src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Thu, 28 Mar 2013 10:27:28 +0100

author
mgerdin
date
Thu, 28 Mar 2013 10:27:28 +0100
changeset 4853
2e093b564241
parent 4681
27714220e50e
child 4889
cc32ccaaf47f
child 4929
71013d764f6e
permissions
-rw-r--r--

7014552: gc/lock/jni/jnilockXXX works too slow on 1-processor machine
Summary: Keep a counter of how many times we were stalled by the GC locker, add a diagnostic flag which sets the limit.
Reviewed-by: brutisso, ehelin, johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_bytes_before_gc(0),
   128   _survivor_bytes_before_gc(0),
   129   _capacity_before_gc(0),
   131   _eden_cset_region_length(0),
   132   _survivor_cset_region_length(0),
   133   _old_cset_region_length(0),
   135   _collection_set(NULL),
   136   _collection_set_bytes_used_before(0),
   138   // Incremental CSet attributes
   139   _inc_cset_build_state(Inactive),
   140   _inc_cset_head(NULL),
   141   _inc_cset_tail(NULL),
   142   _inc_cset_bytes_used_before(0),
   143   _inc_cset_max_finger(NULL),
   144   _inc_cset_recorded_rs_lengths(0),
   145   _inc_cset_recorded_rs_lengths_diffs(0),
   146   _inc_cset_predicted_elapsed_time_ms(0.0),
   147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   151 #endif // _MSC_VER
   153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   154                                                  G1YoungSurvRateNumRegionsSummary)),
   155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   156                                               G1YoungSurvRateNumRegionsSummary)),
   157   // add here any more surv rate groups
   158   _recorded_survivor_regions(0),
   159   _recorded_survivor_head(NULL),
   160   _recorded_survivor_tail(NULL),
   161   _survivors_age_table(true),
   163   _gc_overhead_perc(0.0) {
   165   // Set up the region size and associated fields. Given that the
   166   // policy is created before the heap, we have to set this up here,
   167   // so it's done as soon as possible.
   168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   169   HeapRegionRemSet::setup_remset_size();
   171   G1ErgoVerbose::initialize();
   172   if (PrintAdaptiveSizePolicy) {
   173     // Currently, we only use a single switch for all the heuristics.
   174     G1ErgoVerbose::set_enabled(true);
   175     // Given that we don't currently have a verboseness level
   176     // parameter, we'll hardcode this to high. This can be easily
   177     // changed in the future.
   178     G1ErgoVerbose::set_level(ErgoHigh);
   179   } else {
   180     G1ErgoVerbose::set_enabled(false);
   181   }
   183   // Verify PLAB sizes
   184   const size_t region_size = HeapRegion::GrainWords;
   185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   186     char buffer[128];
   187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   189     vm_exit_during_initialization(buffer);
   190   }
   192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   197   int index = MIN2(_parallel_gc_threads - 1, 7);
   199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   201   _young_cards_per_entry_ratio_seq->add(
   202                                   young_cards_per_entry_ratio_defaults[index]);
   203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   206   _young_other_cost_per_region_ms_seq->add(
   207                                young_other_cost_per_region_ms_defaults[index]);
   208   _non_young_other_cost_per_region_ms_seq->add(
   209                            non_young_other_cost_per_region_ms_defaults[index]);
   211   // Below, we might need to calculate the pause time target based on
   212   // the pause interval. When we do so we are going to give G1 maximum
   213   // flexibility and allow it to do pauses when it needs to. So, we'll
   214   // arrange that the pause interval to be pause time target + 1 to
   215   // ensure that a) the pause time target is maximized with respect to
   216   // the pause interval and b) we maintain the invariant that pause
   217   // time target < pause interval. If the user does not want this
   218   // maximum flexibility, they will have to set the pause interval
   219   // explicitly.
   221   // First make sure that, if either parameter is set, its value is
   222   // reasonable.
   223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   224     if (MaxGCPauseMillis < 1) {
   225       vm_exit_during_initialization("MaxGCPauseMillis should be "
   226                                     "greater than 0");
   227     }
   228   }
   229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   230     if (GCPauseIntervalMillis < 1) {
   231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   232                                     "greater than 0");
   233     }
   234   }
   236   // Then, if the pause time target parameter was not set, set it to
   237   // the default value.
   238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   240       // The default pause time target in G1 is 200ms
   241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   242     } else {
   243       // We do not allow the pause interval to be set without the
   244       // pause time target
   245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   246                                     "without setting MaxGCPauseMillis");
   247     }
   248   }
   250   // Then, if the interval parameter was not set, set it according to
   251   // the pause time target (this will also deal with the case when the
   252   // pause time target is the default value).
   253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   255   }
   257   // Finally, make sure that the two parameters are consistent.
   258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   259     char buffer[256];
   260     jio_snprintf(buffer, 256,
   261                  "MaxGCPauseMillis (%u) should be less than "
   262                  "GCPauseIntervalMillis (%u)",
   263                  MaxGCPauseMillis, GCPauseIntervalMillis);
   264     vm_exit_during_initialization(buffer);
   265   }
   267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   271   uintx confidence_perc = G1ConfidencePercent;
   272   // Put an artificial ceiling on this so that it's not set to a silly value.
   273   if (confidence_perc > 100) {
   274     confidence_perc = 100;
   275     warning("G1ConfidencePercent is set to a value that is too large, "
   276             "it's been updated to %u", confidence_perc);
   277   }
   278   _sigma = (double) confidence_perc / 100.0;
   280   // start conservatively (around 50ms is about right)
   281   _concurrent_mark_remark_times_ms->add(0.05);
   282   _concurrent_mark_cleanup_times_ms->add(0.20);
   283   _tenuring_threshold = MaxTenuringThreshold;
   284   // _max_survivor_regions will be calculated by
   285   // update_young_list_target_length() during initialization.
   286   _max_survivor_regions = 0;
   288   assert(GCTimeRatio > 0,
   289          "we should have set it to a default value set_g1_gc_flags() "
   290          "if a user set it to 0");
   291   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   293   uintx reserve_perc = G1ReservePercent;
   294   // Put an artificial ceiling on this so that it's not set to a silly value.
   295   if (reserve_perc > 50) {
   296     reserve_perc = 50;
   297     warning("G1ReservePercent is set to a value that is too large, "
   298             "it's been updated to %u", reserve_perc);
   299   }
   300   _reserve_factor = (double) reserve_perc / 100.0;
   301   // This will be set when the heap is expanded
   302   // for the first time during initialization.
   303   _reserve_regions = 0;
   305   initialize_all();
   306   _collectionSetChooser = new CollectionSetChooser();
   307   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   308 }
   310 void G1CollectorPolicy::initialize_flags() {
   311   set_min_alignment(HeapRegion::GrainBytes);
   312   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   313   if (SurvivorRatio < 1) {
   314     vm_exit_during_initialization("Invalid survivor ratio specified");
   315   }
   316   CollectorPolicy::initialize_flags();
   317 }
   319 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   320   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
   321   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
   322   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
   324   if (FLAG_IS_CMDLINE(NewRatio)) {
   325     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   326       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   327     } else {
   328       _sizer_kind = SizerNewRatio;
   329       _adaptive_size = false;
   330       return;
   331     }
   332   }
   334   if (FLAG_IS_CMDLINE(NewSize)) {
   335     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   336                                      1U);
   337     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   338       _max_desired_young_length =
   339                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   340                                   1U);
   341       _sizer_kind = SizerMaxAndNewSize;
   342       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   343     } else {
   344       _sizer_kind = SizerNewSizeOnly;
   345     }
   346   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   347     _max_desired_young_length =
   348                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   349                                   1U);
   350     _sizer_kind = SizerMaxNewSizeOnly;
   351   }
   352 }
   354 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   355   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   356   return MAX2(1U, default_value);
   357 }
   359 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   360   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   361   return MAX2(1U, default_value);
   362 }
   364 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   365   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   367   switch (_sizer_kind) {
   368     case SizerDefaults:
   369       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   370       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   371       break;
   372     case SizerNewSizeOnly:
   373       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   374       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   375       break;
   376     case SizerMaxNewSizeOnly:
   377       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   378       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   379       break;
   380     case SizerMaxAndNewSize:
   381       // Do nothing. Values set on the command line, don't update them at runtime.
   382       break;
   383     case SizerNewRatio:
   384       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   385       _max_desired_young_length = _min_desired_young_length;
   386       break;
   387     default:
   388       ShouldNotReachHere();
   389   }
   391   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   392 }
   394 void G1CollectorPolicy::init() {
   395   // Set aside an initial future to_space.
