src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 27 Nov 2017 03:11:38 -0800

author
rraghavan
date
Mon, 27 Nov 2017 03:11:38 -0800
changeset 9841
2e636385f137
parent 9614
bb44c0e88235
child 9852
70aa912cebe5
permissions
-rw-r--r--

8191227: issues with unsafe handle resolution
Summary: added ThreadInVMfromNative or ThreadInVMfromUnknown support
Reviewed-by: thartmann, vlivanov

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (UseCompressedClassPointers) {
   109         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
   110             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
   111       }
   113       if (dst->is_register()) {
   114         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   115           return !PatchALot;
   116         } else if (src->is_single_stack()) {
   117           return true;
   118         }
   119       }
   121       if (src->is_register()) {
   122         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   123           return !PatchALot;
   124         } else if (dst->is_single_stack()) {
   125           return true;
   126         }
   127       }
   129       if (dst->is_register() &&
   130           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   131            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   132         return true;
   133       }
   135       return false;
   136     }
   138     default:
   139       return false;
   140   }
   141   ShouldNotReachHere();
   142 }
   145 LIR_Opr LIR_Assembler::receiverOpr() {
   146   return FrameMap::O0_oop_opr;
   147 }
   150 LIR_Opr LIR_Assembler::osrBufferPointer() {
   151   return FrameMap::I0_opr;
   152 }
   155 int LIR_Assembler::initial_frame_size_in_bytes() const {
   156   return in_bytes(frame_map()->framesize_in_bytes());
   157 }
   160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   161 // we fetch the class of the receiver (O0) and compare it with the cached class.
   162 // If they do not match we jump to slow case.
   163 int LIR_Assembler::check_icache() {
   164   int offset = __ offset();
   165   __ inline_cache_check(O0, G5_inline_cache_reg);
   166   return offset;
   167 }
   170 void LIR_Assembler::osr_entry() {
   171   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   172   //
   173   //   1. Create a new compiled activation.
   174   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   175   //      at the osr_bci; it is not initialized.
   176   //   3. Jump to the continuation address in compiled code to resume execution.
   178   // OSR entry point
   179   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   180   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   181   ValueStack* entry_state = osr_entry->end()->state();
   182   int number_of_locks = entry_state->locks_size();
   184   // Create a frame for the compiled activation.
   185   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
   187   // OSR buffer is
   188   //
   189   // locals[nlocals-1..0]
   190   // monitors[number_of_locks-1..0]
   191   //
   192   // locals is a direct copy of the interpreter frame so in the osr buffer
   193   // so first slot in the local array is the last local from the interpreter
   194   // and last slot is local[0] (receiver) from the interpreter
   195   //
   196   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   197   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   198   // in the interpreter frame (the method lock if a sync method)
   200   // Initialize monitors in the compiled activation.
   201   //   I0: pointer to osr buffer
   202   //
   203   // All other registers are dead at this point and the locals will be
   204   // copied into place by code emitted in the IR.
   206   Register OSR_buf = osrBufferPointer()->as_register();
   207   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   208     int monitor_offset = BytesPerWord * method()->max_locals() +
   209       (2 * BytesPerWord) * (number_of_locks - 1);
   210     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   211     // the OSR buffer using 2 word entries: first the lock and then
   212     // the oop.
   213     for (int i = 0; i < number_of_locks; i++) {
   214       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   215 #ifdef ASSERT
   216       // verify the interpreter's monitor has a non-null object
   217       {
   218         Label L;
   219         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   220         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   221         __ stop("locked object is NULL");
   222         __ bind(L);
   223       }
   224 #endif // ASSERT
   225       // Copy the lock field into the compiled activation.
   226       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   227       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   228       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   229       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   230     }
   231   }
   232 }
   235 // Optimized Library calls
   236 // This is the fast version of java.lang.String.compare; it has not
   237 // OSR-entry and therefore, we generate a slow version for OSR's
   238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   239   Register str0 = left->as_register();
   240   Register str1 = right->as_register();
   242   Label Ldone;
   244   Register result = dst->as_register();
   245   {
   246     // Get a pointer to the first character of string0 in tmp0
   247     //   and get string0.length() in str0
   248     // Get a pointer to the first character of string1 in tmp1
   249     //   and get string1.length() in str1
   250     // Also, get string0.length()-string1.length() in
   251     //   o7 and get the condition code set
   252     // Note: some instructions have been hoisted for better instruction scheduling
   254     Register tmp0 = L0;
   255     Register tmp1 = L1;
   256     Register tmp2 = L2;
   258     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   259     if (java_lang_String::has_offset_field()) {
   260       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   261       int  count_offset = java_lang_String:: count_offset_in_bytes();
   262       __ load_heap_oop(str0, value_offset, tmp0);
   263       __ ld(str0, offset_offset, tmp2);
   264       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   265       __ ld(str0, count_offset, str0);
   266       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   267     } else {
   268       __ load_heap_oop(str0, value_offset, tmp1);
   269       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   270       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   271     }
   273     // str1 may be null
   274     add_debug_info_for_null_check_here(info);
   276     if (java_lang_String::has_offset_field()) {
   277       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   278       int  count_offset = java_lang_String:: count_offset_in_bytes();
   279       __ load_heap_oop(str1, value_offset, tmp1);
   280       __ add(tmp0, tmp2, tmp0);
   282       __ ld(str1, offset_offset, tmp2);
   283       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   284       __ ld(str1, count_offset, str1);
   285       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   286       __ add(tmp1, tmp2, tmp1);
   287     } else {
   288       __ load_heap_oop(str1, value_offset, tmp2);
   289       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   290       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   291     }
   292     __ subcc(str0, str1, O7);
   293   }
   295   {
   296     // Compute the minimum of the string lengths, scale it and store it in limit
   297     Register count0 = I0;
   298     Register count1 = I1;
   299     Register limit  = L3;
   301     Label Lskip;
   302     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   303     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   304     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   305     __ bind(Lskip);
   307     // If either string is empty (or both of them) the result is the difference in lengths
   308     __ cmp(limit, 0);
   309     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   310     __ delayed()->mov(O7, result);  // result is difference in lengths
   311   }
   313   {
   314     // Neither string is empty
   315     Label Lloop;
   317     Register base0 = L0;
   318     Register base1 = L1;
   319     Register chr0  = I0;
   320     Register chr1  = I1;
   321     Register limit = L3;
   323     // Shift base0 and base1 to the end of the arrays, negate limit
   324     __ add(base0, limit, base0);
   325     __ add(base1, limit, base1);
   326     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   328     __ lduh(base0, limit, chr0);
   329     __ bind(Lloop);
   330     __ lduh(base1, limit, chr1);
   331     __ subcc(chr0, chr1, chr0);
   332     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   333     assert(chr0 == result, "result must be pre-placed");
   334     __ delayed()->inccc(limit, sizeof(jchar));
   335     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   336     __ delayed()->lduh(base0, limit, chr0);
   337   }
   339   // If strings are equal up to min length, return the length difference.
   340   __ mov(O7, result);
   342   // Otherwise, return the difference between the first mismatched chars.
   343   __ bind(Ldone);
   344 }
   347 // --------------------------------------------------------------------------------------------
   349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   350   if (!GenerateSynchronizationCode) return;
   352   Register obj_reg = obj_opr->as_register();
   353   Register lock_reg = lock_opr->as_register();
   355   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   356   Register reg = mon_addr.base();
   357   int offset = mon_addr.disp();
   358   // compute pointer to BasicLock
   359   if (mon_addr.is_simm13()) {
   360     __ add(reg, offset, lock_reg);
   361   }
   362   else {
   363     __ set(offset, lock_reg);
   364     __ add(reg, lock_reg, lock_reg);
   365   }
   366   // unlock object
   367   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   368   // _slow_case_stubs->append(slow_case);
   369   // temporary fix: must be created after exceptionhandler, therefore as call stub
   370   _slow_case_stubs->append(slow_case);
   371   if (UseFastLocking) {
   372     // try inlined fast unlocking first, revert to slow locking if it fails
   373     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   374     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   375     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   376   } else {
   377     // always do slow unlocking
   378     // note: the slow unlocking code could be inlined here, however if we use
   379     //       slow unlocking, speed doesn't matter anyway and this solution is
   380     //       simpler and requires less duplicated code - additionally, the
   381     //       slow unlocking code is the same in either case which simplifies
   382     //       debugging
   383     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   384     __ delayed()->nop();
   385   }
   386   // done
   387   __ bind(*slow_case->continuation());
   388 }
   391 int LIR_Assembler::emit_exception_handler() {
   392   // if the last instruction is a call (typically to do a throw which
   393   // is coming at the end after block reordering) the return address
   394   // must still point into the code area in order to avoid assertion
   395   // failures when searching for the corresponding bci => add a nop
   396   // (was bug 5/14/1999 - gri)
   397   __ nop();
   399   // generate code for exception handler
   400   ciMethod* method = compilation()->method();
   402   address handler_base = __ start_a_stub(exception_handler_size);
   404   if (handler_base == NULL) {
   405     // not enough space left for the handler
   406     bailout("exception handler overflow");
   407     return -1;
   408   }
   410   int offset = code_offset();
   412   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   413   __ delayed()->nop();
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   435   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   436   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   438   __ bind(_unwind_handler_entry);
   439   __ verify_not_null_oop(O0);
   440   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   441     __ mov(O0, I0);  // Preserve the exception
   442   }
   444   // Preform needed unlocking
   445   MonitorExitStub* stub = NULL;
   446   if (method()->is_synchronized()) {
   447     monitor_address(0, FrameMap::I1_opr);
   448     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   449     __ unlock_object(I3, I2, I1, *stub->entry());
   450     __ bind(*stub->continuation());
   451   }
   453   if (compilation()->env()->dtrace_method_probes()) {
   454     __ mov(G2_thread, O0);
   455     __ save_thread(I1); // need to preserve thread in G2 across
   456                         // runtime call
   457     metadata2reg(method()->constant_encoding(), O1);
   458     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   459     __ delayed()->nop();
   460     __ restore_thread(I1);
   461   }
   463   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   464     __ mov(I0, O0);  // Restore the exception
   465   }
   467   // dispatch to the unwind logic
   468   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   469   __ delayed()->nop();
   471   // Emit the slow path assembly
   472   if (stub != NULL) {
   473     stub->emit_code(this);
   474   }
   476   return offset;
   477 }
   480 int LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   486   __ nop();
   488   // generate code for deopt handler
   489   ciMethod* method = compilation()->method();
   490   address handler_base = __ start_a_stub(deopt_handler_size);
   491   if (handler_base == NULL) {
   492     // not enough space left for the handler
   493     bailout("deopt handler overflow");
   494     return -1;
   495   }
   497   int offset = code_offset();
   498   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   499   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   500   __ delayed()->nop();
   501   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   502   __ end_a_stub();
   504   return offset;
   505 }
   508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   509   if (o == NULL) {
   510     __ set(NULL_WORD, reg);
   511   } else {
   512 #ifdef ASSERT
   513     {
   514       ThreadInVMfromNative tiv(JavaThread::current());
   515       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
   516     }
   517 #endif
   518     int oop_index = __ oop_recorder()->find_index(o);
   519     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   520     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   521   }
   522 }
   525 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   526   // Allocate a new index in table to hold the object once it's been patched
   527   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
   528   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
   530   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   531   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   532   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   533   // NULL will be dynamically patched later and the patched value may be large.  We must
   534   // therefore generate the sethi/add as a placeholders
   535   __ patchable_set(addrlit, reg);
   537   patching_epilog(patch, lir_patch_normal, reg, info);
   538 }
   541 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
   542   __ set_metadata_constant(o, reg);
   543 }
   545 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
   546   // Allocate a new index in table to hold the klass once it's been patched
   547   int index = __ oop_recorder()->allocate_metadata_index(NULL);
   548   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
   549   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
   550   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
   551   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   552   // NULL will be dynamically patched later and the patched value may be large.  We must
   553   // therefore generate the sethi/add as a placeholders
   554   __ patchable_set(addrlit, reg);
   556   patching_epilog(patch, lir_patch_normal, reg, info);
   557 }
   559 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   560   Register Rdividend = op->in_opr1()->as_register();
   561   Register Rdivisor  = noreg;
   562   Register Rscratch  = op->in_opr3()->as_register();
   563   Register Rresult   = op->result_opr()->as_register();
   564   int divisor = -1;
   566   if (op->in_opr2()->is_register()) {
   567     Rdivisor = op->in_opr2()->as_register();
   568   } else {
   569     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   570     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   571   }
   573   assert(Rdividend != Rscratch, "");
   574   assert(Rdivisor  != Rscratch, "");
   575   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   577   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   578     // convert division by a power of two into some shifts and logical operations
   579     if (op->code() == lir_idiv) {
   580       if (divisor == 2) {
   581         __ srl(Rdividend, 31, Rscratch);
   582       } else {
   583         __ sra(Rdividend, 31, Rscratch);
   584         __ and3(Rscratch, divisor - 1, Rscratch);
   585       }
   586       __ add(Rdividend, Rscratch, Rscratch);
   587       __ sra(Rscratch, log2_int(divisor), Rresult);
   588       return;
   589     } else {
   590       if (divisor == 2) {
   591         __ srl(Rdividend, 31, Rscratch);
   592       } else {
   593         __ sra(Rdividend, 31, Rscratch);
   594         __ and3(Rscratch, divisor - 1,Rscratch);
   595       }
   596       __ add(Rdividend, Rscratch, Rscratch);
   597       __ andn(Rscratch, divisor - 1,Rscratch);
   598       __ sub(Rdividend, Rscratch, Rresult);
   599       return;
   600     }
   601   }
   603   __ sra(Rdividend, 31, Rscratch);
   604   __ wry(Rscratch);
   606   add_debug_info_for_div0_here(op->info());
   608   if (Rdivisor != noreg) {
   609     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   610   } else {
   611     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   612     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   613   }
   615   Label skip;
   616   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   617   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   618   __ bind(skip);
   620   if (op->code() == lir_irem) {
   621     if (Rdivisor != noreg) {
   622       __ smul(Rscratch, Rdivisor, Rscratch);
   623     } else {
   624       __ smul(Rscratch, divisor, Rscratch);
   625     }
   626     __ sub(Rdividend, Rscratch, Rresult);
   627   }
   628 }
   631 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   632 #ifdef ASSERT
   633   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   634   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   635   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   636 #endif
   637   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   639   if (op->cond() == lir_cond_always) {
   640     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   641   } else if (op->code() == lir_cond_float_branch) {
   642     assert(op->ublock() != NULL, "must have unordered successor");
   643     bool is_unordered = (op->ublock() == op->block());
   644     Assembler::Condition acond;
   645     switch (op->cond()) {
   646       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   647       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   648       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   649       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   650       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   651       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   652       default :                         ShouldNotReachHere();
   653     }
   654     __ fb( acond, false, Assembler::pn, *(op->label()));
   655   } else {
   656     assert (op->code() == lir_branch, "just checking");
   658     Assembler::Condition acond;
   659     switch (op->cond()) {
   660       case lir_cond_equal:        acond = Assembler::equal;                break;
   661       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   662       case lir_cond_less:         acond = Assembler::less;                 break;
   663       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   664       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   665       case lir_cond_greater:      acond = Assembler::greater;              break;
   666       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   667       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   668       default:                         ShouldNotReachHere();
   669     };
   671     // sparc has different condition codes for testing 32-bit
   672     // vs. 64-bit values.  We could always test xcc is we could
   673     // guarantee that 32-bit loads always sign extended but that isn't
   674     // true and since sign extension isn't free, it would impose a
   675     // slight cost.
