty\n");
  8170       state->print();
  8171       assert(false, "error");
  8172       return false;
  8174     return true;                // All other stack states do not matter
  8177   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8178          "bad FPU control word");
  8180   // compute stack depth
  8181   int i = 0;
  8182   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8183   int d = i;
  8184   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8185   // verify findings
  8186   if (i != FPU_State::number_of_registers) {
  8187     // stack not contiguous
  8188     printf("%s: stack not contiguous at ST%d\n", s, i);
  8189     state->print();
  8190     assert(false, "error");
  8191     return false;
  8193   // check if computed stack depth corresponds to expected stack depth
  8194   if (stack_depth < 0) {
  8195     // expected stack depth is -stack_depth or less
  8196     if (d > -stack_depth) {
  8197       // too many elements on the stack
  8198       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8199       state->print();
  8200       assert(false, "error");
  8201       return false;
  8203   } else {
  8204     // expected stack depth is stack_depth
  8205     if (d != stack_depth) {
  8206       // wrong stack depth
  8207       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8208       state->print();
  8209       assert(false, "error");
  8210       return false;
  8213   // everything is cool
  8214   return true;
  8218 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8219   if (!VerifyFPU) return;
  8220   push_CPU_state();
  8221   push(rsp);                // pass CPU state
  8222   ExternalAddress msg((address) s);
  8223   // pass message string s
  8224   pushptr(msg.addr());
  8225   push(stack_depth);        // pass stack depth
  8226   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8227   addptr(rsp, 3 * wordSize);   // discard arguments
  8228   // check for error
  8229   { Label L;
  8230     testl(rax, rax);
  8231     jcc(Assembler::notZero, L);
  8232     int3();                  // break if error condition
  8233     bind(L);
  8235   pop_CPU_state();
  8238 void MacroAssembler::load_klass(Register dst, Register src) {
  8239 #ifdef _LP64
  8240   if (UseCompressedOops) {
  8241     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8242     decode_heap_oop_not_null(dst);
  8243   } else
  8244 #endif
  8245     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8248 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8249 #ifdef _LP64
  8250   if (UseCompressedOops) {
  8251     assert (Universe::heap() != NULL, "java heap should be initialized");
  8252     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8253     if (Universe::narrow_oop_shift() != 0) {
  8254       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8255       if (LogMinObjAlignmentInBytes == Address::times_8) {
  8256         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8257       } else {
  8258         // OK to use shift since we don't need to preserve flags.
  8259         shlq(dst, LogMinObjAlignmentInBytes);
  8260         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8262     } else {
  8263       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8265   } else
  8266 #endif
  8268     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8269     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8273 void MacroAssembler::store_klass(Register dst, Register src) {
  8274 #ifdef _LP64
  8275   if (UseCompressedOops) {
  8276     encode_heap_oop_not_null(src);
  8277     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8278   } else
  8279 #endif
  8280     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8283 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8284 #ifdef _LP64
  8285   if (UseCompressedOops) {
  8286     movl(dst, src);
  8287     decode_heap_oop(dst);
  8288   } else
  8289 #endif
  8290     movptr(dst, src);
  8293 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8294 #ifdef _LP64
  8295   if (UseCompressedOops) {
  8296     assert(!dst.uses(src), "not enough registers");
  8297     encode_heap_oop(src);
  8298     movl(dst, src);
  8299   } else
  8300 #endif
  8301     movptr(dst, src);
  8304 // Used for storing NULLs.
