src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 28 Mar 2013 10:27:28 +0100

author
mgerdin
date
Thu, 28 Mar 2013 10:27:28 +0100
changeset 4853
2e093b564241
parent 4579
ad747ee9d0b1
child 4855
24ef5fb05e0f
permissions
-rw-r--r--

7014552: gc/lock/jni/jnilockXXX works too slow on 1-processor machine
Summary: Keep a counter of how many times we were stalled by the GC locker, add a diagnostic flag which sets the limit.
Reviewed-by: brutisso, ehelin, johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    37 #include "gc_implementation/g1/g1Log.hpp"
    38 #include "gc_implementation/g1/g1MarkSweep.hpp"
    39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    41 #include "gc_implementation/g1/heapRegion.inline.hpp"
    42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    44 #include "gc_implementation/g1/vm_operations_g1.hpp"
    45 #include "gc_implementation/shared/isGCActiveMark.hpp"
    46 #include "memory/gcLocker.inline.hpp"
    47 #include "memory/genOopClosures.inline.hpp"
    48 #include "memory/generationSpec.hpp"
    49 #include "memory/referenceProcessor.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "oops/oop.pcgc.inline.hpp"
    52 #include "runtime/aprofiler.hpp"
    53 #include "runtime/vmThread.hpp"
    55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    57 // turn it on so that the contents of the young list (scan-only /
    58 // to-be-collected) are printed at "strategic" points before / during
    59 // / after the collection --- this is useful for debugging
    60 #define YOUNG_LIST_VERBOSE 0
    61 // CURRENT STATUS
    62 // This file is under construction.  Search for "FIXME".
    64 // INVARIANTS/NOTES
    65 //
    66 // All allocation activity covered by the G1CollectedHeap interface is
    67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    68 // and allocate_new_tlab, which are the "entry" points to the
    69 // allocation code from the rest of the JVM.  (Note that this does not
    70 // apply to TLAB allocation, which is not part of this interface: it
    71 // is done by clients of this interface.)
    73 // Notes on implementation of parallelism in different tasks.
    74 //
    75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    77 // It does use run_task() which sets _n_workers in the task.
    78 // G1ParTask executes g1_process_strong_roots() ->
    79 // SharedHeap::process_strong_roots() which calls eventuall to
    80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    83 //
    85 // Local to this file.
    87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    88   SuspendibleThreadSet* _sts;
    89   G1RemSet* _g1rs;
    90   ConcurrentG1Refine* _cg1r;
    91   bool _concurrent;
    92 public:
    93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    94                               G1RemSet* g1rs,
    95                               ConcurrentG1Refine* cg1r) :
    96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    97   {}
    98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
   100     // This path is executed by the concurrent refine or mutator threads,
   101     // concurrently, and so we do not care if card_ptr contains references
   102     // that point into the collection set.
   103     assert(!oops_into_cset, "should be");
   105     if (_concurrent && _sts->should_yield()) {
   106       // Caller will actually yield.
   107       return false;
   108     }
   109     // Otherwise, we finished successfully; return true.
   110     return true;
   111   }
   112   void set_concurrent(bool b) { _concurrent = b; }
   113 };
   116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   117   int _calls;
   118   G1CollectedHeap* _g1h;
   119   CardTableModRefBS* _ctbs;
   120   int _histo[256];
   121 public:
   122   ClearLoggedCardTableEntryClosure() :
   123     _calls(0)
   124   {
   125     _g1h = G1CollectedHeap::heap();
   126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   127     for (int i = 0; i < 256; i++) _histo[i] = 0;
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       unsigned char* ujb = (unsigned char*)card_ptr;
   133       int ind = (int)(*ujb);
   134       _histo[ind]++;
   135       *card_ptr = -1;
   136     }
   137     return true;
   138   }
   139   int calls() { return _calls; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   151   int _calls;
   152   G1CollectedHeap* _g1h;
   153   CardTableModRefBS* _ctbs;
   154 public:
   155   RedirtyLoggedCardTableEntryClosure() :
   156     _calls(0)
   157   {
   158     _g1h = G1CollectedHeap::heap();
   159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   160   }
   161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   163       _calls++;
   164       *card_ptr = 0;
   165     }
   166     return true;
   167   }
   168   int calls() { return _calls; }
   169 };
   171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   172 public:
   173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   174     *card_ptr = CardTableModRefBS::dirty_card_val();
   175     return true;
   176   }
   177 };
   179 YoungList::YoungList(G1CollectedHeap* g1h) :
   180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   182   guarantee(check_list_empty(false), "just making sure...");
   183 }
   185 void YoungList::push_region(HeapRegion *hr) {
   186   assert(!hr->is_young(), "should not already be young");
   187   assert(hr->get_next_young_region() == NULL, "cause it should!");
   189   hr->set_next_young_region(_head);
   190   _head = hr;
   192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   193   ++_length;
   194 }
   196 void YoungList::add_survivor_region(HeapRegion* hr) {
   197   assert(hr->is_survivor(), "should be flagged as survivor region");
   198   assert(hr->get_next_young_region() == NULL, "cause it should!");
   200   hr->set_next_young_region(_survivor_head);
   201   if (_survivor_head == NULL) {
   202     _survivor_tail = hr;
   203   }
   204   _survivor_head = hr;
   205   ++_survivor_length;
   206 }
   208 void YoungList::empty_list(HeapRegion* list) {
   209   while (list != NULL) {
   210     HeapRegion* next = list->get_next_young_region();
   211     list->set_next_young_region(NULL);
   212     list->uninstall_surv_rate_group();
   213     list->set_not_young();
   214     list = next;
   215   }
   216 }
   218 void YoungList::empty_list() {
   219   assert(check_list_well_formed(), "young list should be well formed");
   221   empty_list(_head);
   222   _head = NULL;
   223   _length = 0;
   225   empty_list(_survivor_head);
   226   _survivor_head = NULL;
   227   _survivor_tail = NULL;
   228   _survivor_length = 0;
   230   _last_sampled_rs_lengths = 0;
   232   assert(check_list_empty(false), "just making sure...");
   233 }
   235 bool YoungList::check_list_well_formed() {
   236   bool ret = true;
   238   uint length = 0;
   239   HeapRegion* curr = _head;
   240   HeapRegion* last = NULL;
   241   while (curr != NULL) {
   242     if (!curr->is_young()) {
   243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   244                              "incorrectly tagged (y: %d, surv: %d)",
   245                              curr->bottom(), curr->end(),
   246                              curr->is_young(), curr->is_survivor());
   247       ret = false;
   248     }
   249     ++length;
   250     last = curr;
   251     curr = curr->get_next_young_region();
   252   }
   253   ret = ret && (length == _length);
   255   if (!ret) {
   256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   258                            length, _length);
   259   }
   261   return ret;
   262 }
   264 bool YoungList::check_list_empty(bool check_sample) {
   265   bool ret = true;
   267   if (_length != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   269                   _length);
   270     ret = false;
   271   }
   272   if (check_sample && _last_sampled_rs_lengths != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   274     ret = false;
   275   }
   276   if (_head != NULL) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   278     ret = false;
   279   }
   280   if (!ret) {
   281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   282   }
   284   return ret;
   285 }
   287 void
   288 YoungList::rs_length_sampling_init() {
   289   _sampled_rs_lengths = 0;
   290   _curr               = _head;
   291 }
   293 bool
   294 YoungList::rs_length_sampling_more() {
   295   return _curr != NULL;
   296 }
   298 void
   299 YoungList::rs_length_sampling_next() {
   300   assert( _curr != NULL, "invariant" );
   301   size_t rs_length = _curr->rem_set()->occupied();
   303   _sampled_rs_lengths += rs_length;
   305   // The current region may not yet have been added to the
   306   // incremental collection set (it gets added when it is
   307   // retired as the current allocation region).
   308   if (_curr->in_collection_set()) {
   309     // Update the collection set policy information for this region
   310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   311   }
   313   _curr = _curr->get_next_young_region();
   314   if (_curr == NULL) {
   315     _last_sampled_rs_lengths = _sampled_rs_lengths;
   316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   317   }
   318 }
   320 void
   321 YoungList::reset_auxilary_lists() {
   322   guarantee( is_empty(), "young list should be empty" );
   323   assert(check_list_well_formed(), "young list should be well formed");
   325   // Add survivor regions to SurvRateGroup.
   326   _g1h->g1_policy()->note_start_adding_survivor_regions();
   327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   329   int young_index_in_cset = 0;
   330   for (HeapRegion* curr = _survivor_head;
   331        curr != NULL;
   332        curr = curr->get_next_young_region()) {
   333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   335     // The region is a non-empty survivor so let's add it to
   336     // the incremental collection set for the next evacuation
   337     // pause.
   338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   339     young_index_in_cset += 1;
   340   }
   341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   344   _head   = _survivor_head;
   345   _length = _survivor_length;
   346   if (_survivor_head != NULL) {
   347     assert(_survivor_tail != NULL, "cause it shouldn't be");
   348     assert(_survivor_length > 0, "invariant");
   349     _survivor_tail->set_next_young_region(NULL);
   350   }
   352   // Don't clear the survivor list handles until the start of
   353   // the next evacuation pause - we need it in order to re-tag
   354   // the survivor regions from this evacuation pause as 'young'
   355   // at the start of the next.
   357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   359   assert(check_list_well_formed(), "young list should be well formed");
   360 }
   362 void YoungList::print() {
   363   HeapRegion* lists[] = {_head,   _survivor_head};
   364   const char* names[] = {"YOUNG", "SURVIVOR"};
   366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   368     HeapRegion *curr = lists[list];
   369     if (curr == NULL)
   370       gclog_or_tty->print_cr("  empty");
   371     while (curr != NULL) {
   372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   373                              HR_FORMAT_PARAMS(curr),
   374                              curr->prev_top_at_mark_start(),
   375                              curr->next_top_at_mark_start(),
   376                              curr->age_in_surv_rate_group_cond());
   377       curr = curr->get_next_young_region();
   378     }
   379   }
   381   gclog_or_tty->print_cr("");
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 void G1CollectedHeap::stop_conc_gc_threads() {
   438   _cg1r->stop();
   439   _cmThread->stop();
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   HeapRegion* hr = heap_region_containing(p);
   455   return hr != NULL && hr->in_collection_set();
   456 }
   457 #endif
   459 // Returns true if the reference points to an object that
   460 // can move in an incremental collecction.
   461 bool G1CollectedHeap::is_scavengable(const void* p) {
   462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   463   G1CollectorPolicy* g1p = g1h->g1_policy();
   464   HeapRegion* hr = heap_region_containing(p);
   465   if (hr == NULL) {
   466      // null
   467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   468      return false;
   469   } else {
   470     return !hr->isHumongous();
   471   }
   472 }
   474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   478   // Count the dirty cards at the start.
   479   CountNonCleanMemRegionClosure count1(this);
   480   ct_bs->mod_card_iterate(&count1);
   481   int orig_count = count1.n();
   483   // First clear the logged cards.
   484   ClearLoggedCardTableEntryClosure clear;
   485   dcqs.set_closure(&clear);
   486   dcqs.apply_closure_to_all_completed_buffers();
   487   dcqs.iterate_closure_all_threads(false);
   488   clear.print_histo();
   490   // Now ensure that there's no dirty cards.
   491   CountNonCleanMemRegionClosure count2(this);
   492   ct_bs->mod_card_iterate(&count2);
   493   if (count2.n() != 0) {
   494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   495                            count2.n(), orig_count);
   496   }
   497   guarantee(count2.n() == 0, "Card table should be clean.");
   499   RedirtyLoggedCardTableEntryClosure redirty;
   500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   501   dcqs.apply_closure_to_all_completed_buffers();
   502   dcqs.iterate_closure_all_threads(false);
   503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   504                          clear.calls(), orig_count);
   505   guarantee(redirty.calls() == clear.calls(),
   506             "Or else mechanism is broken.");
   508   CountNonCleanMemRegionClosure count3(this);
   509   ct_bs->mod_card_iterate(&count3);
   510   if (count3.n() != orig_count) {
   511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   512                            orig_count, count3.n());
   513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   514   }
   516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   517 }
   519 // Private class members.
   521 G1CollectedHeap* G1CollectedHeap::_g1h;
   523 // Private methods.
   525 HeapRegion*
   526 G1CollectedHeap::new_region_try_secondary_free_list() {
   527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   529     if (!_secondary_free_list.is_empty()) {
   530       if (G1ConcRegionFreeingVerbose) {
   531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   532                                "secondary_free_list has %u entries",
   533                                _secondary_free_list.length());
   534       }
   535       // It looks as if there are free regions available on the
   536       // secondary_free_list. Let's move them to the free_list and try
   537       // again to allocate from it.
   538       append_secondary_free_list();
   540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   541              "empty we should have moved at least one entry to the free_list");
   542       HeapRegion* res = _free_list.remove_head();
   543       if (G1ConcRegionFreeingVerbose) {
   544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   545                                "allocated "HR_FORMAT" from secondary_free_list",
   546                                HR_FORMAT_PARAMS(res));
   547       }
   548       return res;
   549     }
   551     // Wait here until we get notifed either when (a) there are no
   552     // more free regions coming or (b) some regions have been moved on
   553     // the secondary_free_list.
   554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   555   }
   557   if (G1ConcRegionFreeingVerbose) {
   558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   559                            "could not allocate from secondary_free_list");
   560   }
   561   return NULL;
   562 }
   564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   566          "the only time we use this to allocate a humongous region is "
   567          "when we are allocating a single humongous region");
   569   HeapRegion* res;
   570   if (G1StressConcRegionFreeing) {
   571     if (!_secondary_free_list.is_empty()) {
   572       if (G1ConcRegionFreeingVerbose) {
   573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   574                                "forced to look at the secondary_free_list");
   575       }
   576       res = new_region_try_secondary_free_list();
   577       if (res != NULL) {
   578         return res;
   579       }
   580     }
   581   }
   582   res = _free_list.remove_head_or_null();
   583   if (res == NULL) {
   584     if (G1ConcRegionFreeingVerbose) {
   585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   586                              "res == NULL, trying the secondary_free_list");
   587     }
   588     res = new_region_try_secondary_free_list();
   589   }
   590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   591     // Currently, only attempts to allocate GC alloc regions set
   592     // do_expand to true. So, we should only reach here during a
   593     // safepoint. If this assumption changes we might have to
   594     // reconsider the use of _expand_heap_after_alloc_failure.
   595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   597     ergo_verbose1(ErgoHeapSizing,
   598                   "attempt heap expansion",
   599                   ergo_format_reason("region allocation request failed")
   600                   ergo_format_byte("allocation request"),
   601                   word_size * HeapWordSize);
   602     if (expand(word_size * HeapWordSize)) {
   603       // Given that expand() succeeded in expanding the heap, and we
   604       // always expand the heap by an amount aligned to the heap
   605       // region size, the free list should in theory not be empty. So
   606       // it would probably be OK to use remove_head(). But the extra
   607       // check for NULL is unlikely to be a performance issue here (we
   608       // just expanded the heap!) so let's just be conservative and
   609       // use remove_head_or_null().
   610       res = _free_list.remove_head_or_null();
   611     } else {
   612       _expand_heap_after_alloc_failure = false;
   613     }
   614   }
   615   return res;
   616 }
   618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   619                                                         size_t word_size) {
   620   assert(isHumongous(word_size), "word_size should be humongous");
   621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   623   uint first = G1_NULL_HRS_INDEX;
   624   if (num_regions == 1) {
   625     // Only one region to allocate, no need to go through the slower
   626     // path. The caller will attempt the expasion if this fails, so
   627     // let's not try to expand here too.
   628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   629     if (hr != NULL) {
   630       first = hr->hrs_index();
   631     } else {
   632       first = G1_NULL_HRS_INDEX;
   633     }
   634   } else {
   635     // We can't allocate humongous regions while cleanupComplete() is
   636     // running, since some of the regions we find to be empty might not
   637     // yet be added to the free list and it is not straightforward to
   638     // know which list they are on so that we can remove them. Note
   639     // that we only need to do this if we need to allocate more than
   640     // one region to satisfy the current humongous allocation
   641     // request. If we are only allocating one region we use the common
   642     // region allocation code (see above).
   643     wait_while_free_regions_coming();
   644     append_secondary_free_list_if_not_empty_with_lock();
   646     if (free_regions() >= num_regions) {
   647       first = _hrs.find_contiguous(num_regions);
   648       if (first != G1_NULL_HRS_INDEX) {
   649         for (uint i = first; i < first + num_regions; ++i) {
   650           HeapRegion* hr = region_at(i);
   651           assert(hr->is_empty(), "sanity");
   652           assert(is_on_master_free_list(hr), "sanity");
   653           hr->set_pending_removal(true);
   654         }
   655         _free_list.remove_all_pending(num_regions);
   656       }
   657     }
   658   }
   659   return first;
   660 }
   662 HeapWord*
   663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   664                                                            uint num_regions,
   665                                                            size_t word_size) {
   666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   667   assert(isHumongous(word_size), "word_size should be humongous");
   668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   670   // Index of last region in the series + 1.
   671   uint last = first + num_regions;
   673   // We need to initialize the region(s) we just discovered. This is
   674   // a bit tricky given that it can happen concurrently with
   675   // refinement threads refining cards on these regions and
   676   // potentially wanting to refine the BOT as they are scanning
   677   // those cards (this can happen shortly after a cleanup; see CR
   678   // 6991377). So we have to set up the region(s) carefully and in
   679   // a specific order.
   681   // The word size sum of all the regions we will allocate.
   682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   683   assert(word_size <= word_size_sum, "sanity");
   685   // This will be the "starts humongous" region.
   686   HeapRegion* first_hr = region_at(first);
   687   // The header of the new object will be placed at the bottom of
   688   // the first region.
   689   HeapWord* new_obj = first_hr->bottom();
   690   // This will be the new end of the first region in the series that
   691   // should also match the end of the last region in the seriers.
   692   HeapWord* new_end = new_obj + word_size_sum;
   693   // This will be the new top of the first region that will reflect
   694   // this allocation.
   695   HeapWord* new_top = new_obj + word_size;
   697   // First, we need to zero the header of the space that we will be
   698   // allocating. When we update top further down, some refinement
   699   // threads might try to scan the region. By zeroing the header we
   700   // ensure that any thread that will try to scan the region will
   701   // come across the zero klass word and bail out.
   702   //
   703   // NOTE: It would not have been correct to have used
   704   // CollectedHeap::fill_with_object() and make the space look like
   705   // an int array. The thread that is doing the allocation will
   706   // later update the object header to a potentially different array
   707   // type and, for a very short period of time, the klass and length
   708   // fields will be inconsistent. This could cause a refinement
   709   // thread to calculate the object size incorrectly.
   710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   712   // We will set up the first region as "starts humongous". This
   713   // will also update the BOT covering all the regions to reflect
   714   // that there is a single object that starts at the bottom of the
   715   // first region.
   716   first_hr->set_startsHumongous(new_top, new_end);
   718   // Then, if there are any, we will set up the "continues
   719   // humongous" regions.
   720   HeapRegion* hr = NULL;
   721   for (uint i = first + 1; i < last; ++i) {
   722     hr = region_at(i);
   723     hr->set_continuesHumongous(first_hr);
   724   }
   725   // If we have "continues humongous" regions (hr != NULL), then the
   726   // end of the last one should match new_end.
   727   assert(hr == NULL || hr->end() == new_end, "sanity");
   729   // Up to this point no concurrent thread would have been able to
   730   // do any scanning on any region in this series. All the top
   731   // fields still point to bottom, so the intersection between
   732   // [bottom,top] and [card_start,card_end] will be empty. Before we
   733   // update the top fields, we'll do a storestore to make sure that
   734   // no thread sees the update to top before the zeroing of the
   735   // object header and the BOT initialization.
   736   OrderAccess::storestore();
   738   // Now that the BOT and the object header have been initialized,
   739   // we can update top of the "starts humongous" region.
   740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   741          "new_top should be in this region");
   742   first_hr->set_top(new_top);
   743   if (_hr_printer.is_active()) {
   744     HeapWord* bottom = first_hr->bottom();
   745     HeapWord* end = first_hr->orig_end();
   746     if ((first + 1) == last) {
   747       // the series has a single humongous region
   748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   749     } else {
   750       // the series has more than one humongous regions
   751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   752     }
   753   }
   755   // Now, we will update the top fields of the "continues humongous"
   756   // regions. The reason we need to do this is that, otherwise,
   757   // these regions would look empty and this will confuse parts of
   758   // G1. For example, the code that looks for a consecutive number
   759   // of empty regions will consider them empty and try to
   760   // re-allocate them. We can extend is_empty() to also include
   761   // !continuesHumongous(), but it is easier to just update the top
   762   // fields here. The way we set top for all regions (i.e., top ==
   763   // end for all regions but the last one, top == new_top for the
   764   // last one) is actually used when we will free up the humongous
   765   // region in free_humongous_region().
   766   hr = NULL;
   767   for (uint i = first + 1; i < last; ++i) {
   768     hr = region_at(i);
   769     if ((i + 1) == last) {
   770       // last continues humongous region
   771       assert(hr->bottom() < new_top && new_top <= hr->end(),
   772              "new_top should fall on this region");
   773       hr->set_top(new_top);
   774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   775     } else {
   776       // not last one
   777       assert(new_top > hr->end(), "new_top should be above this region");
   778       hr->set_top(hr->end());
   779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   780     }
   781   }
   782   // If we have continues humongous regions (hr != NULL), then the
   783   // end of the last one should match new_end and its top should
   784   // match new_top.
   785   assert(hr == NULL ||
   786          (hr->end() == new_end && hr->top() == new_top), "sanity");
   788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   789   _summary_bytes_used += first_hr->used();
   790   _humongous_set.add(first_hr);
   792   return new_obj;
   793 }
   795 // If could fit into free regions w/o expansion, try.
   796 // Otherwise, if can expand, do so.
   797 // Otherwise, if using ex regions might help, try with ex given back.
   798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   801   verify_region_sets_optional();
   803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   805   uint x_num = expansion_regions();
   806   uint fs = _hrs.free_suffix();
   807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   808   if (first == G1_NULL_HRS_INDEX) {
   809     // The only thing we can do now is attempt expansion.
   810     if (fs + x_num >= num_regions) {
   811       // If the number of regions we're trying to allocate for this
   812       // object is at most the number of regions in the free suffix,
   813       // then the call to humongous_obj_allocate_find_first() above
   814       // should have succeeded and we wouldn't be here.
   815       //
   816       // We should only be trying to expand when the free suffix is
   817       // not sufficient for the object _and_ we have some expansion
   818       // room available.
   819       assert(num_regions > fs, "earlier allocation should have succeeded");
   821       ergo_verbose1(ErgoHeapSizing,
   822                     "attempt heap expansion",
   823                     ergo_format_reason("humongous allocation request failed")
   824                     ergo_format_byte("allocation request"),
   825                     word_size * HeapWordSize);
   826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   827         // Even though the heap was expanded, it might not have
   828         // reached the desired size. So, we cannot assume that the
   829         // allocation will succeed.
   830         first = humongous_obj_allocate_find_first(num_regions, word_size);
   831       }
   832     }
   833   }
   835   HeapWord* result = NULL;
   836   if (first != G1_NULL_HRS_INDEX) {
   837     result =
   838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   839     assert(result != NULL, "it should always return a valid result");
   841     // A successful humongous object allocation changes the used space
   842     // information of the old generation so we need to recalculate the
   843     // sizes and update the jstat counters here.
   844     g1mm()->update_sizes();
   845   }
   847   verify_region_sets_optional();
   849   return result;
   850 }
   852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   853   assert_heap_not_locked_and_not_at_safepoint();
   854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   856   unsigned int dummy_gc_count_before;
   857   int dummy_gclocker_retry_count = 0;
   858   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   859 }
   861 HeapWord*
   862 G1CollectedHeap::mem_allocate(size_t word_size,
   863                               bool*  gc_overhead_limit_was_exceeded) {
   864   assert_heap_not_locked_and_not_at_safepoint();
   866   // Loop until the allocation is satisified, or unsatisfied after GC.
   867   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   868     unsigned int gc_count_before;
   870     HeapWord* result = NULL;
   871     if (!isHumongous(word_size)) {
   872       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   873     } else {
   874       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   875     }
   876     if (result != NULL) {
   877       return result;
   878     }
   880     // Create the garbage collection operation...