   396   _g1 = G1CollectedHeap::heap();
   398   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   400   initialize_gc_policy_counters();
   402   if (adaptive_young_list_length()) {
   403     _young_list_fixed_length = 0;
   404   } else {
   405     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   406   }
   407   _free_regions_at_end_of_collection = _g1->free_regions();
   408   update_young_list_target_length();
   409   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   411   // We may immediately start allocating regions and placing them on the
   412   // collection set list. Initialize the per-collection set info
   413   start_incremental_cset_building();
   414 }
   416 // Create the jstat counters for the policy.
   417 void G1CollectorPolicy::initialize_gc_policy_counters() {
   418   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   419 }
   421 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   422                                          double base_time_ms,
   423                                          uint base_free_regions,
   424                                          double target_pause_time_ms) {
   425   if (young_length >= base_free_regions) {
   426     // end condition 1: not enough space for the young regions
   427     return false;
   428   }
   430   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   431   size_t bytes_to_copy =
   432                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   433   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   434   double young_other_time_ms = predict_young_other_time_ms(young_length);
   435   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   436   if (pause_time_ms > target_pause_time_ms) {
   437     // end condition 2: prediction is over the target pause time
   438     return false;
   439   }
   441   size_t free_bytes =
   442                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   443   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   444     // end condition 3: out-of-space (conservatively!)
   445     return false;
   446   }
   448   // success!
   449   return true;
   450 }
   452 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   453   // re-calculate the necessary reserve
   454   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   455   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   456   // smaller than 1.0) we'll get 1.
   457   _reserve_regions = (uint) ceil(reserve_regions_d);
   459   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   460 }
   462 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   463                                                        uint base_min_length) {
   464   uint desired_min_length = 0;
   465   if (adaptive_young_list_length()) {
   466     if (_alloc_rate_ms_seq->num() > 3) {
   467       double now_sec = os::elapsedTime();
   468       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   469       double alloc_rate_ms = predict_alloc_rate_ms();
   470       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   471     } else {
   472       // otherwise we don't have enough info to make the prediction
   473     }
   474   }
   475   desired_min_length += base_min_length;
   476   // make sure we don't go below any user-defined minimum bound
   477   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   478 }
   480 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   481   // Here, we might want to also take into account any additional
   482   // constraints (i.e., user-defined minimum bound). Currently, we
   483   // effectively don't set this bound.
   484   return _young_gen_sizer->max_desired_young_length();
   485 }
   487 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   488   if (rs_lengths == (size_t) -1) {
   489     // if it's set to the default value (-1), we should predict it;
   490     // otherwise, use the given value.
   491     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   492   }
   494   // Calculate the absolute and desired min bounds.
   496   // This is how many young regions we already have (currently: the survivors).
   497   uint base_min_length = recorded_survivor_regions();
   498   // This is the absolute minimum young length, which ensures that we
   499   // can allocate one eden region in the worst-case.
   500   uint absolute_min_length = base_min_length + 1;
   501   uint desired_min_length =
   502                      calculate_young_list_desired_min_length(base_min_length);
   503   if (desired_min_length < absolute_min_length) {
   504     desired_min_length = absolute_min_length;
   505   }
   507   // Calculate the absolute and desired max bounds.
   509   // We will try our best not to "eat" into the reserve.
   510   uint absolute_max_length = 0;
   511   if (_free_regions_at_end_of_collection > _reserve_regions) {
   512     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   513   }
   514   uint desired_max_length = calculate_young_list_desired_max_length();
   515   if (desired_max_length > absolute_max_length) {
   516     desired_max_length = absolute_max_length;
   517   }
   519   uint young_list_target_length = 0;
   520   if (adaptive_young_list_length()) {
   521     if (gcs_are_young()) {
   522       young_list_target_length =
   523                         calculate_young_list_target_length(rs_lengths,
   524                                                            base_min_length,
   525                                                            desired_min_length,
   526                                                            desired_max_length);
   527       _rs_lengths_prediction = rs_lengths;
   528     } else {
   529       // Don't calculate anything and let the code below bound it to
   530       // the desired_min_length, i.e., do the next GC as soon as
   531       // possible to maximize how many old regions we can add to it.
   532     }
   533   } else {
   534     // The user asked for a fixed young gen so we'll fix the young gen
   535     // whether the next GC is young or mixed.
   536     young_list_target_length = _young_list_fixed_length;
   537   }
   539   // Make sure we don't go over the desired max length, nor under the
   540   // desired min length. In case they clash, desired_min_length wins
   541   // which is why that test is second.
   542   if (young_list_target_length > desired_max_length) {
   543     young_list_target_length = desired_max_length;
   544   }
   545   if (young_list_target_length < desired_min_length) {
   546     young_list_target_length = desired_min_length;
   547   }
   549   assert(young_list_target_length > recorded_survivor_regions(),
   550          "we should be able to allocate at least one eden region");
   551   assert(young_list_target_length >= absolute_min_length, "post-condition");
   552   _young_list_target_length = young_list_target_length;
   554   update_max_gc_locker_expansion();
   555 }
   557 uint
   558 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   559                                                      uint base_min_length,
   560                                                      uint desired_min_length,
   561                                                      uint desired_max_length) {
   562   assert(adaptive_young_list_length(), "pre-condition");
   563   assert(gcs_are_young(), "only call this for young GCs");
   565   // In case some edge-condition makes the desired max length too small...
   566   if (desired_max_length <= desired_min_length) {
   567     return desired_min_length;
   568   }
   570   // We'll adjust min_young_length and max_young_length not to include
   571   // the already allocated young regions (i.e., so they reflect the
   572   // min and max eden regions we'll allocate). The base_min_length
   573   // will be reflected in the predictions by the
   574   // survivor_regions_evac_time prediction.
   575   assert(desired_min_length > base_min_length, "invariant");
   576   uint min_young_length = desired_min_length - base_min_length;
   577   assert(desired_max_length > base_min_length, "invariant");
   578   uint max_young_length = desired_max_length - base_min_length;
   580   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   581   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   582   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   583   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   584   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   585   double base_time_ms =
   586     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   587     survivor_regions_evac_time;
   588   uint available_free_regions = _free_regions_at_end_of_collection;
   589   uint base_free_regions = 0;
   590   if (available_free_regions > _reserve_regions) {
   591     base_free_regions = available_free_regions - _reserve_regions;
   592   }
   594   // Here, we will make sure that the shortest young length that
   595   // makes sense fits within the target pause time.
   597   if (predict_will_fit(min_young_length, base_time_ms,
   598                        base_free_regions, target_pause_time_ms)) {
   599     // The shortest young length will fit into the target pause time;
   600     // we'll now check whether the absolute maximum number of young
   601     // regions will fit in the target pause time. If not, we'll do
   602     // a binary search between min_young_length and max_young_length.
   603     if (predict_will_fit(max_young_length, base_time_ms,
   604                          base_free_regions, target_pause_time_ms)) {
   605       // The maximum young length will fit into the target pause time.
   606       // We are done so set min young length to the maximum length (as
   607       // the result is assumed to be returned in min_young_length).
   608       min_young_length = max_young_length;
   609     } else {
   610       // The maximum possible number of young regions will not fit within
   611       // the target pause time so we'll search for the optimal
   612       // length. The loop invariants are:
   613       //
   614       // min_young_length < max_young_length
   615       // min_young_length is known to fit into the target pause time
   616       // max_young_length is known not to fit into the target pause time
   617       //
   618       // Going into the loop we know the above hold as we've just
   619       // checked them. Every time around the loop we check whether
   620       // the middle value between min_young_length and
   621       // max_young_length fits into the target pause time. If it
   622       // does, it becomes the new min. If it doesn't, it becomes
   623       // the new max. This way we maintain the loop invariants.
   625       assert(min_young_length < max_young_length, "invariant");
   626       uint diff = (max_young_length - min_young_length) / 2;
   627       while (diff > 0) {
   628         uint young_length = min_young_length + diff;
   629         if (predict_will_fit(young_length, base_time_ms,
   630                              base_free_regions, target_pause_time_ms)) {
   631           min_young_length = young_length;
   632         } else {
   633           max_young_length = young_length;
   634         }
   635         assert(min_young_length <  max_young_length, "invariant");
   636         diff = (max_young_length - min_young_length) / 2;
   637       }
   638       // The results is min_young_length which, according to the
   639       // loop invariants, should fit within the target pause time.