   676 #ifdef _LP64
   677     if  (op->type() == T_INT) {
   678       __ br(acond, false, Assembler::pn, *(op->label()));
   679     } else
   680 #endif
   681       __ brx(acond, false, Assembler::pn, *(op->label()));
   682   }
   683   // The peephole pass fills the delay slot
   684 }
   687 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   688   Bytecodes::Code code = op->bytecode();
   689   LIR_Opr dst = op->result_opr();
   691   switch(code) {
   692     case Bytecodes::_i2l: {
   693       Register rlo  = dst->as_register_lo();
   694       Register rhi  = dst->as_register_hi();
   695       Register rval = op->in_opr()->as_register();
   696 #ifdef _LP64
   697       __ sra(rval, 0, rlo);
   698 #else
   699       __ mov(rval, rlo);
   700       __ sra(rval, BitsPerInt-1, rhi);
   701 #endif
   702       break;
   703     }
   704     case Bytecodes::_i2d:
   705     case Bytecodes::_i2f: {
   706       bool is_double = (code == Bytecodes::_i2d);
   707       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   708       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   709       FloatRegister rsrc = op->in_opr()->as_float_reg();
   710       if (rsrc != rdst) {
   711         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   712       }
   713       __ fitof(w, rdst, rdst);
   714       break;
   715     }
   716     case Bytecodes::_f2i:{
   717       FloatRegister rsrc = op->in_opr()->as_float_reg();
   718       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   719       Label L;
   720       // result must be 0 if value is NaN; test by comparing value to itself
   721       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   722       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   723       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   724       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   725       // move integer result from float register to int register
   726       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   727       __ bind (L);
   728       break;
   729     }
   730     case Bytecodes::_l2i: {
   731       Register rlo  = op->in_opr()->as_register_lo();
   732       Register rhi  = op->in_opr()->as_register_hi();
   733       Register rdst = dst->as_register();
   734 #ifdef _LP64
   735       __ sra(rlo, 0, rdst);
   736 #else
   737       __ mov(rlo, rdst);
   738 #endif
   739       break;
   740     }
   741     case Bytecodes::_d2f:
   742     case Bytecodes::_f2d: {
   743       bool is_double = (code == Bytecodes::_f2d);
   744       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   745       LIR_Opr val = op->in_opr();
   746       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   747       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   748       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   749       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   750       __ ftof(vw, dw, rval, rdst);
   751       break;
   752     }
   753     case Bytecodes::_i2s:
   754     case Bytecodes::_i2b: {
   755       Register rval = op->in_opr()->as_register();
   756       Register rdst = dst->as_register();
   757       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   758       __ sll (rval, shift, rdst);
   759       __ sra (rdst, shift, rdst);
   760       break;
   761     }
   762     case Bytecodes::_i2c: {
   763       Register rval = op->in_opr()->as_register();
   764       Register rdst = dst->as_register();
   765       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   766       __ sll (rval, shift, rdst);
   767       __ srl (rdst, shift, rdst);
   768       break;
   769     }
   771     default: ShouldNotReachHere();
   772   }
   773 }
   776 void LIR_Assembler::align_call(LIR_Code) {
   777   // do nothing since all instructions are word aligned on sparc
   778 }
   781 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   782   __ call(op->addr(), rtype);
   783   // The peephole pass fills the delay slot, add_call_info is done in
   784   // LIR_Assembler::emit_delay.
   785 }
   788 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   789   __ ic_call(op->addr(), false);
   790   // The peephole pass fills the delay slot, add_call_info is done in
   791   // LIR_Assembler::emit_delay.
   792 }
   795 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   796   add_debug_info_for_null_check_here(op->info());
   797   __ load_klass(O0, G3_scratch);
   798   if (Assembler::is_simm13(op->vtable_offset())) {
   799     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   800   } else {
   801     // This will generate 2 instructions
   802     __ set(op->vtable_offset(), G5_method);
   803     // ld_ptr, set_hi, set
   804     __ ld_ptr(G3_scratch, G5_method, G5_method);
   805   }
   806   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
   807   __ callr(G3_scratch, G0);
   808   // the peephole pass fills the delay slot
   809 }
   811 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   812   int store_offset;
   813   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   814     assert(!unaligned, "can't handle this");
   815     // for offsets larger than a simm13 we setup the offset in O7
   816     __ set(offset, O7);
   817     store_offset = store(from_reg, base, O7, type, wide);
   818   } else {
   819     if (type == T_ARRAY || type == T_OBJECT) {
   820       __ verify_oop(from_reg->as_register());
   821     }
   822     store_offset = code_offset();
   823     switch (type) {
   824       case T_BOOLEAN: // fall through
   825       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   826       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   827       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   828       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   829       case T_LONG  :
   830 #ifdef _LP64
   831         if (unaligned || PatchALot) {
   832           __ srax(from_reg->as_register_lo(), 32, O7);
   833           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   834           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   835         } else {
   836           __ stx(from_reg->as_register_lo(), base, offset);
   837         }
   838 #else
   839         assert(Assembler::is_simm13(offset + 4), "must be");
   840         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   841         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   842 #endif
   843         break;
   844       case T_ADDRESS:
   845       case T_METADATA:
   846         __ st_ptr(from_reg->as_register(), base, offset);
   847         break;
   848       case T_ARRAY : // fall through
   849       case T_OBJECT:
   850         {
   851           if (UseCompressedOops && !wide) {
   852             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   853             store_offset = code_offset();
   854             __ stw(G3_scratch, base, offset);
   855           } else {
   856             __ st_ptr(from_reg->as_register(), base, offset);
   857           }
   858           break;
   859         }
   861       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   862       case T_DOUBLE:
   863         {
   864           FloatRegister reg = from_reg->as_double_reg();
   865           // split unaligned stores
   866           if (unaligned || PatchALot) {
   867             assert(Assembler::is_simm13(offset + 4), "must be");
   868             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   869             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   870           } else {
   871             __ stf(FloatRegisterImpl::D, reg, base, offset);
   872           }
   873           break;
   874         }
   875       default      : ShouldNotReachHere();
   876     }
   877   }
   878   return store_offset;
   879 }
   882 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   883   if (type == T_ARRAY || type == T_OBJECT) {
   884     __ verify_oop(from_reg->as_register());
   885   }
   886   int store_offset = code_offset();
   887   switch (type) {
   888     case T_BOOLEAN: // fall through
   889     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   890     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   891     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   892     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   893     case T_LONG  :
   894 #ifdef _LP64
   895       __ stx(from_reg->as_register_lo(), base, disp);
   896 #else
   897       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   898       __ std(from_reg->as_register_hi(), base, disp);
   899 #endif
   900       break;
   901     case T_ADDRESS:
   902       __ st_ptr(from_reg->as_register(), base, disp);
   903       break;
   904     case T_ARRAY : // fall through
   905     case T_OBJECT:
   906       {
   907         if (UseCompressedOops && !wide) {
   908           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   909           store_offset = code_offset();
   910           __ stw(G3_scratch, base, disp);
   911         } else {
   912           __ st_ptr(from_reg->as_register(), base, disp);
   913         }
   914         break;
   915       }
   916     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   917     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   918     default      : ShouldNotReachHere();
   919   }
   920   return store_offset;
   921 }
   924 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   925   int load_offset;
   926   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   927     assert(base != O7, "destroying register");
   928     assert(!unaligned, "can't handle this");
   929     // for offsets larger than a simm13 we setup the offset in O7
   930     __ set(offset, O7);
   931     load_offset = load(base, O7, to_reg, type, wide);
   932   } else {
   933     load_offset = code_offset();
   934     switch(type) {
   935       case T_BOOLEAN: // fall through
   936       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   937       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   938       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   939       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   940       case T_LONG  :
   941         if (!unaligned) {
   942 #ifdef _LP64
   943           __ ldx(base, offset, to_reg->as_register_lo());
   944 #else
   945           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   946                  "must be sequential");
   947           __ ldd(base, offset, to_reg->as_register_hi());
   948 #endif
   949         } else {
   950 #ifdef _LP64
   951           assert(base != to_reg->as_register_lo(), "can't handle this");
   952           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   953           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   954           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   955           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   956           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   957 #else
   958           if (base == to_reg->as_register_lo()) {
   959             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   960             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   961           } else {
   962             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   963             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   964           }
   965 #endif
   966         }
   967         break;
   968       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   969       case T_ADDRESS:
   970 #ifdef _LP64
   971         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
   972           __ lduw(base, offset, to_reg->as_register());
   973           __ decode_klass_not_null(to_reg->as_register());
   974         } else
   975 #endif
   976         {
   977           __ ld_ptr(base, offset, to_reg->as_register());
   978         }
   979         break;
   980       case T_ARRAY : // fall through
   981       case T_OBJECT:
   982         {
   983           if (UseCompressedOops && !wide) {
   984             __ lduw(base, offset, to_reg->as_register());
   985             __ decode_heap_oop(to_reg->as_register());
   986           } else {
   987             __ ld_ptr(base, offset, to_reg->as_register());
   988           }
   989           break;
   990         }
   991       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   992       case T_DOUBLE:
   993         {
   994           FloatRegister reg = to_reg->as_double_reg();
   995           // split unaligned loads
   996           if (unaligned || PatchALot) {
   997             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   998             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   999           } else {
  1000             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1002           break;
  1004       default      : ShouldNotReachHere();
  1006     if (type == T_ARRAY || type == T_OBJECT) {
  1007       __ verify_oop(to_reg->as_register());
  1010   return load_offset;
  1014 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
  1015   int load_offset = code_offset();
  1016   switch(type) {
  1017     case T_BOOLEAN: // fall through