   881     VM_G1CollectForAllocation op(gc_count_before, word_size);
   882     // ...and get the VM thread to execute it.
   883     VMThread::execute(&op);
   885     if (op.prologue_succeeded() && op.pause_succeeded()) {
   886       // If the operation was successful we'll return the result even
   887       // if it is NULL. If the allocation attempt failed immediately
   888       // after a Full GC, it's unlikely we'll be able to allocate now.
   889       HeapWord* result = op.result();
   890       if (result != NULL && !isHumongous(word_size)) {
   891         // Allocations that take place on VM operations do not do any
   892         // card dirtying and we have to do it here. We only have to do
   893         // this for non-humongous allocations, though.
   894         dirty_young_block(result, word_size);
   895       }
   896       return result;
   897     } else {
   898       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   899         return NULL;
   900       }
   901       assert(op.result() == NULL,
   902              "the result should be NULL if the VM op did not succeed");
   903     }
   905     // Give a warning if we seem to be looping forever.
   906     if ((QueuedAllocationWarningCount > 0) &&
   907         (try_count % QueuedAllocationWarningCount == 0)) {
   908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   909     }
   910   }
   912   ShouldNotReachHere();
   913   return NULL;
   914 }
   916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   917                                            unsigned int *gc_count_before_ret,
   918                                            int* gclocker_retry_count_ret) {
   919   // Make sure you read the note in attempt_allocation_humongous().
   921   assert_heap_not_locked_and_not_at_safepoint();
   922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   923          "be called for humongous allocation requests");
   925   // We should only get here after the first-level allocation attempt
   926   // (attempt_allocation()) failed to allocate.
   928   // We will loop until a) we manage to successfully perform the
   929   // allocation or b) we successfully schedule a collection which
   930   // fails to perform the allocation. b) is the only case when we'll
   931   // return NULL.
   932   HeapWord* result = NULL;
   933   for (int try_count = 1; /* we'll return */; try_count += 1) {
   934     bool should_try_gc;
   935     unsigned int gc_count_before;
   937     {
   938       MutexLockerEx x(Heap_lock);
   940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   941                                                       false /* bot_updates */);
   942       if (result != NULL) {
   943         return result;
   944       }
   946       // If we reach here, attempt_allocation_locked() above failed to
   947       // allocate a new region. So the mutator alloc region should be NULL.
   948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   950       if (GC_locker::is_active_and_needs_gc()) {
   951         if (g1_policy()->can_expand_young_list()) {
   952           // No need for an ergo verbose message here,
   953           // can_expand_young_list() does this when it returns true.
   954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   955                                                       false /* bot_updates */);
   956           if (result != NULL) {
   957             return result;
   958           }
   959         }
   960         should_try_gc = false;
   961       } else {
   962         // The GCLocker may not be active but the GCLocker initiated
   963         // GC may not yet have been performed (GCLocker::needs_gc()
   964         // returns true). In this case we do not try this GC and
   965         // wait until the GCLocker initiated GC is performed, and
   966         // then retry the allocation.
   967         if (GC_locker::needs_gc()) {
   968           should_try_gc = false;
   969         } else {
   970           // Read the GC count while still holding the Heap_lock.
   971           gc_count_before = total_collections();
   972           should_try_gc = true;
   973         }
   974       }
   975     }
   977     if (should_try_gc) {
   978       bool succeeded;
   979       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   980       if (result != NULL) {
   981         assert(succeeded, "only way to get back a non-NULL result");
   982         return result;
   983       }
   985       if (succeeded) {
   986         // If we get here we successfully scheduled a collection which
   987         // failed to allocate. No point in trying to allocate
   988         // further. We'll just return NULL.
   989         MutexLockerEx x(Heap_lock);
   990         *gc_count_before_ret = total_collections();
   991         return NULL;
   992       }
   993     } else {
   994       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   995         MutexLockerEx x(Heap_lock);
   996         *gc_count_before_ret = total_collections();
   997         return NULL;
   998       }
   999       // The GCLocker is either active or the GCLocker initiated
  1000       // GC has not yet been performed. Stall until it is and
  1001       // then retry the allocation.
  1002       GC_locker::stall_until_clear();
  1003       (*gclocker_retry_count_ret) += 1;
  1006     // We can reach here if we were unsuccessul in scheduling a
  1007     // collection (because another thread beat us to it) or if we were
  1008     // stalled due to the GC locker. In either can we should retry the
  1009     // allocation attempt in case another thread successfully
  1010     // performed a collection and reclaimed enough space. We do the
  1011     // first attempt (without holding the Heap_lock) here and the
  1012     // follow-on attempt will be at the start of the next loop
  1013     // iteration (after taking the Heap_lock).
  1014     result = _mutator_alloc_region.attempt_allocation(word_size,
  1015                                                       false /* bot_updates */);
  1016     if (result != NULL) {
  1017       return result;
  1020     // Give a warning if we seem to be looping forever.
  1021     if ((QueuedAllocationWarningCount > 0) &&
  1022         (try_count % QueuedAllocationWarningCount == 0)) {
  1023       warning("G1CollectedHeap::attempt_allocation_slow() "
  1024               "retries %d times", try_count);
  1028   ShouldNotReachHere();
  1029   return NULL;
  1032 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1033                                           unsigned int * gc_count_before_ret,
  1034                                           int* gclocker_retry_count_ret) {
  1035   // The structure of this method has a lot of similarities to
  1036   // attempt_allocation_slow(). The reason these two were not merged
  1037   // into a single one is that such a method would require several "if
  1038   // allocation is not humongous do this, otherwise do that"
  1039   // conditional paths which would obscure its flow. In fact, an early
  1040   // version of this code did use a unified method which was harder to
  1041   // follow and, as a result, it had subtle bugs that were hard to
  1042   // track down. So keeping these two methods separate allows each to
  1043   // be more readable. It will be good to keep these two in sync as
  1044   // much as possible.
  1046   assert_heap_not_locked_and_not_at_safepoint();
  1047   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1048          "should only be called for humongous allocations");
  1050   // Humongous objects can exhaust the heap quickly, so we should check if we
  1051   // need to start a marking cycle at each humongous object allocation. We do
  1052   // the check before we do the actual allocation. The reason for doing it
  1053   // before the allocation is that we avoid having to keep track of the newly
  1054   // allocated memory while we do a GC.
  1055   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1056                                            word_size)) {
  1057     collect(GCCause::_g1_humongous_allocation);
  1060   // We will loop until a) we manage to successfully perform the
  1061   // allocation or b) we successfully schedule a collection which
  1062   // fails to perform the allocation. b) is the only case when we'll
  1063   // return NULL.
  1064   HeapWord* result = NULL;
  1065   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1066     bool should_try_gc;
  1067     unsigned int gc_count_before;
  1070       MutexLockerEx x(Heap_lock);
  1072       // Given that humongous objects are not allocated in young
  1073       // regions, we'll first try to do the allocation without doing a
  1074       // collection hoping that there's enough space in the heap.
  1075       result = humongous_obj_allocate(word_size);
  1076       if (result != NULL) {
  1077         return result;
  1080       if (GC_locker::is_active_and_needs_gc()) {
  1081         should_try_gc = false;
  1082       } else {
  1083          // The GCLocker may not be active but the GCLocker initiated
  1084         // GC may not yet have been performed (GCLocker::needs_gc()
  1085         // returns true). In this case we do not try this GC and
  1086         // wait until the GCLocker initiated GC is performed, and
  1087         // then retry the allocation.
  1088         if (GC_locker::needs_gc()) {
  1089           should_try_gc = false;
  1090         } else {
  1091           // Read the GC count while still holding the Heap_lock.
  1092           gc_count_before = total_collections();
  1093           should_try_gc = true;
  1098     if (should_try_gc) {
  1099       // If we failed to allocate the humongous object, we should try to
  1100       // do a collection pause (if we're allowed) in case it reclaims
  1101       // enough space for the allocation to succeed after the pause.
  1103       bool succeeded;
  1104       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1105       if (result != NULL) {
  1106         assert(succeeded, "only way to get back a non-NULL result");
  1107         return result;
  1110       if (succeeded) {
  1111         // If we get here we successfully scheduled a collection which
  1112         // failed to allocate. No point in trying to allocate
  1113         // further. We'll just return NULL.
  1114         MutexLockerEx x(Heap_lock);
  1115         *gc_count_before_ret = total_collections();
  1116         return NULL;
  1118     } else {
  1119       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1120         MutexLockerEx x(Heap_lock);
  1121         *gc_count_before_ret = total_collections();
  1122         return NULL;
  1124       // The GCLocker is either active or the GCLocker initiated
  1125       // GC has not yet been performed. Stall until it is and
  1126       // then retry the allocation.
  1127       GC_locker::stall_until_clear();
  1128       (*gclocker_retry_count_ret) += 1;
  1131     // We can reach here if we were unsuccessul in scheduling a
  1132     // collection (because another thread beat us to it) or if we were
  1133     // stalled due to the GC locker. In either can we should retry the
  1134     // allocation attempt in case another thread successfully
  1135     // performed a collection and reclaimed enough space.  Give a
  1136     // warning if we seem to be looping forever.
  1138     if ((QueuedAllocationWarningCount > 0) &&
  1139         (try_count % QueuedAllocationWarningCount == 0)) {
  1140       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1141               "retries %d times", try_count);
  1145   ShouldNotReachHere();
  1146   return NULL;
  1149 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1150                                        bool expect_null_mutator_alloc_region) {
  1151   assert_at_safepoint(true /* should_be_vm_thread */);
  1152   assert(_mutator_alloc_region.get() == NULL ||
  1153                                              !expect_null_mutator_alloc_region,
  1154          "the current alloc region was unexpectedly found to be non-NULL");
  1156   if (!isHumongous(word_size)) {
  1157     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1158                                                       false /* bot_updates */);
  1159   } else {
  1160     HeapWord* result = humongous_obj_allocate(word_size);
  1161     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1162       g1_policy()->set_initiate_conc_mark_if_possible();
  1164     return result;
  1167   ShouldNotReachHere();
  1170 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1171   G1CollectedHeap* _g1h;
  1172   ModRefBarrierSet* _mr_bs;
  1173 public:
  1174   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1175     _g1h(g1h), _mr_bs(mr_bs) { }
  1176   bool doHeapRegion(HeapRegion* r) {
  1177     if (r->continuesHumongous()) {
  1178       return false;
  1180     _g1h->reset_gc_time_stamps(r);
  1181     HeapRegionRemSet* hrrs = r->rem_set();
  1182     if (hrrs != NULL) hrrs->clear();
  1183     // You might think here that we could clear just the cards
  1184     // corresponding to the used region.  But no: if we leave a dirty card
  1185     // in a region we might allocate into, then it would prevent that card
  1186     // from being enqueued, and cause it to be missed.
  1187     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1188     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1189     return false;
  1191 };
  1193 void G1CollectedHeap::clear_rsets_post_compaction() {
  1194   PostMCRemSetClearClosure rs_clear(this, mr_bs());
  1195   heap_region_iterate(&rs_clear);
  1198 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1199   G1CollectedHeap*   _g1h;
  1200   UpdateRSOopClosure _cl;
  1201   int                _worker_i;
  1202 public:
  1203   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1204     _cl(g1->g1_rem_set(), worker_i),
  1205     _worker_i(worker_i),
  1206     _g1h(g1)
  1207   { }
  1209   bool doHeapRegion(HeapRegion* r) {
  1210     if (!r->continuesHumongous()) {
  1211       _cl.set_from(r);
  1212       r->oop_iterate(&_cl);
  1214     return false;
  1216 };
  1218 class ParRebuildRSTask: public AbstractGangTask {
  1219   G1CollectedHeap* _g1;
  1220 public:
  1221   ParRebuildRSTask(G1CollectedHeap* g1)
  1222     : AbstractGangTask("ParRebuildRSTask"),
  1223       _g1(g1)
  1224   { }
  1226   void work(uint worker_id) {
  1227     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1228     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1229                                           _g1->workers()->active_workers(),
  1230                                          HeapRegion::RebuildRSClaimValue);
  1232 };
  1234 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1235 private:
  1236   G1HRPrinter* _hr_printer;
  1237 public:
  1238   bool doHeapRegion(HeapRegion* hr) {
  1239     assert(!hr->is_young(), "not expecting to find young regions");
  1240     // We only generate output for non-empty regions.
  1241     if (!hr->is_empty()) {
  1242       if (!hr->isHumongous()) {
  1243         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1244       } else if (hr->startsHumongous()) {
  1245         if (hr->region_num() == 1) {
  1246           // single humongous region
  1247           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1248         } else {
  1249           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1251       } else {
  1252         assert(hr->continuesHumongous(), "only way to get here");
  1253         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1256     return false;
  1259   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1260     : _hr_printer(hr_printer) { }
  1261 };
  1263 void G1CollectedHeap::print_hrs_post_compaction() {
  1264   PostCompactionPrinterClosure cl(hr_printer());
  1265   heap_region_iterate(&cl);
  1268 double G1CollectedHeap::verify(bool guard, const char* msg) {
  1269   double verify_time_ms = 0.0;
  1271   if (guard && total_collections() >= VerifyGCStartAt) {
  1272     double verify_start = os::elapsedTime();
  1273     HandleMark hm;  // Discard invalid handles created during verification
  1274     gclog_or_tty->print(msg);
  1275     prepare_for_verify();
  1276     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
  1277     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  1280   return verify_time_ms;
  1283 void G1CollectedHeap::verify_before_gc() {
  1284   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  1285   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  1288 void G1CollectedHeap::verify_after_gc() {
  1289   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  1290   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  1293 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1294                                     bool clear_all_soft_refs,
  1295                                     size_t word_size) {
  1296   assert_at_safepoint(true /* should_be_vm_thread */);
  1298   if (GC_locker::check_active_before_gc()) {
  1299     return false;
  1302   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1303   ResourceMark rm;
  1305   print_heap_before_gc();
  1307   size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
  1309   HRSPhaseSetter x(HRSPhaseFullGC);
  1310   verify_region_sets_optional();
  1312   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1313                            collector_policy()->should_clear_all_soft_refs();
  1315   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1318     IsGCActiveMark x;
  1320     // Timing
  1321     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1322     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1323     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1325     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
  1326     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1327     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1329     double start = os::elapsedTime();
  1330     g1_policy()->record_full_collection_start();
  1332     // Note: When we have a more flexible GC logging framework that
  1333     // allows us to add optional attributes to a GC log record we
  1334     // could consider timing and reporting how long we wait in the
  1335     // following two methods.
  1336     wait_while_free_regions_coming();
  1337     // If we start the compaction before the CM threads finish
  1338     // scanning the root regions we might trip them over as we'll
  1339     // be moving objects / updating references. So let's wait until
  1340     // they are done. By telling them to abort, they should complete
  1341     // early.
  1342     _cm->root_regions()->abort();
  1343     _cm->root_regions()->wait_until_scan_finished();
  1344     append_secondary_free_list_if_not_empty_with_lock();
  1346     gc_prologue(true);
  1347     increment_total_collections(true /* full gc */);
  1348     increment_old_marking_cycles_started();
  1350     size_t g1h_prev_used = used();
  1351     assert(used() == recalculate_used(), "Should be equal");
  1353     verify_before_gc();
  1355     pre_full_gc_dump();
  1357     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1359     // Disable discovery and empty the discovered lists
  1360     // for the CM ref processor.
  1361     ref_processor_cm()->disable_discovery();
  1362     ref_processor_cm()->abandon_partial_discovery();
  1363     ref_processor_cm()->verify_no_references_recorded();
  1365     // Abandon current iterations of concurrent marking and concurrent
  1366     // refinement, if any are in progress. We have to do this before
  1367     // wait_until_scan_finished() below.
  1368     concurrent_mark()->abort();
  1370     // Make sure we'll choose a new allocation region afterwards.
  1371     release_mutator_alloc_region();
  1372     abandon_gc_alloc_regions();
  1373     g1_rem_set()->cleanupHRRS();
  1375     // We should call this after we retire any currently active alloc
  1376     // regions so that all the ALLOC / RETIRE events are generated
  1377     // before the start GC event.
  1378     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1380     // We may have added regions to the current incremental collection
  1381     // set between the last GC or pause and now. We need to clear the
  1382     // incremental collection set and then start rebuilding it afresh
  1383     // after this full GC.
  1384     abandon_collection_set(g1_policy()->inc_cset_head());
  1385     g1_policy()->clear_incremental_cset();
  1386     g1_policy()->stop_incremental_cset_building();
  1388     tear_down_region_sets(false /* free_list_only */);
  1389     g1_policy()->set_gcs_are_young(true);
  1391     // See the comments in g1CollectedHeap.hpp and
  1392     // G1CollectedHeap::ref_processing_init() about
  1393     // how reference processing currently works in G1.
  1395     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1396     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1398     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1399     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1401     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1402     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1404     // Do collection work
  1406       HandleMark hm;  // Discard invalid handles created during gc
  1407       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1410     assert(free_regions() == 0, "we should not have added any free regions");
  1411     rebuild_region_sets(false /* free_list_only */);
  1413     // Enqueue any discovered reference objects that have
  1414     // not been removed from the discovered lists.
  1415     ref_processor_stw()->enqueue_discovered_references();
  1417     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1419     MemoryService::track_memory_usage();
  1421     verify_after_gc();
  1423     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1424     ref_processor_stw()->verify_no_references_recorded();
  1426     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1427     ClassLoaderDataGraph::purge();
  1429     // Note: since we've just done a full GC, concurrent
  1430     // marking is no longer active. Therefore we need not
  1431     // re-enable reference discovery for the CM ref processor.
  1432     // That will be done at the start of the next marking cycle.
  1433     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1434     ref_processor_cm()->verify_no_references_recorded();
  1436     reset_gc_time_stamp();
  1437     // Since everything potentially moved, we will clear all remembered
  1438     // sets, and clear all cards.  Later we will rebuild remebered
  1439     // sets. We will also reset the GC time stamps of the regions.
  1440     clear_rsets_post_compaction();
  1441     check_gc_time_stamps();
  1443     // Resize the heap if necessary.
  1444     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1446     if (_hr_printer.is_active()) {
  1447       // We should do this after we potentially resize the heap so
  1448       // that all the COMMIT / UNCOMMIT events are generated before
  1449       // the end GC event.
  1451       print_hrs_post_compaction();
  1452       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1455     if (_cg1r->use_cache()) {
  1456       _cg1r->clear_and_record_card_counts();
  1457       _cg1r->clear_hot_cache();
  1460     // Rebuild remembered sets of all regions.
  1461     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1462       uint n_workers =
  1463         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1464                                        workers()->active_workers(),
  1465                                        Threads::number_of_non_daemon_threads());
  1466       assert(UseDynamicNumberOfGCThreads ||
  1467              n_workers == workers()->total_workers(),
  1468              "If not dynamic should be using all the  workers");
  1469       workers()->set_active_workers(n_workers);
  1470       // Set parallel threads in the heap (_n_par_threads) only
  1471       // before a parallel phase and always reset it to 0 after
  1472       // the phase so that the number of parallel threads does
  1473       // no get carried forward to a serial phase where there
  1474       // may be code that is "possibly_parallel".
  1475       set_par_threads(n_workers);
  1477       ParRebuildRSTask rebuild_rs_task(this);
  1478       assert(check_heap_region_claim_values(
  1479              HeapRegion::InitialClaimValue), "sanity check");
  1480       assert(UseDynamicNumberOfGCThreads ||
  1481              workers()->active_workers() == workers()->total_workers(),
  1482         "Unless dynamic should use total workers");
  1483       // Use the most recent number of  active workers
  1484       assert(workers()->active_workers() > 0,
  1485         "Active workers not properly set");
  1486       set_par_threads(workers()->active_workers());
  1487       workers()->run_task(&rebuild_rs_task);
  1488       set_par_threads(0);
  1489       assert(check_heap_region_claim_values(
  1490              HeapRegion::RebuildRSClaimValue), "sanity check");
  1491       reset_heap_region_claim_values();
  1492     } else {
  1493       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1494       heap_region_iterate(&rebuild_rs);
  1497     if (G1Log::fine()) {
  1498       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1501     if (true) { // FIXME
  1502       MetaspaceGC::compute_new_size();
  1505     // Start a new incremental collection set for the next pause
  1506     assert(g1_policy()->collection_set() == NULL, "must be");
  1507     g1_policy()->start_incremental_cset_building();
  1509     // Clear the _cset_fast_test bitmap in anticipation of adding
  1510     // regions to the incremental collection set for the next
  1511     // evacuation pause.
  1512     clear_cset_fast_test();
  1514     init_mutator_alloc_region();
  1516     double end = os::elapsedTime();
  1517     g1_policy()->record_full_collection_end();
  1519 #ifdef TRACESPINNING
  1520     ParallelTaskTerminator::print_termination_counts();
  1521 #endif
  1523     gc_epilogue(true);
  1525     // Discard all rset updates
  1526     JavaThread::dirty_card_queue_set().abandon_logs();
  1527     assert(!G1DeferredRSUpdate
  1528            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1530     _young_list->reset_sampled_info();
  1531     // At this point there should be no regions in the
  1532     // entire heap tagged as young.
  1533     assert( check_young_list_empty(true /* check_heap */),
  1534       "young list should be empty at this point");
  1536     // Update the number of full collections that have been completed.
  1537     increment_old_marking_cycles_completed(false /* concurrent */);
  1539     _hrs.verify_optional();
  1540     verify_region_sets_optional();
  1542     print_heap_after_gc();
  1544     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1545     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1546     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1547     // before any GC notifications are raised.
  1548     g1mm()->update_sizes();
  1551   post_full_gc_dump();
  1553   return true;
  1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1557   // do_collection() will return whether it succeeded in performing
  1558   // the GC. Currently, there is no facility on the
  1559   // do_full_collection() API to notify the caller than the collection
  1560   // did not succeed (e.g., because it was locked out by the GC
  1561   // locker). So, right now, we'll ignore the return value.
  1562   bool dummy = do_collection(true,                /* explicit_gc */
  1563                              clear_all_soft_refs,
  1564                              0                    /* word_size */);
  1567 // This code is mostly copied from TenuredGeneration.
  1568 void
  1569 G1CollectedHeap::
  1570 resize_if_necessary_after_full_collection(size_t word_size) {
  1571   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1573   // Include the current allocation, if any, and bytes that will be
  1574   // pre-allocated to support collections, as "used".
  1575   const size_t used_after_gc = used();
  1576   const size_t capacity_after_gc = capacity();
  1577   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1579   // This is enforced in arguments.cpp.
  1580   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1581          "otherwise the code below doesn't make sense");
  1583   // We don't have floating point command-line arguments
  1584   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1585   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1586   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1587   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1589   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1590   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1592   // We have to be careful here as these two calculations can overflow
  1593   // 32-bit size_t's.
  1594   double used_after_gc_d = (double) used_after_gc;
  1595   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1596   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1598   // Let's make sure that they are both under the max heap size, which
  1599   // by default will make them fit into a size_t.
  1600   double desired_capacity_upper_bound = (double) max_heap_size;
  1601   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1602                                     desired_capacity_upper_bound);
  1603   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1604                                     desired_capacity_upper_bound);
  1606   // We can now safely turn them into size_t's.
  1607   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1608   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1610   // This assert only makes sense here, before we adjust them
  1611   // with respect to the min and max heap size.
  1612   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1613          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1614                  "maximum_desired_capacity = "SIZE_FORMAT,
  1615                  minimum_desired_capacity, maximum_desired_capacity));
  1617   // Should not be greater than the heap max size. No need to adjust
  1618   // it with respect to the heap min size as it's a lower bound (i.e.,
  1619   // we'll try to make the capacity larger than it, not smaller).
  1620   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1621   // Should not be less than the heap min size. No need to adjust it
  1622   // with respect to the heap max size as it's an upper bound (i.e.,
  1623   // we'll try to make the capacity smaller than it, not greater).