   641       // These are the post-conditions of the binary search above:
   642       assert(min_young_length < max_young_length,
   643              "otherwise we should have discovered that max_young_length "
   644              "fits into the pause target and not done the binary search");
   645       assert(predict_will_fit(min_young_length, base_time_ms,
   646                               base_free_regions, target_pause_time_ms),
   647              "min_young_length, the result of the binary search, should "
   648              "fit into the pause target");
   649       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   650                                base_free_regions, target_pause_time_ms),
   651              "min_young_length, the result of the binary search, should be "
   652              "optimal, so no larger length should fit into the pause target");
   653     }
   654   } else {
   655     // Even the minimum length doesn't fit into the pause time
   656     // target, return it as the result nevertheless.
   657   }
   658   return base_min_length + min_young_length;
   659 }
   661 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   662   double survivor_regions_evac_time = 0.0;
   663   for (HeapRegion * r = _recorded_survivor_head;
   664        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   665        r = r->get_next_young_region()) {
   666     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   667   }
   668   return survivor_regions_evac_time;
   669 }
   671 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   672   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   674   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   675   if (rs_lengths > _rs_lengths_prediction) {
   676     // add 10% to avoid having to recalculate often
   677     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   678     update_young_list_target_length(rs_lengths_prediction);
   679   }
   680 }
   684 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   685                                                bool is_tlab,
   686                                                bool* gc_overhead_limit_was_exceeded) {
   687   guarantee(false, "Not using this policy feature yet.");
   688   return NULL;
   689 }
   691 // This method controls how a collector handles one or more
   692 // of its generations being fully allocated.
   693 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   694                                                        bool is_tlab) {
   695   guarantee(false, "Not using this policy feature yet.");
   696   return NULL;
   697 }
   700 #ifndef PRODUCT
   701 bool G1CollectorPolicy::verify_young_ages() {
   702   HeapRegion* head = _g1->young_list()->first_region();
   703   return
   704     verify_young_ages(head, _short_lived_surv_rate_group);
   705   // also call verify_young_ages on any additional surv rate groups
   706 }
   708 bool
   709 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   710                                      SurvRateGroup *surv_rate_group) {
   711   guarantee( surv_rate_group != NULL, "pre-condition" );
   713   const char* name = surv_rate_group->name();
   714   bool ret = true;
   715   int prev_age = -1;
   717   for (HeapRegion* curr = head;
   718        curr != NULL;
   719        curr = curr->get_next_young_region()) {
   720     SurvRateGroup* group = curr->surv_rate_group();
   721     if (group == NULL && !curr->is_survivor()) {
   722       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   723       ret = false;
   724     }
   726     if (surv_rate_group == group) {
   727       int age = curr->age_in_surv_rate_group();
   729       if (age < 0) {
   730         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   731         ret = false;
   732       }
   734       if (age <= prev_age) {
   735         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   736                                "(%d, %d)", name, age, prev_age);
   737         ret = false;
   738       }
   739       prev_age = age;
   740     }
   741   }
   743   return ret;
   744 }
   745 #endif // PRODUCT
   747 void G1CollectorPolicy::record_full_collection_start() {
   748   _full_collection_start_sec = os::elapsedTime();
   749   // Release the future to-space so that it is available for compaction into.
   750   _g1->set_full_collection();
   751 }
   753 void G1CollectorPolicy::record_full_collection_end() {
   754   // Consider this like a collection pause for the purposes of allocation
   755   // since last pause.
   756   double end_sec = os::elapsedTime();
   757   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   758   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   760   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   762   update_recent_gc_times(end_sec, full_gc_time_ms);
   764   _g1->clear_full_collection();
   766   // "Nuke" the heuristics that control the young/mixed GC
   767   // transitions and make sure we start with young GCs after the Full GC.
   768   set_gcs_are_young(true);
   769   _last_young_gc = false;
   770   clear_initiate_conc_mark_if_possible();
   771   clear_during_initial_mark_pause();
   772   _in_marking_window = false;
   773   _in_marking_window_im = false;
   775   _short_lived_surv_rate_group->start_adding_regions();
   776   // also call this on any additional surv rate groups
   778   record_survivor_regions(0, NULL, NULL);
   780   _free_regions_at_end_of_collection = _g1->free_regions();
   781   // Reset survivors SurvRateGroup.
   782   _survivor_surv_rate_group->reset();
   783   update_young_list_target_length();
   784   _collectionSetChooser->clear();
   785 }
   787 void G1CollectorPolicy::record_stop_world_start() {
   788   _stop_world_start = os::elapsedTime();
   789 }
   791 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   792                                                       size_t start_used) {
   793   // We only need to do this here as the policy will only be applied
   794   // to the GC we're about to start. so, no point is calculating this
   795   // every time we calculate / recalculate the target young length.
   796   update_survivors_policy();
   798   assert(_g1->used() == _g1->recalculate_used(),
   799          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   800                  _g1->used(), _g1->recalculate_used()));
   802   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   803   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   804   _stop_world_start = 0.0;
   806   phase_times()->record_cur_collection_start_sec(start_time_sec);
   807   _cur_collection_pause_used_at_start_bytes = start_used;
   808   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   809   _pending_cards = _g1->pending_card_num();
   811   _collection_set_bytes_used_before = 0;
   812   _bytes_copied_during_gc = 0;
   814   YoungList* young_list = _g1->young_list();
   815   _eden_bytes_before_gc = young_list->eden_used_bytes();
   816   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   817   _capacity_before_gc = _g1->capacity();
   819   _last_gc_was_young = false;
   821   // do that for any other surv rate groups
   822   _short_lived_surv_rate_group->stop_adding_regions();
   823   _survivors_age_table.clear();
   825   assert( verify_young_ages(), "region age verification" );
   826 }
   828 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   829                                                    mark_init_elapsed_time_ms) {
   830   _during_marking = true;
   831   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   832   clear_during_initial_mark_pause();
   833   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   834 }
   836 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   837   _mark_remark_start_sec = os::elapsedTime();
   838   _during_marking = false;
   839 }
   841 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   842   double end_time_sec = os::elapsedTime();
   843   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   844   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   845   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   846   _prev_collection_pause_end_ms += elapsed_time_ms;
   848   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   849 }
   851 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   852   _mark_cleanup_start_sec = os::elapsedTime();
   853 }
   855 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   856   _last_young_gc = true;
   857   _in_marking_window = false;
   858 }
   860 void G1CollectorPolicy::record_concurrent_pause() {
   861   if (_stop_world_start > 0.0) {
   862     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   863     _trace_gen0_time_data.record_yield_time(yield_ms);
   864   }
   865 }
   867 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   868   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   869     return false;
   870   }
   872   size_t marking_initiating_used_threshold =
   873     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   874   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   875   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   877   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   878     if (gcs_are_young()) {
   879       ergo_verbose5(ErgoConcCycles,
   880         "request concurrent cycle initiation",
   881         ergo_format_reason("occupancy higher than threshold")
   882         ergo_format_byte("occupancy")
   883         ergo_format_byte("allocation request")
   884         ergo_format_byte_perc("threshold")
   885         ergo_format_str("source"),
   886         cur_used_bytes,
   887         alloc_byte_size,
   888         marking_initiating_used_threshold,
   889         (double) InitiatingHeapOccupancyPercent,
   890         source);
   891       return true;
   892     } else {
   893       ergo_verbose5(ErgoConcCycles,
   894         "do not request concurrent cycle initiation",
   895         ergo_format_reason("still doing mixed collections")
   896         ergo_format_byte("occupancy")
   897         ergo_format_byte("allocation request")
   898         ergo_format_byte_perc("threshold")
   899         ergo_format_str("source"),
   900         cur_used_bytes,
   901         alloc_byte_size,
   902         marking_initiating_used_threshold,
   903         (double) InitiatingHeapOccupancyPercent,
   904         source);
   905     }
   906   }
   908   return false;
   909 }
   911 // Anything below that is considered to be zero
   912 #define MIN_TIMER_GRANULARITY 0.0000001
   914 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
   915   double end_time_sec = os::elapsedTime();
   916   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   917          "otherwise, the subtraction below does not make sense");
   918   size_t rs_size =
   919             _cur_collection_pause_used_regions_at_start - cset_region_length();
   920   size_t cur_used_bytes = _g1->used();
   921   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   922   bool last_pause_included_initial_mark = false;
   923   bool update_stats = !_g1->evacuation_failed();
   925 #ifndef PRODUCT
   926   if (G1YoungSurvRateVerbose) {
   927     gclog_or_tty->print_cr("");
   928     _short_lived_surv_rate_group->print();
   929     // do that for any other surv rate groups too
   930   }
   931 #endif // PRODUCT
   933   last_pause_included_initial_mark = during_initial_mark_pause();
   934   if (last_pause_included_initial_mark) {
   935     record_concurrent_mark_init_end(0.0);
   936   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
   937     // Note: this might have already been set, if during the last
   938     // pause we decided to start a cycle but at the beginning of
   939     // this pause we decided to postpone it. That's OK.
