src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Fri, 29 Apr 2016 00:06:10 +0800

author
aoqi
date
Fri, 29 Apr 2016 00:06:10 +0800
changeset 1
2d8a650513c2
parent 0
f90c822e73f8
child 25
873fd82b133d
permissions
-rw-r--r--

Added MIPS 64-bit port.

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/symbolTable.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "code/codeCache.hpp"
    35 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    36 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    37 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    38 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    39 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
    40 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    41 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    42 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    43 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    44 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
    45 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    46 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    47 #include "gc_implementation/shared/gcHeapSummary.hpp"
    48 #include "gc_implementation/shared/gcTimer.hpp"
    49 #include "gc_implementation/shared/gcTrace.hpp"
    50 #include "gc_implementation/shared/gcTraceTime.hpp"
    51 #include "gc_implementation/shared/isGCActiveMark.hpp"
    52 #include "gc_interface/gcCause.hpp"
    53 #include "memory/gcLocker.inline.hpp"
    54 #include "memory/referencePolicy.hpp"
    55 #include "memory/referenceProcessor.hpp"
    56 #include "oops/methodData.hpp"
    57 #include "oops/oop.inline.hpp"
    58 #include "oops/oop.pcgc.inline.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/safepoint.hpp"
    61 #include "runtime/vmThread.hpp"
    62 #include "services/management.hpp"
    63 #include "services/memoryService.hpp"
    64 #include "services/memTracker.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/stack.inline.hpp"
    68 #include <math.h>
    70 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    72 // All sizes are in HeapWords.
    73 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
    74 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    75 const size_t ParallelCompactData::RegionSizeBytes =
    76   RegionSize << LogHeapWordSize;
    77 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    78 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    79 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
    81 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
    82 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
    83 const size_t ParallelCompactData::BlockSizeBytes  =
    84   BlockSize << LogHeapWordSize;
    85 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
    86 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
    87 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
    89 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
    90 const size_t ParallelCompactData::Log2BlocksPerRegion =
    91   Log2RegionSize - Log2BlockSize;
    93 const ParallelCompactData::RegionData::region_sz_t
    94 ParallelCompactData::RegionData::dc_shift = 27;
    96 const ParallelCompactData::RegionData::region_sz_t
    97 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    99 const ParallelCompactData::RegionData::region_sz_t
   100 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
   102 const ParallelCompactData::RegionData::region_sz_t
   103 ParallelCompactData::RegionData::los_mask = ~dc_mask;
   105 const ParallelCompactData::RegionData::region_sz_t
   106 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
   108 const ParallelCompactData::RegionData::region_sz_t
   109 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
   111 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
   112 bool      PSParallelCompact::_print_phases = false;
   114 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
   115 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
   117 double PSParallelCompact::_dwl_mean;
   118 double PSParallelCompact::_dwl_std_dev;
   119 double PSParallelCompact::_dwl_first_term;
   120 double PSParallelCompact::_dwl_adjustment;
   121 #ifdef  ASSERT
   122 bool   PSParallelCompact::_dwl_initialized = false;
   123 #endif  // #ifdef ASSERT
   125 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
   126                        HeapWord* destination)
   127 {
   128   assert(src_region_idx != 0, "invalid src_region_idx");
   129   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
   130   assert(destination != NULL, "invalid destination argument");
   132   _src_region_idx = src_region_idx;
   133   _partial_obj_size = partial_obj_size;
   134   _destination = destination;
   136   // These fields may not be updated below, so make sure they're clear.
   137   assert(_dest_region_addr == NULL, "should have been cleared");
   138   assert(_first_src_addr == NULL, "should have been cleared");
   140   // Determine the number of destination regions for the partial object.
   141   HeapWord* const last_word = destination + partial_obj_size - 1;
   142   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   143   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   144   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   146   if (beg_region_addr == end_region_addr) {
   147     // One destination region.
   148     _destination_count = 1;
   149     if (end_region_addr == destination) {
   150       // The destination falls on a region boundary, thus the first word of the
   151       // partial object will be the first word copied to the destination region.
   152       _dest_region_addr = end_region_addr;
   153       _first_src_addr = sd.region_to_addr(src_region_idx);
   154     }
   155   } else {
   156     // Two destination regions.  When copied, the partial object will cross a
   157     // destination region boundary, so a word somewhere within the partial
   158     // object will be the first word copied to the second destination region.
   159     _destination_count = 2;
   160     _dest_region_addr = end_region_addr;
   161     const size_t ofs = pointer_delta(end_region_addr, destination);
   162     assert(ofs < _partial_obj_size, "sanity");
   163     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   164   }
   165 }
   167 void SplitInfo::clear()
   168 {
   169   _src_region_idx = 0;
   170   _partial_obj_size = 0;
   171   _destination = NULL;
   172   _destination_count = 0;
   173   _dest_region_addr = NULL;
   174   _first_src_addr = NULL;
   175   assert(!is_valid(), "sanity");
   176 }
   178 #ifdef  ASSERT
   179 void SplitInfo::verify_clear()
   180 {
   181   assert(_src_region_idx == 0, "not clear");
   182   assert(_partial_obj_size == 0, "not clear");
   183   assert(_destination == NULL, "not clear");
   184   assert(_destination_count == 0, "not clear");
   185   assert(_dest_region_addr == NULL, "not clear");
   186   assert(_first_src_addr == NULL, "not clear");
   187 }
   188 #endif  // #ifdef ASSERT
   191 void PSParallelCompact::print_on_error(outputStream* st) {
   192   _mark_bitmap.print_on_error(st);
   193 }
   195 #ifndef PRODUCT
   196 const char* PSParallelCompact::space_names[] = {
   197   "old ", "eden", "from", "to  "
   198 };
   200 void PSParallelCompact::print_region_ranges()
   201 {
   202   tty->print_cr("space  bottom     top        end        new_top");
   203   tty->print_cr("------ ---------- ---------- ---------- ----------");
   205   for (unsigned int id = 0; id < last_space_id; ++id) {
   206     const MutableSpace* space = _space_info[id].space();
   207     tty->print_cr("%u %s "
   208                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   209                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   210                   id, space_names[id],
   211                   summary_data().addr_to_region_idx(space->bottom()),
   212                   summary_data().addr_to_region_idx(space->top()),
   213                   summary_data().addr_to_region_idx(space->end()),
   214                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   215   }
   216 }
   218 void
   219 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   220 {
   221 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   222 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   224   ParallelCompactData& sd = PSParallelCompact::summary_data();
   225   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   226   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   227                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   228                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   229                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   230                 i, c->data_location(), dci, c->destination(),
   231                 c->partial_obj_size(), c->live_obj_size(),
   232                 c->data_size(), c->source_region(), c->destination_count());
   234 #undef  REGION_IDX_FORMAT
   235 #undef  REGION_DATA_FORMAT
   236 }
   238 void
   239 print_generic_summary_data(ParallelCompactData& summary_data,
   240                            HeapWord* const beg_addr,
   241                            HeapWord* const end_addr)
   242 {
   243   size_t total_words = 0;
   244   size_t i = summary_data.addr_to_region_idx(beg_addr);
   245   const size_t last = summary_data.addr_to_region_idx(end_addr);
   246   HeapWord* pdest = 0;
   248   while (i <= last) {
   249     ParallelCompactData::RegionData* c = summary_data.region(i);
   250     if (c->data_size() != 0 || c->destination() != pdest) {
   251       print_generic_summary_region(i, c);
   252       total_words += c->data_size();
   253       pdest = c->destination();
   254     }
   255     ++i;
   256   }
   258   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   259 }
   261 void
   262 print_generic_summary_data(ParallelCompactData& summary_data,
   263                            SpaceInfo* space_info)
   264 {
   265   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   266     const MutableSpace* space = space_info[id].space();
   267     print_generic_summary_data(summary_data, space->bottom(),
   268                                MAX2(space->top(), space_info[id].new_top()));
   269   }
   270 }
   272 void
   273 print_initial_summary_region(size_t i,
   274                              const ParallelCompactData::RegionData* c,
   275                              bool newline = true)
   276 {
   277   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   278              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   279              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   280              i, c->destination(),
   281              c->partial_obj_size(), c->live_obj_size(),
   282              c->data_size(), c->source_region(), c->destination_count());
   283   if (newline) tty->cr();
   284 }
   286 void
   287 print_initial_summary_data(ParallelCompactData& summary_data,
   288                            const MutableSpace* space) {
   289   if (space->top() == space->bottom()) {
   290     return;
   291   }
   293   const size_t region_size = ParallelCompactData::RegionSize;
   294   typedef ParallelCompactData::RegionData RegionData;
   295   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   296   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   297   const RegionData* c = summary_data.region(end_region - 1);
   298   HeapWord* end_addr = c->destination() + c->data_size();
   299   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   301   // Print (and count) the full regions at the beginning of the space.
   302   size_t full_region_count = 0;
   303   size_t i = summary_data.addr_to_region_idx(space->bottom());
   304   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   305     print_initial_summary_region(i, summary_data.region(i));
   306     ++full_region_count;
   307     ++i;
   308   }
   310   size_t live_to_right = live_in_space - full_region_count * region_size;
   312   double max_reclaimed_ratio = 0.0;
   313   size_t max_reclaimed_ratio_region = 0;
   314   size_t max_dead_to_right = 0;
   315   size_t max_live_to_right = 0;
   317   // Print the 'reclaimed ratio' for regions while there is something live in
   318   // the region or to the right of it.  The remaining regions are empty (and
   319   // uninteresting), and computing the ratio will result in division by 0.
   320   while (i < end_region && live_to_right > 0) {
   321     c = summary_data.region(i);
   322     HeapWord* const region_addr = summary_data.region_to_addr(i);
   323     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   324     const size_t dead_to_right = used_to_right - live_to_right;
   325     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   327     if (reclaimed_ratio > max_reclaimed_ratio) {
   328             max_reclaimed_ratio = reclaimed_ratio;
   329             max_reclaimed_ratio_region = i;
   330             max_dead_to_right = dead_to_right;
   331             max_live_to_right = live_to_right;
   332     }
   334     print_initial_summary_region(i, c, false);
   335     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   336                   reclaimed_ratio, dead_to_right, live_to_right);
   338     live_to_right -= c->data_size();
   339     ++i;
   340   }
   342   // Any remaining regions are empty.  Print one more if there is one.