  1624   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1626   if (capacity_after_gc < minimum_desired_capacity) {
  1627     // Don't expand unless it's significant
  1628     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1629     ergo_verbose4(ErgoHeapSizing,
  1630                   "attempt heap expansion",
  1631                   ergo_format_reason("capacity lower than "
  1632                                      "min desired capacity after Full GC")
  1633                   ergo_format_byte("capacity")
  1634                   ergo_format_byte("occupancy")
  1635                   ergo_format_byte_perc("min desired capacity"),
  1636                   capacity_after_gc, used_after_gc,
  1637                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1638     expand(expand_bytes);
  1640     // No expansion, now see if we want to shrink
  1641   } else if (capacity_after_gc > maximum_desired_capacity) {
  1642     // Capacity too large, compute shrinking size
  1643     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1644     ergo_verbose4(ErgoHeapSizing,
  1645                   "attempt heap shrinking",
  1646                   ergo_format_reason("capacity higher than "
  1647                                      "max desired capacity after Full GC")
  1648                   ergo_format_byte("capacity")
  1649                   ergo_format_byte("occupancy")
  1650                   ergo_format_byte_perc("max desired capacity"),
  1651                   capacity_after_gc, used_after_gc,
  1652                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1653     shrink(shrink_bytes);
  1658 HeapWord*
  1659 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1660                                            bool* succeeded) {
  1661   assert_at_safepoint(true /* should_be_vm_thread */);
  1663   *succeeded = true;
  1664   // Let's attempt the allocation first.
  1665   HeapWord* result =
  1666     attempt_allocation_at_safepoint(word_size,
  1667                                  false /* expect_null_mutator_alloc_region */);
  1668   if (result != NULL) {
  1669     assert(*succeeded, "sanity");
  1670     return result;
  1673   // In a G1 heap, we're supposed to keep allocation from failing by
  1674   // incremental pauses.  Therefore, at least for now, we'll favor
  1675   // expansion over collection.  (This might change in the future if we can
  1676   // do something smarter than full collection to satisfy a failed alloc.)
  1677   result = expand_and_allocate(word_size);
  1678   if (result != NULL) {
  1679     assert(*succeeded, "sanity");
  1680     return result;
  1683   // Expansion didn't work, we'll try to do a Full GC.
  1684   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1685                                     false, /* clear_all_soft_refs */
  1686                                     word_size);
  1687   if (!gc_succeeded) {
  1688     *succeeded = false;
  1689     return NULL;
  1692   // Retry the allocation
  1693   result = attempt_allocation_at_safepoint(word_size,
  1694                                   true /* expect_null_mutator_alloc_region */);
  1695   if (result != NULL) {
  1696     assert(*succeeded, "sanity");
  1697     return result;
  1700   // Then, try a Full GC that will collect all soft references.
  1701   gc_succeeded = do_collection(false, /* explicit_gc */
  1702                                true,  /* clear_all_soft_refs */
  1703                                word_size);
  1704   if (!gc_succeeded) {
  1705     *succeeded = false;
  1706     return NULL;
  1709   // Retry the allocation once more
  1710   result = attempt_allocation_at_safepoint(word_size,
  1711                                   true /* expect_null_mutator_alloc_region */);
  1712   if (result != NULL) {
  1713     assert(*succeeded, "sanity");
  1714     return result;
  1717   assert(!collector_policy()->should_clear_all_soft_refs(),
  1718          "Flag should have been handled and cleared prior to this point");
  1720   // What else?  We might try synchronous finalization later.  If the total
  1721   // space available is large enough for the allocation, then a more
  1722   // complete compaction phase than we've tried so far might be
  1723   // appropriate.
  1724   assert(*succeeded, "sanity");
  1725   return NULL;
  1728 // Attempting to expand the heap sufficiently
  1729 // to support an allocation of the given "word_size".  If
  1730 // successful, perform the allocation and return the address of the
  1731 // allocated block, or else "NULL".
  1733 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1734   assert_at_safepoint(true /* should_be_vm_thread */);
  1736   verify_region_sets_optional();
  1738   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1739   ergo_verbose1(ErgoHeapSizing,
  1740                 "attempt heap expansion",
  1741                 ergo_format_reason("allocation request failed")
  1742                 ergo_format_byte("allocation request"),
  1743                 word_size * HeapWordSize);
  1744   if (expand(expand_bytes)) {
  1745     _hrs.verify_optional();
  1746     verify_region_sets_optional();
  1747     return attempt_allocation_at_safepoint(word_size,
  1748                                  false /* expect_null_mutator_alloc_region */);
  1750   return NULL;
  1753 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1754                                              HeapWord* new_end) {
  1755   assert(old_end != new_end, "don't call this otherwise");
  1756   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1758   // Update the committed mem region.
  1759   _g1_committed.set_end(new_end);
  1760   // Tell the card table about the update.
  1761   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1762   // Tell the BOT about the update.
  1763   _bot_shared->resize(_g1_committed.word_size());
  1766 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1767   size_t old_mem_size = _g1_storage.committed_size();
  1768   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1769   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1770                                        HeapRegion::GrainBytes);
  1771   ergo_verbose2(ErgoHeapSizing,
  1772                 "expand the heap",
  1773                 ergo_format_byte("requested expansion amount")
  1774                 ergo_format_byte("attempted expansion amount"),
  1775                 expand_bytes, aligned_expand_bytes);
  1777   // First commit the memory.
  1778   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1779   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1780   if (successful) {
  1781     // Then propagate this update to the necessary data structures.
  1782     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1783     update_committed_space(old_end, new_end);
  1785     FreeRegionList expansion_list("Local Expansion List");
  1786     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1787     assert(mr.start() == old_end, "post-condition");
  1788     // mr might be a smaller region than what was requested if
  1789     // expand_by() was unable to allocate the HeapRegion instances
  1790     assert(mr.end() <= new_end, "post-condition");
  1792     size_t actual_expand_bytes = mr.byte_size();
  1793     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1794     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1795            "post-condition");
  1796     if (actual_expand_bytes < aligned_expand_bytes) {
  1797       // We could not expand _hrs to the desired size. In this case we
  1798       // need to shrink the committed space accordingly.
  1799       assert(mr.end() < new_end, "invariant");
  1801       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1802       // First uncommit the memory.
  1803       _g1_storage.shrink_by(diff_bytes);
  1804       // Then propagate this update to the necessary data structures.
  1805       update_committed_space(new_end, mr.end());
  1807     _free_list.add_as_tail(&expansion_list);
  1809     if (_hr_printer.is_active()) {
  1810       HeapWord* curr = mr.start();
  1811       while (curr < mr.end()) {
  1812         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1813         _hr_printer.commit(curr, curr_end);
  1814         curr = curr_end;
  1816       assert(curr == mr.end(), "post-condition");
  1818     g1_policy()->record_new_heap_size(n_regions());
  1819   } else {
  1820     ergo_verbose0(ErgoHeapSizing,
  1821                   "did not expand the heap",
  1822                   ergo_format_reason("heap expansion operation failed"));
  1823     // The expansion of the virtual storage space was unsuccessful.
  1824     // Let's see if it was because we ran out of swap.
  1825     if (G1ExitOnExpansionFailure &&
  1826         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1827       // We had head room...
  1828       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1831   return successful;
  1834 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1835   size_t old_mem_size = _g1_storage.committed_size();
  1836   size_t aligned_shrink_bytes =
  1837     ReservedSpace::page_align_size_down(shrink_bytes);
  1838   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1839                                          HeapRegion::GrainBytes);
  1840   uint num_regions_deleted = 0;
  1841   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1842   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1843   assert(mr.end() == old_end, "post-condition");
  1845   ergo_verbose3(ErgoHeapSizing,
  1846                 "shrink the heap",
  1847                 ergo_format_byte("requested shrinking amount")
  1848                 ergo_format_byte("aligned shrinking amount")
  1849                 ergo_format_byte("attempted shrinking amount"),
  1850                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1851   if (mr.byte_size() > 0) {
  1852     if (_hr_printer.is_active()) {
  1853       HeapWord* curr = mr.end();
  1854       while (curr > mr.start()) {
  1855         HeapWord* curr_end = curr;
  1856         curr -= HeapRegion::GrainWords;
  1857         _hr_printer.uncommit(curr, curr_end);
  1859       assert(curr == mr.start(), "post-condition");
  1862     _g1_storage.shrink_by(mr.byte_size());
  1863     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1864     assert(mr.start() == new_end, "post-condition");
  1866     _expansion_regions += num_regions_deleted;
  1867     update_committed_space(old_end, new_end);
  1868     HeapRegionRemSet::shrink_heap(n_regions());
  1869     g1_policy()->record_new_heap_size(n_regions());
  1870   } else {
  1871     ergo_verbose0(ErgoHeapSizing,
  1872                   "did not shrink the heap",
  1873                   ergo_format_reason("heap shrinking operation failed"));
  1877 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1878   verify_region_sets_optional();
  1880   // We should only reach here at the end of a Full GC which means we
  1881   // should not not be holding to any GC alloc regions. The method
  1882   // below will make sure of that and do any remaining clean up.
  1883   abandon_gc_alloc_regions();
  1885   // Instead of tearing down / rebuilding the free lists here, we
  1886   // could instead use the remove_all_pending() method on free_list to
  1887   // remove only the ones that we need to remove.
  1888   tear_down_region_sets(true /* free_list_only */);
  1889   shrink_helper(shrink_bytes);
  1890   rebuild_region_sets(true /* free_list_only */);
  1892   _hrs.verify_optional();
  1893   verify_region_sets_optional();
  1896 // Public methods.
  1898 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1899 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1900 #endif // _MSC_VER
  1903 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1904   SharedHeap(policy_),
  1905   _g1_policy(policy_),
  1906   _dirty_card_queue_set(false),
  1907   _into_cset_dirty_card_queue_set(false),
  1908   _is_alive_closure_cm(this),
  1909   _is_alive_closure_stw(this),
  1910   _ref_processor_cm(NULL),
  1911   _ref_processor_stw(NULL),
  1912   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1913   _bot_shared(NULL),
  1914   _evac_failure_scan_stack(NULL) ,
  1915   _mark_in_progress(false),
  1916   _cg1r(NULL), _summary_bytes_used(0),
  1917   _g1mm(NULL),
  1918   _refine_cte_cl(NULL),
  1919   _full_collection(false),
  1920   _free_list("Master Free List"),
  1921   _secondary_free_list("Secondary Free List"),
  1922   _old_set("Old Set"),
  1923   _humongous_set("Master Humongous Set"),
  1924   _free_regions_coming(false),
  1925   _young_list(new YoungList(this)),
  1926   _gc_time_stamp(0),
  1927   _retained_old_gc_alloc_region(NULL),
  1928   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1929   _old_plab_stats(OldPLABSize, PLABWeight),
  1930   _expand_heap_after_alloc_failure(true),
  1931   _surviving_young_words(NULL),
  1932   _old_marking_cycles_started(0),
  1933   _old_marking_cycles_completed(0),
  1934   _in_cset_fast_test(NULL),
  1935   _in_cset_fast_test_base(NULL),
  1936   _dirty_cards_region_list(NULL),
  1937   _worker_cset_start_region(NULL),
  1938   _worker_cset_start_region_time_stamp(NULL) {
  1939   _g1h = this; // To catch bugs.
  1940   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1941     vm_exit_during_initialization("Failed necessary allocation.");
  1944   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1946   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1947   _task_queues = new RefToScanQueueSet(n_queues);
  1949   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1950   assert(n_rem_sets > 0, "Invariant.");
  1952   HeapRegionRemSetIterator** iter_arr =
  1953     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
  1954   for (int i = 0; i < n_queues; i++) {
  1955     iter_arr[i] = new HeapRegionRemSetIterator();
  1957   _rem_set_iterator = iter_arr;
  1959   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1960   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1962   for (int i = 0; i < n_queues; i++) {
  1963     RefToScanQueue* q = new RefToScanQueue();
  1964     q->initialize();
  1965     _task_queues->register_queue(i, q);
  1968   clear_cset_start_regions();
  1970   // Initialize the G1EvacuationFailureALot counters and flags.
  1971   NOT_PRODUCT(reset_evacuation_should_fail();)
  1973   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1976 jint G1CollectedHeap::initialize() {
  1977   CollectedHeap::pre_initialize();
  1978   os::enable_vtime();
  1980   G1Log::init();
  1982   // Necessary to satisfy locking discipline assertions.
  1984   MutexLocker x(Heap_lock);
  1986   // We have to initialize the printer before committing the heap, as
  1987   // it will be used then.
  1988   _hr_printer.set_active(G1PrintHeapRegions);
  1990   // While there are no constraints in the GC code that HeapWordSize
  1991   // be any particular value, there are multiple other areas in the
  1992   // system which believe this to be true (e.g. oop->object_size in some
  1993   // cases incorrectly returns the size in wordSize units rather than
  1994   // HeapWordSize).
  1995   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1997   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1998   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  2000   // Ensure that the sizes are properly aligned.
  2001   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2002   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2004   _cg1r = new ConcurrentG1Refine();
  2006   // Reserve the maximum.
  2008   // When compressed oops are enabled, the preferred heap base
  2009   // is calculated by subtracting the requested size from the
  2010   // 32Gb boundary and using the result as the base address for
  2011   // heap reservation. If the requested size is not aligned to
  2012   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2013   // into the ReservedHeapSpace constructor) then the actual
  2014   // base of the reserved heap may end up differing from the
  2015   // address that was requested (i.e. the preferred heap base).
  2016   // If this happens then we could end up using a non-optimal
  2017   // compressed oops mode.
  2019   // Since max_byte_size is aligned to the size of a heap region (checked
  2020   // above).
  2021   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2023   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2024                                                  HeapRegion::GrainBytes);
  2026   // It is important to do this in a way such that concurrent readers can't
  2027   // temporarily think somethings in the heap.  (I've actually seen this
  2028   // happen in asserts: DLD.)
  2029   _reserved.set_word_size(0);
  2030   _reserved.set_start((HeapWord*)heap_rs.base());
  2031   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2033   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2035   // Create the gen rem set (and barrier set) for the entire reserved region.
  2036   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2037   set_barrier_set(rem_set()->bs());
  2038   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2039     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2040   } else {
  2041     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2042     return JNI_ENOMEM;
  2045   // Also create a G1 rem set.
  2046   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2047     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2048   } else {
  2049     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2050     return JNI_ENOMEM;
  2053   // Carve out the G1 part of the heap.
  2055   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2056   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2057                            g1_rs.size()/HeapWordSize);
  2059   _g1_storage.initialize(g1_rs, 0);
  2060   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2061   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2062                   (HeapWord*) _g1_reserved.end(),
  2063                   _expansion_regions);
  2065   // 6843694 - ensure that the maximum region index can fit
  2066   // in the remembered set structures.
  2067   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2068   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2070   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2071   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2072   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2073             "too many cards per region");
  2075   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2077   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2078                                              heap_word_size(init_byte_size));
  2080   _g1h = this;
  2082    _in_cset_fast_test_length = max_regions();
  2083    _in_cset_fast_test_base =
  2084                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2086    // We're biasing _in_cset_fast_test to avoid subtracting the
  2087    // beginning of the heap every time we want to index; basically
  2088    // it's the same with what we do with the card table.
  2089    _in_cset_fast_test = _in_cset_fast_test_base -
  2090                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2092    // Clear the _cset_fast_test bitmap in anticipation of adding
  2093    // regions to the incremental collection set for the first
  2094    // evacuation pause.
  2095    clear_cset_fast_test();
  2097   // Create the ConcurrentMark data structure and thread.
  2098   // (Must do this late, so that "max_regions" is defined.)
  2099   _cm = new ConcurrentMark(this, heap_rs);
  2100   if (_cm == NULL || !_cm->completed_initialization()) {
  2101     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2102     return JNI_ENOMEM;
  2104   _cmThread = _cm->cmThread();
  2106   // Initialize the from_card cache structure of HeapRegionRemSet.
  2107   HeapRegionRemSet::init_heap(max_regions());
  2109   // Now expand into the initial heap size.
  2110   if (!expand(init_byte_size)) {
  2111     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2112     return JNI_ENOMEM;
  2115   // Perform any initialization actions delegated to the policy.
  2116   g1_policy()->init();
  2118   _refine_cte_cl =
  2119     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2120                                     g1_rem_set(),
  2121                                     concurrent_g1_refine());
  2122   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2124   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2125                                                SATB_Q_FL_lock,
  2126                                                G1SATBProcessCompletedThreshold,
  2127                                                Shared_SATB_Q_lock);
  2129   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2130                                                 DirtyCardQ_FL_lock,
  2131                                                 concurrent_g1_refine()->yellow_zone(),
  2132                                                 concurrent_g1_refine()->red_zone(),
  2133                                                 Shared_DirtyCardQ_lock);
  2135   if (G1DeferredRSUpdate) {
  2136     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2137                                       DirtyCardQ_FL_lock,
  2138                                       -1, // never trigger processing
  2139                                       -1, // no limit on length
  2140                                       Shared_DirtyCardQ_lock,
  2141                                       &JavaThread::dirty_card_queue_set());
  2144   // Initialize the card queue set used to hold cards containing
  2145   // references into the collection set.
  2146   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2147                                              DirtyCardQ_FL_lock,
  2148                                              -1, // never trigger processing
  2149                                              -1, // no limit on length
  2150                                              Shared_DirtyCardQ_lock,
  2151                                              &JavaThread::dirty_card_queue_set());
  2153   // In case we're keeping closure specialization stats, initialize those
  2154   // counts and that mechanism.
  2155   SpecializationStats::clear();
  2157   // Do later initialization work for concurrent refinement.
  2158   _cg1r->init();
  2160   // Here we allocate the dummy full region that is required by the
  2161   // G1AllocRegion class. If we don't pass an address in the reserved
  2162   // space here, lots of asserts fire.
  2164   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2165                                              _g1_reserved.start());
  2166   // We'll re-use the same region whether the alloc region will
  2167   // require BOT updates or not and, if it doesn't, then a non-young
  2168   // region will complain that it cannot support allocations without
  2169   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2170   dummy_region->set_young();
  2171   // Make sure it's full.
  2172   dummy_region->set_top(dummy_region->end());
  2173   G1AllocRegion::setup(this, dummy_region);
  2175   init_mutator_alloc_region();
  2177   // Do create of the monitoring and management support so that
  2178   // values in the heap have been properly initialized.
  2179   _g1mm = new G1MonitoringSupport(this);
  2181   return JNI_OK;
  2184 void G1CollectedHeap::ref_processing_init() {
  2185   // Reference processing in G1 currently works as follows:
  2186   //
  2187   // * There are two reference processor instances. One is
  2188   //   used to record and process discovered references
  2189   //   during concurrent marking; the other is used to
  2190   //   record and process references during STW pauses
  2191   //   (both full and incremental).
  2192   // * Both ref processors need to 'span' the entire heap as
  2193   //   the regions in the collection set may be dotted around.
  2194   //
  2195   // * For the concurrent marking ref processor:
  2196   //   * Reference discovery is enabled at initial marking.
  2197   //   * Reference discovery is disabled and the discovered
  2198   //     references processed etc during remarking.
  2199   //   * Reference discovery is MT (see below).
  2200   //   * Reference discovery requires a barrier (see below).
  2201   //   * Reference processing may or may not be MT
  2202   //     (depending on the value of ParallelRefProcEnabled
  2203   //     and ParallelGCThreads).
  2204   //   * A full GC disables reference discovery by the CM
  2205   //     ref processor and abandons any entries on it's
  2206   //     discovered lists.
  2207   //
  2208   // * For the STW processor:
  2209   //   * Non MT discovery is enabled at the start of a full GC.
  2210   //   * Processing and enqueueing during a full GC is non-MT.
  2211   //   * During a full GC, references are processed after marking.
  2212   //
  2213   //   * Discovery (may or may not be MT) is enabled at the start
  2214   //     of an incremental evacuation pause.
  2215   //   * References are processed near the end of a STW evacuation pause.
  2216   //   * For both types of GC:
  2217   //     * Discovery is atomic - i.e. not concurrent.
  2218   //     * Reference discovery will not need a barrier.
  2220   SharedHeap::ref_processing_init();
  2221   MemRegion mr = reserved_region();
  2223   // Concurrent Mark ref processor
  2224   _ref_processor_cm =
  2225     new ReferenceProcessor(mr,    // span
  2226                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2227                                 // mt processing
  2228                            (int) ParallelGCThreads,
  2229                                 // degree of mt processing
  2230                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2231                                 // mt discovery
  2232                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2233                                 // degree of mt discovery
  2234                            false,
  2235                                 // Reference discovery is not atomic
  2236                            &_is_alive_closure_cm,
  2237                                 // is alive closure
  2238                                 // (for efficiency/performance)
  2239                            true);
  2240                                 // Setting next fields of discovered
  2241                                 // lists requires a barrier.
  2243   // STW ref processor
  2244   _ref_processor_stw =
  2245     new ReferenceProcessor(mr,    // span
  2246                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2247                                 // mt processing
  2248                            MAX2((int)ParallelGCThreads, 1),
  2249                                 // degree of mt processing
  2250                            (ParallelGCThreads > 1),
  2251                                 // mt discovery
  2252                            MAX2((int)ParallelGCThreads, 1),
  2253                                 // degree of mt discovery
  2254                            true,
  2255                                 // Reference discovery is atomic
  2256                            &_is_alive_closure_stw,
  2257                                 // is alive closure
  2258                                 // (for efficiency/performance)
  2259                            false);
  2260                                 // Setting next fields of discovered
  2261                                 // lists requires a barrier.
  2264 size_t G1CollectedHeap::capacity() const {
  2265   return _g1_committed.byte_size();
  2268 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2269   assert(!hr->continuesHumongous(), "pre-condition");
  2270   hr->reset_gc_time_stamp();
  2271   if (hr->startsHumongous()) {
  2272     uint first_index = hr->hrs_index() + 1;
  2273     uint last_index = hr->last_hc_index();
  2274     for (uint i = first_index; i < last_index; i += 1) {
  2275       HeapRegion* chr = region_at(i);
  2276       assert(chr->continuesHumongous(), "sanity");
  2277       chr->reset_gc_time_stamp();
  2282 #ifndef PRODUCT
  2283 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2284 private:
  2285   unsigned _gc_time_stamp;
  2286   bool _failures;
  2288 public:
  2289   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2290     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2292   virtual bool doHeapRegion(HeapRegion* hr) {
  2293     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2294     if (_gc_time_stamp != region_gc_time_stamp) {
  2295       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2296                              "expected %d", HR_FORMAT_PARAMS(hr),
  2297                              region_gc_time_stamp, _gc_time_stamp);
  2298       _failures = true;
  2300     return false;
  2303   bool failures() { return _failures; }
  2304 };
  2306 void G1CollectedHeap::check_gc_time_stamps() {
  2307   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2308   heap_region_iterate(&cl);
  2309   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2311 #endif // PRODUCT
  2313 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2314                                                  DirtyCardQueue* into_cset_dcq,
  2315                                                  bool concurrent,
  2316                                                  int worker_i) {
  2317   // Clean cards in the hot card cache
  2318   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2320   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2321   int n_completed_buffers = 0;
  2322   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2323     n_completed_buffers++;
  2325   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2326   dcqs.clear_n_completed_buffers();
  2327   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2331 // Computes the sum of the storage used by the various regions.
  2333 size_t G1CollectedHeap::used() const {
  2334   assert(Heap_lock->owner() != NULL,
  2335          "Should be owned on this thread's behalf.");
  2336   size_t result = _summary_bytes_used;
  2337   // Read only once in case it is set to NULL concurrently
  2338   HeapRegion* hr = _mutator_alloc_region.get();
  2339   if (hr != NULL)
  2340     result += hr->used();
  2341   return result;
  2344 size_t G1CollectedHeap::used_unlocked() const {
  2345   size_t result = _summary_bytes_used;
  2346   return result;
  2349 class SumUsedClosure: public HeapRegionClosure {
  2350   size_t _used;
  2351 public:
  2352   SumUsedClosure() : _used(0) {}
  2353   bool doHeapRegion(HeapRegion* r) {
  2354     if (!r->continuesHumongous()) {
  2355       _used += r->used();
  2357     return false;
  2359   size_t result() { return _used; }
  2360 };
  2362 size_t G1CollectedHeap::recalculate_used() const {
  2363   SumUsedClosure blk;
  2364   heap_region_iterate(&blk);
  2365   return blk.result();
  2368 size_t G1CollectedHeap::unsafe_max_alloc() {
  2369   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2370   // otherwise, is there space in the current allocation region?
  2372   // We need to store the current allocation region in a local variable
  2373   // here. The problem is that this method doesn't take any locks and
  2374   // there may be other threads which overwrite the current allocation
  2375   // region field. attempt_allocation(), for example, sets it to NULL
  2376   // and this can happen *after* the NULL check here but before the call
  2377   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2378   // to be a problem in the optimized build, since the two loads of the
  2379   // current allocation region field are optimized away.