   940     set_initiate_conc_mark_if_possible();
   941   }
   943   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   944                           end_time_sec, false);
   946   size_t freed_bytes =
   947     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
   948   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
   950   double survival_fraction =
   951     (double)surviving_bytes/
   952     (double)_collection_set_bytes_used_before;
   954   if (update_stats) {
   955     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   956     // this is where we update the allocation rate of the application
   957     double app_time_ms =
   958       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   959     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   960       // This usually happens due to the timer not having the required
   961       // granularity. Some Linuxes are the usual culprits.
   962       // We'll just set it to something (arbitrarily) small.
   963       app_time_ms = 1.0;
   964     }
   965     // We maintain the invariant that all objects allocated by mutator
   966     // threads will be allocated out of eden regions. So, we can use
   967     // the eden region number allocated since the previous GC to
   968     // calculate the application's allocate rate. The only exception
   969     // to that is humongous objects that are allocated separately. But
   970     // given that humongous object allocations do not really affect
   971     // either the pause's duration nor when the next pause will take
   972     // place we can safely ignore them here.
   973     uint regions_allocated = eden_cset_region_length();
   974     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   975     _alloc_rate_ms_seq->add(alloc_rate_ms);
   977     double interval_ms =
   978       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   979     update_recent_gc_times(end_time_sec, pause_time_ms);
   980     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   981     if (recent_avg_pause_time_ratio() < 0.0 ||
   982         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   983 #ifndef PRODUCT
   984       // Dump info to allow post-facto debugging
   985       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   986       gclog_or_tty->print_cr("-------------------------------------------");
   987       gclog_or_tty->print_cr("Recent GC Times (ms):");
   988       _recent_gc_times_ms->dump();
   989       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   990       _recent_prev_end_times_for_all_gcs_sec->dump();
   991       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   992                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   993       // In debug mode, terminate the JVM if the user wants to debug at this point.
   994       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
   995 #endif  // !PRODUCT
   996       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
   997       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
   998       if (_recent_avg_pause_time_ratio < 0.0) {
   999         _recent_avg_pause_time_ratio = 0.0;
  1000       } else {
  1001         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1002         _recent_avg_pause_time_ratio = 1.0;
  1006   bool new_in_marking_window = _in_marking_window;
  1007   bool new_in_marking_window_im = false;
  1008   if (during_initial_mark_pause()) {
  1009     new_in_marking_window = true;
  1010     new_in_marking_window_im = true;
  1013   if (_last_young_gc) {
  1014     // This is supposed to to be the "last young GC" before we start
  1015     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1017     if (!last_pause_included_initial_mark) {
  1018       if (next_gc_should_be_mixed("start mixed GCs",
  1019                                   "do not start mixed GCs")) {
  1020         set_gcs_are_young(false);
  1022     } else {
  1023       ergo_verbose0(ErgoMixedGCs,
  1024                     "do not start mixed GCs",
  1025                     ergo_format_reason("concurrent cycle is about to start"));
  1027     _last_young_gc = false;
  1030   if (!_last_gc_was_young) {
  1031     // This is a mixed GC. Here we decide whether to continue doing
  1032     // mixed GCs or not.
  1034     if (!next_gc_should_be_mixed("continue mixed GCs",
  1035                                  "do not continue mixed GCs")) {
  1036       set_gcs_are_young(true);
  1040   _short_lived_surv_rate_group->start_adding_regions();
  1041   // do that for any other surv rate groupsx
  1043   if (update_stats) {
  1044     double cost_per_card_ms = 0.0;
  1045     if (_pending_cards > 0) {
  1046       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1047       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1050     size_t cards_scanned = _g1->cards_scanned();
  1052     double cost_per_entry_ms = 0.0;
  1053     if (cards_scanned > 10) {
  1054       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1055       if (_last_gc_was_young) {
  1056         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1057       } else {
  1058         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1062     if (_max_rs_lengths > 0) {
  1063       double cards_per_entry_ratio =
  1064         (double) cards_scanned / (double) _max_rs_lengths;
  1065       if (_last_gc_was_young) {
  1066         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1067       } else {
  1068         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1072     // This is defensive. For a while _max_rs_lengths could get
  1073     // smaller than _recorded_rs_lengths which was causing
  1074     // rs_length_diff to get very large and mess up the RSet length
  1075     // predictions. The reason was unsafe concurrent updates to the
  1076     // _inc_cset_recorded_rs_lengths field which the code below guards
  1077     // against (see CR 7118202). This bug has now been fixed (see CR
  1078     // 7119027). However, I'm still worried that
  1079     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1080     // inaccurate. The concurrent refinement thread calculates an
  1081     // RSet's length concurrently with other CR threads updating it
  1082     // which might cause it to calculate the length incorrectly (if,
  1083     // say, it's in mid-coarsening). So I'll leave in the defensive
  1084     // conditional below just in case.
  1085     size_t rs_length_diff = 0;
  1086     if (_max_rs_lengths > _recorded_rs_lengths) {
  1087       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1089     _rs_length_diff_seq->add((double) rs_length_diff);
  1091     size_t copied_bytes = surviving_bytes;
  1092     double cost_per_byte_ms = 0.0;
  1093     if (copied_bytes > 0) {
  1094       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1095       if (_in_marking_window) {
  1096         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1097       } else {
  1098         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1102     double all_other_time_ms = pause_time_ms -
  1103       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1104       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1106     double young_other_time_ms = 0.0;
  1107     if (young_cset_region_length() > 0) {
  1108       young_other_time_ms =
  1109         phase_times()->young_cset_choice_time_ms() +
  1110         phase_times()->young_free_cset_time_ms();
  1111       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1112                                           (double) young_cset_region_length());
  1114     double non_young_other_time_ms = 0.0;
  1115     if (old_cset_region_length() > 0) {
  1116       non_young_other_time_ms =
  1117         phase_times()->non_young_cset_choice_time_ms() +
  1118         phase_times()->non_young_free_cset_time_ms();
  1120       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1121                                             (double) old_cset_region_length());
  1124     double constant_other_time_ms = all_other_time_ms -
  1125       (young_other_time_ms + non_young_other_time_ms);
  1126     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1128     double survival_ratio = 0.0;
  1129     if (_collection_set_bytes_used_before > 0) {
  1130       survival_ratio = (double) _bytes_copied_during_gc /
  1131                                    (double) _collection_set_bytes_used_before;
  1134     _pending_cards_seq->add((double) _pending_cards);
  1135     _rs_lengths_seq->add((double) _max_rs_lengths);
  1138   _in_marking_window = new_in_marking_window;
  1139   _in_marking_window_im = new_in_marking_window_im;
  1140   _free_regions_at_end_of_collection = _g1->free_regions();
  1141   update_young_list_target_length();
  1143   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1144   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1145   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1146                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1148   _collectionSetChooser->verify();
  1151 #define EXT_SIZE_FORMAT "%.1f%s"
  1152 #define EXT_SIZE_PARAMS(bytes)                                  \
  1153   byte_size_in_proper_unit((double)(bytes)),                    \
  1154   proper_unit_for_byte_size((bytes))
  1156 void G1CollectorPolicy::print_heap_transition() {
  1157   _g1->print_size_transition(gclog_or_tty,
  1158     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
  1161 void G1CollectorPolicy::print_detailed_heap_transition() {
  1162     YoungList* young_list = _g1->young_list();
  1163     size_t eden_bytes = young_list->eden_used_bytes();
  1164     size_t survivor_bytes = young_list->survivor_used_bytes();
  1165     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1166     size_t used = _g1->used();
  1167     size_t capacity = _g1->capacity();
  1168     size_t eden_capacity =
  1169       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1171     gclog_or_tty->print_cr(
  1172       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1173       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1174       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1175       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1176       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1177       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1178       EXT_SIZE_PARAMS(eden_bytes),
  1179       EXT_SIZE_PARAMS(eden_capacity),
  1180       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1181       EXT_SIZE_PARAMS(survivor_bytes),
  1182       EXT_SIZE_PARAMS(used_before_gc),