   343   if (i < end_region) {
   344     print_initial_summary_region(i, summary_data.region(i));
   345   }
   347   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   348                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   349                 max_reclaimed_ratio_region, max_dead_to_right,
   350                 max_live_to_right, max_reclaimed_ratio);
   351 }
   353 void
   354 print_initial_summary_data(ParallelCompactData& summary_data,
   355                            SpaceInfo* space_info) {
   356   unsigned int id = PSParallelCompact::old_space_id;
   357   const MutableSpace* space;
   358   do {
   359     space = space_info[id].space();
   360     print_initial_summary_data(summary_data, space);
   361   } while (++id < PSParallelCompact::eden_space_id);
   363   do {
   364     space = space_info[id].space();
   365     print_generic_summary_data(summary_data, space->bottom(), space->top());
   366   } while (++id < PSParallelCompact::last_space_id);
   367 }
   368 #endif  // #ifndef PRODUCT
   370 #ifdef  ASSERT
   371 size_t add_obj_count;
   372 size_t add_obj_size;
   373 size_t mark_bitmap_count;
   374 size_t mark_bitmap_size;
   375 #endif  // #ifdef ASSERT
   377 ParallelCompactData::ParallelCompactData()
   378 {
   379   _region_start = 0;
   381   _region_vspace = 0;
   382   _reserved_byte_size = 0;
   383   _region_data = 0;
   384   _region_count = 0;
   386   _block_vspace = 0;
   387   _block_data = 0;
   388   _block_count = 0;
   389 }
   391 bool ParallelCompactData::initialize(MemRegion covered_region)
   392 {
   393   _region_start = covered_region.start();
   394   const size_t region_size = covered_region.word_size();
   395   DEBUG_ONLY(_region_end = _region_start + region_size;)
   397   assert(region_align_down(_region_start) == _region_start,
   398          "region start not aligned");
   399   assert((region_size & RegionSizeOffsetMask) == 0,
   400          "region size not a multiple of RegionSize");
   402   bool result = initialize_region_data(region_size) && initialize_block_data();
   403   return result;
   404 }
   406 PSVirtualSpace*
   407 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   408 {
   409   const size_t raw_bytes = count * element_size;
   410   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   411   const size_t granularity = os::vm_allocation_granularity();
   412   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   414   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   415     MAX2(page_sz, granularity);
   416   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
   417   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   418                        rs.size());
   420   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   422   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   423   if (vspace != 0) {
   424     if (vspace->expand_by(_reserved_byte_size)) {
   425       return vspace;
   426     }
   427     delete vspace;
   428     // Release memory reserved in the space.
   429     rs.release();
   430   }
   432   return 0;
   433 }
   435 bool ParallelCompactData::initialize_region_data(size_t region_size)
   436 {
   437   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   438   _region_vspace = create_vspace(count, sizeof(RegionData));
   439   if (_region_vspace != 0) {
   440     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   441     _region_count = count;
   442     return true;
   443   }
   444   return false;
   445 }
   447 bool ParallelCompactData::initialize_block_data()
   448 {
   449   assert(_region_count != 0, "region data must be initialized first");
   450   const size_t count = _region_count << Log2BlocksPerRegion;
   451   _block_vspace = create_vspace(count, sizeof(BlockData));
   452   if (_block_vspace != 0) {
   453     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
   454     _block_count = count;
   455     return true;
   456   }
   457   return false;
   458 }
   460 void ParallelCompactData::clear()
   461 {
   462   memset(_region_data, 0, _region_vspace->committed_size());
   463   memset(_block_data, 0, _block_vspace->committed_size());
   464 }
   466 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   467   assert(beg_region <= _region_count, "beg_region out of range");
   468   assert(end_region <= _region_count, "end_region out of range");
   469   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
   471   const size_t region_cnt = end_region - beg_region;
   472   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   474   const size_t beg_block = beg_region * BlocksPerRegion;
   475   const size_t block_cnt = region_cnt * BlocksPerRegion;
   476   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
   477 }
   479 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   480 {
   481   const RegionData* cur_cp = region(region_idx);
   482   const RegionData* const end_cp = region(region_count() - 1);
   484   HeapWord* result = region_to_addr(region_idx);
   485   if (cur_cp < end_cp) {
   486     do {
   487       result += cur_cp->partial_obj_size();
   488     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   489   }
   490   return result;
   491 }
   493 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   494 {
   495   const size_t obj_ofs = pointer_delta(addr, _region_start);
   496   const size_t beg_region = obj_ofs >> Log2RegionSize;
   497   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   499   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   500   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   502   if (beg_region == end_region) {
   503     // All in one region.
   504     _region_data[beg_region].add_live_obj(len);
   505     return;
   506   }
   508   // First region.
   509   const size_t beg_ofs = region_offset(addr);
   510   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   512   Klass* klass = ((oop)addr)->klass();
   513   // Middle regions--completely spanned by this object.
   514   for (size_t region = beg_region + 1; region < end_region; ++region) {
   515     _region_data[region].set_partial_obj_size(RegionSize);
   516     _region_data[region].set_partial_obj_addr(addr);
   517   }
   519   // Last region.
   520   const size_t end_ofs = region_offset(addr + len - 1);
   521   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   522   _region_data[end_region].set_partial_obj_addr(addr);
   523 }
   525 void
   526 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   527 {
   528   assert(region_offset(beg) == 0, "not RegionSize aligned");
   529   assert(region_offset(end) == 0, "not RegionSize aligned");
   531   size_t cur_region = addr_to_region_idx(beg);
   532   const size_t end_region = addr_to_region_idx(end);
   533   HeapWord* addr = beg;
   534   while (cur_region < end_region) {
   535     _region_data[cur_region].set_destination(addr);
   536     _region_data[cur_region].set_destination_count(0);
   537     _region_data[cur_region].set_source_region(cur_region);
   538     _region_data[cur_region].set_data_location(addr);
   540     // Update live_obj_size so the region appears completely full.
   541     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   542     _region_data[cur_region].set_live_obj_size(live_size);
   544     ++cur_region;
   545     addr += RegionSize;
   546   }
   547 }
   549 // Find the point at which a space can be split and, if necessary, record the
   550 // split point.
   551 //
   552 // If the current src region (which overflowed the destination space) doesn't
   553 // have a partial object, the split point is at the beginning of the current src
   554 // region (an "easy" split, no extra bookkeeping required).
   555 //
   556 // If the current src region has a partial object, the split point is in the
   557 // region where that partial object starts (call it the split_region).  If
   558 // split_region has a partial object, then the split point is just after that
   559 // partial object (a "hard" split where we have to record the split data and
   560 // zero the partial_obj_size field).  With a "hard" split, we know that the
   561 // partial_obj ends within split_region because the partial object that caused
   562 // the overflow starts in split_region.  If split_region doesn't have a partial
   563 // obj, then the split is at the beginning of split_region (another "easy"
   564 // split).
   565 HeapWord*
   566 ParallelCompactData::summarize_split_space(size_t src_region,
   567                                            SplitInfo& split_info,
   568                                            HeapWord* destination,
   569                                            HeapWord* target_end,
   570                                            HeapWord** target_next)
   571 {
   572   assert(destination <= target_end, "sanity");
   573   assert(destination + _region_data[src_region].data_size() > target_end,
   574     "region should not fit into target space");
   575   assert(is_region_aligned(target_end), "sanity");
   577   size_t split_region = src_region;
   578   HeapWord* split_destination = destination;
   579   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   581   if (destination + partial_obj_size > target_end) {
   582     // The split point is just after the partial object (if any) in the
   583     // src_region that contains the start of the object that overflowed the
   584     // destination space.
   585     //
   586     // Find the start of the "overflow" object and set split_region to the
   587     // region containing it.
   588     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   589     split_region = addr_to_region_idx(overflow_obj);
   591     // Clear the source_region field of all destination regions whose first word
   592     // came from data after the split point (a non-null source_region field
   593     // implies a region must be filled).
   594     //
   595     // An alternative to the simple loop below:  clear during post_compact(),
   596     // which uses memcpy instead of individual stores, and is easy to
   597     // parallelize.  (The downside is that it clears the entire RegionData
   598     // object as opposed to just one field.)
   599     //
   600     // post_compact() would have to clear the summary data up to the highest
   601     // address that was written during the summary phase, which would be
   602     //
   603     //         max(top, max(new_top, clear_top))
   604     //
   605     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   606     // to target_end.
   607     const RegionData* const sr = region(split_region);
   608     const size_t beg_idx =
   609       addr_to_region_idx(region_align_up(sr->destination() +
   610                                          sr->partial_obj_size()));
   611     const size_t end_idx = addr_to_region_idx(target_end);
   613     if (TraceParallelOldGCSummaryPhase) {
   614         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   615                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   616                                beg_idx, end_idx);
   617     }
   618     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   619       _region_data[idx].set_source_region(0);
   620     }
   622     // Set split_destination and partial_obj_size to reflect the split region.
   623     split_destination = sr->destination();
   624     partial_obj_size = sr->partial_obj_size();
   625   }
   627   // The split is recorded only if a partial object extends onto the region.
   628   if (partial_obj_size != 0) {
   629     _region_data[split_region].set_partial_obj_size(0);
   630     split_info.record(split_region, partial_obj_size, split_destination);
   631   }
   633   // Setup the continuation addresses.
   634   *target_next = split_destination + partial_obj_size;
   635   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   637   if (TraceParallelOldGCSummaryPhase) {
   638     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   639     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   640                            " pos=" SIZE_FORMAT,
   641                            split_type, source_next, split_region,
   642                            partial_obj_size);
   643     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   644                            " tn=" PTR_FORMAT,
   645                            split_type, split_destination,
   646                            addr_to_region_idx(split_destination),
   647                            *target_next);
   649     if (partial_obj_size != 0) {
   650       HeapWord* const po_beg = split_info.destination();
   651       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   652       gclog_or_tty->print_cr("%s split:  "
   653                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   654                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   655                              split_type,
   656                              po_beg, addr_to_region_idx(po_beg),
   657                              po_end, addr_to_region_idx(po_end));
   658     }
   659   }
   661   return source_next;
   662 }
   664 bool ParallelCompactData::summarize(SplitInfo& split_info,
   665                                     HeapWord* source_beg, HeapWord* source_end,
   666                                     HeapWord** source_next,
   667                                     HeapWord* target_beg, HeapWord* target_end,
   668                                     HeapWord** target_next)
   669 {
   670   if (TraceParallelOldGCSummaryPhase) {
   671     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   672     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   673                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   674                   source_beg, source_end, source_next_val,
   675                   target_beg, target_end, *target_next);
   676   }
   678   size_t cur_region = addr_to_region_idx(source_beg);
   679   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   681   HeapWord *dest_addr = target_beg;
   682   while (cur_region < end_region) {
   683     // The destination must be set even if the region has no data.
   684     _region_data[cur_region].set_destination(dest_addr);
   686     size_t words = _region_data[cur_region].data_size();
   687     if (words > 0) {
   688       // If cur_region does not fit entirely into the target space, find a point
   689       // at which the source space can be 'split' so that part is copied to the
   690       // target space and the rest is copied elsewhere.