  2380   HeapRegion* hr = _mutator_alloc_region.get();
  2381   if (hr == NULL) {
  2382     return 0;
  2384   return hr->free();
  2387 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2388   switch (cause) {
  2389     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2390     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2391     case GCCause::_g1_humongous_allocation: return true;
  2392     default:                                return false;
  2396 #ifndef PRODUCT
  2397 void G1CollectedHeap::allocate_dummy_regions() {
  2398   // Let's fill up most of the region
  2399   size_t word_size = HeapRegion::GrainWords - 1024;
  2400   // And as a result the region we'll allocate will be humongous.
  2401   guarantee(isHumongous(word_size), "sanity");
  2403   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2404     // Let's use the existing mechanism for the allocation
  2405     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2406     if (dummy_obj != NULL) {
  2407       MemRegion mr(dummy_obj, word_size);
  2408       CollectedHeap::fill_with_object(mr);
  2409     } else {
  2410       // If we can't allocate once, we probably cannot allocate
  2411       // again. Let's get out of the loop.
  2412       break;
  2416 #endif // !PRODUCT
  2418 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2419   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2420     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2421     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2422     _old_marking_cycles_started, _old_marking_cycles_completed));
  2424   _old_marking_cycles_started++;
  2427 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2428   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2430   // We assume that if concurrent == true, then the caller is a
  2431   // concurrent thread that was joined the Suspendible Thread
  2432   // Set. If there's ever a cheap way to check this, we should add an
  2433   // assert here.
  2435   // Given that this method is called at the end of a Full GC or of a
  2436   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2437   // interrupt a concurrent cycle), the number of full collections
  2438   // completed should be either one (in the case where there was no
  2439   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2440   // behind the number of full collections started.
  2442   // This is the case for the inner caller, i.e. a Full GC.
  2443   assert(concurrent ||
  2444          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2445          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2446          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2447                  "is inconsistent with _old_marking_cycles_completed = %u",
  2448                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2450   // This is the case for the outer caller, i.e. the concurrent cycle.
  2451   assert(!concurrent ||
  2452          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2453          err_msg("for outer caller (concurrent cycle): "
  2454                  "_old_marking_cycles_started = %u "
  2455                  "is inconsistent with _old_marking_cycles_completed = %u",
  2456                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2458   _old_marking_cycles_completed += 1;
  2460   // We need to clear the "in_progress" flag in the CM thread before
  2461   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2462   // is set) so that if a waiter requests another System.gc() it doesn't
  2463   // incorrectly see that a marking cyle is still in progress.
  2464   if (concurrent) {
  2465     _cmThread->clear_in_progress();
  2468   // This notify_all() will ensure that a thread that called
  2469   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2470   // and it's waiting for a full GC to finish will be woken up. It is
  2471   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2472   FullGCCount_lock->notify_all();
  2475 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2476   assert_heap_not_locked();
  2478   unsigned int gc_count_before;
  2479   unsigned int old_marking_count_before;
  2480   bool retry_gc;
  2482   do {
  2483     retry_gc = false;
  2486       MutexLocker ml(Heap_lock);
  2488       // Read the GC count while holding the Heap_lock
  2489       gc_count_before = total_collections();
  2490       old_marking_count_before = _old_marking_cycles_started;
  2493     if (should_do_concurrent_full_gc(cause)) {
  2494       // Schedule an initial-mark evacuation pause that will start a
  2495       // concurrent cycle. We're setting word_size to 0 which means that
  2496       // we are not requesting a post-GC allocation.
  2497       VM_G1IncCollectionPause op(gc_count_before,
  2498                                  0,     /* word_size */
  2499                                  true,  /* should_initiate_conc_mark */
  2500                                  g1_policy()->max_pause_time_ms(),
  2501                                  cause);
  2503       VMThread::execute(&op);
  2504       if (!op.pause_succeeded()) {
  2505         if (old_marking_count_before == _old_marking_cycles_started) {
  2506           retry_gc = op.should_retry_gc();
  2507         } else {
  2508           // A Full GC happened while we were trying to schedule the
  2509           // initial-mark GC. No point in starting a new cycle given
  2510           // that the whole heap was collected anyway.
  2513         if (retry_gc) {
  2514           if (GC_locker::is_active_and_needs_gc()) {
  2515             GC_locker::stall_until_clear();
  2519     } else {
  2520       if (cause == GCCause::_gc_locker
  2521           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2523         // Schedule a standard evacuation pause. We're setting word_size
  2524         // to 0 which means that we are not requesting a post-GC allocation.
  2525         VM_G1IncCollectionPause op(gc_count_before,
  2526                                    0,     /* word_size */
  2527                                    false, /* should_initiate_conc_mark */
  2528                                    g1_policy()->max_pause_time_ms(),
  2529                                    cause);
  2530         VMThread::execute(&op);
  2531       } else {
  2532         // Schedule a Full GC.
  2533         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2534         VMThread::execute(&op);
  2537   } while (retry_gc);
  2540 bool G1CollectedHeap::is_in(const void* p) const {
  2541   if (_g1_committed.contains(p)) {
  2542     // Given that we know that p is in the committed space,
  2543     // heap_region_containing_raw() should successfully
  2544     // return the containing region.
  2545     HeapRegion* hr = heap_region_containing_raw(p);
  2546     return hr->is_in(p);
  2547   } else {
  2548     return false;
  2552 // Iteration functions.
  2554 // Iterates an OopClosure over all ref-containing fields of objects
  2555 // within a HeapRegion.
  2557 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2558   MemRegion _mr;
  2559   ExtendedOopClosure* _cl;
  2560 public:
  2561   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2562     : _mr(mr), _cl(cl) {}
  2563   bool doHeapRegion(HeapRegion* r) {
  2564     if (!r->continuesHumongous()) {
  2565       r->oop_iterate(_cl);
  2567     return false;
  2569 };
  2571 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2572   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2573   heap_region_iterate(&blk);
  2576 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2577   IterateOopClosureRegionClosure blk(mr, cl);
  2578   heap_region_iterate(&blk);
  2581 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2583 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2584   ObjectClosure* _cl;
  2585 public:
  2586   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2587   bool doHeapRegion(HeapRegion* r) {
  2588     if (! r->continuesHumongous()) {
  2589       r->object_iterate(_cl);
  2591     return false;
  2593 };
  2595 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2596   IterateObjectClosureRegionClosure blk(cl);
  2597   heap_region_iterate(&blk);
  2600 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2601   // FIXME: is this right?
  2602   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2605 // Calls a SpaceClosure on a HeapRegion.
  2607 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2608   SpaceClosure* _cl;
  2609 public:
  2610   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2611   bool doHeapRegion(HeapRegion* r) {
  2612     _cl->do_space(r);
  2613     return false;
  2615 };
  2617 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2618   SpaceClosureRegionClosure blk(cl);
  2619   heap_region_iterate(&blk);
  2622 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2623   _hrs.iterate(cl);
  2626 void
  2627 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2628                                                  uint worker_id,
  2629                                                  uint no_of_par_workers,
  2630                                                  jint claim_value) {
  2631   const uint regions = n_regions();
  2632   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2633                              no_of_par_workers :
  2634                              1);
  2635   assert(UseDynamicNumberOfGCThreads ||
  2636          no_of_par_workers == workers()->total_workers(),
  2637          "Non dynamic should use fixed number of workers");
  2638   // try to spread out the starting points of the workers
  2639   const HeapRegion* start_hr =
  2640                         start_region_for_worker(worker_id, no_of_par_workers);
  2641   const uint start_index = start_hr->hrs_index();
  2643   // each worker will actually look at all regions
  2644   for (uint count = 0; count < regions; ++count) {
  2645     const uint index = (start_index + count) % regions;
  2646     assert(0 <= index && index < regions, "sanity");
  2647     HeapRegion* r = region_at(index);
  2648     // we'll ignore "continues humongous" regions (we'll process them
  2649     // when we come across their corresponding "start humongous"
  2650     // region) and regions already claimed
  2651     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2652       continue;
  2654     // OK, try to claim it
  2655     if (r->claimHeapRegion(claim_value)) {
  2656       // success!
  2657       assert(!r->continuesHumongous(), "sanity");
  2658       if (r->startsHumongous()) {
  2659         // If the region is "starts humongous" we'll iterate over its
  2660         // "continues humongous" first; in fact we'll do them
  2661         // first. The order is important. In on case, calling the
  2662         // closure on the "starts humongous" region might de-allocate
  2663         // and clear all its "continues humongous" regions and, as a
  2664         // result, we might end up processing them twice. So, we'll do
  2665         // them first (notice: most closures will ignore them anyway) and
  2666         // then we'll do the "starts humongous" region.
  2667         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2668           HeapRegion* chr = region_at(ch_index);
  2670           // if the region has already been claimed or it's not
  2671           // "continues humongous" we're done
  2672           if (chr->claim_value() == claim_value ||
  2673               !chr->continuesHumongous()) {
  2674             break;
  2677           // Noone should have claimed it directly. We can given
  2678           // that we claimed its "starts humongous" region.
  2679           assert(chr->claim_value() != claim_value, "sanity");
  2680           assert(chr->humongous_start_region() == r, "sanity");
  2682           if (chr->claimHeapRegion(claim_value)) {
  2683             // we should always be able to claim it; noone else should
  2684             // be trying to claim this region
  2686             bool res2 = cl->doHeapRegion(chr);
  2687             assert(!res2, "Should not abort");
  2689             // Right now, this holds (i.e., no closure that actually
  2690             // does something with "continues humongous" regions
  2691             // clears them). We might have to weaken it in the future,
  2692             // but let's leave these two asserts here for extra safety.
  2693             assert(chr->continuesHumongous(), "should still be the case");
  2694             assert(chr->humongous_start_region() == r, "sanity");
  2695           } else {
  2696             guarantee(false, "we should not reach here");
  2701       assert(!r->continuesHumongous(), "sanity");
  2702       bool res = cl->doHeapRegion(r);
  2703       assert(!res, "Should not abort");
  2708 class ResetClaimValuesClosure: public HeapRegionClosure {
  2709 public:
  2710   bool doHeapRegion(HeapRegion* r) {
  2711     r->set_claim_value(HeapRegion::InitialClaimValue);
  2712     return false;
  2714 };
  2716 void G1CollectedHeap::reset_heap_region_claim_values() {
  2717   ResetClaimValuesClosure blk;
  2718   heap_region_iterate(&blk);
  2721 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2722   ResetClaimValuesClosure blk;
  2723   collection_set_iterate(&blk);
  2726 #ifdef ASSERT
  2727 // This checks whether all regions in the heap have the correct claim
  2728 // value. I also piggy-backed on this a check to ensure that the
  2729 // humongous_start_region() information on "continues humongous"
  2730 // regions is correct.
  2732 class CheckClaimValuesClosure : public HeapRegionClosure {
  2733 private:
  2734   jint _claim_value;
  2735   uint _failures;
  2736   HeapRegion* _sh_region;
  2738 public:
  2739   CheckClaimValuesClosure(jint claim_value) :
  2740     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2741   bool doHeapRegion(HeapRegion* r) {
  2742     if (r->claim_value() != _claim_value) {
  2743       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2744                              "claim value = %d, should be %d",
  2745                              HR_FORMAT_PARAMS(r),
  2746                              r->claim_value(), _claim_value);
  2747       ++_failures;
  2749     if (!r->isHumongous()) {
  2750       _sh_region = NULL;
  2751     } else if (r->startsHumongous()) {
  2752       _sh_region = r;
  2753     } else if (r->continuesHumongous()) {
  2754       if (r->humongous_start_region() != _sh_region) {
  2755         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2756                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2757                                HR_FORMAT_PARAMS(r),
  2758                                r->humongous_start_region(),
  2759                                _sh_region);
  2760         ++_failures;
  2763     return false;
  2765   uint failures() { return _failures; }
  2766 };
  2768 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2769   CheckClaimValuesClosure cl(claim_value);
  2770   heap_region_iterate(&cl);
  2771   return cl.failures() == 0;
  2774 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2775 private:
  2776   jint _claim_value;
  2777   uint _failures;
  2779 public:
  2780   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2781     _claim_value(claim_value), _failures(0) { }
  2783   uint failures() { return _failures; }
  2785   bool doHeapRegion(HeapRegion* hr) {
  2786     assert(hr->in_collection_set(), "how?");
  2787     assert(!hr->isHumongous(), "H-region in CSet");
  2788     if (hr->claim_value() != _claim_value) {
  2789       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2790                              "claim value = %d, should be %d",
  2791                              HR_FORMAT_PARAMS(hr),
  2792                              hr->claim_value(), _claim_value);
  2793       _failures += 1;
  2795     return false;
  2797 };
  2799 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2800   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2801   collection_set_iterate(&cl);
  2802   return cl.failures() == 0;
  2804 #endif // ASSERT
  2806 // Clear the cached CSet starting regions and (more importantly)
  2807 // the time stamps. Called when we reset the GC time stamp.
  2808 void G1CollectedHeap::clear_cset_start_regions() {
  2809   assert(_worker_cset_start_region != NULL, "sanity");
  2810   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2812   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2813   for (int i = 0; i < n_queues; i++) {
  2814     _worker_cset_start_region[i] = NULL;
  2815     _worker_cset_start_region_time_stamp[i] = 0;
  2819 // Given the id of a worker, obtain or calculate a suitable
  2820 // starting region for iterating over the current collection set.
  2821 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2822   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2824   HeapRegion* result = NULL;
  2825   unsigned gc_time_stamp = get_gc_time_stamp();
  2827   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2828     // Cached starting region for current worker was set
  2829     // during the current pause - so it's valid.
  2830     // Note: the cached starting heap region may be NULL
  2831     // (when the collection set is empty).
  2832     result = _worker_cset_start_region[worker_i];
  2833     assert(result == NULL || result->in_collection_set(), "sanity");
  2834     return result;
  2837   // The cached entry was not valid so let's calculate
  2838   // a suitable starting heap region for this worker.
  2840   // We want the parallel threads to start their collection
  2841   // set iteration at different collection set regions to
  2842   // avoid contention.
  2843   // If we have:
  2844   //          n collection set regions
  2845   //          p threads
  2846   // Then thread t will start at region floor ((t * n) / p)
  2848   result = g1_policy()->collection_set();
  2849   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2850     uint cs_size = g1_policy()->cset_region_length();
  2851     uint active_workers = workers()->active_workers();
  2852     assert(UseDynamicNumberOfGCThreads ||
  2853              active_workers == workers()->total_workers(),
  2854              "Unless dynamic should use total workers");
  2856     uint end_ind   = (cs_size * worker_i) / active_workers;
  2857     uint start_ind = 0;
  2859     if (worker_i > 0 &&
  2860         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2861       // Previous workers starting region is valid
  2862       // so let's iterate from there
  2863       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2864       result = _worker_cset_start_region[worker_i - 1];
  2867     for (uint i = start_ind; i < end_ind; i++) {
  2868       result = result->next_in_collection_set();
  2872   // Note: the calculated starting heap region may be NULL
  2873   // (when the collection set is empty).
  2874   assert(result == NULL || result->in_collection_set(), "sanity");
  2875   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2876          "should be updated only once per pause");
  2877   _worker_cset_start_region[worker_i] = result;
  2878   OrderAccess::storestore();
  2879   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2880   return result;
  2883 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2884                                                      uint no_of_par_workers) {
  2885   uint worker_num =
  2886            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2887   assert(UseDynamicNumberOfGCThreads ||
  2888          no_of_par_workers == workers()->total_workers(),
  2889          "Non dynamic should use fixed number of workers");
  2890   const uint start_index = n_regions() * worker_i / worker_num;
  2891   return region_at(start_index);
  2894 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2895   HeapRegion* r = g1_policy()->collection_set();
  2896   while (r != NULL) {
  2897     HeapRegion* next = r->next_in_collection_set();
  2898     if (cl->doHeapRegion(r)) {
  2899       cl->incomplete();
  2900       return;
  2902     r = next;
  2906 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2907                                                   HeapRegionClosure *cl) {
  2908   if (r == NULL) {
  2909     // The CSet is empty so there's nothing to do.
  2910     return;
  2913   assert(r->in_collection_set(),
  2914          "Start region must be a member of the collection set.");
  2915   HeapRegion* cur = r;
  2916   while (cur != NULL) {
  2917     HeapRegion* next = cur->next_in_collection_set();
  2918     if (cl->doHeapRegion(cur) && false) {
  2919       cl->incomplete();
  2920       return;
  2922     cur = next;
  2924   cur = g1_policy()->collection_set();
  2925   while (cur != r) {
  2926     HeapRegion* next = cur->next_in_collection_set();
  2927     if (cl->doHeapRegion(cur) && false) {
  2928       cl->incomplete();
  2929       return;
  2931     cur = next;
  2935 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2936   return n_regions() > 0 ? region_at(0) : NULL;
  2940 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2941   Space* res = heap_region_containing(addr);
  2942   return res;
  2945 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2946   Space* sp = space_containing(addr);
  2947   if (sp != NULL) {
  2948     return sp->block_start(addr);
  2950   return NULL;
  2953 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2954   Space* sp = space_containing(addr);
  2955   assert(sp != NULL, "block_size of address outside of heap");
  2956   return sp->block_size(addr);
  2959 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2960   Space* sp = space_containing(addr);
  2961   return sp->block_is_obj(addr);
  2964 bool G1CollectedHeap::supports_tlab_allocation() const {
  2965   return true;
  2968 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2969   return HeapRegion::GrainBytes;
  2972 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2973   // Return the remaining space in the cur alloc region, but not less than
  2974   // the min TLAB size.
  2976   // Also, this value can be at most the humongous object threshold,
  2977   // since we can't allow tlabs to grow big enough to accomodate
  2978   // humongous objects.
  2980   HeapRegion* hr = _mutator_alloc_region.get();
  2981   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2982   if (hr == NULL) {
  2983     return max_tlab_size;
  2984   } else {
  2985     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2989 size_t G1CollectedHeap::max_capacity() const {
  2990   return _g1_reserved.byte_size();
  2993 jlong G1CollectedHeap::millis_since_last_gc() {
  2994   // assert(false, "NYI");
  2995   return 0;
  2998 void G1CollectedHeap::prepare_for_verify() {
  2999   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3000     ensure_parsability(false);
  3002   g1_rem_set()->prepare_for_verify();
  3005 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3006                                               VerifyOption vo) {
  3007   switch (vo) {
  3008   case VerifyOption_G1UsePrevMarking:
  3009     return hr->obj_allocated_since_prev_marking(obj);
  3010   case VerifyOption_G1UseNextMarking:
  3011     return hr->obj_allocated_since_next_marking(obj);
  3012   case VerifyOption_G1UseMarkWord:
  3013     return false;
  3014   default:
  3015     ShouldNotReachHere();
  3017   return false; // keep some compilers happy
  3020 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3021   switch (vo) {
  3022   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3023   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3024   case VerifyOption_G1UseMarkWord:    return NULL;
  3025   default:                            ShouldNotReachHere();
  3027   return NULL; // keep some compilers happy
  3030 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3031   switch (vo) {
  3032   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3033   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3034   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3035   default:                            ShouldNotReachHere();
  3037   return false; // keep some compilers happy
  3040 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3041   switch (vo) {
  3042   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3043   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3044   case VerifyOption_G1UseMarkWord:    return "NONE";
  3045   default:                            ShouldNotReachHere();
  3047   return NULL; // keep some compilers happy
  3050 class VerifyLivenessOopClosure: public OopClosure {
  3051   G1CollectedHeap* _g1h;
  3052   VerifyOption _vo;
  3053 public:
  3054   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3055     _g1h(g1h), _vo(vo)
  3056   { }
  3057   void do_oop(narrowOop *p) { do_oop_work(p); }
  3058   void do_oop(      oop *p) { do_oop_work(p); }
  3060   template <class T> void do_oop_work(T *p) {
  3061     oop obj = oopDesc::load_decode_heap_oop(p);
  3062     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3063               "Dead object referenced by a not dead object");
  3065 };
  3067 class VerifyObjsInRegionClosure: public ObjectClosure {
  3068 private:
  3069   G1CollectedHeap* _g1h;
  3070   size_t _live_bytes;
  3071   HeapRegion *_hr;
  3072   VerifyOption _vo;
  3073 public:
  3074   // _vo == UsePrevMarking -> use "prev" marking information,
  3075   // _vo == UseNextMarking -> use "next" marking information,
  3076   // _vo == UseMarkWord    -> use mark word from object header.
  3077   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3078     : _live_bytes(0), _hr(hr), _vo(vo) {
  3079     _g1h = G1CollectedHeap::heap();
  3081   void do_object(oop o) {
  3082     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3083     assert(o != NULL, "Huh?");
  3084     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3085       // If the object is alive according to the mark word,
  3086       // then verify that the marking information agrees.
  3087       // Note we can't verify the contra-positive of the
  3088       // above: if the object is dead (according to the mark
  3089       // word), it may not be marked, or may have been marked
  3090       // but has since became dead, or may have been allocated
  3091       // since the last marking.
  3092       if (_vo == VerifyOption_G1UseMarkWord) {
  3093         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3096       o->oop_iterate_no_header(&isLive);
  3097       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3098         size_t obj_size = o->size();    // Make sure we don't overflow
  3099         _live_bytes += (obj_size * HeapWordSize);
  3103   size_t live_bytes() { return _live_bytes; }
  3104 };
  3106 class PrintObjsInRegionClosure : public ObjectClosure {
  3107   HeapRegion *_hr;
  3108   G1CollectedHeap *_g1;
  3109 public:
  3110   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3111     _g1 = G1CollectedHeap::heap();
  3112   };
  3114   void do_object(oop o) {
  3115     if (o != NULL) {
  3116       HeapWord *start = (HeapWord *) o;
  3117       size_t word_sz = o->size();
  3118       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3119                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3120                           (void*) o, word_sz,
  3121                           _g1->isMarkedPrev(o),
  3122                           _g1->isMarkedNext(o),
  3123                           _hr->obj_allocated_since_prev_marking(o));
  3124       HeapWord *end = start + word_sz;
  3125       HeapWord *cur;
  3126       int *val;
  3127       for (cur = start; cur < end; cur++) {
  3128         val = (int *) cur;
  3129         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3133 };
  3135 class VerifyRegionClosure: public HeapRegionClosure {
  3136 private:
  3137   bool             _par;
  3138   VerifyOption     _vo;
  3139   bool             _failures;
  3140 public:
  3141   // _vo == UsePrevMarking -> use "prev" marking information,
  3142   // _vo == UseNextMarking -> use "next" marking information,
  3143   // _vo == UseMarkWord    -> use mark word from object header.
  3144   VerifyRegionClosure(bool par, VerifyOption vo)
  3145     : _par(par),
  3146       _vo(vo),
  3147       _failures(false) {}
  3149   bool failures() {
  3150     return _failures;
  3153   bool doHeapRegion(HeapRegion* r) {
  3154     if (!r->continuesHumongous()) {
  3155       bool failures = false;
  3156       r->verify(_vo, &failures);
  3157       if (failures) {
  3158         _failures = true;
  3159       } else {
  3160         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3161         r->object_iterate(&not_dead_yet_cl);
  3162         if (_vo != VerifyOption_G1UseNextMarking) {
  3163           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3164             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3165                                    "max_live_bytes "SIZE_FORMAT" "
  3166                                    "< calculated "SIZE_FORMAT,
  3167                                    r->bottom(), r->end(),
  3168                                    r->max_live_bytes(),
  3169                                  not_dead_yet_cl.live_bytes());
  3170             _failures = true;
  3172         } else {
  3173           // When vo == UseNextMarking we cannot currently do a sanity
  3174           // check on the live bytes as the calculation has not been
  3175           // finalized yet.
  3179     return false; // stop the region iteration if we hit a failure
  3181 };
  3183 class YoungRefCounterClosure : public OopClosure {
  3184   G1CollectedHeap* _g1h;
  3185   int              _count;
  3186  public:
  3187   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3188   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3189   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3191   int count() { return _count; }
  3192   void reset_count() { _count = 0; };
  3193 };
  3195 class VerifyKlassClosure: public KlassClosure {
  3196   YoungRefCounterClosure _young_ref_counter_closure;
  3197   OopClosure *_oop_closure;
  3198  public:
  3199   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3200   void do_klass(Klass* k) {
  3201     k->oops_do(_oop_closure);
  3203     _young_ref_counter_closure.reset_count();
  3204     k->oops_do(&_young_ref_counter_closure);
  3205     if (_young_ref_counter_closure.count() > 0) {
  3206       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3209 };
  3211 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
  3212 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
  3213 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
  3214 //       we can change this closure to extend the simpler OopClosure.