  1183       EXT_SIZE_PARAMS(_capacity_before_gc),
  1184       EXT_SIZE_PARAMS(used),
  1185       EXT_SIZE_PARAMS(capacity));
  1187     _prev_eden_capacity = eden_capacity;
  1190 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1191                                                      double update_rs_processed_buffers,
  1192                                                      double goal_ms) {
  1193   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1194   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1196   if (G1UseAdaptiveConcRefinement) {
  1197     const int k_gy = 3, k_gr = 6;
  1198     const double inc_k = 1.1, dec_k = 0.9;
  1200     int g = cg1r->green_zone();
  1201     if (update_rs_time > goal_ms) {
  1202       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1203     } else {
  1204       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1205         g = (int)MAX2(g * inc_k, g + 1.0);
  1208     // Change the refinement threads params
  1209     cg1r->set_green_zone(g);
  1210     cg1r->set_yellow_zone(g * k_gy);
  1211     cg1r->set_red_zone(g * k_gr);
  1212     cg1r->reinitialize_threads();
  1214     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1215     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1216                                     cg1r->yellow_zone());
  1217     // Change the barrier params
  1218     dcqs.set_process_completed_threshold(processing_threshold);
  1219     dcqs.set_max_completed_queue(cg1r->red_zone());
  1222   int curr_queue_size = dcqs.completed_buffers_num();
  1223   if (curr_queue_size >= cg1r->yellow_zone()) {
  1224     dcqs.set_completed_queue_padding(curr_queue_size);
  1225   } else {
  1226     dcqs.set_completed_queue_padding(0);
  1228   dcqs.notify_if_necessary();
  1231 double
  1232 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1233                                                 size_t scanned_cards) {
  1234   return
  1235     predict_rs_update_time_ms(pending_cards) +
  1236     predict_rs_scan_time_ms(scanned_cards) +
  1237     predict_constant_other_time_ms();
  1240 double
  1241 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1242   size_t rs_length = predict_rs_length_diff();
  1243   size_t card_num;
  1244   if (gcs_are_young()) {
  1245     card_num = predict_young_card_num(rs_length);
  1246   } else {
  1247     card_num = predict_non_young_card_num(rs_length);
  1249   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1252 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1253   size_t bytes_to_copy;
  1254   if (hr->is_marked())
  1255     bytes_to_copy = hr->max_live_bytes();
  1256   else {
  1257     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1258     int age = hr->age_in_surv_rate_group();
  1259     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1260     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1262   return bytes_to_copy;
  1265 double
  1266 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1267                                                   bool for_young_gc) {
  1268   size_t rs_length = hr->rem_set()->occupied();
  1269   size_t card_num;
  1271   // Predicting the number of cards is based on which type of GC
  1272   // we're predicting for.
  1273   if (for_young_gc) {
  1274     card_num = predict_young_card_num(rs_length);
  1275   } else {
  1276     card_num = predict_non_young_card_num(rs_length);
  1278   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1280   double region_elapsed_time_ms =
  1281     predict_rs_scan_time_ms(card_num) +
  1282     predict_object_copy_time_ms(bytes_to_copy);
  1284   // The prediction of the "other" time for this region is based
  1285   // upon the region type and NOT the GC type.
  1286   if (hr->is_young()) {
  1287     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1288   } else {
  1289     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1291   return region_elapsed_time_ms;
  1294 void
  1295 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1296                                             uint survivor_cset_region_length) {
  1297   _eden_cset_region_length     = eden_cset_region_length;
  1298   _survivor_cset_region_length = survivor_cset_region_length;
  1299   _old_cset_region_length      = 0;
  1302 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1303   _recorded_rs_lengths = rs_lengths;
  1306 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1307                                                double elapsed_ms) {
  1308   _recent_gc_times_ms->add(elapsed_ms);
  1309   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1310   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1313 size_t G1CollectorPolicy::expansion_amount() {
  1314   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1315   double threshold = _gc_overhead_perc;
  1316   if (recent_gc_overhead > threshold) {
  1317     // We will double the existing space, or take
  1318     // G1ExpandByPercentOfAvailable % of the available expansion
  1319     // space, whichever is smaller, bounded below by a minimum
  1320     // expansion (unless that's all that's left.)
  1321     const size_t min_expand_bytes = 1*M;
  1322     size_t reserved_bytes = _g1->max_capacity();
  1323     size_t committed_bytes = _g1->capacity();
  1324     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1325     size_t expand_bytes;
  1326     size_t expand_bytes_via_pct =
  1327       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1328     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1329     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1330     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1332     ergo_verbose5(ErgoHeapSizing,
  1333                   "attempt heap expansion",
  1334                   ergo_format_reason("recent GC overhead higher than "
  1335                                      "threshold after GC")
  1336                   ergo_format_perc("recent GC overhead")
  1337                   ergo_format_perc("threshold")
  1338                   ergo_format_byte("uncommitted")
  1339                   ergo_format_byte_perc("calculated expansion amount"),
  1340                   recent_gc_overhead, threshold,
  1341                   uncommitted_bytes,
  1342                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1344     return expand_bytes;
  1345   } else {
  1346     return 0;
  1350 void G1CollectorPolicy::print_tracing_info() const {
  1351   _trace_gen0_time_data.print();
  1352   _trace_gen1_time_data.print();
  1355 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1356 #ifndef PRODUCT
  1357   _short_lived_surv_rate_group->print_surv_rate_summary();
  1358   // add this call for any other surv rate groups
  1359 #endif // PRODUCT
  1362 #ifndef PRODUCT
  1363 // for debugging, bit of a hack...
  1364 static char*
  1365 region_num_to_mbs(int length) {
  1366   static char buffer[64];
  1367   double bytes = (double) (length * HeapRegion::GrainBytes);
  1368   double mbs = bytes / (double) (1024 * 1024);
  1369   sprintf(buffer, "%7.2lfMB", mbs);
  1370   return buffer;
  1372 #endif // PRODUCT
  1374 uint G1CollectorPolicy::max_regions(int purpose) {
  1375   switch (purpose) {
  1376     case GCAllocForSurvived:
  1377       return _max_survivor_regions;
  1378     case GCAllocForTenured:
  1379       return REGIONS_UNLIMITED;
  1380     default:
  1381       ShouldNotReachHere();
  1382       return REGIONS_UNLIMITED;
  1383   };
  1386 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1387   uint expansion_region_num = 0;
  1388   if (GCLockerEdenExpansionPercent > 0) {
  1389     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1390     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1391     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1392     // less than 1.0) we'll get 1.
  1393     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1394   } else {
  1395     assert(expansion_region_num == 0, "sanity");
  1397   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1398   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1401 // Calculates survivor space parameters.
  1402 void G1CollectorPolicy::update_survivors_policy() {
  1403   double max_survivor_regions_d =
  1404                  (double) _young_list_target_length / (double) SurvivorRatio;
  1405   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1406   // smaller than 1.0) we'll get 1.
  1407   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1409   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1410         HeapRegion::GrainWords * _max_survivor_regions);
  1413 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1414                                                      GCCause::Cause gc_cause) {
  1415   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1416   if (!during_cycle) {
  1417     ergo_verbose1(ErgoConcCycles,
  1418                   "request concurrent cycle initiation",
  1419                   ergo_format_reason("requested by GC cause")
  1420                   ergo_format_str("GC cause"),
  1421                   GCCause::to_string(gc_cause));
  1422     set_initiate_conc_mark_if_possible();
  1423     return true;
  1424   } else {
  1425     ergo_verbose1(ErgoConcCycles,
  1426                   "do not request concurrent cycle initiation",
  1427                   ergo_format_reason("concurrent cycle already in progress")
  1428                   ergo_format_str("GC cause"),
  1429                   GCCause::to_string(gc_cause));
  1430     return false;
  1434 void
  1435 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1436   // We are about to decide on whether this pause will be an
  1437   // initial-mark pause.
  1439   // First, during_initial_mark_pause() should not be already set. We
  1440   // will set it here if we have to. However, it should be cleared by
  1441   // the end of the pause (it's only set for the duration of an
  1442   // initial-mark pause).
  1443   assert(!during_initial_mark_pause(), "pre-condition");
  1445   if (initiate_conc_mark_if_possible()) {
  1446     // We had noticed on a previous pause that the heap occupancy has
  1447     // gone over the initiating threshold and we should start a
  1448     // concurrent marking cycle. So we might initiate one.
  1450     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1451     if (!during_cycle) {
  1452       // The concurrent marking thread is not "during a cycle", i.e.,
  1453       // it has completed the last one. So we can go ahead and
  1454       // initiate a new cycle.