  8305 void MacroAssembler::store_heap_oop_null(Address dst) {
  8306 #ifdef _LP64
  8307   if (UseCompressedOops) {
  8308     movl(dst, (int32_t)NULL_WORD);
  8309   } else {
  8310     movslq(dst, (int32_t)NULL_WORD);
  8312 #else
  8313   movl(dst, (int32_t)NULL_WORD);
  8314 #endif
  8317 #ifdef _LP64
  8318 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8319   if (UseCompressedOops) {
  8320     // Store to klass gap in destination
  8321     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8325 #ifdef ASSERT
  8326 void MacroAssembler::verify_heapbase(const char* msg) {
  8327   assert (UseCompressedOops, "should be compressed");
  8328   assert (Universe::heap() != NULL, "java heap should be initialized");
  8329   if (CheckCompressedOops) {
  8330     Label ok;
  8331     push(rscratch1); // cmpptr trashes rscratch1
  8332     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8333     jcc(Assembler::equal, ok);
  8334     stop(msg);
  8335     bind(ok);
  8336     pop(rscratch1);
  8339 #endif
  8341 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8342 void MacroAssembler::encode_heap_oop(Register r) {
  8343 #ifdef ASSERT
  8344   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8345 #endif
  8346   verify_oop(r, "broken oop in encode_heap_oop");
  8347   if (Universe::narrow_oop_base() == NULL) {
  8348     if (Universe::narrow_oop_shift() != 0) {
  8349       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8350       shrq(r, LogMinObjAlignmentInBytes);
  8352     return;
  8354   testq(r, r);
  8355   cmovq(Assembler::equal, r, r12_heapbase);
  8356   subq(r, r12_heapbase);
  8357   shrq(r, LogMinObjAlignmentInBytes);
  8360 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8361 #ifdef ASSERT
  8362   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  8363   if (CheckCompressedOops) {
  8364     Label ok;
  8365     testq(r, r);
  8366     jcc(Assembler::notEqual, ok);
  8367     stop("null oop passed to encode_heap_oop_not_null");
  8368     bind(ok);
  8370 #endif
  8371   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8372   if (Universe::narrow_oop_base() != NULL) {
  8373     subq(r, r12_heapbase);
  8375   if (Universe::narrow_oop_shift() != 0) {
  8376     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8377     shrq(r, LogMinObjAlignmentInBytes);
  8381 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8382 #ifdef ASSERT
  8383   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  8384   if (CheckCompressedOops) {
  8385     Label ok;
  8386     testq(src, src);
  8387     jcc(Assembler::notEqual, ok);
  8388     stop("null oop passed to encode_heap_oop_not_null2");
  8389     bind(ok);
  8391 #endif
  8392   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8393   if (dst != src) {
  8394     movq(dst, src);
  8396   if (Universe::narrow_oop_base() != NULL) {
  8397     subq(dst, r12_heapbase);
  8399   if (Universe::narrow_oop_shift() != 0) {
  8400     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8401     shrq(dst, LogMinObjAlignmentInBytes);
  8405 void  MacroAssembler::decode_heap_oop(Register r) {
  8406 #ifdef ASSERT
  8407   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8408 #endif
  8409   if (Universe::narrow_oop_base() == NULL) {
  8410     if (Universe::narrow_oop_shift() != 0) {
  8411       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8412       shlq(r, LogMinObjAlignmentInBytes);
  8414   } else {
  8415     Label done;
  8416     shlq(r, LogMinObjAlignmentInBytes);
  8417     jccb(Assembler::equal, done);
  8418     addq(r, r12_heapbase);
  8419     bind(done);
  8421   verify_oop(r, "broken oop in decode_heap_oop");
  8424 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8425   // Note: it will change flags
  8426   assert (UseCompressedOops, "should only be used for compressed headers");
  8427   assert (Universe::heap() != NULL, "java heap should be initialized");
  8428   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8429   // vtableStubs also counts instructions in pd_code_size_limit.
  8430   // Also do not verify_oop as this is called by verify_oop.
  8431   if (Universe::narrow_oop_shift() != 0) {
  8432     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8433     shlq(r, LogMinObjAlignmentInBytes);
  8434     if (Universe::narrow_oop_base() != NULL) {
  8435       addq(r, r12_heapbase);
  8437   } else {
  8438     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8442 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8443   // Note: it will change flags
  8444   assert (UseCompressedOops, "should only be used for compressed headers");
  8445   assert (Universe::heap() != NULL, "java heap should be initialized");
  8446   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8447   // vtableStubs also counts instructions in pd_code_size_limit.
  8448   // Also do not verify_oop as this is called by verify_oop.