  3215 class VerifyRootsClosure: public OopsInGenClosure {
  3216 private:
  3217   G1CollectedHeap* _g1h;
  3218   VerifyOption     _vo;
  3219   bool             _failures;
  3220 public:
  3221   // _vo == UsePrevMarking -> use "prev" marking information,
  3222   // _vo == UseNextMarking -> use "next" marking information,
  3223   // _vo == UseMarkWord    -> use mark word from object header.
  3224   VerifyRootsClosure(VerifyOption vo) :
  3225     _g1h(G1CollectedHeap::heap()),
  3226     _vo(vo),
  3227     _failures(false) { }
  3229   bool failures() { return _failures; }
  3231   template <class T> void do_oop_nv(T* p) {
  3232     T heap_oop = oopDesc::load_heap_oop(p);
  3233     if (!oopDesc::is_null(heap_oop)) {
  3234       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3235       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3236         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3237                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3238         if (_vo == VerifyOption_G1UseMarkWord) {
  3239           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3241         obj->print_on(gclog_or_tty);
  3242         _failures = true;
  3247   void do_oop(oop* p)       { do_oop_nv(p); }
  3248   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3249 };
  3251 // This is the task used for parallel heap verification.
  3253 class G1ParVerifyTask: public AbstractGangTask {
  3254 private:
  3255   G1CollectedHeap* _g1h;
  3256   VerifyOption     _vo;
  3257   bool             _failures;
  3259 public:
  3260   // _vo == UsePrevMarking -> use "prev" marking information,
  3261   // _vo == UseNextMarking -> use "next" marking information,
  3262   // _vo == UseMarkWord    -> use mark word from object header.
  3263   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3264     AbstractGangTask("Parallel verify task"),
  3265     _g1h(g1h),
  3266     _vo(vo),
  3267     _failures(false) { }
  3269   bool failures() {
  3270     return _failures;
  3273   void work(uint worker_id) {
  3274     HandleMark hm;
  3275     VerifyRegionClosure blk(true, _vo);
  3276     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3277                                           _g1h->workers()->active_workers(),
  3278                                           HeapRegion::ParVerifyClaimValue);
  3279     if (blk.failures()) {
  3280       _failures = true;
  3283 };
  3285 void G1CollectedHeap::verify(bool silent) {
  3286   verify(silent, VerifyOption_G1UsePrevMarking);
  3289 void G1CollectedHeap::verify(bool silent,
  3290                              VerifyOption vo) {
  3291   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3292     if (!silent) { gclog_or_tty->print("Roots "); }
  3293     VerifyRootsClosure rootsCl(vo);
  3295     assert(Thread::current()->is_VM_thread(),
  3296       "Expected to be executed serially by the VM thread at this point");
  3298     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3299     VerifyKlassClosure klassCl(this, &rootsCl);
  3301     // We apply the relevant closures to all the oops in the
  3302     // system dictionary, the string table and the code cache.
  3303     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3305     // Need cleared claim bits for the strong roots processing
  3306     ClassLoaderDataGraph::clear_claimed_marks();
  3308     process_strong_roots(true,      // activate StrongRootsScope
  3309                          false,     // we set "is scavenging" to false,
  3310                                     // so we don't reset the dirty cards.
  3311                          ScanningOption(so),  // roots scanning options
  3312                          &rootsCl,
  3313                          &blobsCl,
  3314                          &klassCl
  3315                          );
  3317     bool failures = rootsCl.failures();
  3319     if (vo != VerifyOption_G1UseMarkWord) {
  3320       // If we're verifying during a full GC then the region sets
  3321       // will have been torn down at the start of the GC. Therefore
  3322       // verifying the region sets will fail. So we only verify
  3323       // the region sets when not in a full GC.
  3324       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3325       verify_region_sets();
  3328     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3329     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3330       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3331              "sanity check");
  3333       G1ParVerifyTask task(this, vo);
  3334       assert(UseDynamicNumberOfGCThreads ||
  3335         workers()->active_workers() == workers()->total_workers(),
  3336         "If not dynamic should be using all the workers");
  3337       int n_workers = workers()->active_workers();
  3338       set_par_threads(n_workers);
  3339       workers()->run_task(&task);
  3340       set_par_threads(0);
  3341       if (task.failures()) {
  3342         failures = true;
  3345       // Checks that the expected amount of parallel work was done.
  3346       // The implication is that n_workers is > 0.
  3347       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3348              "sanity check");
  3350       reset_heap_region_claim_values();
  3352       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3353              "sanity check");
  3354     } else {
  3355       VerifyRegionClosure blk(false, vo);
  3356       heap_region_iterate(&blk);
  3357       if (blk.failures()) {
  3358         failures = true;
  3361     if (!silent) gclog_or_tty->print("RemSet ");
  3362     rem_set()->verify();
  3364     if (failures) {
  3365       gclog_or_tty->print_cr("Heap:");
  3366       // It helps to have the per-region information in the output to
  3367       // help us track down what went wrong. This is why we call
  3368       // print_extended_on() instead of print_on().
  3369       print_extended_on(gclog_or_tty);
  3370       gclog_or_tty->print_cr("");
  3371 #ifndef PRODUCT
  3372       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3373         concurrent_mark()->print_reachable("at-verification-failure",
  3374                                            vo, false /* all */);
  3376 #endif
  3377       gclog_or_tty->flush();
  3379     guarantee(!failures, "there should not have been any failures");
  3380   } else {
  3381     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3385 class PrintRegionClosure: public HeapRegionClosure {
  3386   outputStream* _st;
  3387 public:
  3388   PrintRegionClosure(outputStream* st) : _st(st) {}
  3389   bool doHeapRegion(HeapRegion* r) {
  3390     r->print_on(_st);
  3391     return false;
  3393 };
  3395 void G1CollectedHeap::print_on(outputStream* st) const {
  3396   st->print(" %-20s", "garbage-first heap");
  3397   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3398             capacity()/K, used_unlocked()/K);
  3399   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3400             _g1_storage.low_boundary(),
  3401             _g1_storage.high(),
  3402             _g1_storage.high_boundary());
  3403   st->cr();
  3404   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3405   uint young_regions = _young_list->length();
  3406   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3407             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3408   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3409   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3410             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3411   st->cr();
  3412   MetaspaceAux::print_on(st);
  3415 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3416   print_on(st);
  3418   // Print the per-region information.
  3419   st->cr();
  3420   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3421                "HS=humongous(starts), HC=humongous(continues), "
  3422                "CS=collection set, F=free, TS=gc time stamp, "
  3423                "PTAMS=previous top-at-mark-start, "
  3424                "NTAMS=next top-at-mark-start)");
  3425   PrintRegionClosure blk(st);
  3426   heap_region_iterate(&blk);
  3429 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3430   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3431     workers()->print_worker_threads_on(st);
  3433   _cmThread->print_on(st);
  3434   st->cr();
  3435   _cm->print_worker_threads_on(st);
  3436   _cg1r->print_worker_threads_on(st);
  3439 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3440   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3441     workers()->threads_do(tc);
  3443   tc->do_thread(_cmThread);
  3444   _cg1r->threads_do(tc);
  3447 void G1CollectedHeap::print_tracing_info() const {
  3448   // We'll overload this to mean "trace GC pause statistics."
  3449   if (TraceGen0Time || TraceGen1Time) {
  3450     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3451     // to that.
  3452     g1_policy()->print_tracing_info();
  3454   if (G1SummarizeRSetStats) {
  3455     g1_rem_set()->print_summary_info();
  3457   if (G1SummarizeConcMark) {
  3458     concurrent_mark()->print_summary_info();
  3460   g1_policy()->print_yg_surv_rate_info();
  3461   SpecializationStats::print();
  3464 #ifndef PRODUCT
  3465 // Helpful for debugging RSet issues.
  3467 class PrintRSetsClosure : public HeapRegionClosure {
  3468 private:
  3469   const char* _msg;
  3470   size_t _occupied_sum;
  3472 public:
  3473   bool doHeapRegion(HeapRegion* r) {
  3474     HeapRegionRemSet* hrrs = r->rem_set();
  3475     size_t occupied = hrrs->occupied();
  3476     _occupied_sum += occupied;
  3478     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3479                            HR_FORMAT_PARAMS(r));
  3480     if (occupied == 0) {
  3481       gclog_or_tty->print_cr("  RSet is empty");
  3482     } else {
  3483       hrrs->print();
  3485     gclog_or_tty->print_cr("----------");
  3486     return false;
  3489   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3490     gclog_or_tty->cr();
  3491     gclog_or_tty->print_cr("========================================");
  3492     gclog_or_tty->print_cr(msg);
  3493     gclog_or_tty->cr();
  3496   ~PrintRSetsClosure() {
  3497     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3498     gclog_or_tty->print_cr("========================================");
  3499     gclog_or_tty->cr();
  3501 };
  3503 void G1CollectedHeap::print_cset_rsets() {
  3504   PrintRSetsClosure cl("Printing CSet RSets");
  3505   collection_set_iterate(&cl);
  3508 void G1CollectedHeap::print_all_rsets() {
  3509   PrintRSetsClosure cl("Printing All RSets");;
  3510   heap_region_iterate(&cl);
  3512 #endif // PRODUCT
  3514 G1CollectedHeap* G1CollectedHeap::heap() {
  3515   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3516          "not a garbage-first heap");
  3517   return _g1h;
  3520 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3521   // always_do_update_barrier = false;
  3522   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3523   // Call allocation profiler
  3524   AllocationProfiler::iterate_since_last_gc();
  3525   // Fill TLAB's and such
  3526   ensure_parsability(true);
  3529 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3530   // FIXME: what is this about?
  3531   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3532   // is set.
  3533   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3534                         "derived pointer present"));
  3535   // always_do_update_barrier = true;
  3537   // We have just completed a GC. Update the soft reference
  3538   // policy with the new heap occupancy
  3539   Universe::update_heap_info_at_gc();
  3542 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3543                                                unsigned int gc_count_before,
  3544                                                bool* succeeded) {
  3545   assert_heap_not_locked_and_not_at_safepoint();
  3546   g1_policy()->record_stop_world_start();
  3547   VM_G1IncCollectionPause op(gc_count_before,
  3548                              word_size,
  3549                              false, /* should_initiate_conc_mark */
  3550                              g1_policy()->max_pause_time_ms(),
  3551                              GCCause::_g1_inc_collection_pause);
  3552   VMThread::execute(&op);
  3554   HeapWord* result = op.result();
  3555   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3556   assert(result == NULL || ret_succeeded,
  3557          "the result should be NULL if the VM did not succeed");
  3558   *succeeded = ret_succeeded;
  3560   assert_heap_not_locked();
  3561   return result;
  3564 void
  3565 G1CollectedHeap::doConcurrentMark() {
  3566   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3567   if (!_cmThread->in_progress()) {
  3568     _cmThread->set_started();
  3569     CGC_lock->notify();
  3573 size_t G1CollectedHeap::pending_card_num() {
  3574   size_t extra_cards = 0;
  3575   JavaThread *curr = Threads::first();
  3576   while (curr != NULL) {
  3577     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3578     extra_cards += dcq.size();
  3579     curr = curr->next();
  3581   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3582   size_t buffer_size = dcqs.buffer_size();
  3583   size_t buffer_num = dcqs.completed_buffers_num();
  3585   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3586   // in bytes - not the number of 'entries'. We need to convert
  3587   // into a number of cards.
  3588   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3591 size_t G1CollectedHeap::cards_scanned() {
  3592   return g1_rem_set()->cardsScanned();
  3595 void
  3596 G1CollectedHeap::setup_surviving_young_words() {
  3597   assert(_surviving_young_words == NULL, "pre-condition");
  3598   uint array_length = g1_policy()->young_cset_region_length();
  3599   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3600   if (_surviving_young_words == NULL) {
  3601     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3602                           "Not enough space for young surv words summary.");
  3604   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3605 #ifdef ASSERT
  3606   for (uint i = 0;  i < array_length; ++i) {
  3607     assert( _surviving_young_words[i] == 0, "memset above" );
  3609 #endif // !ASSERT
  3612 void
  3613 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3614   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3615   uint array_length = g1_policy()->young_cset_region_length();
  3616   for (uint i = 0; i < array_length; ++i) {
  3617     _surviving_young_words[i] += surv_young_words[i];
  3621 void
  3622 G1CollectedHeap::cleanup_surviving_young_words() {
  3623   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3624   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3625   _surviving_young_words = NULL;
  3628 #ifdef ASSERT
  3629 class VerifyCSetClosure: public HeapRegionClosure {
  3630 public:
  3631   bool doHeapRegion(HeapRegion* hr) {
  3632     // Here we check that the CSet region's RSet is ready for parallel
  3633     // iteration. The fields that we'll verify are only manipulated
  3634     // when the region is part of a CSet and is collected. Afterwards,
  3635     // we reset these fields when we clear the region's RSet (when the
  3636     // region is freed) so they are ready when the region is
  3637     // re-allocated. The only exception to this is if there's an
  3638     // evacuation failure and instead of freeing the region we leave
  3639     // it in the heap. In that case, we reset these fields during
  3640     // evacuation failure handling.
  3641     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3643     // Here's a good place to add any other checks we'd like to
  3644     // perform on CSet regions.
  3645     return false;
  3647 };
  3648 #endif // ASSERT
  3650 #if TASKQUEUE_STATS
  3651 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3652   st->print_raw_cr("GC Task Stats");
  3653   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3654   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3657 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3658   print_taskqueue_stats_hdr(st);
  3660   TaskQueueStats totals;
  3661   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3662   for (int i = 0; i < n; ++i) {
  3663     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3664     totals += task_queue(i)->stats;
  3666   st->print_raw("tot "); totals.print(st); st->cr();
  3668   DEBUG_ONLY(totals.verify());
  3671 void G1CollectedHeap::reset_taskqueue_stats() {
  3672   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3673   for (int i = 0; i < n; ++i) {
  3674     task_queue(i)->stats.reset();
  3677 #endif // TASKQUEUE_STATS
  3679 void G1CollectedHeap::log_gc_header() {
  3680   if (!G1Log::fine()) {
  3681     return;
  3684   gclog_or_tty->date_stamp(PrintGCDateStamps);
  3685   gclog_or_tty->stamp(PrintGCTimeStamps);
  3687   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3688     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3689     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3691   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3694 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3695   if (!G1Log::fine()) {
  3696     return;
  3699   if (G1Log::finer()) {
  3700     if (evacuation_failed()) {
  3701       gclog_or_tty->print(" (to-space exhausted)");
  3703     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3704     g1_policy()->phase_times()->note_gc_end();
  3705     g1_policy()->phase_times()->print(pause_time_sec);
  3706     g1_policy()->print_detailed_heap_transition();
  3707   } else {
  3708     if (evacuation_failed()) {
  3709       gclog_or_tty->print("--");
  3711     g1_policy()->print_heap_transition();
  3712     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3714   gclog_or_tty->flush();
  3717 bool
  3718 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3719   assert_at_safepoint(true /* should_be_vm_thread */);
  3720   guarantee(!is_gc_active(), "collection is not reentrant");
  3722   if (GC_locker::check_active_before_gc()) {
  3723     return false;
  3726   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3727   ResourceMark rm;
  3729   print_heap_before_gc();
  3731   HRSPhaseSetter x(HRSPhaseEvacuation);
  3732   verify_region_sets_optional();
  3733   verify_dirty_young_regions();
  3735   // This call will decide whether this pause is an initial-mark
  3736   // pause. If it is, during_initial_mark_pause() will return true
  3737   // for the duration of this pause.
  3738   g1_policy()->decide_on_conc_mark_initiation();
  3740   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3741   assert(!g1_policy()->during_initial_mark_pause() ||
  3742           g1_policy()->gcs_are_young(), "sanity");
  3744   // We also do not allow mixed GCs during marking.
  3745   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3747   // Record whether this pause is an initial mark. When the current
  3748   // thread has completed its logging output and it's safe to signal
  3749   // the CM thread, the flag's value in the policy has been reset.
  3750   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3752   // Inner scope for scope based logging, timers, and stats collection
  3754     if (g1_policy()->during_initial_mark_pause()) {
  3755       // We are about to start a marking cycle, so we increment the
  3756       // full collection counter.
  3757       increment_old_marking_cycles_started();
  3759     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3761     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3762                                 workers()->active_workers() : 1);
  3763     double pause_start_sec = os::elapsedTime();
  3764     g1_policy()->phase_times()->note_gc_start(active_workers);
  3765     log_gc_header();
  3767     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3768     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3770     // If the secondary_free_list is not empty, append it to the
  3771     // free_list. No need to wait for the cleanup operation to finish;
  3772     // the region allocation code will check the secondary_free_list
  3773     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3774     // set, skip this step so that the region allocation code has to
  3775     // get entries from the secondary_free_list.
  3776     if (!G1StressConcRegionFreeing) {
  3777       append_secondary_free_list_if_not_empty_with_lock();
  3780     assert(check_young_list_well_formed(),
  3781       "young list should be well formed");
  3783     // Don't dynamically change the number of GC threads this early.  A value of
  3784     // 0 is used to indicate serial work.  When parallel work is done,
  3785     // it will be set.
  3787     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3788       IsGCActiveMark x;
  3790       gc_prologue(false);
  3791       increment_total_collections(false /* full gc */);
  3792       increment_gc_time_stamp();
  3794       verify_before_gc();
  3796       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3798       // Please see comment in g1CollectedHeap.hpp and
  3799       // G1CollectedHeap::ref_processing_init() to see how
  3800       // reference processing currently works in G1.
  3802       // Enable discovery in the STW reference processor
  3803       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3804                                             true /*verify_no_refs*/);
  3807         // We want to temporarily turn off discovery by the
  3808         // CM ref processor, if necessary, and turn it back on
  3809         // on again later if we do. Using a scoped
  3810         // NoRefDiscovery object will do this.
  3811         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3813         // Forget the current alloc region (we might even choose it to be part
  3814         // of the collection set!).
  3815         release_mutator_alloc_region();
  3817         // We should call this after we retire the mutator alloc
  3818         // region(s) so that all the ALLOC / RETIRE events are generated
  3819         // before the start GC event.
  3820         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3822         // This timing is only used by the ergonomics to handle our pause target.
  3823         // It is unclear why this should not include the full pause. We will
  3824         // investigate this in CR 7178365.
  3825         //
  3826         // Preserving the old comment here if that helps the investigation:
  3827         //
  3828         // The elapsed time induced by the start time below deliberately elides
  3829         // the possible verification above.
  3830         double sample_start_time_sec = os::elapsedTime();
  3831         size_t start_used_bytes = used();
  3833 #if YOUNG_LIST_VERBOSE
  3834         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3835         _young_list->print();
  3836         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3837 #endif // YOUNG_LIST_VERBOSE
  3839         g1_policy()->record_collection_pause_start(sample_start_time_sec,
  3840                                                    start_used_bytes);
  3842         double scan_wait_start = os::elapsedTime();
  3843         // We have to wait until the CM threads finish scanning the
  3844         // root regions as it's the only way to ensure that all the
  3845         // objects on them have been correctly scanned before we start
  3846         // moving them during the GC.
  3847         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3848         double wait_time_ms = 0.0;
  3849         if (waited) {
  3850           double scan_wait_end = os::elapsedTime();
  3851           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3853         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3855 #if YOUNG_LIST_VERBOSE
  3856         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3857         _young_list->print();
  3858 #endif // YOUNG_LIST_VERBOSE
  3860         if (g1_policy()->during_initial_mark_pause()) {
  3861           concurrent_mark()->checkpointRootsInitialPre();
  3864 #if YOUNG_LIST_VERBOSE
  3865         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3866         _young_list->print();
  3867         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3868 #endif // YOUNG_LIST_VERBOSE
  3870         g1_policy()->finalize_cset(target_pause_time_ms);
  3872         _cm->note_start_of_gc();
  3873         // We should not verify the per-thread SATB buffers given that
  3874         // we have not filtered them yet (we'll do so during the
  3875         // GC). We also call this after finalize_cset() to
  3876         // ensure that the CSet has been finalized.
  3877         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3878                                  true  /* verify_enqueued_buffers */,
  3879                                  false /* verify_thread_buffers */,
  3880                                  true  /* verify_fingers */);
  3882         if (_hr_printer.is_active()) {
  3883           HeapRegion* hr = g1_policy()->collection_set();
  3884           while (hr != NULL) {
  3885             G1HRPrinter::RegionType type;
  3886             if (!hr->is_young()) {
  3887               type = G1HRPrinter::Old;
  3888             } else if (hr->is_survivor()) {
  3889               type = G1HRPrinter::Survivor;
  3890             } else {
  3891               type = G1HRPrinter::Eden;
  3893             _hr_printer.cset(hr);
  3894             hr = hr->next_in_collection_set();
  3898 #ifdef ASSERT
  3899         VerifyCSetClosure cl;
  3900         collection_set_iterate(&cl);
  3901 #endif // ASSERT
  3903         setup_surviving_young_words();
  3905         // Initialize the GC alloc regions.
  3906         init_gc_alloc_regions();
  3908         // Actually do the work...
  3909         evacuate_collection_set();
  3911         // We do this to mainly verify the per-thread SATB buffers
  3912         // (which have been filtered by now) since we didn't verify
  3913         // them earlier. No point in re-checking the stacks / enqueued
  3914         // buffers given that the CSet has not changed since last time
  3915         // we checked.
  3916         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3917                                  false /* verify_enqueued_buffers */,
  3918                                  true  /* verify_thread_buffers */,
  3919                                  true  /* verify_fingers */);
  3921         free_collection_set(g1_policy()->collection_set());
  3922         g1_policy()->clear_collection_set();
  3924         cleanup_surviving_young_words();
  3926         // Start a new incremental collection set for the next pause.
  3927         g1_policy()->start_incremental_cset_building();
  3929         // Clear the _cset_fast_test bitmap in anticipation of adding
  3930         // regions to the incremental collection set for the next
  3931         // evacuation pause.
  3932         clear_cset_fast_test();
  3934         _young_list->reset_sampled_info();
  3936         // Don't check the whole heap at this point as the
  3937         // GC alloc regions from this pause have been tagged
  3938         // as survivors and moved on to the survivor list.
  3939         // Survivor regions will fail the !is_young() check.
  3940         assert(check_young_list_empty(false /* check_heap */),
  3941           "young list should be empty");
  3943 #if YOUNG_LIST_VERBOSE
  3944         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3945         _young_list->print();
  3946 #endif // YOUNG_LIST_VERBOSE
  3948         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3949                                             _young_list->first_survivor_region(),
  3950                                             _young_list->last_survivor_region());
  3952         _young_list->reset_auxilary_lists();
  3954         if (evacuation_failed()) {
  3955           _summary_bytes_used = recalculate_used();
  3956         } else {
  3957           // The "used" of the the collection set have already been subtracted
  3958           // when they were freed.  Add in the bytes evacuated.
  3959           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3962         if (g1_policy()->during_initial_mark_pause()) {
  3963           // We have to do this before we notify the CM threads that
  3964           // they can start working to make sure that all the
  3965           // appropriate initialization is done on the CM object.
  3966           concurrent_mark()->checkpointRootsInitialPost();
  3967           set_marking_started();
  3968           // Note that we don't actually trigger the CM thread at
  3969           // this point. We do that later when we're sure that
  3970           // the current thread has completed its logging output.
  3973         allocate_dummy_regions();
  3975 #if YOUNG_LIST_VERBOSE
  3976         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3977         _young_list->print();
  3978         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3979 #endif // YOUNG_LIST_VERBOSE
  3981         init_mutator_alloc_region();
  3984           size_t expand_bytes = g1_policy()->expansion_amount();
  3985           if (expand_bytes > 0) {
  3986             size_t bytes_before = capacity();
  3987             // No need for an ergo verbose message here,
  3988             // expansion_amount() does this when it returns a value > 0.
  3989             if (!expand(expand_bytes)) {
  3990               // We failed to expand the heap so let's verify that
  3991               // committed/uncommitted amount match the backing store
  3992               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3993               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3998         // We redo the verificaiton but now wrt to the new CSet which
  3999         // has just got initialized after the previous CSet was freed.