   691       if (dest_addr + words > target_end) {
   692         assert(source_next != NULL, "source_next is NULL when splitting");
   693         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   694                                              target_end, target_next);
   695         return false;
   696       }
   698       // Compute the destination_count for cur_region, and if necessary, update
   699       // source_region for a destination region.  The source_region field is
   700       // updated if cur_region is the first (left-most) region to be copied to a
   701       // destination region.
   702       //
   703       // The destination_count calculation is a bit subtle.  A region that has
   704       // data that compacts into itself does not count itself as a destination.
   705       // This maintains the invariant that a zero count means the region is
   706       // available and can be claimed and then filled.
   707       uint destination_count = 0;
   708       if (split_info.is_split(cur_region)) {
   709         // The current region has been split:  the partial object will be copied
   710         // to one destination space and the remaining data will be copied to
   711         // another destination space.  Adjust the initial destination_count and,
   712         // if necessary, set the source_region field if the partial object will
   713         // cross a destination region boundary.
   714         destination_count = split_info.destination_count();
   715         if (destination_count == 2) {
   716           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   717           _region_data[dest_idx].set_source_region(cur_region);
   718         }
   719       }
   721       HeapWord* const last_addr = dest_addr + words - 1;
   722       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   723       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   725       // Initially assume that the destination regions will be the same and
   726       // adjust the value below if necessary.  Under this assumption, if
   727       // cur_region == dest_region_2, then cur_region will be compacted
   728       // completely into itself.
   729       destination_count += cur_region == dest_region_2 ? 0 : 1;
   730       if (dest_region_1 != dest_region_2) {
   731         // Destination regions differ; adjust destination_count.
   732         destination_count += 1;
   733         // Data from cur_region will be copied to the start of dest_region_2.
   734         _region_data[dest_region_2].set_source_region(cur_region);
   735       } else if (region_offset(dest_addr) == 0) {
   736         // Data from cur_region will be copied to the start of the destination
   737         // region.
   738         _region_data[dest_region_1].set_source_region(cur_region);
   739       }
   741       _region_data[cur_region].set_destination_count(destination_count);
   742       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   743       dest_addr += words;
   744     }
   746     ++cur_region;
   747   }
   749   *target_next = dest_addr;
   750   return true;
   751 }
   753 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   754   assert(addr != NULL, "Should detect NULL oop earlier");
   755   assert(PSParallelCompact::gc_heap()->is_in(addr), "not in heap");
   756   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
   758   // Region covering the object.
   759   RegionData* const region_ptr = addr_to_region_ptr(addr);
   760   HeapWord* result = region_ptr->destination();
   762   // If the entire Region is live, the new location is region->destination + the
   763   // offset of the object within in the Region.
   765   // Run some performance tests to determine if this special case pays off.  It
   766   // is worth it for pointers into the dense prefix.  If the optimization to
   767   // avoid pointer updates in regions that only point to the dense prefix is
   768   // ever implemented, this should be revisited.
   769   if (region_ptr->data_size() == RegionSize) {
   770     result += region_offset(addr);
   771     return result;
   772   }
   774   // Otherwise, the new location is region->destination + block offset + the
   775   // number of live words in the Block that are (a) to the left of addr and (b)
   776   // due to objects that start in the Block.
   778   // Fill in the block table if necessary.  This is unsynchronized, so multiple
   779   // threads may fill the block table for a region (harmless, since it is
   780   // idempotent).
   781   if (!region_ptr->blocks_filled()) {
   782     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
   783     region_ptr->set_blocks_filled();
   784   }
   786   HeapWord* const search_start = block_align_down(addr);
   787   const size_t block_offset = addr_to_block_ptr(addr)->offset();
   789   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   790   const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
   791   result += block_offset + live;
   792   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
   793   return result;
   794 }
   796 #ifdef ASSERT
   797 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   798 {
   799   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   800   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   801   for (const size_t* p = beg; p < end; ++p) {
   802     assert(*p == 0, "not zero");
   803   }
   804 }
   806 void ParallelCompactData::verify_clear()
   807 {
   808   verify_clear(_region_vspace);
   809   verify_clear(_block_vspace);
   810 }
   811 #endif  // #ifdef ASSERT
   813 STWGCTimer          PSParallelCompact::_gc_timer;
   814 ParallelOldTracer   PSParallelCompact::_gc_tracer;
   815 elapsedTimer        PSParallelCompact::_accumulated_time;
   816 unsigned int        PSParallelCompact::_total_invocations = 0;
   817 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   818 jlong               PSParallelCompact::_time_of_last_gc = 0;
   819 CollectorCounters*  PSParallelCompact::_counters = NULL;
   820 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   821 ParallelCompactData PSParallelCompact::_summary_data;
   823 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   825 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   827 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   828 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   830 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
   831 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
   833 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
   834 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
   836 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
   838 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
   839   mark_and_push(_compaction_manager, p);
   840 }
   841 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   843 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
   844   klass->oops_do(_mark_and_push_closure);
   845 }
   846 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
   847   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
   848 }
   850 void PSParallelCompact::post_initialize() {
   851   ParallelScavengeHeap* heap = gc_heap();
   852   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   854   MemRegion mr = heap->reserved_region();
   855   _ref_processor =
   856     new ReferenceProcessor(mr,            // span
   857                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   858                            (int) ParallelGCThreads, // mt processing degree
   859                            true,          // mt discovery
   860                            (int) ParallelGCThreads, // mt discovery degree
   861                            true,          // atomic_discovery
   862                            &_is_alive_closure); // non-header is alive closure
   863   _counters = new CollectorCounters("PSParallelCompact", 1);
   865   // Initialize static fields in ParCompactionManager.
   866   ParCompactionManager::initialize(mark_bitmap());
   867 }
   869 bool PSParallelCompact::initialize() {
   870   ParallelScavengeHeap* heap = gc_heap();
   871   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   872   MemRegion mr = heap->reserved_region();
   874   // Was the old gen get allocated successfully?
   875   if (!heap->old_gen()->is_allocated()) {
   876     return false;
   877   }
   879   initialize_space_info();
   880   initialize_dead_wood_limiter();
   882   if (!_mark_bitmap.initialize(mr)) {
   883     vm_shutdown_during_initialization(
   884       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
   885       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
   886       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
   887     return false;
   888   }
   890   if (!_summary_data.initialize(mr)) {
   891     vm_shutdown_during_initialization(
   892       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
   893       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
   894       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
   895     return false;
   896   }
   898   return true;
   899 }
   901 void PSParallelCompact::initialize_space_info()
   902 {
   903   memset(&_space_info, 0, sizeof(_space_info));
   905   ParallelScavengeHeap* heap = gc_heap();
   906   PSYoungGen* young_gen = heap->young_gen();
   908   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   909   _space_info[eden_space_id].set_space(young_gen->eden_space());
   910   _space_info[from_space_id].set_space(young_gen->from_space());
   911   _space_info[to_space_id].set_space(young_gen->to_space());
   913   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   914 }
   916 void PSParallelCompact::initialize_dead_wood_limiter()
   917 {
   918   const size_t max = 100;
   919   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   920   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   921   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   922   DEBUG_ONLY(_dwl_initialized = true;)
   923   _dwl_adjustment = normal_distribution(1.0);
   924 }
   926 // Simple class for storing info about the heap at the start of GC, to be used
   927 // after GC for comparison/printing.
   928 class PreGCValues {
   929 public:
   930   PreGCValues() { }
   931   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   933   void fill(ParallelScavengeHeap* heap) {
   934     _heap_used      = heap->used();
   935     _young_gen_used = heap->young_gen()->used_in_bytes();
   936     _old_gen_used   = heap->old_gen()->used_in_bytes();
   937     _metadata_used  = MetaspaceAux::used_bytes();
   938   };
   940   size_t heap_used() const      { return _heap_used; }
   941   size_t young_gen_used() const { return _young_gen_used; }
   942   size_t old_gen_used() const   { return _old_gen_used; }
   943   size_t metadata_used() const  { return _metadata_used; }
   945 private:
   946   size_t _heap_used;
   947   size_t _young_gen_used;
   948   size_t _old_gen_used;
   949   size_t _metadata_used;
   950 };
   952 void
   953 PSParallelCompact::clear_data_covering_space(SpaceId id)
   954 {
   955   // At this point, top is the value before GC, new_top() is the value that will
   956   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   957   // should be marked above top.  The summary data is cleared to the larger of
   958   // top & new_top.
   959   MutableSpace* const space = _space_info[id].space();
   960   HeapWord* const bot = space->bottom();
   961   HeapWord* const top = space->top();
   962   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   964   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   965   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   966   _mark_bitmap.clear_range(beg_bit, end_bit);
   968   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   969   const size_t end_region =
   970     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   971   _summary_data.clear_range(beg_region, end_region);
   973   // Clear the data used to 'split' regions.
   974   SplitInfo& split_info = _space_info[id].split_info();
   975   if (split_info.is_valid()) {
   976     split_info.clear();
   977   }
   978   DEBUG_ONLY(split_info.verify_clear();)
   979 }
   981 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   982 {
   983   // Update the from & to space pointers in space_info, since they are swapped
   984   // at each young gen gc.  Do the update unconditionally (even though a
   985   // promotion failure does not swap spaces) because an unknown number of minor
   986   // collections will have swapped the spaces an unknown number of times.
   987   GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer);
   988   ParallelScavengeHeap* heap = gc_heap();
   989   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   990   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   992   pre_gc_values->fill(heap);
   994   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   995   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   997   // Increment the invocation count
   998   heap->increment_total_collections(true);
  1000   // We need to track unique mark sweep invocations as well.
  1001   _total_invocations++;
  1003   heap->print_heap_before_gc();
  1004   heap->trace_heap_before_gc(&_gc_tracer);
  1006   // Fill in TLABs
  1007   heap->accumulate_statistics_all_tlabs();
  1008   heap->ensure_parsability(true);  // retire TLABs
  1010   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
  1011     HandleMark hm;  // Discard invalid handles created during verification
  1012     Universe::verify(" VerifyBeforeGC:");
  1015   // Verify object start arrays
  1016   if (VerifyObjectStartArray &&
  1017       VerifyBeforeGC) {
  1018     heap->old_gen()->verify_object_start_array();
  1021   DEBUG_ONLY(mark_bitmap()->verify_clear();)
  1022   DEBUG_ONLY(summary_data().verify_clear();)
  1024   // Have worker threads release resources the next time they run a task.
  1025   gc_task_manager()->release_all_resources();
  1028 void PSParallelCompact::post_compact()
  1030   GCTraceTime tm("post compact", print_phases(), true, &_gc_timer);
  1032   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1033     // Clear the marking bitmap, summary data and split info.
  1034     clear_data_covering_space(SpaceId(id));
  1035     // Update top().  Must be done after clearing the bitmap and summary data.