  8449   if (Universe::narrow_oop_shift() != 0) {
  8450     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8451     if (LogMinObjAlignmentInBytes == Address::times_8) {
  8452       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8453     } else {
  8454       if (dst != src) {
  8455         movq(dst, src);
  8457       shlq(dst, LogMinObjAlignmentInBytes);
  8458       if (Universe::narrow_oop_base() != NULL) {
  8459         addq(dst, r12_heapbase);
  8462   } else {
  8463     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8464     if (dst != src) {
  8465       movq(dst, src);
  8470 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8471   assert (UseCompressedOops, "should only be used for compressed headers");
  8472   assert (Universe::heap() != NULL, "java heap should be initialized");
  8473   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8474   int oop_index = oop_recorder()->find_index(obj);
  8475   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8476   mov_narrow_oop(dst, oop_index, rspec);
  8479 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8480   assert (UseCompressedOops, "should only be used for compressed headers");
  8481   assert (Universe::heap() != NULL, "java heap should be initialized");
  8482   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8483   int oop_index = oop_recorder()->find_index(obj);
  8484   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8485   mov_narrow_oop(dst, oop_index, rspec);
  8488 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8489   assert (UseCompressedOops, "should only be used for compressed headers");
  8490   assert (Universe::heap() != NULL, "java heap should be initialized");
  8491   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8492   int oop_index = oop_recorder()->find_index(obj);
  8493   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8494   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8497 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8498   assert (UseCompressedOops, "should only be used for compressed headers");
  8499   assert (Universe::heap() != NULL, "java heap should be initialized");
  8500   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8501   int oop_index = oop_recorder()->find_index(obj);
  8502   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8503   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8506 void MacroAssembler::reinit_heapbase() {
  8507   if (UseCompressedOops) {
  8508     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8511 #endif // _LP64
  8513 // IndexOf substring.
  8514 void MacroAssembler::string_indexof(Register str1, Register str2,
  8515                                     Register cnt1, Register cnt2, Register result,
  8516                                     XMMRegister vec, Register tmp) {
  8517   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8519   Label RELOAD_SUBSTR, PREP_FOR_SCAN, SCAN_TO_SUBSTR,
  8520         SCAN_SUBSTR, RET_NOT_FOUND, CLEANUP;
  8522   push(str1); // string addr
  8523   push(str2); // substr addr
  8524   push(cnt2); // substr count
  8525   jmpb(PREP_FOR_SCAN);
  8527   // Substr count saved at sp
  8528   // Substr saved at sp+1*wordSize
  8529   // String saved at sp+2*wordSize
  8531   // Reload substr for rescan
  8532   bind(RELOAD_SUBSTR);
  8533   movl(cnt2, Address(rsp, 0));
  8534   movptr(str2, Address(rsp, wordSize));
  8535   // We came here after the beginninig of the substring was
  8536   // matched but the rest of it was not so we need to search
  8537   // again. Start from the next element after the previous match.
  8538   subptr(str1, result); // Restore counter
  8539   shrl(str1, 1);
  8540   addl(cnt1, str1);
  8541   decrementl(cnt1);
  8542   lea(str1, Address(result, 2)); // Reload string
  8544   // Load substr
  8545   bind(PREP_FOR_SCAN);
  8546   movdqu(vec, Address(str2, 0));
  8547   addl(cnt1, 8);  // prime the loop
  8548   subptr(str1, 16);
  8550   // Scan string for substr in 16-byte vectors
  8551   bind(SCAN_TO_SUBSTR);
  8552   subl(cnt1, 8);
  8553   addptr(str1, 16);
  8555   // pcmpestri
  8556   //   inputs:
  8557   //     xmm - substring
  8558   //     rax - substring length (elements count)
  8559   //     mem - scaned string
  8560   //     rdx - string length (elements count)
  8561   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8562   //   outputs:
  8563   //     rcx - matched index in string
  8564   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8566   pcmpestri(vec, Address(str1, 0), 0x0d);
  8567   jcc(Assembler::above, SCAN_TO_SUBSTR);      // CF == 0 && ZF == 0
  8568   jccb(Assembler::aboveEqual, RET_NOT_FOUND); // CF == 0
  8570   // Fallthrough: found a potential substr
  8572   // Make sure string is still long enough
  8573   subl(cnt1, tmp);
  8574   cmpl(cnt1, cnt2);
  8575   jccb(Assembler::negative, RET_NOT_FOUND);
  8576   // Compute start addr of substr
  8577   lea(str1, Address(str1, tmp, Address::times_2));
  8578   movptr(result, str1); // save
  8580   // Compare potential substr
  8581   addl(cnt1, 8);     // prime the loop
  8582   addl(cnt2, 8);
  8583   subptr(str1, 16);
  8584   subptr(str2, 16);
  8586   // Scan 16-byte vectors of string and substr
  8587   bind(SCAN_SUBSTR);
  8588   subl(cnt1, 8);
  8589   subl(cnt2, 8);
  8590   addptr(str1, 16);
  8591   addptr(str2, 16);
  8592   movdqu(vec, Address(str2, 0));
  8593   pcmpestri(vec, Address(str1, 0), 0x0d);
  8594   jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  8595   jcc(Assembler::positive, SCAN_SUBSTR);     // SF == 0
  8597   // Compute substr offset
  8598   subptr(result, Address(rsp, 2*wordSize));
  8599   shrl(result, 1); // index
  8600   jmpb(CLEANUP);
  8602   bind(RET_NOT_FOUND);
  8603   movl(result, -1);
  8605   bind(CLEANUP);
  8606   addptr(rsp, 3*wordSize);
  8609 // Compare strings.