  1018     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
  1019     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
  1020     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
  1021     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
  1022     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1023     case T_ARRAY : // fall through
  1024     case T_OBJECT:
  1026           if (UseCompressedOops && !wide) {
  1027             __ lduw(base, disp, to_reg->as_register());
  1028             __ decode_heap_oop(to_reg->as_register());
  1029           } else {
  1030             __ ld_ptr(base, disp, to_reg->as_register());
  1032           break;
  1034     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1035     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1036     case T_LONG  :
  1037 #ifdef _LP64
  1038       __ ldx(base, disp, to_reg->as_register_lo());
  1039 #else
  1040       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1041              "must be sequential");
  1042       __ ldd(base, disp, to_reg->as_register_hi());
  1043 #endif
  1044       break;
  1045     default      : ShouldNotReachHere();
  1047   if (type == T_ARRAY || type == T_OBJECT) {
  1048     __ verify_oop(to_reg->as_register());
  1050   return load_offset;
  1053 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1054   LIR_Const* c = src->as_constant_ptr();
  1055   switch (c->type()) {
  1056     case T_INT:
  1057     case T_FLOAT: {
  1058       Register src_reg = O7;
  1059       int value = c->as_jint_bits();
  1060       if (value == 0) {
  1061         src_reg = G0;
  1062       } else {
  1063         __ set(value, O7);
  1065       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1066       __ stw(src_reg, addr.base(), addr.disp());
  1067       break;
  1069     case T_ADDRESS: {
  1070       Register src_reg = O7;
  1071       int value = c->as_jint_bits();
  1072       if (value == 0) {
  1073         src_reg = G0;
  1074       } else {
  1075         __ set(value, O7);
  1077       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1078       __ st_ptr(src_reg, addr.base(), addr.disp());
  1079       break;
  1081     case T_OBJECT: {
  1082       Register src_reg = O7;
  1083       jobject2reg(c->as_jobject(), src_reg);
  1084       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1085       __ st_ptr(src_reg, addr.base(), addr.disp());
  1086       break;
  1088     case T_LONG:
  1089     case T_DOUBLE: {
  1090       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1092       Register tmp = O7;
  1093       int value_lo = c->as_jint_lo_bits();
  1094       if (value_lo == 0) {
  1095         tmp = G0;
  1096       } else {
  1097         __ set(value_lo, O7);
  1099       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1100       int value_hi = c->as_jint_hi_bits();
  1101       if (value_hi == 0) {
  1102         tmp = G0;
  1103       } else {
  1104         __ set(value_hi, O7);
  1106       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1107       break;
  1109     default:
  1110       Unimplemented();
  1115 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1116   LIR_Const* c = src->as_constant_ptr();
  1117   LIR_Address* addr     = dest->as_address_ptr();
  1118   Register base = addr->base()->as_pointer_register();
  1119   int offset = -1;
  1121   switch (c->type()) {
  1122     case T_INT:
  1123     case T_FLOAT:
  1124     case T_ADDRESS: {
  1125       LIR_Opr tmp = FrameMap::O7_opr;
  1126       int value = c->as_jint_bits();
  1127       if (value == 0) {
  1128         tmp = FrameMap::G0_opr;
  1129       } else if (Assembler::is_simm13(value)) {
  1130         __ set(value, O7);
  1132       if (addr->index()->is_valid()) {
  1133         assert(addr->disp() == 0, "must be zero");
  1134         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1135       } else {
  1136         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1137         offset = store(tmp, base, addr->disp(), type, wide, false);
  1139       break;
  1141     case T_LONG:
  1142     case T_DOUBLE: {
  1143       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1144       assert(Assembler::is_simm13(addr->disp()) &&
  1145              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1147       LIR_Opr tmp = FrameMap::O7_opr;
  1148       int value_lo = c->as_jint_lo_bits();
  1149       if (value_lo == 0) {
  1150         tmp = FrameMap::G0_opr;
  1151       } else {
  1152         __ set(value_lo, O7);
  1154       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1155       int value_hi = c->as_jint_hi_bits();
  1156       if (value_hi == 0) {
  1157         tmp = FrameMap::G0_opr;
  1158       } else {
  1159         __ set(value_hi, O7);
  1161       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1162       break;
  1164     case T_OBJECT: {
  1165       jobject obj = c->as_jobject();
  1166       LIR_Opr tmp;
  1167       if (obj == NULL) {
  1168         tmp = FrameMap::G0_opr;
  1169       } else {
  1170         tmp = FrameMap::O7_opr;
  1171         jobject2reg(c->as_jobject(), O7);
  1173       // handle either reg+reg or reg+disp address
  1174       if (addr->index()->is_valid()) {
  1175         assert(addr->disp() == 0, "must be zero");
  1176         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1177       } else {
  1178         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1179         offset = store(tmp, base, addr->disp(), type, wide, false);
  1182       break;
  1184     default:
  1185       Unimplemented();
  1187   if (info != NULL) {
  1188     assert(offset != -1, "offset should've been set");
  1189     add_debug_info_for_null_check(offset, info);
  1194 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1195   LIR_Const* c = src->as_constant_ptr();
  1196   LIR_Opr to_reg = dest;
  1198   switch (c->type()) {
  1199     case T_INT:
  1200     case T_ADDRESS:
  1202         jint con = c->as_jint();
  1203         if (to_reg->is_single_cpu()) {
  1204           assert(patch_code == lir_patch_none, "no patching handled here");
  1205           __ set(con, to_reg->as_register());
  1206         } else {
  1207           ShouldNotReachHere();
  1208           assert(to_reg->is_single_fpu(), "wrong register kind");
  1210           __ set(con, O7);
  1211           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1212           __ st(O7, temp_slot);
  1213           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1216       break;
  1218     case T_LONG:
  1220         jlong con = c->as_jlong();
  1222         if (to_reg->is_double_cpu()) {
  1223 #ifdef _LP64
  1224           __ set(con,  to_reg->as_register_lo());
  1225 #else
  1226           __ set(low(con),  to_reg->as_register_lo());
  1227           __ set(high(con), to_reg->as_register_hi());
  1228 #endif
  1229 #ifdef _LP64
  1230         } else if (to_reg->is_single_cpu()) {
  1231           __ set(con, to_reg->as_register());
  1232 #endif
  1233         } else {
  1234           ShouldNotReachHere();
  1235           assert(to_reg->is_double_fpu(), "wrong register kind");
  1236           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1237           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1238           __ set(low(con),  O7);
  1239           __ st(O7, temp_slot_lo);
  1240           __ set(high(con), O7);
  1241           __ st(O7, temp_slot_hi);
  1242           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1245       break;
  1247     case T_OBJECT:
  1249         if (patch_code == lir_patch_none) {
  1250           jobject2reg(c->as_jobject(), to_reg->as_register());
  1251         } else {
  1252           jobject2reg_with_patching(to_reg->as_register(), info);
  1255       break;
  1257     case T_METADATA:
  1259         if (patch_code == lir_patch_none) {
  1260           metadata2reg(c->as_metadata(), to_reg->as_register());
  1261         } else {
  1262           klass2reg_with_patching(to_reg->as_register(), info);
  1265       break;
  1267     case T_FLOAT:
  1269         address const_addr = __ float_constant(c->as_jfloat());
  1270         if (const_addr == NULL) {
  1271           bailout("const section overflow");
  1272           break;
  1274         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1275         AddressLiteral const_addrlit(const_addr, rspec);
  1276         if (to_reg->is_single_fpu()) {
  1277           __ patchable_sethi(const_addrlit, O7);
  1278           __ relocate(rspec);
  1279           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1281         } else {
  1282           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1284           __ set(const_addrlit, O7);
  1285           __ ld(O7, 0, to_reg->as_register());
  1288       break;
  1290     case T_DOUBLE:
  1292         address const_addr = __ double_constant(c->as_jdouble());
  1293         if (const_addr == NULL) {
  1294           bailout("const section overflow");
  1295           break;
  1297         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1299         if (to_reg->is_double_fpu()) {
  1300           AddressLiteral const_addrlit(const_addr, rspec);
  1301           __ patchable_sethi(const_addrlit, O7);
  1302           __ relocate(rspec);
  1303           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1304         } else {
  1305           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1306 #ifdef _LP64
  1307           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1308 #else
  1309           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1310           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1311 #endif
  1315       break;
  1317     default:
  1318       ShouldNotReachHere();
  1322 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1323   Register reg = addr->base()->as_pointer_register();
  1324   LIR_Opr index = addr->index();
  1325   if (index->is_illegal()) {
  1326     return Address(reg, addr->disp());
  1327   } else {
  1328     assert (addr->disp() == 0, "unsupported address mode");
  1329     return Address(reg, index->as_pointer_register());
  1334 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1335   switch (type) {
  1336     case T_INT:
  1337     case T_FLOAT: {
  1338       Register tmp = O7;
  1339       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1340       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1341       __ lduw(from.base(), from.disp(), tmp);
  1342       __ stw(tmp, to.base(), to.disp());
  1343       break;
  1345     case T_OBJECT: {
  1346       Register tmp = O7;
  1347       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1348       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1349       __ ld_ptr(from.base(), from.disp(), tmp);
  1350       __ st_ptr(tmp, to.base(), to.disp());
  1351       break;
  1353     case T_LONG:
  1354     case T_DOUBLE: {
  1355       Register tmp = O7;
  1356       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1357       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1358       __ lduw(from.base(), from.disp(), tmp);
  1359       __ stw(tmp, to.base(), to.disp());
  1360       __ lduw(from.base(), from.disp() + 4, tmp);
  1361       __ stw(tmp, to.base(), to.disp() + 4);
  1362       break;
  1365     default:
  1366       ShouldNotReachHere();
  1371 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1372   Address base = as_Address(addr);
  1373   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1377 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1378   Address base = as_Address(addr);
  1379   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1383 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1384                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1386   assert(type != T_METADATA, "load of metadata ptr not supported");
  1387   LIR_Address* addr = src_opr->as_address_ptr();
  1388   LIR_Opr to_reg = dest;
  1390   Register src = addr->base()->as_pointer_register();
  1391   Register disp_reg = noreg;
  1392   int disp_value = addr->disp();
  1393   bool needs_patching = (patch_code != lir_patch_none);
  1395   if (addr->base()->type() == T_OBJECT) {
  1396     __ verify_oop(src);
  1399   PatchingStub* patch = NULL;
  1400   if (needs_patching) {
  1401     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1402     assert(!to_reg->is_double_cpu() ||
  1403            patch_code == lir_patch_none ||
  1404            patch_code == lir_patch_normal, "patching doesn't match register");
  1407   if (addr->index()->is_illegal()) {
  1408     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1409       if (needs_patching) {
  1410         __ patchable_set(0, O7);
  1411       } else {
  1412         __ set(disp_value, O7);
  1414       disp_reg = O7;
  1416   } else if (unaligned || PatchALot) {
  1417     __ add(src, addr->index()->as_register(), O7);
  1418     src = O7;
  1419   } else {
  1420     disp_reg = addr->index()->as_pointer_register();
  1421     assert(disp_value == 0, "can't handle 3 operand addresses");
  1424   // remember the offset of the load.  The patching_epilog must be done
  1425   // before the call to add_debug_info, otherwise the PcDescs don't get
  1426   // entered in increasing order.