  1036     _space_info[id].publish_new_top();
  1039   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1040   MutableSpace* const from_space = _space_info[from_space_id].space();
  1041   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1043   ParallelScavengeHeap* heap = gc_heap();
  1044   bool eden_empty = eden_space->is_empty();
  1045   if (!eden_empty) {
  1046     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1047                                             heap->young_gen(), heap->old_gen());
  1050   // Update heap occupancy information which is used as input to the soft ref
  1051   // clearing policy at the next gc.
  1052   Universe::update_heap_info_at_gc();
  1054   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1055     to_space->is_empty();
  1057   BarrierSet* bs = heap->barrier_set();
  1058   if (bs->is_a(BarrierSet::ModRef)) {
  1059     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1060     MemRegion old_mr = heap->old_gen()->reserved();
  1062     if (young_gen_empty) {
  1063       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
  1064     } else {
  1065       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
  1069   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1070   ClassLoaderDataGraph::purge();
  1071   MetaspaceAux::verify_metrics();
  1073   Threads::gc_epilogue();
  1074   CodeCache::gc_epilogue();
  1075   JvmtiExport::gc_epilogue();
  1077   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1079   ref_processor()->enqueue_discovered_references(NULL);
  1081   if (ZapUnusedHeapArea) {
  1082     heap->gen_mangle_unused_area();
  1085   // Update time of last GC
  1086   reset_millis_since_last_gc();
  1089 HeapWord*
  1090 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1091                                                     bool maximum_compaction)
  1093   const size_t region_size = ParallelCompactData::RegionSize;
  1094   const ParallelCompactData& sd = summary_data();
  1096   const MutableSpace* const space = _space_info[id].space();
  1097   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1098   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1099   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1101   // Skip full regions at the beginning of the space--they are necessarily part
  1102   // of the dense prefix.
  1103   size_t full_count = 0;
  1104   const RegionData* cp;
  1105   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1106     ++full_count;
  1109   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1110   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1111   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1112   if (maximum_compaction || cp == end_cp || interval_ended) {
  1113     _maximum_compaction_gc_num = total_invocations();
  1114     return sd.region_to_addr(cp);
  1117   HeapWord* const new_top = _space_info[id].new_top();
  1118   const size_t space_live = pointer_delta(new_top, space->bottom());
  1119   const size_t space_used = space->used_in_words();
  1120   const size_t space_capacity = space->capacity_in_words();
  1122   const double cur_density = double(space_live) / space_capacity;
  1123   const double deadwood_density =
  1124     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1125   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1127   if (TraceParallelOldGCDensePrefix) {
  1128     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1129                   cur_density, deadwood_density, deadwood_goal);
  1130     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1131                   "space_cap=" SIZE_FORMAT,
  1132                   space_live, space_used,
  1133                   space_capacity);
  1136   // XXX - Use binary search?
  1137   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1138   const RegionData* full_cp = cp;
  1139   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1140   while (cp < end_cp) {
  1141     HeapWord* region_destination = cp->destination();
  1142     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1143     if (TraceParallelOldGCDensePrefix && Verbose) {
  1144       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1145                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1146                     sd.region(cp), region_destination,
  1147                     dense_prefix, cur_deadwood);
  1150     if (cur_deadwood >= deadwood_goal) {
  1151       // Found the region that has the correct amount of deadwood to the left.
  1152       // This typically occurs after crossing a fairly sparse set of regions, so
  1153       // iterate backwards over those sparse regions, looking for the region
  1154       // that has the lowest density of live objects 'to the right.'
  1155       size_t space_to_left = sd.region(cp) * region_size;
  1156       size_t live_to_left = space_to_left - cur_deadwood;
  1157       size_t space_to_right = space_capacity - space_to_left;
  1158       size_t live_to_right = space_live - live_to_left;
  1159       double density_to_right = double(live_to_right) / space_to_right;
  1160       while (cp > full_cp) {
  1161         --cp;
  1162         const size_t prev_region_live_to_right = live_to_right -
  1163           cp->data_size();
  1164         const size_t prev_region_space_to_right = space_to_right + region_size;
  1165         double prev_region_density_to_right =
  1166           double(prev_region_live_to_right) / prev_region_space_to_right;
  1167         if (density_to_right <= prev_region_density_to_right) {
  1168           return dense_prefix;
  1170         if (TraceParallelOldGCDensePrefix && Verbose) {
  1171           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1172                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1173                         prev_region_density_to_right);
  1175         dense_prefix -= region_size;
  1176         live_to_right = prev_region_live_to_right;
  1177         space_to_right = prev_region_space_to_right;
  1178         density_to_right = prev_region_density_to_right;
  1180       return dense_prefix;
  1183     dense_prefix += region_size;
  1184     ++cp;
  1187   return dense_prefix;
  1190 #ifndef PRODUCT
  1191 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1192                                                  const SpaceId id,
  1193                                                  const bool maximum_compaction,
  1194                                                  HeapWord* const addr)
  1196   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1197   RegionData* const cp = summary_data().region(region_idx);
  1198   const MutableSpace* const space = _space_info[id].space();
  1199   HeapWord* const new_top = _space_info[id].new_top();
  1201   const size_t space_live = pointer_delta(new_top, space->bottom());
  1202   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1203   const size_t space_cap = space->capacity_in_words();
  1204   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1205   const size_t live_to_right = new_top - cp->destination();
  1206   const size_t dead_to_right = space->top() - addr - live_to_right;
  1208   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1209                 "spl=" SIZE_FORMAT " "
  1210                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1211                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1212                 " ratio=%10.8f",
  1213                 algorithm, addr, region_idx,
  1214                 space_live,
  1215                 dead_to_left, dead_to_left_pct,
  1216                 dead_to_right, live_to_right,
  1217                 double(dead_to_right) / live_to_right);
  1219 #endif  // #ifndef PRODUCT
  1221 // Return a fraction indicating how much of the generation can be treated as
  1222 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1223 // based on the density of live objects in the generation to determine a limit,
  1224 // which is then adjusted so the return value is min_percent when the density is
  1225 // 1.
  1226 //
  1227 // The following table shows some return values for a different values of the
  1228 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1229 // min_percent is 1.
  1230 //
  1231 //                          fraction allowed as dead wood
  1232 //         -----------------------------------------------------------------
  1233 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1234 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1235 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1236 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1237 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1238 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1239 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1240 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1241 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1242 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1243 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1244 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1245 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1246 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1247 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1248 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1249 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1250 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1251 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1252 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1253 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1254 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1255 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1257 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1259   assert(_dwl_initialized, "uninitialized");
  1261   // The raw limit is the value of the normal distribution at x = density.
  1262   const double raw_limit = normal_distribution(density);
  1264   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1265   //
  1266   // First subtract the adjustment value (which is simply the precomputed value
  1267   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1268   // Then add the minimum value, so the minimum is returned when the density is
  1269   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1270   const double min = double(min_percent) / 100.0;
  1271   const double limit = raw_limit - _dwl_adjustment + min;
  1272   return MAX2(limit, 0.0);
  1275 ParallelCompactData::RegionData*
  1276 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1277                                            const RegionData* end)
  1279   const size_t region_size = ParallelCompactData::RegionSize;
  1280   ParallelCompactData& sd = summary_data();
  1281   size_t left = sd.region(beg);
  1282   size_t right = end > beg ? sd.region(end) - 1 : left;
  1284   // Binary search.
  1285   while (left < right) {
  1286     // Equivalent to (left + right) / 2, but does not overflow.
  1287     const size_t middle = left + (right - left) / 2;
  1288     RegionData* const middle_ptr = sd.region(middle);
  1289     HeapWord* const dest = middle_ptr->destination();
  1290     HeapWord* const addr = sd.region_to_addr(middle);
  1291     assert(dest != NULL, "sanity");
  1292     assert(dest <= addr, "must move left");
  1294     if (middle > left && dest < addr) {
  1295       right = middle - 1;
  1296     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1297       left = middle + 1;
  1298     } else {
  1299       return middle_ptr;
  1302   return sd.region(left);
  1305 ParallelCompactData::RegionData*
  1306 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1307                                           const RegionData* end,
  1308                                           size_t dead_words)
  1310   ParallelCompactData& sd = summary_data();
  1311   size_t left = sd.region(beg);
  1312   size_t right = end > beg ? sd.region(end) - 1 : left;
  1314   // Binary search.
  1315   while (left < right) {
  1316     // Equivalent to (left + right) / 2, but does not overflow.
  1317     const size_t middle = left + (right - left) / 2;
  1318     RegionData* const middle_ptr = sd.region(middle);
  1319     HeapWord* const dest = middle_ptr->destination();
  1320     HeapWord* const addr = sd.region_to_addr(middle);
  1321     assert(dest != NULL, "sanity");
  1322     assert(dest <= addr, "must move left");
  1324     const size_t dead_to_left = pointer_delta(addr, dest);
  1325     if (middle > left && dead_to_left > dead_words) {
  1326       right = middle - 1;
  1327     } else if (middle < right && dead_to_left < dead_words) {
  1328       left = middle + 1;
  1329     } else {
  1330       return middle_ptr;
  1333   return sd.region(left);
  1336 // The result is valid during the summary phase, after the initial summarization
  1337 // of each space into itself, and before final summarization.
  1338 inline double
  1339 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1340                                    HeapWord* const bottom,
  1341                                    HeapWord* const top,
  1342                                    HeapWord* const new_top)
  1344   ParallelCompactData& sd = summary_data();
  1346   assert(cp != NULL, "sanity");
  1347   assert(bottom != NULL, "sanity");
  1348   assert(top != NULL, "sanity");
  1349   assert(new_top != NULL, "sanity");
  1350   assert(top >= new_top, "summary data problem?");
  1351   assert(new_top > bottom, "space is empty; should not be here");
  1352   assert(new_top >= cp->destination(), "sanity");
  1353   assert(top >= sd.region_to_addr(cp), "sanity");
  1355   HeapWord* const destination = cp->destination();
  1356   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1357   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1358   const size_t compacted_region_used = pointer_delta(top,
  1359                                                      sd.region_to_addr(cp));
  1360   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1362   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1363   return double(reclaimable) / divisor;
  1366 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1367 // compacted region.  The address is always on a region boundary.
  1368 //
  1369 // Completely full regions at the left are skipped, since no compaction can
  1370 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1371 // computed, based on the density (amount live / capacity) of the generation;
  1372 // the region with approximately that amount of dead space to the left is
  1373 // identified as the limit region.  Regions between the last completely full
  1374 // region and the limit region are scanned and the one that has the best
  1375 // (maximum) reclaimed_ratio() is selected.