  8610 void MacroAssembler::string_compare(Register str1, Register str2,
  8611                                     Register cnt1, Register cnt2, Register result,
  8612                                     XMMRegister vec1, XMMRegister vec2) {
  8613   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  8615   // Compute the minimum of the string lengths and the
  8616   // difference of the string lengths (stack).
  8617   // Do the conditional move stuff
  8618   movl(result, cnt1);
  8619   subl(cnt1, cnt2);
  8620   push(cnt1);
  8621   if (VM_Version::supports_cmov()) {
  8622     cmovl(Assembler::lessEqual, cnt2, result);
  8623   } else {
  8624     Label GT_LABEL;
  8625     jccb(Assembler::greater, GT_LABEL);
  8626     movl(cnt2, result);
  8627     bind(GT_LABEL);
  8630   // Is the minimum length zero?
  8631   testl(cnt2, cnt2);
  8632   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  8634   // Load first characters
  8635   load_unsigned_short(result, Address(str1, 0));
  8636   load_unsigned_short(cnt1, Address(str2, 0));
  8638   // Compare first characters
  8639   subl(result, cnt1);
  8640   jcc(Assembler::notZero,  POP_LABEL);
  8641   decrementl(cnt2);
  8642   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  8645     // Check after comparing first character to see if strings are equivalent
  8646     Label LSkip2;
  8647     // Check if the strings start at same location
  8648     cmpptr(str1, str2);
  8649     jccb(Assembler::notEqual, LSkip2);
  8651     // Check if the length difference is zero (from stack)
  8652     cmpl(Address(rsp, 0), 0x0);
  8653     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  8655     // Strings might not be equivalent
  8656     bind(LSkip2);
  8659   // Advance to next character
  8660   addptr(str1, 2);
  8661   addptr(str2, 2);
  8663   if (UseSSE42Intrinsics) {
  8664     // With SSE4.2, use double quad vector compare
  8665     Label COMPARE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  8666     // Setup to compare 16-byte vectors
  8667     movl(cnt1, cnt2);
  8668     andl(cnt2, 0xfffffff8); // cnt2 holds the vector count
  8669     andl(cnt1, 0x00000007); // cnt1 holds the tail count
  8670     testl(cnt2, cnt2);
  8671     jccb(Assembler::zero, COMPARE_TAIL);
  8673     lea(str2, Address(str2, cnt2, Address::times_2));
  8674     lea(str1, Address(str1, cnt2, Address::times_2));
  8675     negptr(cnt2);
  8677     bind(COMPARE_VECTORS);
  8678     movdqu(vec1, Address(str1, cnt2, Address::times_2));
  8679     movdqu(vec2, Address(str2, cnt2, Address::times_2));
  8680     pxor(vec1, vec2);
  8681     ptest(vec1, vec1);
  8682     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  8683     addptr(cnt2, 8);
  8684     jcc(Assembler::notZero, COMPARE_VECTORS);
  8685     jmpb(COMPARE_TAIL);
  8687     // Mismatched characters in the vectors
  8688     bind(VECTOR_NOT_EQUAL);
  8689     lea(str1, Address(str1, cnt2, Address::times_2));
  8690     lea(str2, Address(str2, cnt2, Address::times_2));
  8691     movl(cnt1, 8);
  8693     // Compare tail (< 8 chars), or rescan last vectors to
  8694     // find 1st mismatched characters
  8695     bind(COMPARE_TAIL);
  8696     testl(cnt1, cnt1);
  8697     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  8698     movl(cnt2, cnt1);
  8699     // Fallthru to tail compare
  8702   // Shift str2 and str1 to the end of the arrays, negate min
  8703   lea(str1, Address(str1, cnt2, Address::times_2, 0));
  8704   lea(str2, Address(str2, cnt2, Address::times_2, 0));
  8705   negptr(cnt2);
  8707     // Compare the rest of the characters
  8708   bind(WHILE_HEAD_LABEL);
  8709   load_unsigned_short(result, Address(str1, cnt2, Address::times_2, 0));
  8710   load_unsigned_short(cnt1, Address(str2, cnt2, Address::times_2, 0));
  8711   subl(result, cnt1);
  8712   jccb(Assembler::notZero, POP_LABEL);
  8713   increment(cnt2);
  8714   jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  8716   // Strings are equal up to min length.  Return the length difference.