  1427   int offset = code_offset();
  1429   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1430   if (disp_reg == noreg) {
  1431     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1432   } else {
  1433     assert(!unaligned, "can't handle this");
  1434     offset = load(src, disp_reg, to_reg, type, wide);
  1437   if (patch != NULL) {
  1438     patching_epilog(patch, patch_code, src, info);
  1440   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1444 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1445   LIR_Address* addr = src->as_address_ptr();
  1446   Address from_addr = as_Address(addr);
  1448   if (VM_Version::has_v9()) {
  1449     __ prefetch(from_addr, Assembler::severalReads);
  1454 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1455   LIR_Address* addr = src->as_address_ptr();
  1456   Address from_addr = as_Address(addr);
  1458   if (VM_Version::has_v9()) {
  1459     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1464 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1465   Address addr;
  1466   if (src->is_single_word()) {
  1467     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1468   } else if (src->is_double_word())  {
  1469     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1472   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1473   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1477 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1478   Address addr;
  1479   if (dest->is_single_word()) {
  1480     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1481   } else if (dest->is_double_word())  {
  1482     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1484   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1485   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1489 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1490   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1491     if (from_reg->is_double_fpu()) {
  1492       // double to double moves
  1493       assert(to_reg->is_double_fpu(), "should match");
  1494       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1495     } else {
  1496       // float to float moves
  1497       assert(to_reg->is_single_fpu(), "should match");
  1498       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1500   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1501     if (from_reg->is_double_cpu()) {
  1502 #ifdef _LP64
  1503       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1504 #else
  1505       assert(to_reg->is_double_cpu() &&
  1506              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1507              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1508              "should both be long and not overlap");
  1509       // long to long moves
  1510       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1511       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1512 #endif
  1513 #ifdef _LP64
  1514     } else if (to_reg->is_double_cpu()) {
  1515       // int to int moves
  1516       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1517 #endif
  1518     } else {
  1519       // int to int moves
  1520       __ mov(from_reg->as_register(), to_reg->as_register());
  1522   } else {
  1523     ShouldNotReachHere();
  1525   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1526     __ verify_oop(to_reg->as_register());
  1531 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1532                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1533                             bool wide, bool unaligned) {
  1534   assert(type != T_METADATA, "store of metadata ptr not supported");
  1535   LIR_Address* addr = dest->as_address_ptr();
  1537   Register src = addr->base()->as_pointer_register();
  1538   Register disp_reg = noreg;
  1539   int disp_value = addr->disp();
  1540   bool needs_patching = (patch_code != lir_patch_none);
  1542   if (addr->base()->is_oop_register()) {
  1543     __ verify_oop(src);
  1546   PatchingStub* patch = NULL;
  1547   if (needs_patching) {
  1548     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1549     assert(!from_reg->is_double_cpu() ||
  1550            patch_code == lir_patch_none ||
  1551            patch_code == lir_patch_normal, "patching doesn't match register");
  1554   if (addr->index()->is_illegal()) {
  1555     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1556       if (needs_patching) {
  1557         __ patchable_set(0, O7);
  1558       } else {
  1559         __ set(disp_value, O7);
  1561       disp_reg = O7;
  1563   } else if (unaligned || PatchALot) {
  1564     __ add(src, addr->index()->as_register(), O7);
  1565     src = O7;
  1566   } else {
  1567     disp_reg = addr->index()->as_pointer_register();
  1568     assert(disp_value == 0, "can't handle 3 operand addresses");
  1571   // remember the offset of the store.  The patching_epilog must be done
  1572   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1573   // entered in increasing order.
  1574   int offset;
  1576   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1577   if (disp_reg == noreg) {
  1578     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1579   } else {
  1580     assert(!unaligned, "can't handle this");
  1581     offset = store(from_reg, src, disp_reg, type, wide);
  1584   if (patch != NULL) {
  1585     patching_epilog(patch, patch_code, src, info);
  1588   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1592 void LIR_Assembler::return_op(LIR_Opr result) {
  1593   // the poll may need a register so just pick one that isn't the return register
  1594 #if defined(TIERED) && !defined(_LP64)
  1595   if (result->type_field() == LIR_OprDesc::long_type) {
  1596     // Must move the result to G1
  1597     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1598     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1599     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1600     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1601 #ifdef ASSERT
  1602     // mangle it so any problems will show up
  1603     __ set(0xdeadbeef, I0);
  1604     __ set(0xdeadbeef, I1);
  1605 #endif
  1607 #endif // TIERED
  1608   __ set((intptr_t)os::get_polling_page(), L0);
  1609   __ relocate(relocInfo::poll_return_type);
  1610   __ ld_ptr(L0, 0, G0);
  1611   __ ret();
  1612   __ delayed()->restore();
  1616 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1617   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1618   if (info != NULL) {
  1619     add_debug_info_for_branch(info);
  1620   } else {
  1621     __ relocate(relocInfo::poll_type);
  1624   int offset = __ offset();
  1625   __ ld_ptr(tmp->as_register(), 0, G0);
  1627   return offset;
  1631 void LIR_Assembler::emit_static_call_stub() {
  1632   address call_pc = __ pc();
  1633   address stub = __ start_a_stub(call_stub_size);
  1634   if (stub == NULL) {
  1635     bailout("static call stub overflow");
  1636     return;
  1639   int start = __ offset();
  1640   __ relocate(static_stub_Relocation::spec(call_pc));
  1642   __ set_metadata(NULL, G5);
  1643   // must be set to -1 at code generation time
  1644   AddressLiteral addrlit(-1);
  1645   __ jump_to(addrlit, G3);
  1646   __ delayed()->nop();
  1648   assert(__ offset() - start <= call_stub_size, "stub too big");
  1649   __ end_a_stub();
  1653 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1654   if (opr1->is_single_fpu()) {
  1655     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1656   } else if (opr1->is_double_fpu()) {
  1657     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1658   } else if (opr1->is_single_cpu()) {
  1659     if (opr2->is_constant()) {
  1660       switch (opr2->as_constant_ptr()->type()) {
  1661         case T_INT:
  1662           { jint con = opr2->as_constant_ptr()->as_jint();
  1663             if (Assembler::is_simm13(con)) {
  1664               __ cmp(opr1->as_register(), con);
  1665             } else {
  1666               __ set(con, O7);
  1667               __ cmp(opr1->as_register(), O7);
  1670           break;
  1672         case T_OBJECT:
  1673           // there are only equal/notequal comparisions on objects
  1674           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1675             if (con == NULL) {
  1676               __ cmp(opr1->as_register(), 0);
  1677             } else {
  1678               jobject2reg(con, O7);
  1679               __ cmp(opr1->as_register(), O7);
  1682           break;
  1684         default:
  1685           ShouldNotReachHere();
  1686           break;
  1688     } else {
  1689       if (opr2->is_address()) {
  1690         LIR_Address * addr = opr2->as_address_ptr();
  1691         BasicType type = addr->type();
  1692         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1693         else                    __ ld(as_Address(addr), O7);
  1694         __ cmp(opr1->as_register(), O7);
  1695       } else {
  1696         __ cmp(opr1->as_register(), opr2->as_register());
  1699   } else if (opr1->is_double_cpu()) {
  1700     Register xlo = opr1->as_register_lo();
  1701     Register xhi = opr1->as_register_hi();
  1702     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1703       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1704 #ifdef _LP64
  1705       __ orcc(xhi, G0, G0);
  1706 #else
  1707       __ orcc(xhi, xlo, G0);
  1708 #endif
  1709     } else if (opr2->is_register()) {
  1710       Register ylo = opr2->as_register_lo();
  1711       Register yhi = opr2->as_register_hi();
  1712 #ifdef _LP64
  1713       __ cmp(xlo, ylo);
  1714 #else
  1715       __ subcc(xlo, ylo, xlo);
  1716       __ subccc(xhi, yhi, xhi);
  1717       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1718         __ orcc(xhi, xlo, G0);
  1720 #endif
  1721     } else {
  1722       ShouldNotReachHere();
  1724   } else if (opr1->is_address()) {
  1725     LIR_Address * addr = opr1->as_address_ptr();
  1726     BasicType type = addr->type();
  1727     assert (opr2->is_constant(), "Checking");
  1728     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1729     else                    __ ld(as_Address(addr), O7);
  1730     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1731   } else {
  1732     ShouldNotReachHere();
  1737 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1738   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1739     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1740     if (left->is_single_fpu()) {
  1741       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1742     } else if (left->is_double_fpu()) {
  1743       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1744     } else {
  1745       ShouldNotReachHere();
  1747   } else if (code == lir_cmp_l2i) {
  1748 #ifdef _LP64
  1749     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1750 #else
  1751     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1752             right->as_register_hi(), right->as_register_lo(),
  1753             dst->as_register());
  1754 #endif
  1755   } else {
  1756     ShouldNotReachHere();
  1761 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1762   Assembler::Condition acond;
  1763   switch (condition) {
  1764     case lir_cond_equal:        acond = Assembler::equal;        break;
  1765     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1766     case lir_cond_less:         acond = Assembler::less;         break;
  1767     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1768     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1769     case lir_cond_greater:      acond = Assembler::greater;      break;
  1770     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1771     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1772     default:                         ShouldNotReachHere();
  1773   };
  1775   if (opr1->is_constant() && opr1->type() == T_INT) {
  1776     Register dest = result->as_register();
  1777     // load up first part of constant before branch
  1778     // and do the rest in the delay slot.
  1779     if (!Assembler::is_simm13(opr1->as_jint())) {
  1780       __ sethi(opr1->as_jint(), dest);
  1782   } else if (opr1->is_constant()) {
  1783     const2reg(opr1, result, lir_patch_none, NULL);
  1784   } else if (opr1->is_register()) {
  1785     reg2reg(opr1, result);
  1786   } else if (opr1->is_stack()) {
  1787     stack2reg(opr1, result, result->type());
  1788   } else {
  1789     ShouldNotReachHere();
  1791   Label skip;
  1792 #ifdef _LP64
  1793     if  (type == T_INT) {
  1794       __ br(acond, false, Assembler::pt, skip);
  1795     } else
  1796 #endif
  1797       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1798   if (opr1->is_constant() && opr1->type() == T_INT) {
  1799     Register dest = result->as_register();
  1800     if (Assembler::is_simm13(opr1->as_jint())) {
  1801       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1802     } else {
  1803       // the sethi has been done above, so just put in the low 10 bits
  1804       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1806   } else {
  1807     // can't do anything useful in the delay slot
  1808     __ delayed()->nop();
  1810   if (opr2->is_constant()) {
  1811     const2reg(opr2, result, lir_patch_none, NULL);
  1812   } else if (opr2->is_register()) {
  1813     reg2reg(opr2, result);
  1814   } else if (opr2->is_stack()) {
  1815     stack2reg(opr2, result, result->type());
  1816   } else {
  1817     ShouldNotReachHere();
  1819   __ bind(skip);
  1823 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1824   assert(info == NULL, "unused on this code path");
  1825   assert(left->is_register(), "wrong items state");
  1826   assert(dest->is_register(), "wrong items state");
  1828   if (right->is_register()) {
  1829     if (dest->is_float_kind()) {
  1831       FloatRegister lreg, rreg, res;
  1832       FloatRegisterImpl::Width w;
  1833       if (right->is_single_fpu()) {
  1834         w = FloatRegisterImpl::S;
  1835         lreg = left->as_float_reg();
  1836         rreg = right->as_float_reg();
  1837         res  = dest->as_float_reg();
  1838       } else {
  1839         w = FloatRegisterImpl::D;
  1840         lreg = left->as_double_reg();
  1841         rreg = right->as_double_reg();
  1842         res  = dest->as_double_reg();
  1845       switch (code) {
  1846         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1847         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1848         case lir_mul: // fall through
  1849         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1850         case lir_div: // fall through
  1851         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1852         default: ShouldNotReachHere();
  1855     } else if (dest->is_double_cpu()) {
  1856 #ifdef _LP64
  1857       Register dst_lo = dest->as_register_lo();
  1858       Register op1_lo = left->as_pointer_register();
  1859       Register op2_lo = right->as_pointer_register();
  1861       switch (code) {
  1862         case lir_add:
  1863           __ add(op1_lo, op2_lo, dst_lo);
  1864           break;
  1866         case lir_sub:
  1867           __ sub(op1_lo, op2_lo, dst_lo);
  1868           break;
  1870         default: ShouldNotReachHere();
  1872 #else
  1873       Register op1_lo = left->as_register_lo();
  1874       Register op1_hi = left->as_register_hi();
  1875       Register op2_lo = right->as_register_lo();
  1876       Register op2_hi = right->as_register_hi();
  1877       Register dst_lo = dest->as_register_lo();
  1878       Register dst_hi = dest->as_register_hi();
  1880       switch (code) {
  1881         case lir_add:
  1882           __ addcc(op1_lo, op2_lo, dst_lo);
  1883           __ addc (op1_hi, op2_hi, dst_hi);
  1884           break;
  1886         case lir_sub:
  1887           __ subcc(op1_lo, op2_lo, dst_lo);
  1888           __ subc (op1_hi, op2_hi, dst_hi);
  1889           break;
  1891         default: ShouldNotReachHere();
  1893 #endif
  1894     } else {
  1895       assert (right->is_single_cpu(), "Just Checking");
  1897       Register lreg = left->as_register();
  1898       Register res  = dest->as_register();
  1899       Register rreg = right->as_register();
  1900       switch (code) {
  1901         case lir_add:  __ add  (lreg, rreg, res); break;
  1902         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1903         case lir_mul:  __ mulx (lreg, rreg, res); break;
  1904         default: ShouldNotReachHere();
  1907   } else {
  1908     assert (right->is_constant(), "must be constant");
  1910     if (dest->is_single_cpu()) {
  1911       Register lreg = left->as_register();
  1912       Register res  = dest->as_register();
  1913       int    simm13 = right->as_constant_ptr()->as_jint();
  1915       switch (code) {