  4000         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4001                                  true  /* verify_enqueued_buffers */,
  4002                                  true  /* verify_thread_buffers */,
  4003                                  true  /* verify_fingers */);
  4004         _cm->note_end_of_gc();
  4006         // This timing is only used by the ergonomics to handle our pause target.
  4007         // It is unclear why this should not include the full pause. We will
  4008         // investigate this in CR 7178365.
  4009         double sample_end_time_sec = os::elapsedTime();
  4010         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4011         g1_policy()->record_collection_pause_end(pause_time_ms);
  4013         MemoryService::track_memory_usage();
  4015         // In prepare_for_verify() below we'll need to scan the deferred
  4016         // update buffers to bring the RSets up-to-date if
  4017         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4018         // the update buffers we'll probably need to scan cards on the
  4019         // regions we just allocated to (i.e., the GC alloc
  4020         // regions). However, during the last GC we called
  4021         // set_saved_mark() on all the GC alloc regions, so card
  4022         // scanning might skip the [saved_mark_word()...top()] area of
  4023         // those regions (i.e., the area we allocated objects into
  4024         // during the last GC). But it shouldn't. Given that
  4025         // saved_mark_word() is conditional on whether the GC time stamp
  4026         // on the region is current or not, by incrementing the GC time
  4027         // stamp here we invalidate all the GC time stamps on all the
  4028         // regions and saved_mark_word() will simply return top() for
  4029         // all the regions. This is a nicer way of ensuring this rather
  4030         // than iterating over the regions and fixing them. In fact, the
  4031         // GC time stamp increment here also ensures that
  4032         // saved_mark_word() will return top() between pauses, i.e.,
  4033         // during concurrent refinement. So we don't need the
  4034         // is_gc_active() check to decided which top to use when
  4035         // scanning cards (see CR 7039627).
  4036         increment_gc_time_stamp();
  4038         verify_after_gc();
  4040         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4041         ref_processor_stw()->verify_no_references_recorded();
  4043         // CM reference discovery will be re-enabled if necessary.
  4046       // We should do this after we potentially expand the heap so
  4047       // that all the COMMIT events are generated before the end GC
  4048       // event, and after we retire the GC alloc regions so that all
  4049       // RETIRE events are generated before the end GC event.
  4050       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4052       if (mark_in_progress()) {
  4053         concurrent_mark()->update_g1_committed();
  4056 #ifdef TRACESPINNING
  4057       ParallelTaskTerminator::print_termination_counts();
  4058 #endif
  4060       gc_epilogue(false);
  4063     // Print the remainder of the GC log output.
  4064     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4066     // It is not yet to safe to tell the concurrent mark to
  4067     // start as we have some optional output below. We don't want the
  4068     // output from the concurrent mark thread interfering with this
  4069     // logging output either.
  4071     _hrs.verify_optional();
  4072     verify_region_sets_optional();
  4074     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4075     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4077     print_heap_after_gc();
  4079     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4080     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4081     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4082     // before any GC notifications are raised.
  4083     g1mm()->update_sizes();
  4086   if (G1SummarizeRSetStats &&
  4087       (G1SummarizeRSetStatsPeriod > 0) &&
  4088       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  4089     g1_rem_set()->print_summary_info();
  4092   // It should now be safe to tell the concurrent mark thread to start
  4093   // without its logging output interfering with the logging output
  4094   // that came from the pause.
  4096   if (should_start_conc_mark) {
  4097     // CAUTION: after the doConcurrentMark() call below,
  4098     // the concurrent marking thread(s) could be running
  4099     // concurrently with us. Make sure that anything after
  4100     // this point does not assume that we are the only GC thread
  4101     // running. Note: of course, the actual marking work will
  4102     // not start until the safepoint itself is released in
  4103     // ConcurrentGCThread::safepoint_desynchronize().
  4104     doConcurrentMark();
  4107   return true;
  4110 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4112   size_t gclab_word_size;
  4113   switch (purpose) {
  4114     case GCAllocForSurvived:
  4115       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4116       break;
  4117     case GCAllocForTenured:
  4118       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4119       break;
  4120     default:
  4121       assert(false, "unknown GCAllocPurpose");
  4122       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4123       break;
  4126   // Prevent humongous PLAB sizes for two reasons:
  4127   // * PLABs are allocated using a similar paths as oops, but should
  4128   //   never be in a humongous region
  4129   // * Allowing humongous PLABs needlessly churns the region free lists
  4130   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4133 void G1CollectedHeap::init_mutator_alloc_region() {
  4134   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4135   _mutator_alloc_region.init();
  4138 void G1CollectedHeap::release_mutator_alloc_region() {
  4139   _mutator_alloc_region.release();
  4140   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4143 void G1CollectedHeap::init_gc_alloc_regions() {
  4144   assert_at_safepoint(true /* should_be_vm_thread */);
  4146   _survivor_gc_alloc_region.init();
  4147   _old_gc_alloc_region.init();
  4148   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4149   _retained_old_gc_alloc_region = NULL;
  4151   // We will discard the current GC alloc region if:
  4152   // a) it's in the collection set (it can happen!),
  4153   // b) it's already full (no point in using it),
  4154   // c) it's empty (this means that it was emptied during
  4155   // a cleanup and it should be on the free list now), or
  4156   // d) it's humongous (this means that it was emptied
  4157   // during a cleanup and was added to the free list, but
  4158   // has been subseqently used to allocate a humongous
  4159   // object that may be less than the region size).
  4160   if (retained_region != NULL &&
  4161       !retained_region->in_collection_set() &&
  4162       !(retained_region->top() == retained_region->end()) &&
  4163       !retained_region->is_empty() &&
  4164       !retained_region->isHumongous()) {
  4165     retained_region->set_saved_mark();
  4166     // The retained region was added to the old region set when it was
  4167     // retired. We have to remove it now, since we don't allow regions
  4168     // we allocate to in the region sets. We'll re-add it later, when
  4169     // it's retired again.
  4170     _old_set.remove(retained_region);
  4171     bool during_im = g1_policy()->during_initial_mark_pause();
  4172     retained_region->note_start_of_copying(during_im);
  4173     _old_gc_alloc_region.set(retained_region);
  4174     _hr_printer.reuse(retained_region);
  4178 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
  4179   _survivor_gc_alloc_region.release();
  4180   // If we have an old GC alloc region to release, we'll save it in
  4181   // _retained_old_gc_alloc_region. If we don't
  4182   // _retained_old_gc_alloc_region will become NULL. This is what we
  4183   // want either way so no reason to check explicitly for either
  4184   // condition.
  4185   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4187   if (ResizePLAB) {
  4188     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4189     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4193 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4194   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4195   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4196   _retained_old_gc_alloc_region = NULL;
  4199 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4200   _drain_in_progress = false;
  4201   set_evac_failure_closure(cl);
  4202   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4205 void G1CollectedHeap::finalize_for_evac_failure() {
  4206   assert(_evac_failure_scan_stack != NULL &&
  4207          _evac_failure_scan_stack->length() == 0,
  4208          "Postcondition");
  4209   assert(!_drain_in_progress, "Postcondition");
  4210   delete _evac_failure_scan_stack;
  4211   _evac_failure_scan_stack = NULL;
  4214 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4215   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4217   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4219   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4220     set_par_threads();
  4221     workers()->run_task(&rsfp_task);
  4222     set_par_threads(0);
  4223   } else {
  4224     rsfp_task.work(0);
  4227   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4229   // Reset the claim values in the regions in the collection set.
  4230   reset_cset_heap_region_claim_values();
  4232   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4234   // Now restore saved marks, if any.
  4235   assert(_objs_with_preserved_marks.size() ==
  4236             _preserved_marks_of_objs.size(), "Both or none.");
  4237   while (!_objs_with_preserved_marks.is_empty()) {
  4238     oop obj = _objs_with_preserved_marks.pop();
  4239     markOop m = _preserved_marks_of_objs.pop();
  4240     obj->set_mark(m);
  4242   _objs_with_preserved_marks.clear(true);
  4243   _preserved_marks_of_objs.clear(true);
  4246 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4247   _evac_failure_scan_stack->push(obj);
  4250 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4251   assert(_evac_failure_scan_stack != NULL, "precondition");
  4253   while (_evac_failure_scan_stack->length() > 0) {
  4254      oop obj = _evac_failure_scan_stack->pop();
  4255      _evac_failure_closure->set_region(heap_region_containing(obj));
  4256      obj->oop_iterate_backwards(_evac_failure_closure);
  4260 oop
  4261 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4262                                                oop old) {
  4263   assert(obj_in_cs(old),
  4264          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4265                  (HeapWord*) old));
  4266   markOop m = old->mark();
  4267   oop forward_ptr = old->forward_to_atomic(old);
  4268   if (forward_ptr == NULL) {
  4269     // Forward-to-self succeeded.
  4271     if (_evac_failure_closure != cl) {
  4272       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4273       assert(!_drain_in_progress,
  4274              "Should only be true while someone holds the lock.");
  4275       // Set the global evac-failure closure to the current thread's.
  4276       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4277       set_evac_failure_closure(cl);
  4278       // Now do the common part.
  4279       handle_evacuation_failure_common(old, m);
  4280       // Reset to NULL.
  4281       set_evac_failure_closure(NULL);
  4282     } else {
  4283       // The lock is already held, and this is recursive.
  4284       assert(_drain_in_progress, "This should only be the recursive case.");
  4285       handle_evacuation_failure_common(old, m);
  4287     return old;
  4288   } else {
  4289     // Forward-to-self failed. Either someone else managed to allocate
  4290     // space for this object (old != forward_ptr) or they beat us in
  4291     // self-forwarding it (old == forward_ptr).
  4292     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4293            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4294                    "should not be in the CSet",
  4295                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4296     return forward_ptr;
  4300 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4301   set_evacuation_failed(true);
  4303   preserve_mark_if_necessary(old, m);
  4305   HeapRegion* r = heap_region_containing(old);
  4306   if (!r->evacuation_failed()) {
  4307     r->set_evacuation_failed(true);
  4308     _hr_printer.evac_failure(r);
  4311   push_on_evac_failure_scan_stack(old);
  4313   if (!_drain_in_progress) {
  4314     // prevent recursion in copy_to_survivor_space()
  4315     _drain_in_progress = true;
  4316     drain_evac_failure_scan_stack();
  4317     _drain_in_progress = false;
  4321 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4322   assert(evacuation_failed(), "Oversaving!");
  4323   // We want to call the "for_promotion_failure" version only in the
  4324   // case of a promotion failure.
  4325   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4326     _objs_with_preserved_marks.push(obj);
  4327     _preserved_marks_of_objs.push(m);
  4331 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4332                                                   size_t word_size) {
  4333   if (purpose == GCAllocForSurvived) {
  4334     HeapWord* result = survivor_attempt_allocation(word_size);
  4335     if (result != NULL) {
  4336       return result;
  4337     } else {
  4338       // Let's try to allocate in the old gen in case we can fit the
  4339       // object there.
  4340       return old_attempt_allocation(word_size);
  4342   } else {
  4343     assert(purpose ==  GCAllocForTenured, "sanity");
  4344     HeapWord* result = old_attempt_allocation(word_size);
  4345     if (result != NULL) {
  4346       return result;
  4347     } else {
  4348       // Let's try to allocate in the survivors in case we can fit the
  4349       // object there.
  4350       return survivor_attempt_allocation(word_size);
  4354   ShouldNotReachHere();
  4355   // Trying to keep some compilers happy.
  4356   return NULL;
  4359 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4360   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4362 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4363   : _g1h(g1h),
  4364     _refs(g1h->task_queue(queue_num)),
  4365     _dcq(&g1h->dirty_card_queue_set()),
  4366     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4367     _g1_rem(g1h->g1_rem_set()),
  4368     _hash_seed(17), _queue_num(queue_num),
  4369     _term_attempts(0),
  4370     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4371     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4372     _age_table(false),
  4373     _strong_roots_time(0), _term_time(0),
  4374     _alloc_buffer_waste(0), _undo_waste(0) {
  4375   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4376   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4377   // non-young regions (where the age is -1)
  4378   // We also add a few elements at the beginning and at the end in
  4379   // an attempt to eliminate cache contention
  4380   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4381   uint array_length = PADDING_ELEM_NUM +
  4382                       real_length +
  4383                       PADDING_ELEM_NUM;
  4384   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4385   if (_surviving_young_words_base == NULL)
  4386     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4387                           "Not enough space for young surv histo.");
  4388   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4389   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4391   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4392   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4394   _start = os::elapsedTime();
  4397 void
  4398 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4400   st->print_raw_cr("GC Termination Stats");
  4401   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4402                    " ------waste (KiB)------");
  4403   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4404                    "  total   alloc    undo");
  4405   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4406                    " ------- ------- -------");
  4409 void
  4410 G1ParScanThreadState::print_termination_stats(int i,
  4411                                               outputStream* const st) const
  4413   const double elapsed_ms = elapsed_time() * 1000.0;
  4414   const double s_roots_ms = strong_roots_time() * 1000.0;
  4415   const double term_ms    = term_time() * 1000.0;
  4416   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4417                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4418                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4419                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4420                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4421                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4422                alloc_buffer_waste() * HeapWordSize / K,
  4423                undo_waste() * HeapWordSize / K);
  4426 #ifdef ASSERT
  4427 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4428   assert(ref != NULL, "invariant");
  4429   assert(UseCompressedOops, "sanity");
  4430   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4431   oop p = oopDesc::load_decode_heap_oop(ref);
  4432   assert(_g1h->is_in_g1_reserved(p),
  4433          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4434   return true;
  4437 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4438   assert(ref != NULL, "invariant");
  4439   if (has_partial_array_mask(ref)) {
  4440     // Must be in the collection set--it's already been copied.
  4441     oop p = clear_partial_array_mask(ref);
  4442     assert(_g1h->obj_in_cs(p),
  4443            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4444   } else {
  4445     oop p = oopDesc::load_decode_heap_oop(ref);
  4446     assert(_g1h->is_in_g1_reserved(p),
  4447            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4449   return true;
  4452 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4453   if (ref.is_narrow()) {
  4454     return verify_ref((narrowOop*) ref);
  4455   } else {
  4456     return verify_ref((oop*) ref);
  4459 #endif // ASSERT
  4461 void G1ParScanThreadState::trim_queue() {
  4462   assert(_evac_cl != NULL, "not set");
  4463   assert(_evac_failure_cl != NULL, "not set");
  4464   assert(_partial_scan_cl != NULL, "not set");
  4466   StarTask ref;
  4467   do {
  4468     // Drain the overflow stack first, so other threads can steal.
  4469     while (refs()->pop_overflow(ref)) {
  4470       deal_with_reference(ref);
  4473     while (refs()->pop_local(ref)) {
  4474       deal_with_reference(ref);
  4476   } while (!refs()->is_empty());
  4479 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4480                                      G1ParScanThreadState* par_scan_state) :
  4481   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4482   _par_scan_state(par_scan_state),
  4483   _worker_id(par_scan_state->queue_num()),
  4484   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4485   _mark_in_progress(_g1->mark_in_progress()) { }
  4487 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4488 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4489 #ifdef ASSERT
  4490   HeapRegion* hr = _g1->heap_region_containing(obj);
  4491   assert(hr != NULL, "sanity");
  4492   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4493 #endif // ASSERT
  4495   // We know that the object is not moving so it's safe to read its size.
  4496   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4499 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4500 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4501   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4502 #ifdef ASSERT
  4503   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4504   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4505   assert(from_obj != to_obj, "should not be self-forwarded");
  4507   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4508   assert(from_hr != NULL, "sanity");
  4509   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4511   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4512   assert(to_hr != NULL, "sanity");
  4513   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4514 #endif // ASSERT
  4516   // The object might be in the process of being copied by another
  4517   // worker so we cannot trust that its to-space image is
  4518   // well-formed. So we have to read its size from its from-space
  4519   // image which we know should not be changing.
  4520   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4523 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4524 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4525   ::copy_to_survivor_space(oop old) {
  4526   size_t word_sz = old->size();
  4527   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4528   // +1 to make the -1 indexes valid...
  4529   int       young_index = from_region->young_index_in_cset()+1;
  4530   assert( (from_region->is_young() && young_index >  0) ||
  4531          (!from_region->is_young() && young_index == 0), "invariant" );
  4532   G1CollectorPolicy* g1p = _g1->g1_policy();
  4533   markOop m = old->mark();
  4534   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4535                                            : m->age();
  4536   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4537                                                              word_sz);
  4538   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4539 #ifndef PRODUCT
  4540   // Should this evacuation fail?
  4541   if (_g1->evacuation_should_fail()) {
  4542     if (obj_ptr != NULL) {
  4543       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4544       obj_ptr = NULL;
  4547 #endif // !PRODUCT
  4549   if (obj_ptr == NULL) {
  4550     // This will either forward-to-self, or detect that someone else has
  4551     // installed a forwarding pointer.
  4552     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4553     return _g1->handle_evacuation_failure_par(cl, old);
  4556   oop obj = oop(obj_ptr);
  4558   // We're going to allocate linearly, so might as well prefetch ahead.
  4559   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4561   oop forward_ptr = old->forward_to_atomic(obj);
  4562   if (forward_ptr == NULL) {
  4563     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4564     if (g1p->track_object_age(alloc_purpose)) {
  4565       // We could simply do obj->incr_age(). However, this causes a
  4566       // performance issue. obj->incr_age() will first check whether
  4567       // the object has a displaced mark by checking its mark word;
  4568       // getting the mark word from the new location of the object
  4569       // stalls. So, given that we already have the mark word and we
  4570       // are about to install it anyway, it's better to increase the
  4571       // age on the mark word, when the object does not have a
  4572       // displaced mark word. We're not expecting many objects to have
  4573       // a displaced marked word, so that case is not optimized
  4574       // further (it could be...) and we simply call obj->incr_age().
  4576       if (m->has_displaced_mark_helper()) {
  4577         // in this case, we have to install the mark word first,
  4578         // otherwise obj looks to be forwarded (the old mark word,
  4579         // which contains the forward pointer, was copied)
  4580         obj->set_mark(m);
  4581         obj->incr_age();
  4582       } else {
  4583         m = m->incr_age();
  4584         obj->set_mark(m);
  4586       _par_scan_state->age_table()->add(obj, word_sz);
  4587     } else {
  4588       obj->set_mark(m);
  4591     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4592     surv_young_words[young_index] += word_sz;
  4594     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4595       // We keep track of the next start index in the length field of
  4596       // the to-space object. The actual length can be found in the
  4597       // length field of the from-space object.
  4598       arrayOop(obj)->set_length(0);
  4599       oop* old_p = set_partial_array_mask(old);
  4600       _par_scan_state->push_on_queue(old_p);
  4601     } else {
  4602       // No point in using the slower heap_region_containing() method,
  4603       // given that we know obj is in the heap.
  4604       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4605       obj->oop_iterate_backwards(&_scanner);
  4607   } else {
  4608     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4609     obj = forward_ptr;
  4611   return obj;
  4614 template <class T>
  4615 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4616   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4617     _scanned_klass->record_modified_oops();
  4621 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4622 template <class T>
  4623 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4624 ::do_oop_work(T* p) {
  4625   oop obj = oopDesc::load_decode_heap_oop(p);
  4626   assert(barrier != G1BarrierRS || obj != NULL,
  4627          "Precondition: G1BarrierRS implies obj is non-NULL");
  4629   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4631   // here the null check is implicit in the cset_fast_test() test
  4632   if (_g1->in_cset_fast_test(obj)) {
  4633     oop forwardee;
  4634     if (obj->is_forwarded()) {
  4635       forwardee = obj->forwardee();
  4636     } else {
  4637       forwardee = copy_to_survivor_space(obj);
  4639     assert(forwardee != NULL, "forwardee should not be NULL");
  4640     oopDesc::encode_store_heap_oop(p, forwardee);
  4641     if (do_mark_object && forwardee != obj) {
  4642       // If the object is self-forwarded we don't need to explicitly
  4643       // mark it, the evacuation failure protocol will do so.
  4644       mark_forwarded_object(obj, forwardee);
  4647     // When scanning the RS, we only care about objs in CS.
  4648     if (barrier == G1BarrierRS) {
  4649       _par_scan_state->update_rs(_from, p, _worker_id);
  4650     } else if (barrier == G1BarrierKlass) {
  4651       do_klass_barrier(p, forwardee);
  4653   } else {
  4654     // The object is not in collection set. If we're a root scanning
  4655     // closure during an initial mark pause (i.e. do_mark_object will
  4656     // be true) then attempt to mark the object.
  4657     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4658       mark_object(obj);
  4662   if (barrier == G1BarrierEvac && obj != NULL) {
  4663     _par_scan_state->update_rs(_from, p, _worker_id);
  4666   if (do_gen_barrier && obj != NULL) {
  4667     par_do_barrier(p);
  4671 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4672 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4674 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4675   assert(has_partial_array_mask(p), "invariant");
  4676   oop from_obj = clear_partial_array_mask(p);
  4678   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4679   assert(from_obj->is_objArray(), "must be obj array");
  4680   objArrayOop from_obj_array = objArrayOop(from_obj);
  4681   // The from-space object contains the real length.
  4682   int length                 = from_obj_array->length();
  4684   assert(from_obj->is_forwarded(), "must be forwarded");
  4685   oop to_obj                 = from_obj->forwardee();
  4686   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4687   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4688   // We keep track of the next start index in the length field of the
  4689   // to-space object.
  4690   int next_index             = to_obj_array->length();
  4691   assert(0 <= next_index && next_index < length,
  4692          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4694   int start                  = next_index;
  4695   int end                    = length;
  4696   int remainder              = end - start;
  4697   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4698   if (remainder > 2 * ParGCArrayScanChunk) {
  4699     end = start + ParGCArrayScanChunk;
  4700     to_obj_array->set_length(end);
  4701     // Push the remainder before we process the range in case another
  4702     // worker has run out of things to do and can steal it.
  4703     oop* from_obj_p = set_partial_array_mask(from_obj);
  4704     _par_scan_state->push_on_queue(from_obj_p);
  4705   } else {
  4706     assert(length == end, "sanity");
  4707     // We'll process the final range for this object. Restore the length
  4708     // so that the heap remains parsable in case of evacuation failure.
  4709     to_obj_array->set_length(end);
  4711   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4712   // Process indexes [start,end). It will also process the header
  4713   // along with the first chunk (i.e., the chunk with start == 0).
  4714   // Note that at this point the length field of to_obj_array is not
  4715   // correct given that we are using it to keep track of the next
  4716   // start index. oop_iterate_range() (thankfully!) ignores the length
  4717   // field and only relies on the start / end parameters.  It does
  4718   // however return the size of the object which will be incorrect. So
  4719   // we have to ignore it even if we wanted to use it.
  4720   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4723 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4724 protected:
  4725   G1CollectedHeap*              _g1h;
  4726   G1ParScanThreadState*         _par_scan_state;
  4727   RefToScanQueueSet*            _queues;
  4728   ParallelTaskTerminator*       _terminator;
  4730   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4731   RefToScanQueueSet*      queues()         { return _queues; }
  4732   ParallelTaskTerminator* terminator()     { return _terminator; }
  4734 public:
  4735   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4736                                 G1ParScanThreadState* par_scan_state,
  4737                                 RefToScanQueueSet* queues,
  4738                                 ParallelTaskTerminator* terminator)
  4739     : _g1h(g1h), _par_scan_state(par_scan_state),
  4740       _queues(queues), _terminator(terminator) {}
  4742   void do_void();
  4744 private:
  4745   inline bool offer_termination();
  4746 };
  4748 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4749   G1ParScanThreadState* const pss = par_scan_state();
  4750   pss->start_term_time();
  4751   const bool res = terminator()->offer_termination();
  4752   pss->end_term_time();
  4753   return res;
  4756 void G1ParEvacuateFollowersClosure::do_void() {
  4757   StarTask stolen_task;
  4758   G1ParScanThreadState* const pss = par_scan_state();
  4759   pss->trim_queue();
  4761   do {
  4762     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4763       assert(pss->verify_task(stolen_task), "sanity");
  4764       if (stolen_task.is_narrow()) {
  4765         pss->deal_with_reference((narrowOop*) stolen_task);
  4766       } else {
  4767         pss->deal_with_reference((oop*) stolen_task);
  4770       // We've just processed a reference and we might have made
  4771       // available new entries on the queues. So we have to make sure
  4772       // we drain the queues as necessary.