  1376 HeapWord*
  1377 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1378                                         bool maximum_compaction)
  1380   if (ParallelOldGCSplitALot) {
  1381     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
  1382       // The value was chosen to provoke splitting a young gen space; use it.
  1383       return _space_info[id].dense_prefix();
  1387   const size_t region_size = ParallelCompactData::RegionSize;
  1388   const ParallelCompactData& sd = summary_data();
  1390   const MutableSpace* const space = _space_info[id].space();
  1391   HeapWord* const top = space->top();
  1392   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1393   HeapWord* const new_top = _space_info[id].new_top();
  1394   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1395   HeapWord* const bottom = space->bottom();
  1396   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1397   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1398   const RegionData* const new_top_cp =
  1399     sd.addr_to_region_ptr(new_top_aligned_up);
  1401   // Skip full regions at the beginning of the space--they are necessarily part
  1402   // of the dense prefix.
  1403   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1404   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1405          space->is_empty(), "no dead space allowed to the left");
  1406   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1407          "region must have dead space");
  1409   // The gc number is saved whenever a maximum compaction is done, and used to
  1410   // determine when the maximum compaction interval has expired.  This avoids
  1411   // successive max compactions for different reasons.
  1412   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1413   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1414   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1415     total_invocations() == HeapFirstMaximumCompactionCount;
  1416   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1417     _maximum_compaction_gc_num = total_invocations();
  1418     return sd.region_to_addr(full_cp);
  1421   const size_t space_live = pointer_delta(new_top, bottom);
  1422   const size_t space_used = space->used_in_words();
  1423   const size_t space_capacity = space->capacity_in_words();
  1425   const double density = double(space_live) / double(space_capacity);
  1426   const size_t min_percent_free = MarkSweepDeadRatio;
  1427   const double limiter = dead_wood_limiter(density, min_percent_free);
  1428   const size_t dead_wood_max = space_used - space_live;
  1429   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1430                                       dead_wood_max);
  1432   if (TraceParallelOldGCDensePrefix) {
  1433     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1434                   "space_cap=" SIZE_FORMAT,
  1435                   space_live, space_used,
  1436                   space_capacity);
  1437     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1438                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1439                   density, min_percent_free, limiter,
  1440                   dead_wood_max, dead_wood_limit);
  1443   // Locate the region with the desired amount of dead space to the left.
  1444   const RegionData* const limit_cp =
  1445     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1447   // Scan from the first region with dead space to the limit region and find the
  1448   // one with the best (largest) reclaimed ratio.
  1449   double best_ratio = 0.0;
  1450   const RegionData* best_cp = full_cp;
  1451   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1452     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1453     if (tmp_ratio > best_ratio) {
  1454       best_cp = cp;
  1455       best_ratio = tmp_ratio;
  1459 #if     0
  1460   // Something to consider:  if the region with the best ratio is 'close to' the
  1461   // first region w/free space, choose the first region with free space
  1462   // ("first-free").  The first-free region is usually near the start of the
  1463   // heap, which means we are copying most of the heap already, so copy a bit
  1464   // more to get complete compaction.
  1465   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1466     _maximum_compaction_gc_num = total_invocations();
  1467     best_cp = full_cp;
  1469 #endif  // #if 0
  1471   return sd.region_to_addr(best_cp);
  1474 #ifndef PRODUCT
  1475 void
  1476 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
  1477                                           size_t words)
  1479   if (TraceParallelOldGCSummaryPhase) {
  1480     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
  1481                   SIZE_FORMAT, start, start + words, words);
  1484   ObjectStartArray* const start_array = _space_info[id].start_array();
  1485   CollectedHeap::fill_with_objects(start, words);
  1486   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
  1487     _mark_bitmap.mark_obj(p, words);
  1488     _summary_data.add_obj(p, words);
  1489     start_array->allocate_block(p);
  1493 void
  1494 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
  1496   ParallelCompactData& sd = summary_data();
  1497   MutableSpace* space = _space_info[id].space();
  1499   // Find the source and destination start addresses.
  1500   HeapWord* const src_addr = sd.region_align_down(start);
  1501   HeapWord* dst_addr;
  1502   if (src_addr < start) {
  1503     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  1504   } else if (src_addr > space->bottom()) {
  1505     // The start (the original top() value) is aligned to a region boundary so
  1506     // the associated region does not have a destination.  Compute the
  1507     // destination from the previous region.
  1508     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
  1509     dst_addr = cp->destination() + cp->data_size();
  1510   } else {
  1511     // Filling the entire space.
  1512     dst_addr = space->bottom();
  1514   assert(dst_addr != NULL, "sanity");
  1516   // Update the summary data.
  1517   bool result = _summary_data.summarize(_space_info[id].split_info(),
  1518                                         src_addr, space->top(), NULL,
  1519                                         dst_addr, space->end(),
  1520                                         _space_info[id].new_top_addr());
  1521   assert(result, "should not fail:  bad filler object size");
  1524 void
  1525 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
  1527   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
  1528     return;
  1531   MutableSpace* const space = _space_info[id].space();
  1532   if (space->is_empty()) {
  1533     HeapWord* b = space->bottom();
  1534     HeapWord* t = b + space->capacity_in_words() / 2;
  1535     space->set_top(t);
  1536     if (ZapUnusedHeapArea) {
  1537       space->set_top_for_allocations();
  1540     size_t min_size = CollectedHeap::min_fill_size();
  1541     size_t obj_len = min_size;
  1542     while (b + obj_len <= t) {
  1543       CollectedHeap::fill_with_object(b, obj_len);
  1544       mark_bitmap()->mark_obj(b, obj_len);
  1545       summary_data().add_obj(b, obj_len);
  1546       b += obj_len;
  1547       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
  1549     if (b < t) {
  1550       // The loop didn't completely fill to t (top); adjust top downward.
  1551       space->set_top(b);
  1552       if (ZapUnusedHeapArea) {
  1553         space->set_top_for_allocations();
  1557     HeapWord** nta = _space_info[id].new_top_addr();
  1558     bool result = summary_data().summarize(_space_info[id].split_info(),
  1559                                            space->bottom(), space->top(), NULL,
  1560                                            space->bottom(), space->end(), nta);
  1561     assert(result, "space must fit into itself");
  1565 void
  1566 PSParallelCompact::provoke_split(bool & max_compaction)
  1568   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
  1569     return;
  1572   const size_t region_size = ParallelCompactData::RegionSize;
  1573   ParallelCompactData& sd = summary_data();
  1575   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1576   MutableSpace* const from_space = _space_info[from_space_id].space();
  1577   const size_t eden_live = pointer_delta(eden_space->top(),
  1578                                          _space_info[eden_space_id].new_top());
  1579   const size_t from_live = pointer_delta(from_space->top(),
  1580                                          _space_info[from_space_id].new_top());
  1582   const size_t min_fill_size = CollectedHeap::min_fill_size();
  1583   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  1584   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  1585   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  1586   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
  1588   // Choose the space to split; need at least 2 regions live (or fillable).
  1589   SpaceId id;
  1590   MutableSpace* space;
  1591   size_t live_words;
  1592   size_t fill_words;
  1593   if (eden_live + eden_fillable >= region_size * 2) {
  1594     id = eden_space_id;
  1595     space = eden_space;
  1596     live_words = eden_live;
  1597     fill_words = eden_fillable;
  1598   } else if (from_live + from_fillable >= region_size * 2) {
  1599     id = from_space_id;
  1600     space = from_space;
  1601     live_words = from_live;
  1602     fill_words = from_fillable;
  1603   } else {
  1604     return; // Give up.
  1606   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
  1608   if (live_words < region_size * 2) {
  1609     // Fill from top() to end() w/live objects of mixed sizes.
  1610     HeapWord* const fill_start = space->top();
  1611     live_words += fill_words;
  1613     space->set_top(fill_start + fill_words);
  1614     if (ZapUnusedHeapArea) {
  1615       space->set_top_for_allocations();
  1618     HeapWord* cur_addr = fill_start;
  1619     while (fill_words > 0) {
  1620       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
  1621       size_t cur_size = MIN2(align_object_size_(r), fill_words);
  1622       if (fill_words - cur_size < min_fill_size) {
  1623         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
  1626       CollectedHeap::fill_with_object(cur_addr, cur_size);
  1627       mark_bitmap()->mark_obj(cur_addr, cur_size);
  1628       sd.add_obj(cur_addr, cur_size);
  1630       cur_addr += cur_size;
  1631       fill_words -= cur_size;
  1634     summarize_new_objects(id, fill_start);
  1637   max_compaction = false;
  1639   // Manipulate the old gen so that it has room for about half of the live data
  1640   // in the target young gen space (live_words / 2).
  1641   id = old_space_id;
  1642   space = _space_info[id].space();
  1643   const size_t free_at_end = space->free_in_words();
  1644   const size_t free_target = align_object_size(live_words / 2);
  1645   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
  1647   if (free_at_end >= free_target + min_fill_size) {
  1648     // Fill space above top() and set the dense prefix so everything survives.
  1649     HeapWord* const fill_start = space->top();
  1650     const size_t fill_size = free_at_end - free_target;
  1651     space->set_top(space->top() + fill_size);
  1652     if (ZapUnusedHeapArea) {
  1653       space->set_top_for_allocations();
  1655     fill_with_live_objects(id, fill_start, fill_size);
  1656     summarize_new_objects(id, fill_start);
  1657     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  1658   } else if (dead + free_at_end > free_target) {
  1659     // Find a dense prefix that makes the right amount of space available.
  1660     HeapWord* cur = sd.region_align_down(space->top());
  1661     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1662     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
  1663     while (dead_to_right < free_target) {
  1664       cur -= region_size;
  1665       cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1666       dead_to_right = pointer_delta(space->end(), cur_destination);
  1668     _space_info[id].set_dense_prefix(cur);
  1671 #endif // #ifndef PRODUCT
  1673 void PSParallelCompact::summarize_spaces_quick()
  1675   for (unsigned int i = 0; i < last_space_id; ++i) {
  1676     const MutableSpace* space = _space_info[i].space();
  1677     HeapWord** nta = _space_info[i].new_top_addr();
  1678     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1679                                           space->bottom(), space->top(), NULL,
  1680                                           space->bottom(), space->end(), nta);
  1681     assert(result, "space must fit into itself");
  1682     _space_info[i].set_dense_prefix(space->bottom());
  1685 #ifndef PRODUCT
  1686   if (ParallelOldGCSplitALot) {
  1687     provoke_split_fill_survivor(to_space_id);
  1689 #endif // #ifndef PRODUCT
  1692 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1694   HeapWord* const dense_prefix_end = dense_prefix(id);
  1695   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1696   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1697   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1698     // Only enough dead space is filled so that any remaining dead space to the
  1699     // left is larger than the minimum filler object.  (The remainder is filled
  1700     // during the copy/update phase.)