  8717   bind(LENGTH_DIFF_LABEL);
  8718   pop(result);
  8719   jmpb(DONE_LABEL);
  8721   // Discard the stored length difference
  8722   bind(POP_LABEL);
  8723   addptr(rsp, wordSize);
  8725   // That's it
  8726   bind(DONE_LABEL);
  8729 // Compare char[] arrays aligned to 4 bytes or substrings.
  8730 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  8731                                         Register limit, Register result, Register chr,
  8732                                         XMMRegister vec1, XMMRegister vec2) {
  8733   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  8735   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  8736   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  8738   // Check the input args
  8739   cmpptr(ary1, ary2);
  8740   jcc(Assembler::equal, TRUE_LABEL);
  8742   if (is_array_equ) {
  8743     // Need additional checks for arrays_equals.
  8744     testptr(ary1, ary1);
  8745     jcc(Assembler::zero, FALSE_LABEL);
  8746     testptr(ary2, ary2);
  8747     jcc(Assembler::zero, FALSE_LABEL);
  8749     // Check the lengths
  8750     movl(limit, Address(ary1, length_offset));
  8751     cmpl(limit, Address(ary2, length_offset));
  8752     jcc(Assembler::notEqual, FALSE_LABEL);
  8755   // count == 0
  8756   testl(limit, limit);
  8757   jcc(Assembler::zero, TRUE_LABEL);
  8759   if (is_array_equ) {
  8760     // Load array address
  8761     lea(ary1, Address(ary1, base_offset));
  8762     lea(ary2, Address(ary2, base_offset));
  8765   shll(limit, 1);      // byte count != 0
  8766   movl(result, limit); // copy
  8768   if (UseSSE42Intrinsics) {
  8769     // With SSE4.2, use double quad vector compare
  8770     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  8771     // Compare 16-byte vectors
  8772     andl(result, 0x0000000e);  //   tail count (in bytes)
  8773     andl(limit, 0xfffffff0);   // vector count (in bytes)
  8774     jccb(Assembler::zero, COMPARE_TAIL);
  8776     lea(ary1, Address(ary1, limit, Address::times_1));
  8777     lea(ary2, Address(ary2, limit, Address::times_1));
  8778     negptr(limit);
  8780     bind(COMPARE_WIDE_VECTORS);
  8781     movdqu(vec1, Address(ary1, limit, Address::times_1));
  8782     movdqu(vec2, Address(ary2, limit, Address::times_1));
  8783     pxor(vec1, vec2);
  8784     ptest(vec1, vec1);
  8785     jccb(Assembler::notZero, FALSE_LABEL);
  8786     addptr(limit, 16);
  8787     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  8789     bind(COMPARE_TAIL); // limit is zero
  8790     movl(limit, result);
  8791     // Fallthru to tail compare
  8794   // Compare 4-byte vectors
  8795   andl(limit, 0xfffffffc); // vector count (in bytes)
  8796   jccb(Assembler::zero, COMPARE_CHAR);
  8798   lea(ary1, Address(ary1, limit, Address::times_1));
  8799   lea(ary2, Address(ary2, limit, Address::times_1));
  8800   negptr(limit);
  8802   bind(COMPARE_VECTORS);
  8803   movl(chr, Address(ary1, limit, Address::times_1));
  8804   cmpl(chr, Address(ary2, limit, Address::times_1));
  8805   jccb(Assembler::notEqual, FALSE_LABEL);
  8806   addptr(limit, 4);
  8807   jcc(Assembler::notZero, COMPARE_VECTORS);
  8809   // Compare trailing char (final 2 bytes), if any
  8810   bind(COMPARE_CHAR);
  8811   testl(result, 0x2);   // tail  char
  8812   jccb(Assembler::zero, TRUE_LABEL);
  8813   load_unsigned_short(chr, Address(ary1, 0));
  8814   load_unsigned_short(limit, Address(ary2, 0));
  8815   cmpl(chr, limit);
  8816   jccb(Assembler::notEqual, FALSE_LABEL);
  8818   bind(TRUE_LABEL);
  8819   movl(result, 1);   // return true
  8820   jmpb(DONE);
  8822   bind(FALSE_LABEL);
  8823   xorl(result, result); // return false