  1456       set_during_initial_mark_pause();
  1457       // We do not allow mixed GCs during marking.
  1458       if (!gcs_are_young()) {
  1459         set_gcs_are_young(true);
  1460         ergo_verbose0(ErgoMixedGCs,
  1461                       "end mixed GCs",
  1462                       ergo_format_reason("concurrent cycle is about to start"));
  1465       // And we can now clear initiate_conc_mark_if_possible() as
  1466       // we've already acted on it.
  1467       clear_initiate_conc_mark_if_possible();
  1469       ergo_verbose0(ErgoConcCycles,
  1470                   "initiate concurrent cycle",
  1471                   ergo_format_reason("concurrent cycle initiation requested"));
  1472     } else {
  1473       // The concurrent marking thread is still finishing up the
  1474       // previous cycle. If we start one right now the two cycles
  1475       // overlap. In particular, the concurrent marking thread might
  1476       // be in the process of clearing the next marking bitmap (which
  1477       // we will use for the next cycle if we start one). Starting a
  1478       // cycle now will be bad given that parts of the marking
  1479       // information might get cleared by the marking thread. And we
  1480       // cannot wait for the marking thread to finish the cycle as it
  1481       // periodically yields while clearing the next marking bitmap
  1482       // and, if it's in a yield point, it's waiting for us to
  1483       // finish. So, at this point we will not start a cycle and we'll
  1484       // let the concurrent marking thread complete the last one.
  1485       ergo_verbose0(ErgoConcCycles,
  1486                     "do not initiate concurrent cycle",
  1487                     ergo_format_reason("concurrent cycle already in progress"));
  1492 class KnownGarbageClosure: public HeapRegionClosure {
  1493   G1CollectedHeap* _g1h;
  1494   CollectionSetChooser* _hrSorted;
  1496 public:
  1497   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1498     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1500   bool doHeapRegion(HeapRegion* r) {
  1501     // We only include humongous regions in collection
  1502     // sets when concurrent mark shows that their contained object is
  1503     // unreachable.
  1505     // Do we have any marking information for this region?
  1506     if (r->is_marked()) {
  1507       // We will skip any region that's currently used as an old GC
  1508       // alloc region (we should not consider those for collection
  1509       // before we fill them up).
  1510       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1511         _hrSorted->add_region(r);
  1514     return false;
  1516 };
  1518 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1519   G1CollectedHeap* _g1h;
  1520   CSetChooserParUpdater _cset_updater;
  1522 public:
  1523   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1524                            uint chunk_size) :
  1525     _g1h(G1CollectedHeap::heap()),
  1526     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1528   bool doHeapRegion(HeapRegion* r) {
  1529     // Do we have any marking information for this region?
  1530     if (r->is_marked()) {
  1531       // We will skip any region that's currently used as an old GC
  1532       // alloc region (we should not consider those for collection
  1533       // before we fill them up).
  1534       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1535         _cset_updater.add_region(r);
  1538     return false;
  1540 };
  1542 class ParKnownGarbageTask: public AbstractGangTask {
  1543   CollectionSetChooser* _hrSorted;
  1544   uint _chunk_size;
  1545   G1CollectedHeap* _g1;
  1546 public:
  1547   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1548     AbstractGangTask("ParKnownGarbageTask"),
  1549     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1550     _g1(G1CollectedHeap::heap()) { }
  1552   void work(uint worker_id) {
  1553     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1555     // Back to zero for the claim value.
  1556     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1557                                          _g1->workers()->active_workers(),
  1558                                          HeapRegion::InitialClaimValue);
  1560 };
  1562 void
  1563 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1564   _collectionSetChooser->clear();
  1566   uint region_num = _g1->n_regions();
  1567   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1568     const uint OverpartitionFactor = 4;
  1569     uint WorkUnit;
  1570     // The use of MinChunkSize = 8 in the original code
  1571     // causes some assertion failures when the total number of
  1572     // region is less than 8.  The code here tries to fix that.
  1573     // Should the original code also be fixed?
  1574     if (no_of_gc_threads > 0) {
  1575       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1576       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1577                       MinWorkUnit);
  1578     } else {
  1579       assert(no_of_gc_threads > 0,
  1580         "The active gc workers should be greater than 0");
  1581       // In a product build do something reasonable to avoid a crash.
  1582       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1583       WorkUnit =
  1584         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1585              MinWorkUnit);
  1587     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1588                                                            WorkUnit);
  1589     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1590                                             (int) WorkUnit);
  1591     _g1->workers()->run_task(&parKnownGarbageTask);
  1593     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1594            "sanity check");
  1595   } else {
  1596     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1597     _g1->heap_region_iterate(&knownGarbagecl);
  1600   _collectionSetChooser->sort_regions();
  1602   double end_sec = os::elapsedTime();
  1603   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1604   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1605   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1606   _prev_collection_pause_end_ms += elapsed_time_ms;
  1607   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1610 // Add the heap region at the head of the non-incremental collection set
  1611 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1612   assert(_inc_cset_build_state == Active, "Precondition");
  1613   assert(!hr->is_young(), "non-incremental add of young region");
  1615   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1616   hr->set_in_collection_set(true);
  1617   hr->set_next_in_collection_set(_collection_set);
  1618   _collection_set = hr;
  1619   _collection_set_bytes_used_before += hr->used();
  1620   _g1->register_region_with_in_cset_fast_test(hr);
  1621   size_t rs_length = hr->rem_set()->occupied();
  1622   _recorded_rs_lengths += rs_length;
  1623   _old_cset_region_length += 1;
  1626 // Initialize the per-collection-set information
  1627 void G1CollectorPolicy::start_incremental_cset_building() {
  1628   assert(_inc_cset_build_state == Inactive, "Precondition");
  1630   _inc_cset_head = NULL;
  1631   _inc_cset_tail = NULL;
  1632   _inc_cset_bytes_used_before = 0;
  1634   _inc_cset_max_finger = 0;
  1635   _inc_cset_recorded_rs_lengths = 0;
  1636   _inc_cset_recorded_rs_lengths_diffs = 0;
  1637   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1638   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1639   _inc_cset_build_state = Active;
  1642 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1643   assert(_inc_cset_build_state == Active, "Precondition");
  1644   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1646   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1647   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1648   // that adds a new region to the CSet. Further updates by the
  1649   // concurrent refinement thread that samples the young RSet lengths
  1650   // are accumulated in the *_diffs fields. Here we add the diffs to
  1651   // the "main" fields.
  1653   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1654     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1655   } else {
  1656     // This is defensive. The diff should in theory be always positive
  1657     // as RSets can only grow between GCs. However, given that we
  1658     // sample their size concurrently with other threads updating them
  1659     // it's possible that we might get the wrong size back, which
  1660     // could make the calculations somewhat inaccurate.
  1661     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1662     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1663       _inc_cset_recorded_rs_lengths -= diffs;
  1664     } else {
  1665       _inc_cset_recorded_rs_lengths = 0;
  1668   _inc_cset_predicted_elapsed_time_ms +=
  1669                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1671   _inc_cset_recorded_rs_lengths_diffs = 0;
  1672   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1675 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1676   // This routine is used when:
  1677   // * adding survivor regions to the incremental cset at the end of an
  1678   //   evacuation pause,
  1679   // * adding the current allocation region to the incremental cset
  1680   //   when it is retired, and
  1681   // * updating existing policy information for a region in the
  1682   //   incremental cset via young list RSet sampling.
  1683   // Therefore this routine may be called at a safepoint by the
  1684   // VM thread, or in-between safepoints by mutator threads (when
  1685   // retiring the current allocation region) or a concurrent
  1686   // refine thread (RSet sampling).
  1688   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1689   size_t used_bytes = hr->used();
  1690   _inc_cset_recorded_rs_lengths += rs_length;
  1691   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1692   _inc_cset_bytes_used_before += used_bytes;
  1694   // Cache the values we have added to the aggregated informtion
  1695   // in the heap region in case we have to remove this region from
  1696   // the incremental collection set, or it is updated by the
  1697   // rset sampling code
  1698   hr->set_recorded_rs_length(rs_length);
  1699   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1702 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1703                                                      size_t new_rs_length) {
  1704   // Update the CSet information that is dependent on the new RS length
  1705   assert(hr->is_young(), "Precondition");
  1706   assert(!SafepointSynchronize::is_at_safepoint(),
  1707                                                "should not be at a safepoint");
  1709   // We could have updated _inc_cset_recorded_rs_lengths and
  1710   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1711   // that atomically, as this code is executed by a concurrent
  1712   // refinement thread, potentially concurrently with a mutator thread
  1713   // allocating a new region and also updating the same fields. To
  1714   // avoid the atomic operations we accumulate these updates on two
  1715   // separate fields (*_diffs) and we'll just add them to the "main"
  1716   // fields at the start of a GC.