  4773       pss->trim_queue();
  4775   } while (!offer_termination());
  4777   pss->retire_alloc_buffers();
  4780 class G1KlassScanClosure : public KlassClosure {
  4781  G1ParCopyHelper* _closure;
  4782  bool             _process_only_dirty;
  4783  int              _count;
  4784  public:
  4785   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4786       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4787   void do_klass(Klass* klass) {
  4788     // If the klass has not been dirtied we know that there's
  4789     // no references into  the young gen and we can skip it.
  4790    if (!_process_only_dirty || klass->has_modified_oops()) {
  4791       // Clean the klass since we're going to scavenge all the metadata.
  4792       klass->clear_modified_oops();
  4794       // Tell the closure that this klass is the Klass to scavenge
  4795       // and is the one to dirty if oops are left pointing into the young gen.
  4796       _closure->set_scanned_klass(klass);
  4798       klass->oops_do(_closure);
  4800       _closure->set_scanned_klass(NULL);
  4802     _count++;
  4804 };
  4806 class G1ParTask : public AbstractGangTask {
  4807 protected:
  4808   G1CollectedHeap*       _g1h;
  4809   RefToScanQueueSet      *_queues;
  4810   ParallelTaskTerminator _terminator;
  4811   uint _n_workers;
  4813   Mutex _stats_lock;
  4814   Mutex* stats_lock() { return &_stats_lock; }
  4816   size_t getNCards() {
  4817     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4818       / G1BlockOffsetSharedArray::N_bytes;
  4821 public:
  4822   G1ParTask(G1CollectedHeap* g1h,
  4823             RefToScanQueueSet *task_queues)
  4824     : AbstractGangTask("G1 collection"),
  4825       _g1h(g1h),
  4826       _queues(task_queues),
  4827       _terminator(0, _queues),
  4828       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4829   {}
  4831   RefToScanQueueSet* queues() { return _queues; }
  4833   RefToScanQueue *work_queue(int i) {
  4834     return queues()->queue(i);
  4837   ParallelTaskTerminator* terminator() { return &_terminator; }
  4839   virtual void set_for_termination(int active_workers) {
  4840     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4841     // in the young space (_par_seq_tasks) in the G1 heap
  4842     // for SequentialSubTasksDone.
  4843     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4844     // both of which need setting by set_n_termination().
  4845     _g1h->SharedHeap::set_n_termination(active_workers);
  4846     _g1h->set_n_termination(active_workers);
  4847     terminator()->reset_for_reuse(active_workers);
  4848     _n_workers = active_workers;
  4851   void work(uint worker_id) {
  4852     if (worker_id >= _n_workers) return;  // no work needed this round
  4854     double start_time_ms = os::elapsedTime() * 1000.0;
  4855     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4858       ResourceMark rm;
  4859       HandleMark   hm;
  4861       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4863       G1ParScanThreadState            pss(_g1h, worker_id);
  4864       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4865       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4866       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4868       pss.set_evac_closure(&scan_evac_cl);
  4869       pss.set_evac_failure_closure(&evac_failure_cl);
  4870       pss.set_partial_scan_closure(&partial_scan_cl);
  4872       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4873       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
  4875       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4876       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
  4878       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
  4879       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
  4880       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
  4882       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4883       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
  4885       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4886         // We also need to mark copied objects.
  4887         scan_root_cl = &scan_mark_root_cl;
  4888         scan_klasses_cl = &scan_mark_klasses_cl_s;
  4891       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4893       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  4895       pss.start_strong_roots();
  4896       _g1h->g1_process_strong_roots(/* is scavenging */ true,
  4897                                     SharedHeap::ScanningOption(so),
  4898                                     scan_root_cl,
  4899                                     &push_heap_rs_cl,
  4900                                     scan_klasses_cl,
  4901                                     worker_id);
  4902       pss.end_strong_roots();
  4905         double start = os::elapsedTime();
  4906         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4907         evac.do_void();
  4908         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4909         double term_ms = pss.term_time()*1000.0;
  4910         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4911         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4913       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4914       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4916       if (ParallelGCVerbose) {
  4917         MutexLocker x(stats_lock());
  4918         pss.print_termination_stats(worker_id);
  4921       assert(pss.refs()->is_empty(), "should be empty");
  4923       // Close the inner scope so that the ResourceMark and HandleMark
  4924       // destructors are executed here and are included as part of the
  4925       // "GC Worker Time".
  4928     double end_time_ms = os::elapsedTime() * 1000.0;
  4929     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4931 };
  4933 // *** Common G1 Evacuation Stuff
  4935 // Closures that support the filtering of CodeBlobs scanned during
  4936 // external root scanning.
  4938 // Closure applied to reference fields in code blobs (specifically nmethods)
  4939 // to determine whether an nmethod contains references that point into
  4940 // the collection set. Used as a predicate when walking code roots so
  4941 // that only nmethods that point into the collection set are added to the
  4942 // 'marked' list.
  4944 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4946   class G1PointsIntoCSOopClosure : public OopClosure {
  4947     G1CollectedHeap* _g1;
  4948     bool _points_into_cs;
  4949   public:
  4950     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4951       _g1(g1), _points_into_cs(false) { }
  4953     bool points_into_cs() const { return _points_into_cs; }
  4955     template <class T>
  4956     void do_oop_nv(T* p) {
  4957       if (!_points_into_cs) {
  4958         T heap_oop = oopDesc::load_heap_oop(p);
  4959         if (!oopDesc::is_null(heap_oop) &&
  4960             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4961           _points_into_cs = true;
  4966     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4967     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4968   };
  4970   G1CollectedHeap* _g1;
  4972 public:
  4973   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4974     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4976   virtual void do_code_blob(CodeBlob* cb) {
  4977     nmethod* nm = cb->as_nmethod_or_null();
  4978     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4979       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4980       nm->oops_do(&predicate_cl);
  4982       if (predicate_cl.points_into_cs()) {
  4983         // At least one of the reference fields or the oop relocations
  4984         // in the nmethod points into the collection set. We have to
  4985         // 'mark' this nmethod.
  4986         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4987         // or MarkingCodeBlobClosure::do_code_blob() change.
  4988         if (!nm->test_set_oops_do_mark()) {
  4989           do_newly_marked_nmethod(nm);
  4994 };
  4996 // This method is run in a GC worker.
  4998 void
  4999 G1CollectedHeap::
  5000 g1_process_strong_roots(bool is_scavenging,
  5001                         ScanningOption so,
  5002                         OopClosure* scan_non_heap_roots,
  5003                         OopsInHeapRegionClosure* scan_rs,
  5004                         G1KlassScanClosure* scan_klasses,
  5005                         int worker_i) {
  5007   // First scan the strong roots
  5008   double ext_roots_start = os::elapsedTime();
  5009   double closure_app_time_sec = 0.0;
  5011   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  5013   // Walk the code cache w/o buffering, because StarTask cannot handle
  5014   // unaligned oop locations.
  5015   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  5017   process_strong_roots(false, // no scoping; this is parallel code
  5018                        is_scavenging, so,
  5019                        &buf_scan_non_heap_roots,
  5020                        &eager_scan_code_roots,
  5021                        scan_klasses
  5022                        );
  5024   // Now the CM ref_processor roots.
  5025   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  5026     // We need to treat the discovered reference lists of the
  5027     // concurrent mark ref processor as roots and keep entries
  5028     // (which are added by the marking threads) on them live
  5029     // until they can be processed at the end of marking.
  5030     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  5033   // Finish up any enqueued closure apps (attributed as object copy time).
  5034   buf_scan_non_heap_roots.done();
  5036   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
  5038   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  5040   double ext_root_time_ms =
  5041     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5043   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5045   // During conc marking we have to filter the per-thread SATB buffers
  5046   // to make sure we remove any oops into the CSet (which will show up
  5047   // as implicitly live).
  5048   double satb_filtering_ms = 0.0;
  5049   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5050     if (mark_in_progress()) {
  5051       double satb_filter_start = os::elapsedTime();
  5053       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5055       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5058   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5060   // Now scan the complement of the collection set.
  5061   if (scan_rs != NULL) {
  5062     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  5064   _process_strong_tasks->all_tasks_completed();
  5067 void
  5068 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  5069                                        OopClosure* non_root_closure) {
  5070   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5071   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  5074 // Weak Reference Processing support
  5076 // An always "is_alive" closure that is used to preserve referents.
  5077 // If the object is non-null then it's alive.  Used in the preservation
  5078 // of referent objects that are pointed to by reference objects
  5079 // discovered by the CM ref processor.
  5080 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5081   G1CollectedHeap* _g1;
  5082 public:
  5083   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5084   void do_object(oop p) { assert(false, "Do not call."); }
  5085   bool do_object_b(oop p) {
  5086     if (p != NULL) {
  5087       return true;
  5089     return false;
  5091 };
  5093 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5094   // An object is reachable if it is outside the collection set,
  5095   // or is inside and copied.
  5096   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5099 // Non Copying Keep Alive closure
  5100 class G1KeepAliveClosure: public OopClosure {
  5101   G1CollectedHeap* _g1;
  5102 public:
  5103   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5104   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5105   void do_oop(      oop* p) {
  5106     oop obj = *p;
  5108     if (_g1->obj_in_cs(obj)) {
  5109       assert( obj->is_forwarded(), "invariant" );
  5110       *p = obj->forwardee();
  5113 };
  5115 // Copying Keep Alive closure - can be called from both
  5116 // serial and parallel code as long as different worker
  5117 // threads utilize different G1ParScanThreadState instances
  5118 // and different queues.
  5120 class G1CopyingKeepAliveClosure: public OopClosure {
  5121   G1CollectedHeap*         _g1h;
  5122   OopClosure*              _copy_non_heap_obj_cl;
  5123   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
  5124   G1ParScanThreadState*    _par_scan_state;
  5126 public:
  5127   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5128                             OopClosure* non_heap_obj_cl,
  5129                             OopsInHeapRegionClosure* metadata_obj_cl,
  5130                             G1ParScanThreadState* pss):
  5131     _g1h(g1h),
  5132     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5133     _copy_metadata_obj_cl(metadata_obj_cl),
  5134     _par_scan_state(pss)
  5135   {}
  5137   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5138   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5140   template <class T> void do_oop_work(T* p) {
  5141     oop obj = oopDesc::load_decode_heap_oop(p);
  5143     if (_g1h->obj_in_cs(obj)) {
  5144       // If the referent object has been forwarded (either copied
  5145       // to a new location or to itself in the event of an
  5146       // evacuation failure) then we need to update the reference
  5147       // field and, if both reference and referent are in the G1
  5148       // heap, update the RSet for the referent.
  5149       //
  5150       // If the referent has not been forwarded then we have to keep
  5151       // it alive by policy. Therefore we have copy the referent.
  5152       //
  5153       // If the reference field is in the G1 heap then we can push
  5154       // on the PSS queue. When the queue is drained (after each
  5155       // phase of reference processing) the object and it's followers
  5156       // will be copied, the reference field set to point to the
  5157       // new location, and the RSet updated. Otherwise we need to
  5158       // use the the non-heap or metadata closures directly to copy
  5159       // the refernt object and update the pointer, while avoiding
  5160       // updating the RSet.
  5162       if (_g1h->is_in_g1_reserved(p)) {
  5163         _par_scan_state->push_on_queue(p);
  5164       } else {
  5165         assert(!ClassLoaderDataGraph::contains((address)p),
  5166                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
  5167                               PTR_FORMAT, p));
  5168           _copy_non_heap_obj_cl->do_oop(p);
  5172 };
  5174 // Serial drain queue closure. Called as the 'complete_gc'
  5175 // closure for each discovered list in some of the
  5176 // reference processing phases.
  5178 class G1STWDrainQueueClosure: public VoidClosure {
  5179 protected:
  5180   G1CollectedHeap* _g1h;
  5181   G1ParScanThreadState* _par_scan_state;
  5183   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5185 public:
  5186   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5187     _g1h(g1h),
  5188     _par_scan_state(pss)
  5189   { }
  5191   void do_void() {
  5192     G1ParScanThreadState* const pss = par_scan_state();
  5193     pss->trim_queue();
  5195 };
  5197 // Parallel Reference Processing closures
  5199 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5200 // processing during G1 evacuation pauses.
  5202 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5203 private:
  5204   G1CollectedHeap*   _g1h;
  5205   RefToScanQueueSet* _queues;
  5206   FlexibleWorkGang*  _workers;
  5207   int                _active_workers;
  5209 public:
  5210   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5211                         FlexibleWorkGang* workers,
  5212                         RefToScanQueueSet *task_queues,
  5213                         int n_workers) :
  5214     _g1h(g1h),
  5215     _queues(task_queues),
  5216     _workers(workers),
  5217     _active_workers(n_workers)
  5219     assert(n_workers > 0, "shouldn't call this otherwise");
  5222   // Executes the given task using concurrent marking worker threads.
  5223   virtual void execute(ProcessTask& task);
  5224   virtual void execute(EnqueueTask& task);
  5225 };
  5227 // Gang task for possibly parallel reference processing
  5229 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5230   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5231   ProcessTask&     _proc_task;
  5232   G1CollectedHeap* _g1h;
  5233   RefToScanQueueSet *_task_queues;
  5234   ParallelTaskTerminator* _terminator;
  5236 public:
  5237   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5238                      G1CollectedHeap* g1h,
  5239                      RefToScanQueueSet *task_queues,
  5240                      ParallelTaskTerminator* terminator) :
  5241     AbstractGangTask("Process reference objects in parallel"),
  5242     _proc_task(proc_task),
  5243     _g1h(g1h),
  5244     _task_queues(task_queues),
  5245     _terminator(terminator)
  5246   {}
  5248   virtual void work(uint worker_id) {
  5249     // The reference processing task executed by a single worker.
  5250     ResourceMark rm;
  5251     HandleMark   hm;
  5253     G1STWIsAliveClosure is_alive(_g1h);
  5255     G1ParScanThreadState pss(_g1h, worker_id);
  5257     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5258     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5259     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5261     pss.set_evac_closure(&scan_evac_cl);
  5262     pss.set_evac_failure_closure(&evac_failure_cl);
  5263     pss.set_partial_scan_closure(&partial_scan_cl);
  5265     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5266     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5268     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5269     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5271     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5272     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5274     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5275       // We also need to mark copied objects.
  5276       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5277       copy_metadata_cl = &copy_mark_metadata_cl;
  5280     // Keep alive closure.
  5281     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5283     // Complete GC closure
  5284     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5286     // Call the reference processing task's work routine.
  5287     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5289     // Note we cannot assert that the refs array is empty here as not all
  5290     // of the processing tasks (specifically phase2 - pp2_work) execute
  5291     // the complete_gc closure (which ordinarily would drain the queue) so
  5292     // the queue may not be empty.
  5294 };
  5296 // Driver routine for parallel reference processing.
  5297 // Creates an instance of the ref processing gang
  5298 // task and has the worker threads execute it.
  5299 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5300   assert(_workers != NULL, "Need parallel worker threads.");
  5302   ParallelTaskTerminator terminator(_active_workers, _queues);
  5303   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5305   _g1h->set_par_threads(_active_workers);
  5306   _workers->run_task(&proc_task_proxy);
  5307   _g1h->set_par_threads(0);
  5310 // Gang task for parallel reference enqueueing.
  5312 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5313   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5314   EnqueueTask& _enq_task;
  5316 public:
  5317   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5318     AbstractGangTask("Enqueue reference objects in parallel"),
  5319     _enq_task(enq_task)
  5320   { }
  5322   virtual void work(uint worker_id) {
  5323     _enq_task.work(worker_id);
  5325 };
  5327 // Driver routine for parallel reference enqueing.
  5328 // Creates an instance of the ref enqueueing gang
  5329 // task and has the worker threads execute it.
  5331 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5332   assert(_workers != NULL, "Need parallel worker threads.");
  5334   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5336   _g1h->set_par_threads(_active_workers);
  5337   _workers->run_task(&enq_task_proxy);
  5338   _g1h->set_par_threads(0);
  5341 // End of weak reference support closures
  5343 // Abstract task used to preserve (i.e. copy) any referent objects
  5344 // that are in the collection set and are pointed to by reference
  5345 // objects discovered by the CM ref processor.
  5347 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5348 protected:
  5349   G1CollectedHeap* _g1h;
  5350   RefToScanQueueSet      *_queues;
  5351   ParallelTaskTerminator _terminator;
  5352   uint _n_workers;
  5354 public:
  5355   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5356     AbstractGangTask("ParPreserveCMReferents"),
  5357     _g1h(g1h),
  5358     _queues(task_queues),
  5359     _terminator(workers, _queues),
  5360     _n_workers(workers)
  5361   { }
  5363   void work(uint worker_id) {
  5364     ResourceMark rm;
  5365     HandleMark   hm;
  5367     G1ParScanThreadState            pss(_g1h, worker_id);
  5368     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5369     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5370     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5372     pss.set_evac_closure(&scan_evac_cl);
  5373     pss.set_evac_failure_closure(&evac_failure_cl);
  5374     pss.set_partial_scan_closure(&partial_scan_cl);
  5376     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5379     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5380     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5382     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5383     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5385     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5386     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5388     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5389       // We also need to mark copied objects.
  5390       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5391       copy_metadata_cl = &copy_mark_metadata_cl;
  5394     // Is alive closure
  5395     G1AlwaysAliveClosure always_alive(_g1h);
  5397     // Copying keep alive closure. Applied to referent objects that need
  5398     // to be copied.
  5399     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5401     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5403     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5404     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5406     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5407     // So this must be true - but assert just in case someone decides to
  5408     // change the worker ids.
  5409     assert(0 <= worker_id && worker_id < limit, "sanity");
  5410     assert(!rp->discovery_is_atomic(), "check this code");
  5412     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5413     for (uint idx = worker_id; idx < limit; idx += stride) {
  5414       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5416       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5417       while (iter.has_next()) {
  5418         // Since discovery is not atomic for the CM ref processor, we
  5419         // can see some null referent objects.
  5420         iter.load_ptrs(DEBUG_ONLY(true));
  5421         oop ref = iter.obj();
  5423         // This will filter nulls.
  5424         if (iter.is_referent_alive()) {
  5425           iter.make_referent_alive();
  5427         iter.move_to_next();
  5431     // Drain the queue - which may cause stealing
  5432     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5433     drain_queue.do_void();
  5434     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5435     assert(pss.refs()->is_empty(), "should be");
  5437 };
  5439 // Weak Reference processing during an evacuation pause (part 1).
  5440 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5441   double ref_proc_start = os::elapsedTime();
  5443   ReferenceProcessor* rp = _ref_processor_stw;
  5444   assert(rp->discovery_enabled(), "should have been enabled");
  5446   // Any reference objects, in the collection set, that were 'discovered'
  5447   // by the CM ref processor should have already been copied (either by
  5448   // applying the external root copy closure to the discovered lists, or
  5449   // by following an RSet entry).
  5450   //
  5451   // But some of the referents, that are in the collection set, that these
  5452   // reference objects point to may not have been copied: the STW ref
  5453   // processor would have seen that the reference object had already
  5454   // been 'discovered' and would have skipped discovering the reference,
  5455   // but would not have treated the reference object as a regular oop.
  5456   // As a reult the copy closure would not have been applied to the
  5457   // referent object.
  5458   //
  5459   // We need to explicitly copy these referent objects - the references
  5460   // will be processed at the end of remarking.
  5461   //
  5462   // We also need to do this copying before we process the reference
  5463   // objects discovered by the STW ref processor in case one of these
  5464   // referents points to another object which is also referenced by an
  5465   // object discovered by the STW ref processor.
  5467   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5468            no_of_gc_workers == workers()->active_workers(),
  5469            "Need to reset active GC workers");
  5471   set_par_threads(no_of_gc_workers);
  5472   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5473                                                  no_of_gc_workers,
  5474                                                  _task_queues);
  5476   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5477     workers()->run_task(&keep_cm_referents);
  5478   } else {
  5479     keep_cm_referents.work(0);
  5482   set_par_threads(0);
  5484   // Closure to test whether a referent is alive.
  5485   G1STWIsAliveClosure is_alive(this);
  5487   // Even when parallel reference processing is enabled, the processing
  5488   // of JNI refs is serial and performed serially by the current thread
  5489   // rather than by a worker. The following PSS will be used for processing
  5490   // JNI refs.
  5492   // Use only a single queue for this PSS.
  5493   G1ParScanThreadState pss(this, 0);
  5495   // We do not embed a reference processor in the copying/scanning
  5496   // closures while we're actually processing the discovered
  5497   // reference objects.
  5498   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5499   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5500   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5502   pss.set_evac_closure(&scan_evac_cl);
  5503   pss.set_evac_failure_closure(&evac_failure_cl);
  5504   pss.set_partial_scan_closure(&partial_scan_cl);
  5506   assert(pss.refs()->is_empty(), "pre-condition");
  5508   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5509   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
  5511   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5512   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
  5514   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5515   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5517   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5518     // We also need to mark copied objects.
  5519     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5520     copy_metadata_cl = &copy_mark_metadata_cl;
  5523   // Keep alive closure.
  5524   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
  5526   // Serial Complete GC closure
  5527   G1STWDrainQueueClosure drain_queue(this, &pss);
  5529   // Setup the soft refs policy...
  5530   rp->setup_policy(false);
  5532   if (!rp->processing_is_mt()) {
  5533     // Serial reference processing...
  5534     rp->process_discovered_references(&is_alive,
  5535                                       &keep_alive,
  5536                                       &drain_queue,
  5537                                       NULL);
  5538   } else {
  5539     // Parallel reference processing
  5540     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5541     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5543     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5544     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5547   // We have completed copying any necessary live referent objects
  5548   // (that were not copied during the actual pause) so we can
  5549   // retire any active alloc buffers
  5550   pss.retire_alloc_buffers();
  5551   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5553   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5554   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5557 // Weak Reference processing during an evacuation pause (part 2).
  5558 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5559   double ref_enq_start = os::elapsedTime();
  5561   ReferenceProcessor* rp = _ref_processor_stw;
  5562   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5564   // Now enqueue any remaining on the discovered lists on to
  5565   // the pending list.
  5566   if (!rp->processing_is_mt()) {
  5567     // Serial reference processing...
  5568     rp->enqueue_discovered_references();
  5569   } else {
  5570     // Parallel reference enqueuing
  5572     assert(no_of_gc_workers == workers()->active_workers(),
  5573            "Need to reset active workers");
  5574     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5575     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5577     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5578     rp->enqueue_discovered_references(&par_task_executor);
  5581   rp->verify_no_references_recorded();
  5582   assert(!rp->discovery_enabled(), "should have been disabled");
  5584   // FIXME
  5585   // CM's reference processing also cleans up the string and symbol tables.
  5586   // Should we do that here also? We could, but it is a serial operation
  5587   // and could signicantly increase the pause time.
  5589   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5590   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5593 void G1CollectedHeap::evacuate_collection_set() {
  5594   _expand_heap_after_alloc_failure = true;
  5595   set_evacuation_failed(false);
  5597   // Should G1EvacuationFailureALot be in effect for this GC?
  5598   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5600   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5601   concurrent_g1_refine()->set_use_cache(false);
  5602   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5604   uint n_workers;
  5605   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5606     n_workers =
  5607       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5608                                      workers()->active_workers(),
  5609                                      Threads::number_of_non_daemon_threads());
  5610     assert(UseDynamicNumberOfGCThreads ||
  5611            n_workers == workers()->total_workers(),
  5612            "If not dynamic should be using all the  workers");
  5613     workers()->set_active_workers(n_workers);
  5614     set_par_threads(n_workers);
  5615   } else {
  5616     assert(n_par_threads() == 0,
  5617            "Should be the original non-parallel value");
  5618     n_workers = 1;
  5621   G1ParTask g1_par_task(this, _task_queues);
  5623   init_for_evac_failure(NULL);
  5625   rem_set()->prepare_for_younger_refs_iterate(true);
  5627   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5628   double start_par_time_sec = os::elapsedTime();
  5629   double end_par_time_sec;
  5632     StrongRootsScope srs(this);
  5634     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5635       // The individual threads will set their evac-failure closures.