  8825   // That's it
  8826   bind(DONE);
  8829 #ifdef PRODUCT
  8830 #define BLOCK_COMMENT(str) /* nothing */
  8831 #else
  8832 #define BLOCK_COMMENT(str) block_comment(str)
  8833 #endif
  8835 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  8836 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  8837                                    Register to, Register value, Register count,
  8838                                    Register rtmp, XMMRegister xtmp) {
  8839   assert_different_registers(to, value, count, rtmp);
  8840   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  8841   Label L_fill_2_bytes, L_fill_4_bytes;
  8843   int shift = -1;
  8844   switch (t) {
  8845     case T_BYTE:
  8846       shift = 2;
  8847       break;
  8848     case T_SHORT:
  8849       shift = 1;
  8850       break;
  8851     case T_INT:
  8852       shift = 0;
  8853       break;
  8854     default: ShouldNotReachHere();
  8857   if (t == T_BYTE) {
  8858     andl(value, 0xff);
  8859     movl(rtmp, value);
  8860     shll(rtmp, 8);
  8861     orl(value, rtmp);
  8863   if (t == T_SHORT) {
  8864     andl(value, 0xffff);
  8866   if (t == T_BYTE || t == T_SHORT) {
  8867     movl(rtmp, value);
  8868     shll(rtmp, 16);
  8869     orl(value, rtmp);
  8872   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  8873   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  8874   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  8875     // align source address at 4 bytes address boundary
  8876     if (t == T_BYTE) {
  8877       // One byte misalignment happens only for byte arrays
  8878       testptr(to, 1);
  8879       jccb(Assembler::zero, L_skip_align1);
  8880       movb(Address(to, 0), value);
  8881       increment(to);
  8882       decrement(count);
  8883       BIND(L_skip_align1);
  8885     // Two bytes misalignment happens only for byte and short (char) arrays
  8886     testptr(to, 2);
  8887     jccb(Assembler::zero, L_skip_align2);
  8888     movw(Address(to, 0), value);
  8889     addptr(to, 2);
  8890     subl(count, 1<<(shift-1));
  8891     BIND(L_skip_align2);
  8893   if (UseSSE < 2) {
  8894     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  8895     // Fill 32-byte chunks
  8896     subl(count, 8 << shift);
  8897     jcc(Assembler::less, L_check_fill_8_bytes);
  8898     align(16);
  8900     BIND(L_fill_32_bytes_loop);
  8902     for (int i = 0; i < 32; i += 4) {
  8903       movl(Address(to, i), value);
  8906     addptr(to, 32);
  8907     subl(count, 8 << shift);
  8908     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  8909     BIND(L_check_fill_8_bytes);
  8910     addl(count, 8 << shift);
  8911     jccb(Assembler::zero, L_exit);
  8912     jmpb(L_fill_8_bytes);
  8914     //
  8915     // length is too short, just fill qwords
  8916     //
  8917     BIND(L_fill_8_bytes_loop);
  8918     movl(Address(to, 0), value);
  8919     movl(Address(to, 4), value);
  8920     addptr(to, 8);
  8921     BIND(L_fill_8_bytes);
  8922     subl(count, 1 << (shift + 1));
  8923     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  8924     // fall through to fill 4 bytes
  8925   } else {
  8926     Label L_fill_32_bytes;
  8927     if (!UseUnalignedLoadStores) {
  8928       // align to 8 bytes, we know we are 4 byte aligned to start
  8929       testptr(to, 4);
  8930       jccb(Assembler::zero, L_fill_32_bytes);
  8931       movl(Address(to, 0), value);
  8932       addptr(to, 4);
  8933       subl(count, 1<<shift);
  8935     BIND(L_fill_32_bytes);
  8937       assert( UseSSE >= 2, "supported cpu only" );
  8938       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  8939       // Fill 32-byte chunks