  1916         case lir_add:  __ add  (lreg, simm13, res); break;
  1917         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1918         case lir_mul:  __ mulx (lreg, simm13, res); break;
  1919         default: ShouldNotReachHere();
  1921     } else {
  1922       Register lreg = left->as_pointer_register();
  1923       Register res  = dest->as_register_lo();
  1924       long con = right->as_constant_ptr()->as_jlong();
  1925       assert(Assembler::is_simm13(con), "must be simm13");
  1927       switch (code) {
  1928         case lir_add:  __ add  (lreg, (int)con, res); break;
  1929         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1930         case lir_mul:  __ mulx (lreg, (int)con, res); break;
  1931         default: ShouldNotReachHere();
  1938 void LIR_Assembler::fpop() {
  1939   // do nothing
  1943 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1944   switch (code) {
  1945     case lir_sin:
  1946     case lir_tan:
  1947     case lir_cos: {
  1948       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1949       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1950       break;
  1952     case lir_sqrt: {
  1953       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1954       FloatRegister src_reg = value->as_double_reg();
  1955       FloatRegister dst_reg = dest->as_double_reg();
  1956       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1957       break;
  1959     case lir_abs: {
  1960       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1961       FloatRegister src_reg = value->as_double_reg();
  1962       FloatRegister dst_reg = dest->as_double_reg();
  1963       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1964       break;
  1966     default: {
  1967       ShouldNotReachHere();
  1968       break;
  1974 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1975   if (right->is_constant()) {
  1976     if (dest->is_single_cpu()) {
  1977       int simm13 = right->as_constant_ptr()->as_jint();
  1978       switch (code) {
  1979         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1980         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1981         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1982         default: ShouldNotReachHere();
  1984     } else {
  1985       long c = right->as_constant_ptr()->as_jlong();
  1986       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1987       int simm13 = (int)c;
  1988       switch (code) {
  1989         case lir_logic_and:
  1990 #ifndef _LP64
  1991           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1992 #endif
  1993           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1994           break;
  1996         case lir_logic_or:
  1997 #ifndef _LP64
  1998           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1999 #endif
  2000           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2001           break;
  2003         case lir_logic_xor:
  2004 #ifndef _LP64
  2005           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2006 #endif
  2007           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2008           break;
  2010         default: ShouldNotReachHere();
  2013   } else {
  2014     assert(right->is_register(), "right should be in register");
  2016     if (dest->is_single_cpu()) {
  2017       switch (code) {
  2018         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2019         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2020         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2021         default: ShouldNotReachHere();
  2023     } else {
  2024 #ifdef _LP64
  2025       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2026                                                                         left->as_register_lo();
  2027       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2028                                                                           right->as_register_lo();
  2030       switch (code) {
  2031         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2032         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2033         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2034         default: ShouldNotReachHere();
  2036 #else
  2037       switch (code) {
  2038         case lir_logic_and:
  2039           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2040           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2041           break;
  2043         case lir_logic_or:
  2044           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2045           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2046           break;
  2048         case lir_logic_xor:
  2049           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2050           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2051           break;
  2053         default: ShouldNotReachHere();
  2055 #endif
  2061 int LIR_Assembler::shift_amount(BasicType t) {
  2062   int elem_size = type2aelembytes(t);
  2063   switch (elem_size) {
  2064     case 1 : return 0;
  2065     case 2 : return 1;
  2066     case 4 : return 2;
  2067     case 8 : return 3;
  2069   ShouldNotReachHere();
  2070   return -1;
  2074 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2075   assert(exceptionOop->as_register() == Oexception, "should match");
  2076   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2078   info->add_register_oop(exceptionOop);
  2080   // reuse the debug info from the safepoint poll for the throw op itself
  2081   address pc_for_athrow  = __ pc();
  2082   int pc_for_athrow_offset = __ offset();
  2083   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2084   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2085   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2087   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2088   __ delayed()->nop();
  2092 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2093   assert(exceptionOop->as_register() == Oexception, "should match");
  2095   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2096   __ delayed()->nop();
  2099 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2100   Register src = op->src()->as_register();
  2101   Register dst = op->dst()->as_register();
  2102   Register src_pos = op->src_pos()->as_register();
  2103   Register dst_pos = op->dst_pos()->as_register();
  2104   Register length  = op->length()->as_register();
  2105   Register tmp = op->tmp()->as_register();
  2106   Register tmp2 = O7;
  2108   int flags = op->flags();
  2109   ciArrayKlass* default_type = op->expected_type();
  2110   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2111   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2113 #ifdef _LP64
  2114   // higher 32bits must be null
  2115   __ sra(dst_pos, 0, dst_pos);
  2116   __ sra(src_pos, 0, src_pos);
  2117   __ sra(length, 0, length);
  2118 #endif
  2120   // set up the arraycopy stub information
  2121   ArrayCopyStub* stub = op->stub();
  2123   // always do stub if no type information is available.  it's ok if
  2124   // the known type isn't loaded since the code sanity checks
  2125   // in debug mode and the type isn't required when we know the exact type
  2126   // also check that the type is an array type.
  2127   if (op->expected_type() == NULL) {
  2128     __ mov(src,     O0);
  2129     __ mov(src_pos, O1);
  2130     __ mov(dst,     O2);
  2131     __ mov(dst_pos, O3);
  2132     __ mov(length,  O4);
  2133     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2135     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2136       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2137     } else {
  2138 #ifndef PRODUCT
  2139       if (PrintC1Statistics) {
  2140         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2141         __ inc_counter(counter, G1, G3);
  2143 #endif
  2144       __ call_VM_leaf(tmp, copyfunc_addr);
  2147     if (copyfunc_addr != NULL) {
  2148       __ xor3(O0, -1, tmp);
  2149       __ sub(length, tmp, length);
  2150       __ add(src_pos, tmp, src_pos);
  2151       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2152       __ delayed()->add(dst_pos, tmp, dst_pos);
  2153     } else {
  2154       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2155       __ delayed()->nop();
  2157     __ bind(*stub->continuation());
  2158     return;
  2161   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2163   // make sure src and dst are non-null and load array length
  2164   if (flags & LIR_OpArrayCopy::src_null_check) {
  2165     __ tst(src);
  2166     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2167     __ delayed()->nop();
  2170   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2171     __ tst(dst);
  2172     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2173     __ delayed()->nop();
  2176   // If the compiler was not able to prove that exact type of the source or the destination
  2177   // of the arraycopy is an array type, check at runtime if the source or the destination is
  2178   // an instance type.
  2179   if (flags & LIR_OpArrayCopy::type_check) {
  2180     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
  2181       __ load_klass(dst, tmp);
  2182       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
  2183       __ cmp(tmp2, Klass::_lh_neutral_value);
  2184       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
  2185       __ delayed()->nop();
  2188     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
  2189       __ load_klass(src, tmp);
  2190       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
  2191       __ cmp(tmp2, Klass::_lh_neutral_value);
  2192       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
  2193       __ delayed()->nop();
  2197   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2198     // test src_pos register
  2199     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2200     __ delayed()->nop();
  2203   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2204     // test dst_pos register
  2205     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2206     __ delayed()->nop();
  2209   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2210     // make sure length isn't negative
  2211     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2212     __ delayed()->nop();
  2215   if (flags & LIR_OpArrayCopy::src_range_check) {
  2216     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2217     __ add(length, src_pos, tmp);
  2218     __ cmp(tmp2, tmp);
  2219     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2220     __ delayed()->nop();
  2223   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2224     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2225     __ add(length, dst_pos, tmp);
  2226     __ cmp(tmp2, tmp);
  2227     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2228     __ delayed()->nop();
  2231   int shift = shift_amount(basic_type);
  2233   if (flags & LIR_OpArrayCopy::type_check) {
  2234     // We don't know the array types are compatible
  2235     if (basic_type != T_OBJECT) {
  2236       // Simple test for basic type arrays
  2237       if (UseCompressedClassPointers) {
  2238         // We don't need decode because we just need to compare
  2239         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2240         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2241         __ cmp(tmp, tmp2);
  2242         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2243       } else {
  2244         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2245         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2246         __ cmp(tmp, tmp2);
  2247         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2249       __ delayed()->nop();
  2250     } else {
  2251       // For object arrays, if src is a sub class of dst then we can
  2252       // safely do the copy.
  2253       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2255       Label cont, slow;
  2256       assert_different_registers(tmp, tmp2, G3, G1);
  2258       __ load_klass(src, G3);
  2259       __ load_klass(dst, G1);
  2261       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2263       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2264       __ delayed()->nop();
  2266       __ cmp(G3, 0);
  2267       if (copyfunc_addr != NULL) { // use stub if available
  2268         // src is not a sub class of dst so we have to do a
  2269         // per-element check.
  2270         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2271         __ delayed()->nop();
  2273         __ bind(slow);
  2275         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2276         if ((flags & mask) != mask) {
  2277           // Check that at least both of them object arrays.
  2278           assert(flags & mask, "one of the two should be known to be an object array");
  2280           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2281             __ load_klass(src, tmp);
  2282           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2283             __ load_klass(dst, tmp);
  2285           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2287           __ lduw(tmp, lh_offset, tmp2);
  2289           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2290           __ set(objArray_lh, tmp);
  2291           __ cmp(tmp, tmp2);
  2292           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2293           __ delayed()->nop();
  2296         Register src_ptr = O0;
  2297         Register dst_ptr = O1;
  2298         Register len     = O2;
  2299         Register chk_off = O3;
  2300         Register super_k = O4;
  2302         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2303         if (shift == 0) {
  2304           __ add(src_ptr, src_pos, src_ptr);
  2305         } else {
  2306           __ sll(src_pos, shift, tmp);
  2307           __ add(src_ptr, tmp, src_ptr);
  2310         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2311         if (shift == 0) {
  2312           __ add(dst_ptr, dst_pos, dst_ptr);
  2313         } else {
  2314           __ sll(dst_pos, shift, tmp);
  2315           __ add(dst_ptr, tmp, dst_ptr);
  2317         __ mov(length, len);
  2318         __ load_klass(dst, tmp);
  2320         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  2321         __ ld_ptr(tmp, ek_offset, super_k);
  2323         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2324         __ lduw(super_k, sco_offset, chk_off);
  2326         __ call_VM_leaf(tmp, copyfunc_addr);
  2328 #ifndef PRODUCT
  2329         if (PrintC1Statistics) {
  2330           Label failed;
  2331           __ br_notnull_short(O0, Assembler::pn, failed);
  2332           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2333           __ bind(failed);
  2335 #endif
  2337         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2338         __ delayed()->xor3(O0, -1, tmp);
  2340 #ifndef PRODUCT
  2341         if (PrintC1Statistics) {
  2342           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2344 #endif
  2346         __ sub(length, tmp, length);
  2347         __ add(src_pos, tmp, src_pos);
  2348         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2349         __ delayed()->add(dst_pos, tmp, dst_pos);
  2351         __ bind(cont);
  2352       } else {
  2353         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2354         __ delayed()->nop();
  2355         __ bind(cont);
  2360 #ifdef ASSERT
  2361   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2362     // Sanity check the known type with the incoming class.  For the
  2363     // primitive case the types must match exactly with src.klass and
  2364     // dst.klass each exactly matching the default type.  For the
  2365     // object array case, if no type check is needed then either the
  2366     // dst type is exactly the expected type and the src type is a
  2367     // subtype which we can't check or src is the same array as dst
  2368     // but not necessarily exactly of type default_type.
  2369     Label known_ok, halt;
  2370     metadata2reg(op->expected_type()->constant_encoding(), tmp);
  2371     if (UseCompressedClassPointers) {
  2372       // tmp holds the default type. It currently comes uncompressed after the
  2373       // load of a constant, so encode it.
  2374       __ encode_klass_not_null(tmp);
  2375       // load the raw value of the dst klass, since we will be comparing
  2376       // uncompressed values directly.
  2377       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2378       if (basic_type != T_OBJECT) {
  2379         __ cmp(tmp, tmp2);
  2380         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2381         // load the raw value of the src klass.