  1718   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1719   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1720   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1722   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1723   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1724   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1725   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1727   hr->set_recorded_rs_length(new_rs_length);
  1728   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1731 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1732   assert(hr->is_young(), "invariant");
  1733   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1734   assert(_inc_cset_build_state == Active, "Precondition");
  1736   // We need to clear and set the cached recorded/cached collection set
  1737   // information in the heap region here (before the region gets added
  1738   // to the collection set). An individual heap region's cached values
  1739   // are calculated, aggregated with the policy collection set info,
  1740   // and cached in the heap region here (initially) and (subsequently)
  1741   // by the Young List sampling code.
  1743   size_t rs_length = hr->rem_set()->occupied();
  1744   add_to_incremental_cset_info(hr, rs_length);
  1746   HeapWord* hr_end = hr->end();
  1747   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1749   assert(!hr->in_collection_set(), "invariant");
  1750   hr->set_in_collection_set(true);
  1751   assert( hr->next_in_collection_set() == NULL, "invariant");
  1753   _g1->register_region_with_in_cset_fast_test(hr);
  1756 // Add the region at the RHS of the incremental cset
  1757 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1758   // We should only ever be appending survivors at the end of a pause
  1759   assert( hr->is_survivor(), "Logic");
  1761   // Do the 'common' stuff
  1762   add_region_to_incremental_cset_common(hr);
  1764   // Now add the region at the right hand side
  1765   if (_inc_cset_tail == NULL) {
  1766     assert(_inc_cset_head == NULL, "invariant");
  1767     _inc_cset_head = hr;
  1768   } else {
  1769     _inc_cset_tail->set_next_in_collection_set(hr);
  1771   _inc_cset_tail = hr;
  1774 // Add the region to the LHS of the incremental cset
  1775 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1776   // Survivors should be added to the RHS at the end of a pause
  1777   assert(!hr->is_survivor(), "Logic");
  1779   // Do the 'common' stuff
  1780   add_region_to_incremental_cset_common(hr);
  1782   // Add the region at the left hand side
  1783   hr->set_next_in_collection_set(_inc_cset_head);
  1784   if (_inc_cset_head == NULL) {
  1785     assert(_inc_cset_tail == NULL, "Invariant");
  1786     _inc_cset_tail = hr;
  1788   _inc_cset_head = hr;
  1791 #ifndef PRODUCT
  1792 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1793   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1795   st->print_cr("\nCollection_set:");
  1796   HeapRegion* csr = list_head;
  1797   while (csr != NULL) {
  1798     HeapRegion* next = csr->next_in_collection_set();
  1799     assert(csr->in_collection_set(), "bad CS");
  1800     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1801                  HR_FORMAT_PARAMS(csr),
  1802                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1803                  csr->age_in_surv_rate_group_cond());
  1804     csr = next;
  1807 #endif // !PRODUCT
  1809 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1810   // Returns the given amount of reclaimable bytes (that represents
  1811   // the amount of reclaimable space still to be collected) as a
  1812   // percentage of the current heap capacity.
  1813   size_t capacity_bytes = _g1->capacity();
  1814   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1817 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1818                                                 const char* false_action_str) {
  1819   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1820   if (cset_chooser->is_empty()) {
  1821     ergo_verbose0(ErgoMixedGCs,
  1822                   false_action_str,
  1823                   ergo_format_reason("candidate old regions not available"));
  1824     return false;
  1827   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1828   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1829   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1830   double threshold = (double) G1HeapWastePercent;
  1831   if (reclaimable_perc <= threshold) {
  1832     ergo_verbose4(ErgoMixedGCs,
  1833               false_action_str,
  1834               ergo_format_reason("reclaimable percentage not over threshold")
  1835               ergo_format_region("candidate old regions")
  1836               ergo_format_byte_perc("reclaimable")
  1837               ergo_format_perc("threshold"),
  1838               cset_chooser->remaining_regions(),
  1839               reclaimable_bytes,
  1840               reclaimable_perc, threshold);
  1841     return false;
  1844   ergo_verbose4(ErgoMixedGCs,
  1845                 true_action_str,
  1846                 ergo_format_reason("candidate old regions available")
  1847                 ergo_format_region("candidate old regions")
  1848                 ergo_format_byte_perc("reclaimable")
  1849                 ergo_format_perc("threshold"),
  1850                 cset_chooser->remaining_regions(),
  1851                 reclaimable_bytes,
  1852                 reclaimable_perc, threshold);
  1853   return true;
  1856 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1857   // The min old CSet region bound is based on the maximum desired
  1858   // number of mixed GCs after a cycle. I.e., even if some old regions
  1859   // look expensive, we should add them to the CSet anyway to make
  1860   // sure we go through the available old regions in no more than the
  1861   // maximum desired number of mixed GCs.
  1862   //
  1863   // The calculation is based on the number of marked regions we added
  1864   // to the CSet chooser in the first place, not how many remain, so
  1865   // that the result is the same during all mixed GCs that follow a cycle.
  1867   const size_t region_num = (size_t) _collectionSetChooser->length();
  1868   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1869   size_t result = region_num / gc_num;
  1870   // emulate ceiling
  1871   if (result * gc_num < region_num) {
  1872     result += 1;
  1874   return (uint) result;
  1877 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1878   // The max old CSet region bound is based on the threshold expressed
  1879   // as a percentage of the heap size. I.e., it should bound the
  1880   // number of old regions added to the CSet irrespective of how many
  1881   // of them are available.
  1883   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1884   const size_t region_num = g1h->n_regions();
  1885   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1886   size_t result = region_num * perc / 100;
  1887   // emulate ceiling
  1888   if (100 * result < region_num * perc) {
  1889     result += 1;
  1891   return (uint) result;
  1895 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  1896   double young_start_time_sec = os::elapsedTime();
  1898   YoungList* young_list = _g1->young_list();
  1899   finalize_incremental_cset_building();
  1901   guarantee(target_pause_time_ms > 0.0,
  1902             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1903                     target_pause_time_ms));
  1904   guarantee(_collection_set == NULL, "Precondition");
  1906   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1907   double predicted_pause_time_ms = base_time_ms;
  1908   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1910   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1911                 "start choosing CSet",
  1912                 ergo_format_size("_pending_cards")
  1913                 ergo_format_ms("predicted base time")
  1914                 ergo_format_ms("remaining time")
  1915                 ergo_format_ms("target pause time"),
  1916                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1918   _last_gc_was_young = gcs_are_young() ? true : false;
  1920   if (_last_gc_was_young) {
  1921     _trace_gen0_time_data.increment_young_collection_count();
  1922   } else {
  1923     _trace_gen0_time_data.increment_mixed_collection_count();
  1926   // The young list is laid with the survivor regions from the previous
  1927   // pause are appended to the RHS of the young list, i.e.
  1928   //   [Newly Young Regions ++ Survivors from last pause].
  1930   uint survivor_region_length = young_list->survivor_length();
  1931   uint eden_region_length = young_list->length() - survivor_region_length;
  1932   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1934   HeapRegion* hr = young_list->first_survivor_region();
  1935   while (hr != NULL) {
  1936     assert(hr->is_survivor(), "badly formed young list");
  1937     hr->set_young();
  1938     hr = hr->get_next_young_region();
  1941   // Clear the fields that point to the survivor list - they are all young now.
  1942   young_list->clear_survivors();
  1944   _collection_set = _inc_cset_head;
  1945   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1946   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  1947   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1949   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1950                 "add young regions to CSet",
  1951                 ergo_format_region("eden")
  1952                 ergo_format_region("survivors")
  1953                 ergo_format_ms("predicted young region time"),
  1954                 eden_region_length, survivor_region_length,
  1955                 _inc_cset_predicted_elapsed_time_ms);
  1957   // The number of recorded young regions is the incremental
  1958   // collection set's current size
  1959   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1961   double young_end_time_sec = os::elapsedTime();
  1962   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1964   // Set the start of the non-young choice time.