  1701     //
  1702     // The size of the dead space to the right of the boundary is not a
  1703     // concern, since compaction will be able to use whatever space is
  1704     // available.
  1705     //
  1706     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1707     // surrounds the space to be filled with an object.
  1708     //
  1709     // In the 32-bit VM, each bit represents two 32-bit words:
  1710     //                              +---+
  1711     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1712     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1713     //                              +---+
  1714     //
  1715     // In the 64-bit VM, each bit represents one 64-bit word:
  1716     //                              +------------+
  1717     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1718     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1719     //                              +------------+
  1720     //                          +-------+
  1721     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1722     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1723     //                          +-------+
  1724     //                      +-----------+
  1725     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1726     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1727     //                      +-----------+
  1728     //                          +-------+
  1729     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1730     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1731     //                          +-------+
  1733     // Initially assume case a, c or e will apply.
  1734     size_t obj_len = CollectedHeap::min_fill_size();
  1735     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1737 #ifdef  _LP64
  1738     if (MinObjAlignment > 1) { // object alignment > heap word size
  1739       // Cases a, c or e.
  1740     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1741       // Case b above.
  1742       obj_beg = dense_prefix_end - 1;
  1743     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1744                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1745       // Case d above.
  1746       obj_beg = dense_prefix_end - 3;
  1747       obj_len = 3;
  1749 #endif  // #ifdef _LP64
  1751     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1752     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1753     _summary_data.add_obj(obj_beg, obj_len);
  1754     assert(start_array(id) != NULL, "sanity");
  1755     start_array(id)->allocate_block(obj_beg);
  1759 void
  1760 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1762   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1763   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1764   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1765   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1766     cur->set_source_region(0);
  1770 void
  1771 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1773   assert(id < last_space_id, "id out of range");
  1774   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
  1775          ParallelOldGCSplitALot && id == old_space_id,
  1776          "should have been reset in summarize_spaces_quick()");
  1778   const MutableSpace* space = _space_info[id].space();
  1779   if (_space_info[id].new_top() != space->bottom()) {
  1780     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1781     _space_info[id].set_dense_prefix(dense_prefix_end);
  1783 #ifndef PRODUCT
  1784     if (TraceParallelOldGCDensePrefix) {
  1785       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1786                                dense_prefix_end);
  1787       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1788       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1790 #endif  // #ifndef PRODUCT
  1792     // Recompute the summary data, taking into account the dense prefix.  If
  1793     // every last byte will be reclaimed, then the existing summary data which
  1794     // compacts everything can be left in place.
  1795     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1796       // If dead space crosses the dense prefix boundary, it is (at least
  1797       // partially) filled with a dummy object, marked live and added to the
  1798       // summary data.  This simplifies the copy/update phase and must be done
  1799       // before the final locations of objects are determined, to prevent
  1800       // leaving a fragment of dead space that is too small to fill.
  1801       fill_dense_prefix_end(id);
  1803       // Compute the destination of each Region, and thus each object.
  1804       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1805       _summary_data.summarize(_space_info[id].split_info(),
  1806                               dense_prefix_end, space->top(), NULL,
  1807                               dense_prefix_end, space->end(),
  1808                               _space_info[id].new_top_addr());
  1812   if (TraceParallelOldGCSummaryPhase) {
  1813     const size_t region_size = ParallelCompactData::RegionSize;
  1814     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1815     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1816     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1817     HeapWord* const new_top = _space_info[id].new_top();
  1818     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1819     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1820     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1821                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1822                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1823                   id, space->capacity_in_words(), dense_prefix_end,
  1824                   dp_region, dp_words / region_size,
  1825                   cr_words / region_size, new_top);
  1829 #ifndef PRODUCT
  1830 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1831                                           HeapWord* dst_beg, HeapWord* dst_end,
  1832                                           SpaceId src_space_id,
  1833                                           HeapWord* src_beg, HeapWord* src_end)
  1835   if (TraceParallelOldGCSummaryPhase) {
  1836     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1837                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1838                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1839                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1840                   SIZE_FORMAT "-" SIZE_FORMAT,
  1841                   src_space_id, space_names[src_space_id],
  1842                   dst_space_id, space_names[dst_space_id],
  1843                   src_beg, src_end,
  1844                   _summary_data.addr_to_region_idx(src_beg),
  1845                   _summary_data.addr_to_region_idx(src_end),
  1846                   dst_beg, dst_end,
  1847                   _summary_data.addr_to_region_idx(dst_beg),
  1848                   _summary_data.addr_to_region_idx(dst_end));
  1851 #endif  // #ifndef PRODUCT
  1853 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1854                                       bool maximum_compaction)
  1856   GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer);
  1857   // trace("2");
  1859 #ifdef  ASSERT
  1860   if (TraceParallelOldGCMarkingPhase) {
  1861     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1862                   "add_obj_bytes=" SIZE_FORMAT,
  1863                   add_obj_count, add_obj_size * HeapWordSize);
  1864     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1865                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1866                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1868 #endif  // #ifdef ASSERT
  1870   // Quick summarization of each space into itself, to see how much is live.
  1871   summarize_spaces_quick();
  1873   if (TraceParallelOldGCSummaryPhase) {
  1874     tty->print_cr("summary_phase:  after summarizing each space to self");
  1875     Universe::print();
  1876     NOT_PRODUCT(print_region_ranges());
  1877     if (Verbose) {
  1878       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1882   // The amount of live data that will end up in old space (assuming it fits).
  1883   size_t old_space_total_live = 0;
  1884   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1885     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1886                                           _space_info[id].space()->bottom());
  1889   MutableSpace* const old_space = _space_info[old_space_id].space();
  1890   const size_t old_capacity = old_space->capacity_in_words();
  1891   if (old_space_total_live > old_capacity) {
  1892     // XXX - should also try to expand
  1893     maximum_compaction = true;
  1895 #ifndef PRODUCT
  1896   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
  1897     provoke_split(maximum_compaction);
  1899 #endif // #ifndef PRODUCT
  1901   // Old generations.
  1902   summarize_space(old_space_id, maximum_compaction);
  1904   // Summarize the remaining spaces in the young gen.  The initial target space
  1905   // is the old gen.  If a space does not fit entirely into the target, then the
  1906   // remainder is compacted into the space itself and that space becomes the new
  1907   // target.
  1908   SpaceId dst_space_id = old_space_id;
  1909   HeapWord* dst_space_end = old_space->end();
  1910   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1911   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1912     const MutableSpace* space = _space_info[id].space();
  1913     const size_t live = pointer_delta(_space_info[id].new_top(),
  1914                                       space->bottom());
  1915     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1917     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1918                                   SpaceId(id), space->bottom(), space->top());)
  1919     if (live > 0 && live <= available) {
  1920       // All the live data will fit.
  1921       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1922                                           space->bottom(), space->top(),
  1923                                           NULL,
  1924                                           *new_top_addr, dst_space_end,
  1925                                           new_top_addr);
  1926       assert(done, "space must fit into old gen");
  1928       // Reset the new_top value for the space.
  1929       _space_info[id].set_new_top(space->bottom());
  1930     } else if (live > 0) {
  1931       // Attempt to fit part of the source space into the target space.
  1932       HeapWord* next_src_addr = NULL;
  1933       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1934                                           space->bottom(), space->top(),
  1935                                           &next_src_addr,
  1936                                           *new_top_addr, dst_space_end,
  1937                                           new_top_addr);
  1938       assert(!done, "space should not fit into old gen");
  1939       assert(next_src_addr != NULL, "sanity");
  1941       // The source space becomes the new target, so the remainder is compacted
  1942       // within the space itself.
  1943       dst_space_id = SpaceId(id);
  1944       dst_space_end = space->end();
  1945       new_top_addr = _space_info[id].new_top_addr();
  1946       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1947                                     space->bottom(), dst_space_end,
  1948                                     SpaceId(id), next_src_addr, space->top());)
  1949       done = _summary_data.summarize(_space_info[id].split_info(),
  1950                                      next_src_addr, space->top(),
  1951                                      NULL,
  1952                                      space->bottom(), dst_space_end,
  1953                                      new_top_addr);
  1954       assert(done, "space must fit when compacted into itself");
  1955       assert(*new_top_addr <= space->top(), "usage should not grow");
  1959   if (TraceParallelOldGCSummaryPhase) {
  1960     tty->print_cr("summary_phase:  after final summarization");
  1961     Universe::print();
  1962     NOT_PRODUCT(print_region_ranges());
  1963     if (Verbose) {
  1964       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1969 // This method should contain all heap-specific policy for invoking a full
  1970 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1971 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1972 // before full gc, or any other specialized behavior, it needs to be added here.
  1973 //
  1974 // Note that this method should only be called from the vm_thread while at a
  1975 // safepoint.
  1976 //
  1977 // Note that the all_soft_refs_clear flag in the collector policy
  1978 // may be true because this method can be called without intervening
  1979 // activity.  For example when the heap space is tight and full measure
  1980 // are being taken to free space.
  1981 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1982   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1983   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1984          "should be in vm thread");
  1986   ParallelScavengeHeap* heap = gc_heap();
  1987   GCCause::Cause gc_cause = heap->gc_cause();
  1988   assert(!heap->is_gc_active(), "not reentrant");
  1990   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1991   IsGCActiveMark mark;
  1993   if (ScavengeBeforeFullGC) {
  1994     PSScavenge::invoke_no_policy();
  1997   const bool clear_all_soft_refs =
  1998     heap->collector_policy()->should_clear_all_soft_refs();
  2000   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
  2001                                       maximum_heap_compaction);
  2004 // This method contains no policy. You should probably
  2005 // be calling invoke() instead.
  2006 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  2007   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  2008   assert(ref_processor() != NULL, "Sanity");
  2010   if (GC_locker::check_active_before_gc()) {
  2011     return false;
  2014   ParallelScavengeHeap* heap = gc_heap();
  2016   _gc_timer.register_gc_start();
  2017   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
  2019   TimeStamp marking_start;
  2020   TimeStamp compaction_start;
  2021   TimeStamp collection_exit;
  2023   GCCause::Cause gc_cause = heap->gc_cause();
  2024   PSYoungGen* young_gen = heap->young_gen();
  2025   PSOldGen* old_gen = heap->old_gen();
  2026   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  2028   // The scope of casr should end after code that can change
  2029   // CollectorPolicy::_should_clear_all_soft_refs.
  2030   ClearedAllSoftRefs casr(maximum_heap_compaction,
  2031                           heap->collector_policy());
  2033   if (ZapUnusedHeapArea) {
  2034     // Save information needed to minimize mangling
  2035     heap->record_gen_tops_before_GC();
  2038   heap->pre_full_gc_dump(&_gc_timer);
  2040   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  2042   // Make sure data structures are sane, make the heap parsable, and do other
  2043   // miscellaneous bookkeeping.