  2382         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2383         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2384       } else {
  2385         __ cmp(tmp, tmp2);
  2386         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2387         __ delayed()->cmp(src, dst);
  2388         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2389         __ delayed()->nop();
  2391     } else {
  2392       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2393       if (basic_type != T_OBJECT) {
  2394         __ cmp(tmp, tmp2);
  2395         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2396         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2397         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2398       } else {
  2399         __ cmp(tmp, tmp2);
  2400         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2401         __ delayed()->cmp(src, dst);
  2402         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2403         __ delayed()->nop();
  2406     __ bind(halt);
  2407     __ stop("incorrect type information in arraycopy");
  2408     __ bind(known_ok);
  2410 #endif
  2412 #ifndef PRODUCT
  2413   if (PrintC1Statistics) {
  2414     address counter = Runtime1::arraycopy_count_address(basic_type);
  2415     __ inc_counter(counter, G1, G3);
  2417 #endif
  2419   Register src_ptr = O0;
  2420   Register dst_ptr = O1;
  2421   Register len     = O2;
  2423   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2424   if (shift == 0) {
  2425     __ add(src_ptr, src_pos, src_ptr);
  2426   } else {
  2427     __ sll(src_pos, shift, tmp);
  2428     __ add(src_ptr, tmp, src_ptr);
  2431   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2432   if (shift == 0) {
  2433     __ add(dst_ptr, dst_pos, dst_ptr);
  2434   } else {
  2435     __ sll(dst_pos, shift, tmp);
  2436     __ add(dst_ptr, tmp, dst_ptr);
  2439   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2440   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2441   const char *name;
  2442   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2444   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2445   __ mov(length, len);
  2446   __ call_VM_leaf(tmp, entry);
  2448   __ bind(*stub->continuation());
  2452 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2453   if (dest->is_single_cpu()) {
  2454 #ifdef _LP64
  2455     if (left->type() == T_OBJECT) {
  2456       switch (code) {
  2457         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2458         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2459         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2460         default: ShouldNotReachHere();
  2462     } else
  2463 #endif
  2464       switch (code) {
  2465         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2466         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2467         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2468         default: ShouldNotReachHere();
  2470   } else {
  2471 #ifdef _LP64
  2472     switch (code) {
  2473       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2474       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2475       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2476       default: ShouldNotReachHere();
  2478 #else
  2479     switch (code) {
  2480       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2481       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2482       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2483       default: ShouldNotReachHere();
  2485 #endif
  2490 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2491 #ifdef _LP64
  2492   if (left->type() == T_OBJECT) {
  2493     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2494     Register l = left->as_register();
  2495     Register d = dest->as_register_lo();
  2496     switch (code) {
  2497       case lir_shl:  __ sllx  (l, count, d); break;
  2498       case lir_shr:  __ srax  (l, count, d); break;
  2499       case lir_ushr: __ srlx  (l, count, d); break;
  2500       default: ShouldNotReachHere();
  2502     return;
  2504 #endif
  2506   if (dest->is_single_cpu()) {
  2507     count = count & 0x1F; // Java spec
  2508     switch (code) {
  2509       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2510       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2511       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2512       default: ShouldNotReachHere();
  2514   } else if (dest->is_double_cpu()) {
  2515     count = count & 63; // Java spec
  2516     switch (code) {
  2517       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2518       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2519       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2520       default: ShouldNotReachHere();
  2522   } else {
  2523     ShouldNotReachHere();
  2528 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2529   assert(op->tmp1()->as_register()  == G1 &&
  2530          op->tmp2()->as_register()  == G3 &&
  2531          op->tmp3()->as_register()  == G4 &&
  2532          op->obj()->as_register()   == O0 &&
  2533          op->klass()->as_register() == G5, "must be");
  2534   if (op->init_check()) {
  2535     __ ldub(op->klass()->as_register(),
  2536           in_bytes(InstanceKlass::init_state_offset()),
  2537           op->tmp1()->as_register());
  2538     add_debug_info_for_null_check_here(op->stub()->info());
  2539     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
  2540     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2541     __ delayed()->nop();
  2543   __ allocate_object(op->obj()->as_register(),
  2544                      op->tmp1()->as_register(),
  2545                      op->tmp2()->as_register(),
  2546                      op->tmp3()->as_register(),
  2547                      op->header_size(),
  2548                      op->object_size(),
  2549                      op->klass()->as_register(),
  2550                      *op->stub()->entry());
  2551   __ bind(*op->stub()->continuation());
  2552   __ verify_oop(op->obj()->as_register());
  2556 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2557   assert(op->tmp1()->as_register()  == G1 &&
  2558          op->tmp2()->as_register()  == G3 &&
  2559          op->tmp3()->as_register()  == G4 &&
  2560          op->tmp4()->as_register()  == O1 &&
  2561          op->klass()->as_register() == G5, "must be");
  2563   LP64_ONLY( __ signx(op->len()->as_register()); )
  2564   if (UseSlowPath ||
  2565       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2566       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2567     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2568     __ delayed()->nop();
  2569   } else {
  2570     __ allocate_array(op->obj()->as_register(),
  2571                       op->len()->as_register(),
  2572                       op->tmp1()->as_register(),
  2573                       op->tmp2()->as_register(),
  2574                       op->tmp3()->as_register(),
  2575                       arrayOopDesc::header_size(op->type()),
  2576                       type2aelembytes(op->type()),
  2577                       op->klass()->as_register(),
  2578                       *op->stub()->entry());
  2580   __ bind(*op->stub()->continuation());
  2584 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2585                                         ciMethodData *md, ciProfileData *data,
  2586                                         Register recv, Register tmp1, Label* update_done) {
  2587   uint i;
  2588   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2589     Label next_test;
  2590     // See if the receiver is receiver[n].
  2591     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2592                           mdo_offset_bias);
  2593     __ ld_ptr(receiver_addr, tmp1);
  2594     __ verify_klass_ptr(tmp1);
  2595     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2596     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2597                       mdo_offset_bias);
  2598     __ ld_ptr(data_addr, tmp1);
  2599     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2600     __ st_ptr(tmp1, data_addr);
  2601     __ ba(*update_done);
  2602     __ delayed()->nop();
  2603     __ bind(next_test);
  2606   // Didn't find receiver; find next empty slot and fill it in
  2607   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2608     Label next_test;
  2609     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2610                       mdo_offset_bias);
  2611     __ ld_ptr(recv_addr, tmp1);
  2612     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2613     __ st_ptr(recv, recv_addr);
  2614     __ set(DataLayout::counter_increment, tmp1);
  2615     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2616               mdo_offset_bias);
  2617     __ ba(*update_done);
  2618     __ delayed()->nop();
  2619     __ bind(next_test);
  2624 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2625                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2626   md = method->method_data_or_null();
  2627   assert(md != NULL, "Sanity");
  2628   data = md->bci_to_data(bci);
  2629   assert(data != NULL,       "need data for checkcast");
  2630   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2631   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2632     // The offset is large so bias the mdo by the base of the slot so
  2633     // that the ld can use simm13s to reference the slots of the data
  2634     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2638 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2639   // we always need a stub for the failure case.
  2640   CodeStub* stub = op->stub();
  2641   Register obj = op->object()->as_register();
  2642   Register k_RInfo = op->tmp1()->as_register();
  2643   Register klass_RInfo = op->tmp2()->as_register();
  2644   Register dst = op->result_opr()->as_register();
  2645   Register Rtmp1 = op->tmp3()->as_register();
  2646   ciKlass* k = op->klass();
  2649   if (obj == k_RInfo) {
  2650     k_RInfo = klass_RInfo;
  2651     klass_RInfo = obj;
  2654   ciMethodData* md;
  2655   ciProfileData* data;
  2656   int mdo_offset_bias = 0;
  2657   if (op->should_profile()) {
  2658     ciMethod* method = op->profiled_method();
  2659     assert(method != NULL, "Should have method");
  2660     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2662     Label not_null;
  2663     __ br_notnull_short(obj, Assembler::pn, not_null);
  2664     Register mdo      = k_RInfo;
  2665     Register data_val = Rtmp1;
  2666     metadata2reg(md->constant_encoding(), mdo);
  2667     if (mdo_offset_bias > 0) {
  2668       __ set(mdo_offset_bias, data_val);
  2669       __ add(mdo, data_val, mdo);
  2671     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2672     __ ldub(flags_addr, data_val);
  2673     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2674     __ stb(data_val, flags_addr);
  2675     __ ba(*obj_is_null);
  2676     __ delayed()->nop();
  2677     __ bind(not_null);
  2678   } else {
  2679     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2680     __ delayed()->nop();
  2683   Label profile_cast_failure, profile_cast_success;
  2684   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2685   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2687   // patching may screw with our temporaries on sparc,
  2688   // so let's do it before loading the class
  2689   if (k->is_loaded()) {
  2690     metadata2reg(k->constant_encoding(), k_RInfo);
  2691   } else {
  2692     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  2694   assert(obj != k_RInfo, "must be different");
  2696   // get object class
  2697   // not a safepoint as obj null check happens earlier
  2698   __ load_klass(obj, klass_RInfo);
  2699   if (op->fast_check()) {
  2700     assert_different_registers(klass_RInfo, k_RInfo);
  2701     __ cmp(k_RInfo, klass_RInfo);
  2702     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2703     __ delayed()->nop();
  2704   } else {
  2705     bool need_slow_path = true;
  2706     if (k->is_loaded()) {
  2707       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2708         need_slow_path = false;
  2709       // perform the fast part of the checking logic
  2710       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2711                                        (need_slow_path ? success_target : NULL),
  2712                                        failure_target, NULL,
  2713                                        RegisterOrConstant(k->super_check_offset()));
  2714     } else {
  2715       // perform the fast part of the checking logic
  2716       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2717                                        failure_target, NULL);
  2719     if (need_slow_path) {
  2720       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2721       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2722       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2723       __ delayed()->nop();
  2724       __ cmp(G3, 0);
  2725       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2726       __ delayed()->nop();
  2727       // Fall through to success case
  2731   if (op->should_profile()) {
  2732     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2733     assert_different_registers(obj, mdo, recv, tmp1);
  2734     __ bind(profile_cast_success);
  2735     metadata2reg(md->constant_encoding(), mdo);
  2736     if (mdo_offset_bias > 0) {
  2737       __ set(mdo_offset_bias, tmp1);
  2738       __ add(mdo, tmp1, mdo);
  2740     __ load_klass(obj, recv);
  2741     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2742     // Jump over the failure case
  2743     __ ba(*success);
  2744     __ delayed()->nop();
  2745     // Cast failure case
  2746     __ bind(profile_cast_failure);
  2747     metadata2reg(md->constant_encoding(), mdo);
  2748     if (mdo_offset_bias > 0) {
  2749       __ set(mdo_offset_bias, tmp1);
  2750       __ add(mdo, tmp1, mdo);
  2752     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2753     __ ld_ptr(data_addr, tmp1);
  2754     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2755     __ st_ptr(tmp1, data_addr);
  2756     __ ba(*failure);
  2757     __ delayed()->nop();
  2759   __ ba(*success);
  2760   __ delayed()->nop();
  2763 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2764   LIR_Code code = op->code();
  2765   if (code == lir_store_check) {
  2766     Register value = op->object()->as_register();
  2767     Register array = op->array()->as_register();
  2768     Register k_RInfo = op->tmp1()->as_register();
  2769     Register klass_RInfo = op->tmp2()->as_register();
  2770     Register Rtmp1 = op->tmp3()->as_register();
  2772     __ verify_oop(value);
  2773     CodeStub* stub = op->stub();
  2774     // check if it needs to be profiled
  2775     ciMethodData* md;
  2776     ciProfileData* data;
  2777     int mdo_offset_bias = 0;
  2778     if (op->should_profile()) {
  2779       ciMethod* method = op->profiled_method();
  2780       assert(method != NULL, "Should have method");
  2781       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2783     Label profile_cast_success, profile_cast_failure, done;
  2784     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2785     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2787     if (op->should_profile()) {
  2788       Label not_null;
  2789       __ br_notnull_short(value, Assembler::pn, not_null);
  2790       Register mdo      = k_RInfo;
  2791       Register data_val = Rtmp1;
  2792       metadata2reg(md->constant_encoding(), mdo);
  2793       if (mdo_offset_bias > 0) {
  2794         __ set(mdo_offset_bias, data_val);
  2795         __ add(mdo, data_val, mdo);
  2797       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2798       __ ldub(flags_addr, data_val);
  2799       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2800       __ stb(data_val, flags_addr);
  2801       __ ba_short(done);
  2802       __ bind(not_null);
  2803     } else {
  2804       __ br_null_short(value, Assembler::pn, done);
  2806     add_debug_info_for_null_check_here(op->info_for_exception());
  2807     __ load_klass(array, k_RInfo);
  2808     __ load_klass(value, klass_RInfo);
  2810     // get instance klass
  2811     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
  2812     // perform the fast part of the checking logic
  2813     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2815     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2816     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2817     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2818     __ delayed()->nop();
  2819     __ cmp(G3, 0);
  2820     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2821     __ delayed()->nop();
  2822     // fall through to the success case
  2824     if (op->should_profile()) {
  2825       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2826       assert_different_registers(value, mdo, recv, tmp1);
  2827       __ bind(profile_cast_success);
  2828       metadata2reg(md->constant_encoding(), mdo);
  2829       if (mdo_offset_bias > 0) {
  2830         __ set(mdo_offset_bias, tmp1);
  2831         __ add(mdo, tmp1, mdo);
  2833       __ load_klass(value, recv);
  2834       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2835       __ ba_short(done);
  2836       // Cast failure case
  2837       __ bind(profile_cast_failure);
  2838       metadata2reg(md->constant_encoding(), mdo);
  2839       if (mdo_offset_bias > 0) {
  2840         __ set(mdo_offset_bias, tmp1);
  2841         __ add(mdo, tmp1, mdo);
  2843       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2844       __ ld_ptr(data_addr, tmp1);
  2845       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2846       __ st_ptr(tmp1, data_addr);
  2847       __ ba(*stub->entry());
  2848       __ delayed()->nop();
  2850     __ bind(done);
  2851   } else if (code == lir_checkcast) {
  2852     Register obj = op->object()->as_register();
  2853     Register dst = op->result_opr()->as_register();
  2854     Label success;
  2855     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2856     __ bind(success);
  2857     __ mov(obj, dst);
  2858   } else if (code == lir_instanceof) {
  2859     Register obj = op->object()->as_register();
  2860     Register dst = op->result_opr()->as_register();
  2861     Label success, failure, done;
  2862     emit_typecheck_helper(op, &success, &failure, &failure);
  2863     __ bind(failure);
  2864     __ set(0, dst);
  2865     __ ba_short(done);
  2866     __ bind(success);
  2867     __ set(1, dst);
  2868     __ bind(done);
  2869   } else {
  2870     ShouldNotReachHere();
  2876 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2877   if (op->code() == lir_cas_long) {
  2878     assert(VM_Version::supports_cx8(), "wrong machine");
  2879     Register addr = op->addr()->as_pointer_register();
  2880     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2881     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2882     Register new_value_lo = op->new_value()->as_register_lo();
  2883     Register new_value_hi = op->new_value()->as_register_hi();
  2884     Register t1 = op->tmp1()->as_register();
  2885     Register t2 = op->tmp2()->as_register();
  2886 #ifdef _LP64
  2887     __ mov(cmp_value_lo, t1);
  2888     __ mov(new_value_lo, t2);
  2889     // perform the compare and swap operation
  2890     __ casx(addr, t1, t2);
  2891     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2892     // overwritten with the original value in "addr" and will be equal to t1.