  8940       movdl(xtmp, value);
  8941       pshufd(xtmp, xtmp, 0);
  8943       subl(count, 8 << shift);
  8944       jcc(Assembler::less, L_check_fill_8_bytes);
  8945       align(16);
  8947       BIND(L_fill_32_bytes_loop);
  8949       if (UseUnalignedLoadStores) {
  8950         movdqu(Address(to, 0), xtmp);
  8951         movdqu(Address(to, 16), xtmp);
  8952       } else {
  8953         movq(Address(to, 0), xtmp);
  8954         movq(Address(to, 8), xtmp);
  8955         movq(Address(to, 16), xtmp);
  8956         movq(Address(to, 24), xtmp);
  8959       addptr(to, 32);
  8960       subl(count, 8 << shift);
  8961       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  8962       BIND(L_check_fill_8_bytes);
  8963       addl(count, 8 << shift);
  8964       jccb(Assembler::zero, L_exit);
  8965       jmpb(L_fill_8_bytes);
  8967       //
  8968       // length is too short, just fill qwords
  8969       //
  8970       BIND(L_fill_8_bytes_loop);
  8971       movq(Address(to, 0), xtmp);
  8972       addptr(to, 8);
  8973       BIND(L_fill_8_bytes);
  8974       subl(count, 1 << (shift + 1));
  8975       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  8978   // fill trailing 4 bytes
  8979   BIND(L_fill_4_bytes);
  8980   testl(count, 1<<shift);
  8981   jccb(Assembler::zero, L_fill_2_bytes);
  8982   movl(Address(to, 0), value);
  8983   if (t == T_BYTE || t == T_SHORT) {
  8984     addptr(to, 4);
  8985     BIND(L_fill_2_bytes);
  8986     // fill trailing 2 bytes
  8987     testl(count, 1<<(shift-1));
  8988     jccb(Assembler::zero, L_fill_byte);
  8989     movw(Address(to, 0), value);
  8990     if (t == T_BYTE) {
  8991       addptr(to, 2);
  8992       BIND(L_fill_byte);
  8993       // fill trailing byte
  8994       testl(count, 1);
  8995       jccb(Assembler::zero, L_exit);
  8996       movb(Address(to, 0), value);
  8997     } else {
  8998       BIND(L_fill_byte);
  9000   } else {
  9001     BIND(L_fill_2_bytes);
  9003   BIND(L_exit);
  9005 #undef BIND
  9006 #undef BLOCK_COMMENT
  9009 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  9010   switch (cond) {
  9011     // Note some conditions are synonyms for others
  9012     case Assembler::zero:         return Assembler::notZero;
  9013     case Assembler::notZero:      return Assembler::zero;
  9014     case Assembler::less:         return Assembler::greaterEqual;
  9015     case Assembler::lessEqual:    return Assembler::greater;
  9016     case Assembler::greater:      return Assembler::lessEqual;
  9017     case Assembler::greaterEqual: return Assembler::less;
  9018     case Assembler::below:        return Assembler::aboveEqual;
  9019     case Assembler::belowEqual:   return Assembler::above;
  9020     case Assembler::above:        return Assembler::belowEqual;
  9021     case Assembler::aboveEqual:   return Assembler::below;
  9022     case Assembler::overflow:     return Assembler::noOverflow;
  9023     case Assembler::noOverflow:   return Assembler::overflow;
  9024     case Assembler::negative:     return Assembler::positive;
  9025     case Assembler::positive:     return Assembler::negative;
  9026     case Assembler::parity:       return Assembler::noParity;
  9027     case Assembler::noParity:     return Assembler::parity;
  9029   ShouldNotReachHere(); return Assembler::overflow;
  9032 SkipIfEqual::SkipIfEqual(
  9033     MacroAssembler* masm, const bool* flag_addr, bool value) {
  9034   _masm = masm;
  9035   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  9036   _masm->jcc(Assembler::equal, _label);
  9039 SkipIfEqual::~SkipIfEqual() {
  9040   _masm->bind(_label);

mercurial