  2044   PreGCValues pre_gc_values;
  2045   pre_compact(&pre_gc_values);
  2047   // Get the compaction manager reserved for the VM thread.
  2048   ParCompactionManager* const vmthread_cm =
  2049     ParCompactionManager::manager_array(gc_task_manager()->workers());
  2051   // Place after pre_compact() where the number of invocations is incremented.
  2052   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  2055     ResourceMark rm;
  2056     HandleMark hm;
  2058     // Set the number of GC threads to be used in this collection
  2059     gc_task_manager()->set_active_gang();
  2060     gc_task_manager()->task_idle_workers();
  2061     heap->set_par_threads(gc_task_manager()->active_workers());
  2063     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2064     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2065     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
  2066     TraceCollectorStats tcs(counters());
  2067     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
  2069     if (TraceGen1Time) accumulated_time()->start();
  2071     // Let the size policy know we're starting
  2072     size_policy->major_collection_begin();
  2074     CodeCache::gc_prologue();
  2075     Threads::gc_prologue();
  2077     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2079     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  2080     ref_processor()->setup_policy(maximum_heap_compaction);
  2082     bool marked_for_unloading = false;
  2084     marking_start.update();
  2085     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
  2087     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
  2088       && gc_cause == GCCause::_java_lang_system_gc;
  2089     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2091     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2092     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2094     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2095     // needed by the compaction for filling holes in the dense prefix.
  2096     adjust_roots();
  2098     compaction_start.update();
  2099     compact();
  2101     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2102     // done before resizing.
  2103     post_compact();
  2105     // Let the size policy know we're done
  2106     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2108     /* 2014/2/12/ Liao: In UseOldNUMA, the size of old-gen should not be changed as the young-gen,
  2109      * when minorGC happens, the eden size will be emptied, so we can change the size of the eden
  2110      * size and then bind to each NUMA group, but in fullGC, the old-gen should not be emptied, so
  2111      * we let the old-gen should not be changed here. */
  2112     if (UseAdaptiveSizePolicy && !UseOldNUMA) {
  2113       if (PrintAdaptiveSizePolicy) {
  2114         gclog_or_tty->print("AdaptiveSizeStart: ");
  2115         gclog_or_tty->stamp();
  2116         gclog_or_tty->print_cr(" collection: %d ",
  2117                        heap->total_collections());
  2118         if (Verbose) {
  2119           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
  2120             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
  2124       // Don't check if the size_policy is ready here.  Let
  2125       // the size_policy check that internally.
  2126       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2127           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2128             UseAdaptiveSizePolicyWithSystemGC)) {
  2129         // Calculate optimal free space amounts
  2130         assert(young_gen->max_size() >
  2131           young_gen->from_space()->capacity_in_bytes() +
  2132           young_gen->to_space()->capacity_in_bytes(),
  2133           "Sizes of space in young gen are out-of-bounds");
  2135         size_t young_live = young_gen->used_in_bytes();
  2136         size_t eden_live = young_gen->eden_space()->used_in_bytes();
  2137         size_t old_live = old_gen->used_in_bytes();
  2138         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
  2139         size_t max_old_gen_size = old_gen->max_gen_size();
  2140         size_t max_eden_size = young_gen->max_size() -
  2141           young_gen->from_space()->capacity_in_bytes() -
  2142           young_gen->to_space()->capacity_in_bytes();
  2144         // Used for diagnostics
  2145         size_policy->clear_generation_free_space_flags();
  2147         size_policy->compute_generations_free_space(young_live,
  2148                                                     eden_live,
  2149                                                     old_live,
  2150                                                     cur_eden,
  2151                                                     max_old_gen_size,
  2152                                                     max_eden_size,
  2153                                                     true /* full gc*/);
  2155         size_policy->check_gc_overhead_limit(young_live,
  2156                                              eden_live,
  2157                                              max_old_gen_size,
  2158                                              max_eden_size,
  2159                                              true /* full gc*/,
  2160                                              gc_cause,
  2161                                              heap->collector_policy());
  2163         size_policy->decay_supplemental_growth(true /* full gc*/);
  2165         heap->resize_old_gen(
  2166           size_policy->calculated_old_free_size_in_bytes());
  2168         // Don't resize the young generation at an major collection.  A
  2169         // desired young generation size may have been calculated but
  2170         // resizing the young generation complicates the code because the
  2171         // resizing of the old generation may have moved the boundary
  2172         // between the young generation and the old generation.  Let the
  2173         // young generation resizing happen at the minor collections.
  2175       if (PrintAdaptiveSizePolicy) {
  2176         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2177                        heap->total_collections());
  2181     if (UsePerfData) {
  2182       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2183       counters->update_counters();
  2184       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2185       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2188     heap->resize_all_tlabs();
  2190     // Resize the metaspace capactiy after a collection
  2191     MetaspaceGC::compute_new_size();
  2193     if (TraceGen1Time) accumulated_time()->stop();
  2195     if (PrintGC) {
  2196       if (PrintGCDetails) {
  2197         // No GC timestamp here.  This is after GC so it would be confusing.
  2198         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2199         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2200         heap->print_heap_change(pre_gc_values.heap_used());
  2201         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
  2202       } else {
  2203         heap->print_heap_change(pre_gc_values.heap_used());
  2207     // Track memory usage and detect low memory
  2208     MemoryService::track_memory_usage();
  2209     heap->update_counters();
  2210     gc_task_manager()->release_idle_workers();
  2213 #ifdef ASSERT
  2214   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
  2215     ParCompactionManager* const cm =
  2216       ParCompactionManager::manager_array(int(i));
  2217     assert(cm->marking_stack()->is_empty(),       "should be empty");
  2218     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
  2220 #endif // ASSERT
  2222   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2223     HandleMark hm;  // Discard invalid handles created during verification
  2224     Universe::verify(" VerifyAfterGC:");
  2227   // Re-verify object start arrays
  2228   if (VerifyObjectStartArray &&
  2229       VerifyAfterGC) {
  2230     old_gen->verify_object_start_array();
  2233   if (ZapUnusedHeapArea) {
  2234     old_gen->object_space()->check_mangled_unused_area_complete();
  2237   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2239   collection_exit.update();
  2241   heap->print_heap_after_gc();
  2242   heap->trace_heap_after_gc(&_gc_tracer);
  2244   if (PrintGCTaskTimeStamps) {
  2245     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2246                            INT64_FORMAT,
  2247                            marking_start.ticks(), compaction_start.ticks(),
  2248                            collection_exit.ticks());
  2249     gc_task_manager()->print_task_time_stamps();
  2252   heap->post_full_gc_dump(&_gc_timer);
  2254 #ifdef TRACESPINNING
  2255   ParallelTaskTerminator::print_termination_counts();
  2256 #endif
  2258   _gc_timer.register_gc_end();
  2260   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
  2261   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
  2263   return true;
  2266 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2267                                              PSYoungGen* young_gen,
  2268                                              PSOldGen* old_gen) {
  2269   MutableSpace* const eden_space = young_gen->eden_space();
  2270   assert(!eden_space->is_empty(), "eden must be non-empty");
  2271   assert(young_gen->virtual_space()->alignment() ==
  2272          old_gen->virtual_space()->alignment(), "alignments do not match");
  2274   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2275     return false;
  2278   // Both generations must be completely committed.
  2279   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2280     return false;
  2282   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2283     return false;
  2286   // Figure out how much to take from eden.  Include the average amount promoted
  2287   // in the total; otherwise the next young gen GC will simply bail out to a
  2288   // full GC.
  2289   const size_t alignment = old_gen->virtual_space()->alignment();
  2290   const size_t eden_used = eden_space->used_in_bytes();
  2291   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2292   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2293   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2295   if (absorb_size >= eden_capacity) {
  2296     return false; // Must leave some space in eden.
  2299   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2300   if (new_young_size < young_gen->min_gen_size()) {
  2301     return false; // Respect young gen minimum size.
  2304   if (TraceAdaptiveGCBoundary && Verbose) {
  2305     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2306                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2307                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2308                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2309                         absorb_size / K,
  2310                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2311                         young_gen->from_space()->used_in_bytes() / K,
  2312                         young_gen->to_space()->used_in_bytes() / K,
  2313                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2316   // Fill the unused part of the old gen.
  2317   MutableSpace* const old_space = old_gen->object_space();
  2318   HeapWord* const unused_start = old_space->top();
  2319   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2321   if (unused_words > 0) {
  2322     if (unused_words < CollectedHeap::min_fill_size()) {
  2323       return false;  // If the old gen cannot be filled, must give up.
  2325     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2328   // Take the live data from eden and set both top and end in the old gen to
  2329   // eden top.  (Need to set end because reset_after_change() mangles the region
  2330   // from end to virtual_space->high() in debug builds).
  2331   HeapWord* const new_top = eden_space->top();
  2332   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2333                                         absorb_size);
  2334   young_gen->reset_after_change();
  2335   old_space->set_top(new_top);
  2336   old_space->set_end(new_top);
  2337   old_gen->reset_after_change();
  2339   // Update the object start array for the filler object and the data from eden.
  2340   ObjectStartArray* const start_array = old_gen->start_array();
  2341   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2342     start_array->allocate_block(p);
  2345   // Could update the promoted average here, but it is not typically updated at
  2346   // full GCs and the value to use is unclear.  Something like
  2347   //
  2348   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2350   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2351   return true;
  2354 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2355   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2356     "shouldn't return NULL");
  2357   return ParallelScavengeHeap::gc_task_manager();
  2360 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2361                                       bool maximum_heap_compaction,
  2362                                       ParallelOldTracer *gc_tracer) {
  2363   // Recursively traverse all live objects and mark them
  2364   GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer);
  2366   ParallelScavengeHeap* heap = gc_heap();
  2367   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2368   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2369   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2370   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2372   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2373   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2375   // Need new claim bits before marking starts.
  2376   ClassLoaderDataGraph::clear_claimed_marks();
  2379     GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer);
  2381     ParallelScavengeHeap::ParStrongRootsScope psrs;
  2383     GCTaskQueue* q = GCTaskQueue::create();
  2385     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2386     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2387     // We scan the thread roots in parallel
  2388     Threads::create_thread_roots_marking_tasks(q);
  2389     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2390     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2391     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2392     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2393     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
  2394     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2395     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
  2397     if (active_gc_threads > 1) {
  2398       for (uint j = 0; j < active_gc_threads; j++) {
  2399         q->enqueue(new StealMarkingTask(&terminator));
  2403     gc_task_manager()->execute_and_wait(q);
  2406   // Process reference objects found during marking
  2408     GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer);
  2410     ReferenceProcessorStats stats;
  2411     if (ref_processor()->processing_is_mt()) {
  2412       RefProcTaskExecutor task_executor;
  2413       stats = ref_processor()->process_discovered_references(
  2414         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2415         &task_executor, &_gc_timer);
  2416     } else {
  2417       stats = ref_processor()->process_discovered_references(
  2418         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
  2419         &_gc_timer);
  2422     gc_tracer->report_gc_reference_stats(stats);
  2425   GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer);
  2427   // This is the point where the entire marking should have completed.