  2893     __ cmp(t1, t2);
  2894 #else
  2895     // move high and low halves of long values into single registers
  2896     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2897     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2898     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2899     __ sllx(new_value_hi, 32, t2);
  2900     __ srl(new_value_lo, 0, new_value_lo);
  2901     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2902     // perform the compare and swap operation
  2903     __ casx(addr, t1, t2);
  2904     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2905     // overwritten with the original value in "addr" and will be equal to t1.
  2906     // Produce icc flag for 32bit.
  2907     __ sub(t1, t2, t2);
  2908     __ srlx(t2, 32, t1);
  2909     __ orcc(t2, t1, G0);
  2910 #endif
  2911   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2912     Register addr = op->addr()->as_pointer_register();
  2913     Register cmp_value = op->cmp_value()->as_register();
  2914     Register new_value = op->new_value()->as_register();
  2915     Register t1 = op->tmp1()->as_register();
  2916     Register t2 = op->tmp2()->as_register();
  2917     __ mov(cmp_value, t1);
  2918     __ mov(new_value, t2);
  2919     if (op->code() == lir_cas_obj) {
  2920       if (UseCompressedOops) {
  2921         __ encode_heap_oop(t1);
  2922         __ encode_heap_oop(t2);
  2923         __ cas(addr, t1, t2);
  2924       } else {
  2925         __ cas_ptr(addr, t1, t2);
  2927     } else {
  2928       __ cas(addr, t1, t2);
  2930     __ cmp(t1, t2);
  2931   } else {
  2932     Unimplemented();
  2936 void LIR_Assembler::set_24bit_FPU() {
  2937   Unimplemented();
  2941 void LIR_Assembler::reset_FPU() {
  2942   Unimplemented();
  2946 void LIR_Assembler::breakpoint() {
  2947   __ breakpoint_trap();
  2951 void LIR_Assembler::push(LIR_Opr opr) {
  2952   Unimplemented();
  2956 void LIR_Assembler::pop(LIR_Opr opr) {
  2957   Unimplemented();
  2961 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2962   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2963   Register dst = dst_opr->as_register();
  2964   Register reg = mon_addr.base();
  2965   int offset = mon_addr.disp();
  2966   // compute pointer to BasicLock
  2967   if (mon_addr.is_simm13()) {
  2968     __ add(reg, offset, dst);
  2969   } else {
  2970     __ set(offset, dst);
  2971     __ add(dst, reg, dst);
  2975 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  2976   fatal("CRC32 intrinsic is not implemented on this platform");
  2979 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2980   Register obj = op->obj_opr()->as_register();
  2981   Register hdr = op->hdr_opr()->as_register();
  2982   Register lock = op->lock_opr()->as_register();
  2984   // obj may not be an oop
  2985   if (op->code() == lir_lock) {
  2986     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2987     if (UseFastLocking) {
  2988       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2989       // add debug info for NullPointerException only if one is possible
  2990       if (op->info() != NULL) {
  2991         add_debug_info_for_null_check_here(op->info());
  2993       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2994     } else {
  2995       // always do slow locking
  2996       // note: the slow locking code could be inlined here, however if we use
  2997       //       slow locking, speed doesn't matter anyway and this solution is
  2998       //       simpler and requires less duplicated code - additionally, the
  2999       //       slow locking code is the same in either case which simplifies
  3000       //       debugging
  3001       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  3002       __ delayed()->nop();
  3004   } else {
  3005     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  3006     if (UseFastLocking) {
  3007       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3008       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3009     } else {
  3010       // always do slow unlocking
  3011       // note: the slow unlocking code could be inlined here, however if we use
  3012       //       slow unlocking, speed doesn't matter anyway and this solution is
  3013       //       simpler and requires less duplicated code - additionally, the
  3014       //       slow unlocking code is the same in either case which simplifies
  3015       //       debugging
  3016       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  3017       __ delayed()->nop();
  3020   __ bind(*op->stub()->continuation());
  3024 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3025   ciMethod* method = op->profiled_method();
  3026   int bci          = op->profiled_bci();
  3027   ciMethod* callee = op->profiled_callee();
  3029   // Update counter for all call types
  3030   ciMethodData* md = method->method_data_or_null();
  3031   assert(md != NULL, "Sanity");
  3032   ciProfileData* data = md->bci_to_data(bci);
  3033   assert(data->is_CounterData(), "need CounterData for calls");
  3034   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3035   Register mdo  = op->mdo()->as_register();
  3036 #ifdef _LP64
  3037   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  3038   Register tmp1 = op->tmp1()->as_register_lo();
  3039 #else
  3040   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  3041   Register tmp1 = op->tmp1()->as_register();
  3042 #endif
  3043   metadata2reg(md->constant_encoding(), mdo);
  3044   int mdo_offset_bias = 0;
  3045   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  3046                             data->size_in_bytes())) {
  3047     // The offset is large so bias the mdo by the base of the slot so
  3048     // that the ld can use simm13s to reference the slots of the data
  3049     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  3050     __ set(mdo_offset_bias, O7);
  3051     __ add(mdo, O7, mdo);
  3054   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  3055   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3056   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3057   // Perform additional virtual call profiling for invokevirtual and
  3058   // invokeinterface bytecodes
  3059   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3060       !callee_is_static &&  // required for optimized MH invokes
  3061       C1ProfileVirtualCalls) {
  3062     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3063     Register recv = op->recv()->as_register();
  3064     assert_different_registers(mdo, tmp1, recv);
  3065     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3066     ciKlass* known_klass = op->known_holder();
  3067     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3068       // We know the type that will be seen at this call site; we can
  3069       // statically update the MethodData* rather than needing to do
  3070       // dynamic tests on the receiver type
  3072       // NOTE: we should probably put a lock around this search to
  3073       // avoid collisions by concurrent compilations
  3074       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3075       uint i;
  3076       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3077         ciKlass* receiver = vc_data->receiver(i);
  3078         if (known_klass->equals(receiver)) {
  3079           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3080                                                          VirtualCallData::receiver_count_offset(i)) -
  3081                             mdo_offset_bias);
  3082           __ ld_ptr(data_addr, tmp1);
  3083           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3084           __ st_ptr(tmp1, data_addr);
  3085           return;
  3089       // Receiver type not found in profile data; select an empty slot
  3091       // Note that this is less efficient than it should be because it
  3092       // always does a write to the receiver part of the
  3093       // VirtualCallData rather than just the first time
  3094       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3095         ciKlass* receiver = vc_data->receiver(i);
  3096         if (receiver == NULL) {
  3097           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3098                             mdo_offset_bias);
  3099           metadata2reg(known_klass->constant_encoding(), tmp1);
  3100           __ st_ptr(tmp1, recv_addr);
  3101           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3102                             mdo_offset_bias);
  3103           __ ld_ptr(data_addr, tmp1);
  3104           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3105           __ st_ptr(tmp1, data_addr);
  3106           return;
  3109     } else {
  3110       __ load_klass(recv, recv);
  3111       Label update_done;
  3112       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3113       // Receiver did not match any saved receiver and there is no empty row for it.
  3114       // Increment total counter to indicate polymorphic case.
  3115       __ ld_ptr(counter_addr, tmp1);
  3116       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3117       __ st_ptr(tmp1, counter_addr);
  3119       __ bind(update_done);
  3121   } else {
  3122     // Static call
  3123     __ ld_ptr(counter_addr, tmp1);
  3124     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3125     __ st_ptr(tmp1, counter_addr);
  3129 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
  3130   Register obj = op->obj()->as_register();
  3131   Register tmp1 = op->tmp()->as_pointer_register();
  3132   Register tmp2 = G1;
  3133   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
  3134   ciKlass* exact_klass = op->exact_klass();
  3135   intptr_t current_klass = op->current_klass();
  3136   bool not_null = op->not_null();
  3137   bool no_conflict = op->no_conflict();
  3139   Label update, next, none;
  3141   bool do_null = !not_null;
  3142   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
  3143   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
  3145   assert(do_null || do_update, "why are we here?");
  3146   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
  3148   __ verify_oop(obj);
  3150   if (tmp1 != obj) {
  3151     __ mov(obj, tmp1);
  3153   if (do_null) {
  3154     __ br_notnull_short(tmp1, Assembler::pt, update);
  3155     if (!TypeEntries::was_null_seen(current_klass)) {
  3156       __ ld_ptr(mdo_addr, tmp1);
  3157       __ or3(tmp1, TypeEntries::null_seen, tmp1);
  3158       __ st_ptr(tmp1, mdo_addr);
  3160     if (do_update) {
  3161       __ ba(next);
  3162       __ delayed()->nop();
  3164 #ifdef ASSERT
  3165   } else {
  3166     __ br_notnull_short(tmp1, Assembler::pt, update);
  3167     __ stop("unexpect null obj");
  3168 #endif
  3171   __ bind(update);
  3173   if (do_update) {
  3174 #ifdef ASSERT
  3175     if (exact_klass != NULL) {
  3176       Label ok;
  3177       __ load_klass(tmp1, tmp1);
  3178       metadata2reg(exact_klass->constant_encoding(), tmp2);
  3179       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
  3180       __ stop("exact klass and actual klass differ");
  3181       __ bind(ok);
  3183 #endif
  3185     Label do_update;
  3186     __ ld_ptr(mdo_addr, tmp2);
  3188     if (!no_conflict) {
  3189       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
  3190         if (exact_klass != NULL) {
  3191           metadata2reg(exact_klass->constant_encoding(), tmp1);
  3192         } else {
  3193           __ load_klass(tmp1, tmp1);
  3196         __ xor3(tmp1, tmp2, tmp1);
  3197         __ btst(TypeEntries::type_klass_mask, tmp1);
  3198         // klass seen before, nothing to do. The unknown bit may have been
  3199         // set already but no need to check.
  3200         __ brx(Assembler::zero, false, Assembler::pt, next);
  3201         __ delayed()->
  3203            btst(TypeEntries::type_unknown, tmp1);
  3204         // already unknown. Nothing to do anymore.
  3205         __ brx(Assembler::notZero, false, Assembler::pt, next);
  3207         if (TypeEntries::is_type_none(current_klass)) {
  3208           __ delayed()->btst(TypeEntries::type_mask, tmp2);
  3209           __ brx(Assembler::zero, true, Assembler::pt, do_update);
  3210           // first time here. Set profile type.
  3211           __ delayed()->or3(tmp2, tmp1, tmp2);
  3212         } else {
  3213           __ delayed()->nop();
  3215       } else {
  3216         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3217                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
  3219         __ btst(TypeEntries::type_unknown, tmp2);
  3220         // already unknown. Nothing to do anymore.
  3221         __ brx(Assembler::notZero, false, Assembler::pt, next);
  3222         __ delayed()->nop();
  3225       // different than before. Cannot keep accurate profile.