  1965   double non_young_start_time_sec = young_end_time_sec;
  1967   if (!gcs_are_young()) {
  1968     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1969     cset_chooser->verify();
  1970     const uint min_old_cset_length = calc_min_old_cset_length();
  1971     const uint max_old_cset_length = calc_max_old_cset_length();
  1973     uint expensive_region_num = 0;
  1974     bool check_time_remaining = adaptive_young_list_length();
  1976     HeapRegion* hr = cset_chooser->peek();
  1977     while (hr != NULL) {
  1978       if (old_cset_region_length() >= max_old_cset_length) {
  1979         // Added maximum number of old regions to the CSet.
  1980         ergo_verbose2(ErgoCSetConstruction,
  1981                       "finish adding old regions to CSet",
  1982                       ergo_format_reason("old CSet region num reached max")
  1983                       ergo_format_region("old")
  1984                       ergo_format_region("max"),
  1985                       old_cset_region_length(), max_old_cset_length);
  1986         break;
  1990       // Stop adding regions if the remaining reclaimable space is
  1991       // not above G1HeapWastePercent.
  1992       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1993       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1994       double threshold = (double) G1HeapWastePercent;
  1995       if (reclaimable_perc <= threshold) {
  1996         // We've added enough old regions that the amount of uncollected
  1997         // reclaimable space is at or below the waste threshold. Stop
  1998         // adding old regions to the CSet.
  1999         ergo_verbose5(ErgoCSetConstruction,
  2000                       "finish adding old regions to CSet",
  2001                       ergo_format_reason("reclaimable percentage not over threshold")
  2002                       ergo_format_region("old")
  2003                       ergo_format_region("max")
  2004                       ergo_format_byte_perc("reclaimable")
  2005                       ergo_format_perc("threshold"),
  2006                       old_cset_region_length(),
  2007                       max_old_cset_length,
  2008                       reclaimable_bytes,
  2009                       reclaimable_perc, threshold);
  2010         break;
  2013       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2014       if (check_time_remaining) {
  2015         if (predicted_time_ms > time_remaining_ms) {
  2016           // Too expensive for the current CSet.
  2018           if (old_cset_region_length() >= min_old_cset_length) {
  2019             // We have added the minimum number of old regions to the CSet,
  2020             // we are done with this CSet.
  2021             ergo_verbose4(ErgoCSetConstruction,
  2022                           "finish adding old regions to CSet",
  2023                           ergo_format_reason("predicted time is too high")
  2024                           ergo_format_ms("predicted time")
  2025                           ergo_format_ms("remaining time")
  2026                           ergo_format_region("old")
  2027                           ergo_format_region("min"),
  2028                           predicted_time_ms, time_remaining_ms,
  2029                           old_cset_region_length(), min_old_cset_length);
  2030             break;
  2033           // We'll add it anyway given that we haven't reached the
  2034           // minimum number of old regions.
  2035           expensive_region_num += 1;
  2037       } else {
  2038         if (old_cset_region_length() >= min_old_cset_length) {
  2039           // In the non-auto-tuning case, we'll finish adding regions
  2040           // to the CSet if we reach the minimum.
  2041           ergo_verbose2(ErgoCSetConstruction,
  2042                         "finish adding old regions to CSet",
  2043                         ergo_format_reason("old CSet region num reached min")
  2044                         ergo_format_region("old")
  2045                         ergo_format_region("min"),
  2046                         old_cset_region_length(), min_old_cset_length);
  2047           break;
  2051       // We will add this region to the CSet.
  2052       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2053       predicted_pause_time_ms += predicted_time_ms;
  2054       cset_chooser->remove_and_move_to_next(hr);
  2055       _g1->old_set_remove(hr);
  2056       add_old_region_to_cset(hr);
  2058       hr = cset_chooser->peek();
  2060     if (hr == NULL) {
  2061       ergo_verbose0(ErgoCSetConstruction,
  2062                     "finish adding old regions to CSet",
  2063                     ergo_format_reason("candidate old regions not available"));
  2066     if (expensive_region_num > 0) {
  2067       // We print the information once here at the end, predicated on
  2068       // whether we added any apparently expensive regions or not, to
  2069       // avoid generating output per region.
  2070       ergo_verbose4(ErgoCSetConstruction,
  2071                     "added expensive regions to CSet",
  2072                     ergo_format_reason("old CSet region num not reached min")
  2073                     ergo_format_region("old")
  2074                     ergo_format_region("expensive")
  2075                     ergo_format_region("min")
  2076                     ergo_format_ms("remaining time"),
  2077                     old_cset_region_length(),
  2078                     expensive_region_num,
  2079                     min_old_cset_length,
  2080                     time_remaining_ms);
  2083     cset_chooser->verify();
  2086   stop_incremental_cset_building();
  2088   ergo_verbose5(ErgoCSetConstruction,
  2089                 "finish choosing CSet",
  2090                 ergo_format_region("eden")
  2091                 ergo_format_region("survivors")
  2092                 ergo_format_region("old")
  2093                 ergo_format_ms("predicted pause time")
  2094                 ergo_format_ms("target pause time"),
  2095                 eden_region_length, survivor_region_length,
  2096                 old_cset_region_length(),
  2097                 predicted_pause_time_ms, target_pause_time_ms);
  2099   double non_young_end_time_sec = os::elapsedTime();
  2100   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2103 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2104   if(TraceGen0Time) {
  2105     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2109 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2110   if(TraceGen0Time) {
  2111     _all_yield_times_ms.add(yield_time_ms);
  2115 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2116   if(TraceGen0Time) {
  2117     _total.add(pause_time_ms);
  2118     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2119     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2120     _parallel.add(phase_times->cur_collection_par_time_ms());
  2121     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2122     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2123     _update_rs.add(phase_times->average_last_update_rs_time());
  2124     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2125     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2126     _termination.add(phase_times->average_last_termination_time());
  2128     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2129       phase_times->average_last_satb_filtering_times_ms() +
  2130       phase_times->average_last_update_rs_time() +
  2131       phase_times->average_last_scan_rs_time() +
  2132       phase_times->average_last_obj_copy_time() +
  2133       + phase_times->average_last_termination_time();
  2135     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2136     _parallel_other.add(parallel_other_time);
  2137     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2141 void TraceGen0TimeData::increment_young_collection_count() {
  2142   if(TraceGen0Time) {
  2143     ++_young_pause_num;
  2147 void TraceGen0TimeData::increment_mixed_collection_count() {
  2148   if(TraceGen0Time) {
  2149     ++_mixed_pause_num;
  2153 void TraceGen0TimeData::print_summary(const char* str,
  2154                                       const NumberSeq* seq) const {
  2155   double sum = seq->sum();
  2156   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2157                 str, sum / 1000.0, seq->avg());
  2160 void TraceGen0TimeData::print_summary_sd(const char* str,
  2161                                          const NumberSeq* seq) const {
  2162   print_summary(str, seq);
  2163   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2164                 "(num", seq->num(), seq->sd(), seq->maximum());
  2167 void TraceGen0TimeData::print() const {
  2168   if (!TraceGen0Time) {
  2169     return;
  2172   gclog_or_tty->print_cr("ALL PAUSES");
  2173   print_summary_sd("   Total", &_total);
  2174   gclog_or_tty->print_cr("");
  2175   gclog_or_tty->print_cr("");
  2176   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2177   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2178   gclog_or_tty->print_cr("");
  2180   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2182   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2183     gclog_or_tty->print_cr("none");
  2184   } else {
  2185     print_summary_sd("   Evacuation Pauses", &_total);
  2186     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2187     print_summary("      Parallel Time", &_parallel);
  2188     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2189     print_summary("         SATB Filtering", &_satb_filtering);
  2190     print_summary("         Update RS", &_update_rs);
  2191     print_summary("         Scan RS", &_scan_rs);
  2192     print_summary("         Object Copy", &_obj_copy);
  2193     print_summary("         Termination", &_termination);
  2194     print_summary("         Parallel Other", &_parallel_other);
  2195     print_summary("      Clear CT", &_clear_ct);
  2196     print_summary("      Other", &_other);
  2198   gclog_or_tty->print_cr("");
  2200   gclog_or_tty->print_cr("MISC");
  2201   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2202   print_summary_sd("   Yields", &_all_yield_times_ms);
  2205 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2206   if (TraceGen1Time) {
  2207     _all_full_gc_times.add(full_gc_time_ms);
  2211 void TraceGen1TimeData::print() const {
  2212   if (!TraceGen1Time) {
  2213     return;
  2216   if (_all_full_gc_times.num() > 0) {
  2217     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2218       _all_full_gc_times.num(),
  2219       _all_full_gc_times.sum() / 1000.0);
  2220     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2221     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2222       _all_full_gc_times.sd(),
  2223       _all_full_gc_times.maximum());

mercurial