  5636       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5637       // These tasks use ShareHeap::_process_strong_tasks
  5638       assert(UseDynamicNumberOfGCThreads ||
  5639              workers()->active_workers() == workers()->total_workers(),
  5640              "If not dynamic should be using all the  workers");
  5641       workers()->run_task(&g1_par_task);
  5642     } else {
  5643       g1_par_task.set_for_termination(n_workers);
  5644       g1_par_task.work(0);
  5646     end_par_time_sec = os::elapsedTime();
  5648     // Closing the inner scope will execute the destructor
  5649     // for the StrongRootsScope object. We record the current
  5650     // elapsed time before closing the scope so that time
  5651     // taken for the SRS destructor is NOT included in the
  5652     // reported parallel time.
  5655   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5656   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5658   double code_root_fixup_time_ms =
  5659         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5660   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5662   set_par_threads(0);
  5664   // Process any discovered reference objects - we have
  5665   // to do this _before_ we retire the GC alloc regions
  5666   // as we may have to copy some 'reachable' referent
  5667   // objects (and their reachable sub-graphs) that were
  5668   // not copied during the pause.
  5669   process_discovered_references(n_workers);
  5671   // Weak root processing.
  5672   // Note: when JSR 292 is enabled and code blobs can contain
  5673   // non-perm oops then we will need to process the code blobs
  5674   // here too.
  5676     G1STWIsAliveClosure is_alive(this);
  5677     G1KeepAliveClosure keep_alive(this);
  5678     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5681   release_gc_alloc_regions(n_workers);
  5682   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5684   concurrent_g1_refine()->clear_hot_cache();
  5685   concurrent_g1_refine()->set_use_cache(true);
  5687   finalize_for_evac_failure();
  5689   if (evacuation_failed()) {
  5690     remove_self_forwarding_pointers();
  5692     // Reset the G1EvacuationFailureALot counters and flags
  5693     // Note: the values are reset only when an actual
  5694     // evacuation failure occurs.
  5695     NOT_PRODUCT(reset_evacuation_should_fail();)
  5698   // Enqueue any remaining references remaining on the STW
  5699   // reference processor's discovered lists. We need to do
  5700   // this after the card table is cleaned (and verified) as
  5701   // the act of enqueuing entries on to the pending list
  5702   // will log these updates (and dirty their associated
  5703   // cards). We need these updates logged to update any
  5704   // RSets.
  5705   enqueue_discovered_references(n_workers);
  5707   if (G1DeferredRSUpdate) {
  5708     RedirtyLoggedCardTableEntryFastClosure redirty;
  5709     dirty_card_queue_set().set_closure(&redirty);
  5710     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5712     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5713     dcq.merge_bufferlists(&dirty_card_queue_set());
  5714     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5716   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5719 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5720                                      size_t* pre_used,
  5721                                      FreeRegionList* free_list,
  5722                                      OldRegionSet* old_proxy_set,
  5723                                      HumongousRegionSet* humongous_proxy_set,
  5724                                      HRRSCleanupTask* hrrs_cleanup_task,
  5725                                      bool par) {
  5726   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5727     if (hr->isHumongous()) {
  5728       assert(hr->startsHumongous(), "we should only see starts humongous");
  5729       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5730     } else {
  5731       _old_set.remove_with_proxy(hr, old_proxy_set);
  5732       free_region(hr, pre_used, free_list, par);
  5734   } else {
  5735     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5739 void G1CollectedHeap::free_region(HeapRegion* hr,
  5740                                   size_t* pre_used,
  5741                                   FreeRegionList* free_list,
  5742                                   bool par) {
  5743   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5744   assert(!hr->is_empty(), "the region should not be empty");
  5745   assert(free_list != NULL, "pre-condition");
  5747   *pre_used += hr->used();
  5748   hr->hr_clear(par, true /* clear_space */);
  5749   free_list->add_as_head(hr);
  5752 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5753                                      size_t* pre_used,
  5754                                      FreeRegionList* free_list,
  5755                                      HumongousRegionSet* humongous_proxy_set,
  5756                                      bool par) {
  5757   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5758   assert(free_list != NULL, "pre-condition");
  5759   assert(humongous_proxy_set != NULL, "pre-condition");
  5761   size_t hr_used = hr->used();
  5762   size_t hr_capacity = hr->capacity();
  5763   size_t hr_pre_used = 0;
  5764   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5765   // We need to read this before we make the region non-humongous,
  5766   // otherwise the information will be gone.
  5767   uint last_index = hr->last_hc_index();
  5768   hr->set_notHumongous();
  5769   free_region(hr, &hr_pre_used, free_list, par);
  5771   uint i = hr->hrs_index() + 1;
  5772   while (i < last_index) {
  5773     HeapRegion* curr_hr = region_at(i);
  5774     assert(curr_hr->continuesHumongous(), "invariant");
  5775     curr_hr->set_notHumongous();
  5776     free_region(curr_hr, &hr_pre_used, free_list, par);
  5777     i += 1;
  5779   assert(hr_pre_used == hr_used,
  5780          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5781                  "should be the same", hr_pre_used, hr_used));
  5782   *pre_used += hr_pre_used;
  5785 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5786                                        FreeRegionList* free_list,
  5787                                        OldRegionSet* old_proxy_set,
  5788                                        HumongousRegionSet* humongous_proxy_set,
  5789                                        bool par) {
  5790   if (pre_used > 0) {
  5791     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5792     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5793     assert(_summary_bytes_used >= pre_used,
  5794            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5795                    "should be >= pre_used: "SIZE_FORMAT,
  5796                    _summary_bytes_used, pre_used));
  5797     _summary_bytes_used -= pre_used;
  5799   if (free_list != NULL && !free_list->is_empty()) {
  5800     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5801     _free_list.add_as_head(free_list);
  5803   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5804     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5805     _old_set.update_from_proxy(old_proxy_set);
  5807   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5808     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5809     _humongous_set.update_from_proxy(humongous_proxy_set);
  5813 class G1ParCleanupCTTask : public AbstractGangTask {
  5814   CardTableModRefBS* _ct_bs;
  5815   G1CollectedHeap* _g1h;
  5816   HeapRegion* volatile _su_head;
  5817 public:
  5818   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5819                      G1CollectedHeap* g1h) :
  5820     AbstractGangTask("G1 Par Cleanup CT Task"),
  5821     _ct_bs(ct_bs), _g1h(g1h) { }
  5823   void work(uint worker_id) {
  5824     HeapRegion* r;
  5825     while (r = _g1h->pop_dirty_cards_region()) {
  5826       clear_cards(r);
  5830   void clear_cards(HeapRegion* r) {
  5831     // Cards of the survivors should have already been dirtied.
  5832     if (!r->is_survivor()) {
  5833       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5836 };
  5838 #ifndef PRODUCT
  5839 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5840   G1CollectedHeap* _g1h;
  5841   CardTableModRefBS* _ct_bs;
  5842 public:
  5843   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5844     : _g1h(g1h), _ct_bs(ct_bs) { }
  5845   virtual bool doHeapRegion(HeapRegion* r) {
  5846     if (r->is_survivor()) {
  5847       _g1h->verify_dirty_region(r);
  5848     } else {
  5849       _g1h->verify_not_dirty_region(r);
  5851     return false;
  5853 };
  5855 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5856   // All of the region should be clean.
  5857   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5858   MemRegion mr(hr->bottom(), hr->end());
  5859   ct_bs->verify_not_dirty_region(mr);
  5862 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5863   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5864   // dirty allocated blocks as they allocate them. The thread that
  5865   // retires each region and replaces it with a new one will do a
  5866   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5867   // not dirty that area (one less thing to have to do while holding
  5868   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5869   // is dirty.
  5870   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5871   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5872   ct_bs->verify_dirty_region(mr);
  5875 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5876   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5877   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5878     verify_dirty_region(hr);
  5882 void G1CollectedHeap::verify_dirty_young_regions() {
  5883   verify_dirty_young_list(_young_list->first_region());
  5885 #endif
  5887 void G1CollectedHeap::cleanUpCardTable() {
  5888   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5889   double start = os::elapsedTime();
  5892     // Iterate over the dirty cards region list.
  5893     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5895     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5896       set_par_threads();
  5897       workers()->run_task(&cleanup_task);
  5898       set_par_threads(0);
  5899     } else {
  5900       while (_dirty_cards_region_list) {
  5901         HeapRegion* r = _dirty_cards_region_list;
  5902         cleanup_task.clear_cards(r);
  5903         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5904         if (_dirty_cards_region_list == r) {
  5905           // The last region.
  5906           _dirty_cards_region_list = NULL;
  5908         r->set_next_dirty_cards_region(NULL);
  5911 #ifndef PRODUCT
  5912     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5913       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5914       heap_region_iterate(&cleanup_verifier);
  5916 #endif
  5919   double elapsed = os::elapsedTime() - start;
  5920   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  5923 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5924   size_t pre_used = 0;
  5925   FreeRegionList local_free_list("Local List for CSet Freeing");
  5927   double young_time_ms     = 0.0;
  5928   double non_young_time_ms = 0.0;
  5930   // Since the collection set is a superset of the the young list,
  5931   // all we need to do to clear the young list is clear its
  5932   // head and length, and unlink any young regions in the code below
  5933   _young_list->clear();
  5935   G1CollectorPolicy* policy = g1_policy();
  5937   double start_sec = os::elapsedTime();
  5938   bool non_young = true;
  5940   HeapRegion* cur = cs_head;
  5941   int age_bound = -1;
  5942   size_t rs_lengths = 0;
  5944   while (cur != NULL) {
  5945     assert(!is_on_master_free_list(cur), "sanity");
  5946     if (non_young) {
  5947       if (cur->is_young()) {
  5948         double end_sec = os::elapsedTime();
  5949         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5950         non_young_time_ms += elapsed_ms;
  5952         start_sec = os::elapsedTime();
  5953         non_young = false;
  5955     } else {
  5956       if (!cur->is_young()) {
  5957         double end_sec = os::elapsedTime();
  5958         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5959         young_time_ms += elapsed_ms;
  5961         start_sec = os::elapsedTime();
  5962         non_young = true;
  5966     rs_lengths += cur->rem_set()->occupied();
  5968     HeapRegion* next = cur->next_in_collection_set();
  5969     assert(cur->in_collection_set(), "bad CS");
  5970     cur->set_next_in_collection_set(NULL);
  5971     cur->set_in_collection_set(false);
  5973     if (cur->is_young()) {
  5974       int index = cur->young_index_in_cset();
  5975       assert(index != -1, "invariant");
  5976       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5977       size_t words_survived = _surviving_young_words[index];
  5978       cur->record_surv_words_in_group(words_survived);
  5980       // At this point the we have 'popped' cur from the collection set
  5981       // (linked via next_in_collection_set()) but it is still in the
  5982       // young list (linked via next_young_region()). Clear the
  5983       // _next_young_region field.
  5984       cur->set_next_young_region(NULL);
  5985     } else {
  5986       int index = cur->young_index_in_cset();
  5987       assert(index == -1, "invariant");
  5990     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5991             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5992             "invariant" );
  5994     if (!cur->evacuation_failed()) {
  5995       MemRegion used_mr = cur->used_region();
  5997       // And the region is empty.
  5998       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5999       free_region(cur, &pre_used, &local_free_list, false /* par */);
  6000     } else {
  6001       cur->uninstall_surv_rate_group();
  6002       if (cur->is_young()) {
  6003         cur->set_young_index_in_cset(-1);
  6005       cur->set_not_young();
  6006       cur->set_evacuation_failed(false);
  6007       // The region is now considered to be old.
  6008       _old_set.add(cur);
  6010     cur = next;
  6013   policy->record_max_rs_lengths(rs_lengths);
  6014   policy->cset_regions_freed();
  6016   double end_sec = os::elapsedTime();
  6017   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6019   if (non_young) {
  6020     non_young_time_ms += elapsed_ms;
  6021   } else {
  6022     young_time_ms += elapsed_ms;
  6025   update_sets_after_freeing_regions(pre_used, &local_free_list,
  6026                                     NULL /* old_proxy_set */,
  6027                                     NULL /* humongous_proxy_set */,
  6028                                     false /* par */);
  6029   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6030   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6033 // This routine is similar to the above but does not record
  6034 // any policy statistics or update free lists; we are abandoning
  6035 // the current incremental collection set in preparation of a
  6036 // full collection. After the full GC we will start to build up
  6037 // the incremental collection set again.
  6038 // This is only called when we're doing a full collection
  6039 // and is immediately followed by the tearing down of the young list.
  6041 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6042   HeapRegion* cur = cs_head;
  6044   while (cur != NULL) {
  6045     HeapRegion* next = cur->next_in_collection_set();
  6046     assert(cur->in_collection_set(), "bad CS");
  6047     cur->set_next_in_collection_set(NULL);
  6048     cur->set_in_collection_set(false);
  6049     cur->set_young_index_in_cset(-1);
  6050     cur = next;
  6054 void G1CollectedHeap::set_free_regions_coming() {
  6055   if (G1ConcRegionFreeingVerbose) {
  6056     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6057                            "setting free regions coming");
  6060   assert(!free_regions_coming(), "pre-condition");
  6061   _free_regions_coming = true;
  6064 void G1CollectedHeap::reset_free_regions_coming() {
  6065   assert(free_regions_coming(), "pre-condition");
  6068     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6069     _free_regions_coming = false;
  6070     SecondaryFreeList_lock->notify_all();
  6073   if (G1ConcRegionFreeingVerbose) {
  6074     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6075                            "reset free regions coming");
  6079 void G1CollectedHeap::wait_while_free_regions_coming() {
  6080   // Most of the time we won't have to wait, so let's do a quick test
  6081   // first before we take the lock.
  6082   if (!free_regions_coming()) {
  6083     return;
  6086   if (G1ConcRegionFreeingVerbose) {
  6087     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6088                            "waiting for free regions");
  6092     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6093     while (free_regions_coming()) {
  6094       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6098   if (G1ConcRegionFreeingVerbose) {
  6099     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6100                            "done waiting for free regions");
  6104 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6105   assert(heap_lock_held_for_gc(),
  6106               "the heap lock should already be held by or for this thread");
  6107   _young_list->push_region(hr);
  6110 class NoYoungRegionsClosure: public HeapRegionClosure {
  6111 private:
  6112   bool _success;
  6113 public:
  6114   NoYoungRegionsClosure() : _success(true) { }
  6115   bool doHeapRegion(HeapRegion* r) {
  6116     if (r->is_young()) {
  6117       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6118                              r->bottom(), r->end());
  6119       _success = false;
  6121     return false;
  6123   bool success() { return _success; }
  6124 };
  6126 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6127   bool ret = _young_list->check_list_empty(check_sample);
  6129   if (check_heap) {
  6130     NoYoungRegionsClosure closure;
  6131     heap_region_iterate(&closure);
  6132     ret = ret && closure.success();
  6135   return ret;
  6138 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6139 private:
  6140   OldRegionSet *_old_set;
  6142 public:
  6143   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  6145   bool doHeapRegion(HeapRegion* r) {
  6146     if (r->is_empty()) {
  6147       // We ignore empty regions, we'll empty the free list afterwards
  6148     } else if (r->is_young()) {
  6149       // We ignore young regions, we'll empty the young list afterwards
  6150     } else if (r->isHumongous()) {
  6151       // We ignore humongous regions, we're not tearing down the
  6152       // humongous region set
  6153     } else {
  6154       // The rest should be old
  6155       _old_set->remove(r);
  6157     return false;
  6160   ~TearDownRegionSetsClosure() {
  6161     assert(_old_set->is_empty(), "post-condition");
  6163 };
  6165 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6166   assert_at_safepoint(true /* should_be_vm_thread */);
  6168   if (!free_list_only) {
  6169     TearDownRegionSetsClosure cl(&_old_set);
  6170     heap_region_iterate(&cl);
  6172     // Need to do this after the heap iteration to be able to
  6173     // recognize the young regions and ignore them during the iteration.
  6174     _young_list->empty_list();
  6176   _free_list.remove_all();
  6179 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6180 private:
  6181   bool            _free_list_only;
  6182   OldRegionSet*   _old_set;
  6183   FreeRegionList* _free_list;
  6184   size_t          _total_used;
  6186 public:
  6187   RebuildRegionSetsClosure(bool free_list_only,
  6188                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6189     _free_list_only(free_list_only),
  6190     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6191     assert(_free_list->is_empty(), "pre-condition");
  6192     if (!free_list_only) {
  6193       assert(_old_set->is_empty(), "pre-condition");
  6197   bool doHeapRegion(HeapRegion* r) {
  6198     if (r->continuesHumongous()) {
  6199       return false;
  6202     if (r->is_empty()) {
  6203       // Add free regions to the free list
  6204       _free_list->add_as_tail(r);
  6205     } else if (!_free_list_only) {
  6206       assert(!r->is_young(), "we should not come across young regions");
  6208       if (r->isHumongous()) {
  6209         // We ignore humongous regions, we left the humongous set unchanged
  6210       } else {
  6211         // The rest should be old, add them to the old set
  6212         _old_set->add(r);
  6214       _total_used += r->used();
  6217     return false;
  6220   size_t total_used() {
  6221     return _total_used;
  6223 };
  6225 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6226   assert_at_safepoint(true /* should_be_vm_thread */);
  6228   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6229   heap_region_iterate(&cl);
  6231   if (!free_list_only) {
  6232     _summary_bytes_used = cl.total_used();
  6234   assert(_summary_bytes_used == recalculate_used(),
  6235          err_msg("inconsistent _summary_bytes_used, "
  6236                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6237                  _summary_bytes_used, recalculate_used()));
  6240 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6241   _refine_cte_cl->set_concurrent(concurrent);
  6244 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6245   HeapRegion* hr = heap_region_containing(p);
  6246   if (hr == NULL) {
  6247     return false;
  6248   } else {
  6249     return hr->is_in(p);
  6253 // Methods for the mutator alloc region
  6255 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6256                                                       bool force) {
  6257   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6258   assert(!force || g1_policy()->can_expand_young_list(),
  6259          "if force is true we should be able to expand the young list");
  6260   bool young_list_full = g1_policy()->is_young_list_full();
  6261   if (force || !young_list_full) {
  6262     HeapRegion* new_alloc_region = new_region(word_size,
  6263                                               false /* do_expand */);
  6264     if (new_alloc_region != NULL) {
  6265       set_region_short_lived_locked(new_alloc_region);
  6266       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6267       return new_alloc_region;
  6270   return NULL;
  6273 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6274                                                   size_t allocated_bytes) {
  6275   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6276   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6278   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6279   _summary_bytes_used += allocated_bytes;
  6280   _hr_printer.retire(alloc_region);
  6281   // We update the eden sizes here, when the region is retired,
  6282   // instead of when it's allocated, since this is the point that its
  6283   // used space has been recored in _summary_bytes_used.
  6284   g1mm()->update_eden_size();
  6287 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6288                                                     bool force) {
  6289   return _g1h->new_mutator_alloc_region(word_size, force);
  6292 void G1CollectedHeap::set_par_threads() {
  6293   // Don't change the number of workers.  Use the value previously set
  6294   // in the workgroup.
  6295   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6296   uint n_workers = workers()->active_workers();
  6297   assert(UseDynamicNumberOfGCThreads ||
  6298            n_workers == workers()->total_workers(),
  6299       "Otherwise should be using the total number of workers");
  6300   if (n_workers == 0) {
  6301     assert(false, "Should have been set in prior evacuation pause.");
  6302     n_workers = ParallelGCThreads;
  6303     workers()->set_active_workers(n_workers);
  6305   set_par_threads(n_workers);
  6308 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6309                                        size_t allocated_bytes) {
  6310   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6313 // Methods for the GC alloc regions
  6315 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6316                                                  uint count,
  6317                                                  GCAllocPurpose ap) {
  6318   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6320   if (count < g1_policy()->max_regions(ap)) {
  6321     HeapRegion* new_alloc_region = new_region(word_size,
  6322                                               true /* do_expand */);
  6323     if (new_alloc_region != NULL) {
  6324       // We really only need to do this for old regions given that we
  6325       // should never scan survivors. But it doesn't hurt to do it
  6326       // for survivors too.
  6327       new_alloc_region->set_saved_mark();
  6328       if (ap == GCAllocForSurvived) {
  6329         new_alloc_region->set_survivor();
  6330         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6331       } else {
  6332         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6334       bool during_im = g1_policy()->during_initial_mark_pause();
  6335       new_alloc_region->note_start_of_copying(during_im);
  6336       return new_alloc_region;
  6337     } else {
  6338       g1_policy()->note_alloc_region_limit_reached(ap);
  6341   return NULL;
  6344 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6345                                              size_t allocated_bytes,
  6346                                              GCAllocPurpose ap) {
  6347   bool during_im = g1_policy()->during_initial_mark_pause();
  6348   alloc_region->note_end_of_copying(during_im);
  6349   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6350   if (ap == GCAllocForSurvived) {
  6351     young_list()->add_survivor_region(alloc_region);
  6352   } else {
  6353     _old_set.add(alloc_region);
  6355   _hr_printer.retire(alloc_region);
  6358 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6359                                                        bool force) {
  6360   assert(!force, "not supported for GC alloc regions");
  6361   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6364 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6365                                           size_t allocated_bytes) {
  6366   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6367                                GCAllocForSurvived);
  6370 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6371                                                   bool force) {
  6372   assert(!force, "not supported for GC alloc regions");
  6373   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6376 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6377                                      size_t allocated_bytes) {
  6378   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6379                                GCAllocForTenured);
  6381 // Heap region set verification
  6383 class VerifyRegionListsClosure : public HeapRegionClosure {
  6384 private:
  6385   FreeRegionList*     _free_list;
  6386   OldRegionSet*       _old_set;
  6387   HumongousRegionSet* _humongous_set;
  6388   uint                _region_count;
  6390 public:
  6391   VerifyRegionListsClosure(OldRegionSet* old_set,
  6392                            HumongousRegionSet* humongous_set,
  6393                            FreeRegionList* free_list) :
  6394     _old_set(old_set), _humongous_set(humongous_set),
  6395     _free_list(free_list), _region_count(0) { }
  6397   uint region_count() { return _region_count; }
  6399   bool doHeapRegion(HeapRegion* hr) {
  6400     _region_count += 1;
  6402     if (hr->continuesHumongous()) {
  6403       return false;
  6406     if (hr->is_young()) {
  6407       // TODO
  6408     } else if (hr->startsHumongous()) {
  6409       _humongous_set->verify_next_region(hr);
  6410     } else if (hr->is_empty()) {
  6411       _free_list->verify_next_region(hr);
  6412     } else {
  6413       _old_set->verify_next_region(hr);
  6415     return false;
  6417 };
  6419 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6420                                              HeapWord* bottom) {
  6421   HeapWord* end = bottom + HeapRegion::GrainWords;
  6422   MemRegion mr(bottom, end);
  6423   assert(_g1_reserved.contains(mr), "invariant");
  6424   // This might return NULL if the allocation fails
  6425   return new HeapRegion(hrs_index, _bot_shared, mr);
  6428 void G1CollectedHeap::verify_region_sets() {
  6429   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6431   // First, check the explicit lists.
  6432   _free_list.verify();
  6434     // Given that a concurrent operation might be adding regions to
  6435     // the secondary free list we have to take the lock before
  6436     // verifying it.
  6437     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6438     _secondary_free_list.verify();
  6440   _old_set.verify();
  6441   _humongous_set.verify();
  6443   // If a concurrent region freeing operation is in progress it will
  6444   // be difficult to correctly attributed any free regions we come
  6445   // across to the correct free list given that they might belong to
  6446   // one of several (free_list, secondary_free_list, any local lists,
  6447   // etc.). So, if that's the case we will skip the rest of the
  6448   // verification operation. Alternatively, waiting for the concurrent
  6449   // operation to complete will have a non-trivial effect on the GC's
  6450   // operation (no concurrent operation will last longer than the
  6451   // interval between two calls to verification) and it might hide
  6452   // any issues that we would like to catch during testing.
  6453   if (free_regions_coming()) {
  6454     return;
  6457   // Make sure we append the secondary_free_list on the free_list so
  6458   // that all free regions we will come across can be safely
  6459   // attributed to the free_list.
  6460   append_secondary_free_list_if_not_empty_with_lock();
  6462   // Finally, make sure that the region accounting in the lists is
  6463   // consistent with what we see in the heap.
  6464   _old_set.verify_start();
  6465   _humongous_set.verify_start();
  6466   _free_list.verify_start();
  6468   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6469   heap_region_iterate(&cl);
  6471   _old_set.verify_end();
  6472   _humongous_set.verify_end();
  6473   _free_list.verify_end();

mercurial