  3226       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
  3227     } else {
  3228       // There's a single possible klass at this profile point
  3229       assert(exact_klass != NULL, "should be");
  3230       if (TypeEntries::is_type_none(current_klass)) {
  3231         metadata2reg(exact_klass->constant_encoding(), tmp1);
  3232         __ xor3(tmp1, tmp2, tmp1);
  3233         __ btst(TypeEntries::type_klass_mask, tmp1);
  3234         __ brx(Assembler::zero, false, Assembler::pt, next);
  3235 #ifdef ASSERT
  3238           Label ok;
  3239           __ delayed()->btst(TypeEntries::type_mask, tmp2);
  3240           __ brx(Assembler::zero, true, Assembler::pt, ok);
  3241           __ delayed()->nop();
  3243           __ stop("unexpected profiling mismatch");
  3244           __ bind(ok);
  3246         // first time here. Set profile type.
  3247         __ or3(tmp2, tmp1, tmp2);
  3248 #else
  3249         // first time here. Set profile type.
  3250         __ delayed()->or3(tmp2, tmp1, tmp2);
  3251 #endif
  3253       } else {
  3254         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3255                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
  3257         // already unknown. Nothing to do anymore.
  3258         __ btst(TypeEntries::type_unknown, tmp2);
  3259         __ brx(Assembler::notZero, false, Assembler::pt, next);
  3260         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
  3264     __ bind(do_update);
  3265     __ st_ptr(tmp2, mdo_addr);
  3267     __ bind(next);
  3271 void LIR_Assembler::align_backward_branch_target() {
  3272   __ align(OptoLoopAlignment);
  3276 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3277   // make sure we are expecting a delay
  3278   // this has the side effect of clearing the delay state
  3279   // so we can use _masm instead of _masm->delayed() to do the
  3280   // code generation.
  3281   __ delayed();
  3283   // make sure we only emit one instruction
  3284   int offset = code_offset();
  3285   op->delay_op()->emit_code(this);
  3286 #ifdef ASSERT
  3287   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3288     op->delay_op()->print();
  3290   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3291          "only one instruction can go in a delay slot");
  3292 #endif
  3294   // we may also be emitting the call info for the instruction
  3295   // which we are the delay slot of.
  3296   CodeEmitInfo* call_info = op->call_info();
  3297   if (call_info) {
  3298     add_call_info(code_offset(), call_info);
  3301   if (VerifyStackAtCalls) {
  3302     _masm->sub(FP, SP, O7);
  3303     _masm->cmp(O7, initial_frame_size_in_bytes());
  3304     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3309 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3310   assert(left->is_register(), "can only handle registers");
  3312   if (left->is_single_cpu()) {
  3313     __ neg(left->as_register(), dest->as_register());
  3314   } else if (left->is_single_fpu()) {
  3315     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3316   } else if (left->is_double_fpu()) {
  3317     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3318   } else {
  3319     assert (left->is_double_cpu(), "Must be a long");
  3320     Register Rlow = left->as_register_lo();
  3321     Register Rhi = left->as_register_hi();
  3322 #ifdef _LP64
  3323     __ sub(G0, Rlow, dest->as_register_lo());
  3324 #else
  3325     __ subcc(G0, Rlow, dest->as_register_lo());
  3326     __ subc (G0, Rhi,  dest->as_register_hi());
  3327 #endif
  3332 void LIR_Assembler::fxch(int i) {
  3333   Unimplemented();
  3336 void LIR_Assembler::fld(int i) {
  3337   Unimplemented();
  3340 void LIR_Assembler::ffree(int i) {
  3341   Unimplemented();
  3344 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3345                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3347   // if tmp is invalid, then the function being called doesn't destroy the thread
  3348   if (tmp->is_valid()) {
  3349     __ save_thread(tmp->as_register());
  3351   __ call(dest, relocInfo::runtime_call_type);
  3352   __ delayed()->nop();
  3353   if (info != NULL) {
  3354     add_call_info_here(info);
  3356   if (tmp->is_valid()) {
  3357     __ restore_thread(tmp->as_register());
  3360 #ifdef ASSERT
  3361   __ verify_thread();
  3362 #endif // ASSERT
  3366 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3367 #ifdef _LP64
  3368   ShouldNotReachHere();
  3369 #endif
  3371   NEEDS_CLEANUP;
  3372   if (type == T_LONG) {
  3373     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3375     // (extended to allow indexed as well as constant displaced for JSR-166)
  3376     Register idx = noreg; // contains either constant offset or index
  3378     int disp = mem_addr->disp();
  3379     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3380       if (!Assembler::is_simm13(disp)) {
  3381         idx = O7;
  3382         __ set(disp, idx);
  3384     } else {
  3385       assert(disp == 0, "not both indexed and disp");
  3386       idx = mem_addr->index()->as_register();
  3389     int null_check_offset = -1;
  3391     Register base = mem_addr->base()->as_register();
  3392     if (src->is_register() && dest->is_address()) {
  3393       // G4 is high half, G5 is low half
  3394       // clear the top bits of G5, and scale up G4
  3395       __ srl (src->as_register_lo(),  0, G5);
  3396       __ sllx(src->as_register_hi(), 32, G4);
  3397       // combine the two halves into the 64 bits of G4
  3398       __ or3(G4, G5, G4);
  3399       null_check_offset = __ offset();
  3400       if (idx == noreg) {
  3401         __ stx(G4, base, disp);
  3402       } else {
  3403         __ stx(G4, base, idx);
  3405     } else if (src->is_address() && dest->is_register()) {
  3406       null_check_offset = __ offset();
  3407       if (idx == noreg) {
  3408         __ ldx(base, disp, G5);
  3409       } else {
  3410         __ ldx(base, idx, G5);
  3412       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3413       __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3414     } else {
  3415       Unimplemented();
  3417     if (info != NULL) {
  3418       add_debug_info_for_null_check(null_check_offset, info);
  3421   } else {
  3422     // use normal move for all other volatiles since they don't need
  3423     // special handling to remain atomic.
  3424     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3428 void LIR_Assembler::membar() {
  3429   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3430   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3433 void LIR_Assembler::membar_acquire() {
  3434   // no-op on TSO
  3437 void LIR_Assembler::membar_release() {
  3438   // no-op on TSO
  3441 void LIR_Assembler::membar_loadload() {
  3442   // no-op
  3443   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3446 void LIR_Assembler::membar_storestore() {
  3447   // no-op
  3448   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3451 void LIR_Assembler::membar_loadstore() {
  3452   // no-op
  3453   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3456 void LIR_Assembler::membar_storeload() {
  3457   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3461 // Pack two sequential registers containing 32 bit values
  3462 // into a single 64 bit register.
  3463 // src and src->successor() are packed into dst
  3464 // src and dst may be the same register.
  3465 // Note: src is destroyed
  3466 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3467   Register rs = src->as_register();
  3468   Register rd = dst->as_register_lo();
  3469   __ sllx(rs, 32, rs);
  3470   __ srl(rs->successor(), 0, rs->successor());
  3471   __ or3(rs, rs->successor(), rd);
  3474 // Unpack a 64 bit value in a register into
  3475 // two sequential registers.
  3476 // src is unpacked into dst and dst->successor()
  3477 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3478   Register rs = src->as_register_lo();
  3479   Register rd = dst->as_register_hi();
  3480   assert_different_registers(rs, rd, rd->successor());
  3481   __ srlx(rs, 32, rd);
  3482   __ srl (rs,  0, rd->successor());
  3486 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3487   LIR_Address* addr = addr_opr->as_address_ptr();
  3488   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
  3490   if (Assembler::is_simm13(addr->disp())) {
  3491     __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3492   } else {
  3493     __ set(addr->disp(), G3_scratch);
  3494     __ add(addr->base()->as_pointer_register(), G3_scratch, dest->as_pointer_register());
  3499 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3500   assert(result_reg->is_register(), "check");
  3501   __ mov(G2_thread, result_reg->as_register());
  3504 #ifdef ASSERT
  3505 // emit run-time assertion
  3506 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3507   assert(op->code() == lir_assert, "must be");
  3509   if (op->in_opr1()->is_valid()) {
  3510     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3511     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3512   } else {
  3513     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3514     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3517   Label ok;
  3518   if (op->condition() != lir_cond_always) {
  3519     Assembler::Condition acond;
  3520     switch (op->condition()) {
  3521       case lir_cond_equal:        acond = Assembler::equal;                break;
  3522       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
  3523       case lir_cond_less:         acond = Assembler::less;                 break;
  3524       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
  3525       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
  3526       case lir_cond_greater:      acond = Assembler::greater;              break;
  3527       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
  3528       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
  3529       default:                         ShouldNotReachHere();
  3530     };
  3531     __ br(acond, false, Assembler::pt, ok);
  3532     __ delayed()->nop();
  3534   if (op->halt()) {
  3535     const char* str = __ code_string(op->msg());
  3536     __ stop(str);
  3537   } else {
  3538     breakpoint();
  3540   __ bind(ok);
  3542 #endif
  3544 void LIR_Assembler::peephole(LIR_List* lir) {
  3545   LIR_OpList* inst = lir->instructions_list();
  3546   for (int i = 0; i < inst->length(); i++) {
  3547     LIR_Op* op = inst->at(i);
  3548     switch (op->code()) {
  3549       case lir_cond_float_branch:
  3550       case lir_branch: {
  3551         LIR_OpBranch* branch = op->as_OpBranch();
  3552         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3553         LIR_Op* delay_op = NULL;
  3554         // we'd like to be able to pull following instructions into
  3555         // this slot but we don't know enough to do it safely yet so
  3556         // only optimize block to block control flow.
  3557         if (LIRFillDelaySlots && branch->block()) {
  3558           LIR_Op* prev = inst->at(i - 1);
  3559           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3560             // swap previous instruction into delay slot
  3561             inst->at_put(i - 1, op);
  3562             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3563 #ifndef PRODUCT
  3564             if (LIRTracePeephole) {
  3565               tty->print_cr("delayed");
  3566               inst->at(i - 1)->print();
  3567               inst->at(i)->print();
  3568               tty->cr();
  3570 #endif
  3571             continue;
  3575         if (!delay_op) {
  3576           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3578         inst->insert_before(i + 1, delay_op);
  3579         break;
  3581       case lir_static_call:
  3582       case lir_virtual_call:
  3583       case lir_icvirtual_call:
  3584       case lir_optvirtual_call:
  3585       case lir_dynamic_call: {
  3586         LIR_Op* prev = inst->at(i - 1);
  3587         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3588             (op->code() != lir_virtual_call ||
  3589              !prev->result_opr()->is_single_cpu() ||
  3590              prev->result_opr()->as_register() != O0) &&
  3591             LIR_Assembler::is_single_instruction(prev)) {
  3592           // Only moves without info can be put into the delay slot.
  3593           // Also don't allow the setup of the receiver in the delay
  3594           // slot for vtable calls.
  3595           inst->at_put(i - 1, op);
  3596           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3597 #ifndef PRODUCT
  3598           if (LIRTracePeephole) {
  3599             tty->print_cr("delayed");
  3600             inst->at(i - 1)->print();
  3601             inst->at(i)->print();
  3602             tty->cr();
  3604 #endif
  3605         } else {
  3606           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3607           inst->insert_before(i + 1, delay_op);
  3608           i++;
  3611 #if defined(TIERED) && !defined(_LP64)
  3612         // fixup the return value from G1 to O0/O1 for long returns.
  3613         // It's done here instead of in LIRGenerator because there's
  3614         // such a mismatch between the single reg and double reg
  3615         // calling convention.
  3616         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3617         if (callop->result_opr() == FrameMap::out_long_opr) {
  3618           LIR_OpJavaCall* call;
  3619           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3620           for (int a = 0; a < arguments->length(); a++) {
  3621             arguments[a] = callop->arguments()[a];
  3623           if (op->code() == lir_virtual_call) {
  3624             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3625                                       callop->vtable_offset(), arguments, callop->info());
  3626           } else {
  3627             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3628                                       callop->addr(), arguments, callop->info());
  3630           inst->at_put(i - 1, call);
  3631           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3632                                                  T_LONG, lir_patch_none, NULL));
  3634 #endif
  3635         break;
  3641 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3642   LIR_Address* addr = src->as_address_ptr();
  3644   assert(data == dest, "swap uses only 2 operands");
  3645   assert (code == lir_xchg, "no xadd on sparc");
  3647   if (data->type() == T_INT) {
  3648     __ swap(as_Address(addr), data->as_register());
  3649   } else if (data->is_oop()) {
  3650     Register obj = data->as_register();
  3651     Register narrow = tmp->as_register();
  3652 #ifdef _LP64
  3653     assert(UseCompressedOops, "swap is 32bit only");
  3654     __ encode_heap_oop(obj, narrow);
  3655     __ swap(as_Address(addr), narrow);
  3656     __ decode_heap_oop(narrow, obj);
  3657 #else
  3658     __ swap(as_Address(addr), obj);
  3659 #endif
  3660   } else {
  3661     ShouldNotReachHere();
  3665 #undef __

mercurial