  2428   assert(cm->marking_stacks_empty(), "Marking should have completed");
  2430   // Follow system dictionary roots and unload classes.
  2431   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2433   // Unload nmethods.
  2434   CodeCache::do_unloading(is_alive_closure(), purged_class);
  2436   // Prune dead klasses from subklass/sibling/implementor lists.
  2437   Klass::clean_weak_klass_links(is_alive_closure());
  2439   // Delete entries for dead interned strings.
  2440   StringTable::unlink(is_alive_closure());
  2442   // Clean up unreferenced symbols in symbol table.
  2443   SymbolTable::unlink();
  2444   _gc_tracer.report_object_count_after_gc(is_alive_closure());
  2447 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
  2448                                             ClassLoaderData* cld) {
  2449   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2450   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
  2452   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
  2455 // This should be moved to the shared markSweep code!
  2456 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2457 public:
  2458   bool do_object_b(oop p) { return true; }
  2459 };
  2460 static PSAlwaysTrueClosure always_true;
  2462 void PSParallelCompact::adjust_roots() {
  2463   // Adjust the pointers to reflect the new locations
  2464   GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer);
  2466   // Need new claim bits when tracing through and adjusting pointers.
  2467   ClassLoaderDataGraph::clear_claimed_marks();
  2469   // General strong roots.
  2470   Universe::oops_do(adjust_pointer_closure());
  2471   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
  2472   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
  2473   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
  2474   ObjectSynchronizer::oops_do(adjust_pointer_closure());
  2475   FlatProfiler::oops_do(adjust_pointer_closure());
  2476   Management::oops_do(adjust_pointer_closure());
  2477   JvmtiExport::oops_do(adjust_pointer_closure());
  2478   // SO_AllClasses
  2479   SystemDictionary::oops_do(adjust_pointer_closure());
  2480   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
  2482   // Now adjust pointers in remaining weak roots.  (All of which should
  2483   // have been cleared if they pointed to non-surviving objects.)
  2484   // Global (weak) JNI handles
  2485   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
  2487   CodeCache::oops_do(adjust_pointer_closure());
  2488   StringTable::oops_do(adjust_pointer_closure());
  2489   ref_processor()->weak_oops_do(adjust_pointer_closure());
  2490   // Roots were visited so references into the young gen in roots
  2491   // may have been scanned.  Process them also.
  2492   // Should the reference processor have a span that excludes
  2493   // young gen objects?
  2494   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
  2497 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2498                                                       uint parallel_gc_threads)
  2500   GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer);
  2502   // Find the threads that are active
  2503   unsigned int which = 0;
  2505   const uint task_count = MAX2(parallel_gc_threads, 1U);
  2506   for (uint j = 0; j < task_count; j++) {
  2507     q->enqueue(new DrainStacksCompactionTask(j));
  2508     ParCompactionManager::verify_region_list_empty(j);
  2509     // Set the region stacks variables to "no" region stack values
  2510     // so that they will be recognized and needing a region stack
  2511     // in the stealing tasks if they do not get one by executing
  2512     // a draining stack.
  2513     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
  2514     cm->set_region_stack(NULL);
  2515     cm->set_region_stack_index((uint)max_uintx);
  2517   ParCompactionManager::reset_recycled_stack_index();
  2519   // Find all regions that are available (can be filled immediately) and
  2520   // distribute them to the thread stacks.  The iteration is done in reverse
  2521   // order (high to low) so the regions will be removed in ascending order.
  2523   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2525   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2526   // A region index which corresponds to the tasks created above.
  2527   // "which" must be 0 <= which < task_count
  2529   which = 0;
  2530   // id + 1 is used to test termination so unsigned  can
  2531   // be used with an old_space_id == 0.
  2532   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
  2533     SpaceInfo* const space_info = _space_info + id;
  2534     MutableSpace* const space = space_info->space();
  2535     HeapWord* const new_top = space_info->new_top();
  2537     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2538     const size_t end_region =
  2539       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2541     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
  2542       if (sd.region(cur)->claim_unsafe()) {
  2543         ParCompactionManager::region_list_push(which, cur);
  2545         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2546           const size_t count_mod_8 = fillable_regions & 7;
  2547           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2548           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2549           if (count_mod_8 == 7) gclog_or_tty->cr();
  2552         NOT_PRODUCT(++fillable_regions;)
  2554         // Assign regions to tasks in round-robin fashion.
  2555         if (++which == task_count) {
  2556           assert(which <= parallel_gc_threads,
  2557             "Inconsistent number of workers");
  2558           which = 0;
  2564   if (TraceParallelOldGCCompactionPhase) {
  2565     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2566     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2570 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2572 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2573                                                     uint parallel_gc_threads) {
  2574   GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer);
  2576   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2578   // Iterate over all the spaces adding tasks for updating
  2579   // regions in the dense prefix.  Assume that 1 gc thread
  2580   // will work on opening the gaps and the remaining gc threads
  2581   // will work on the dense prefix.
  2582   unsigned int space_id;
  2583   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2584     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2585     const MutableSpace* const space = _space_info[space_id].space();
  2587     if (dense_prefix_end == space->bottom()) {
  2588       // There is no dense prefix for this space.
  2589       continue;
  2592     // The dense prefix is before this region.
  2593     size_t region_index_end_dense_prefix =
  2594         sd.addr_to_region_idx(dense_prefix_end);
  2595     RegionData* const dense_prefix_cp =
  2596       sd.region(region_index_end_dense_prefix);
  2597     assert(dense_prefix_end == space->end() ||
  2598            dense_prefix_cp->available() ||
  2599            dense_prefix_cp->claimed(),
  2600            "The region after the dense prefix should always be ready to fill");
  2602     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2604     // Is there dense prefix work?
  2605     size_t total_dense_prefix_regions =
  2606       region_index_end_dense_prefix - region_index_start;
  2607     // How many regions of the dense prefix should be given to
  2608     // each thread?
  2609     if (total_dense_prefix_regions > 0) {
  2610       uint tasks_for_dense_prefix = 1;
  2611       if (total_dense_prefix_regions <=
  2612           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2613         // Don't over partition.  This assumes that
  2614         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2615         // so there are not many regions to process.
  2616         tasks_for_dense_prefix = parallel_gc_threads;
  2617       } else {
  2618         // Over partition
  2619         tasks_for_dense_prefix = parallel_gc_threads *
  2620           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2622       size_t regions_per_thread = total_dense_prefix_regions /
  2623         tasks_for_dense_prefix;
  2624       // Give each thread at least 1 region.
  2625       if (regions_per_thread == 0) {
  2626         regions_per_thread = 1;
  2629       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2630         if (region_index_start >= region_index_end_dense_prefix) {
  2631           break;
  2633         // region_index_end is not processed
  2634         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2635                                        region_index_end_dense_prefix);
  2636         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2637                                              region_index_start,
  2638                                              region_index_end));
  2639         region_index_start = region_index_end;
  2642     // This gets any part of the dense prefix that did not
  2643     // fit evenly.
  2644     if (region_index_start < region_index_end_dense_prefix) {
  2645       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2646                                            region_index_start,
  2647                                            region_index_end_dense_prefix));
  2652 void PSParallelCompact::enqueue_region_stealing_tasks(
  2653                                      GCTaskQueue* q,
  2654                                      ParallelTaskTerminator* terminator_ptr,
  2655                                      uint parallel_gc_threads) {
  2656   GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer);
  2658   // Once a thread has drained it's stack, it should try to steal regions from
  2659   // other threads.
  2660   if (parallel_gc_threads > 1) {
  2661     for (uint j = 0; j < parallel_gc_threads; j++) {
  2662       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2667 #ifdef ASSERT
  2668 // Write a histogram of the number of times the block table was filled for a
  2669 // region.
  2670 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
  2672   if (!TraceParallelOldGCCompactionPhase) return;
  2674   typedef ParallelCompactData::RegionData rd_t;
  2675   ParallelCompactData& sd = summary_data();
  2677   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2678     MutableSpace* const spc = _space_info[id].space();
  2679     if (spc->bottom() != spc->top()) {
  2680       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
  2681       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
  2682       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
  2684       size_t histo[5] = { 0, 0, 0, 0, 0 };
  2685       const size_t histo_len = sizeof(histo) / sizeof(size_t);
  2686       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
  2688       for (const rd_t* cur = beg; cur < end; ++cur) {
  2689         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
  2691       out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
  2692       for (size_t i = 0; i < histo_len; ++i) {
  2693         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
  2694                    histo[i], 100.0 * histo[i] / region_cnt);
  2696       out->cr();
  2700 #endif // #ifdef ASSERT
  2702 void PSParallelCompact::compact() {
  2703   // trace("5");
  2704   GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer);
  2706   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2707   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2708   PSOldGen* old_gen = heap->old_gen();
  2709   old_gen->start_array()->reset();
  2710   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2711   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2712   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2713   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2715   GCTaskQueue* q = GCTaskQueue::create();
  2716   enqueue_region_draining_tasks(q, active_gc_threads);
  2717   enqueue_dense_prefix_tasks(q, active_gc_threads);
  2718   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
  2721     GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer);
  2723     gc_task_manager()->execute_and_wait(q);
  2725 #ifdef  ASSERT
  2726     // Verify that all regions have been processed before the deferred updates.
  2727     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2728       verify_complete(SpaceId(id));
  2730 #endif
  2734     // Update the deferred objects, if any.  Any compaction manager can be used.
  2735     GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer);
  2736     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2737     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2738       update_deferred_objects(cm, SpaceId(id));
  2742   DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
  2745 #ifdef  ASSERT
  2746 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2747   // All Regions between space bottom() to new_top() should be marked as filled
  2748   // and all Regions between new_top() and top() should be available (i.e.,
  2749   // should have been emptied).
  2750   ParallelCompactData& sd = summary_data();
  2751   SpaceInfo si = _space_info[space_id];
  2752   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2753   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2754   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2755   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2756   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2758   bool issued_a_warning = false;
  2760   size_t cur_region;
  2761   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2762     const RegionData* const c = sd.region(cur_region);
  2763     if (!c->completed()) {
  2764       warning("region " SIZE_FORMAT " not filled:  "
  2765               "destination_count=" SIZE_FORMAT,
  2766               cur_region, c->destination_count());
  2767       issued_a_warning = true;
  2771   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2772     const RegionData* const c = sd.region(cur_region);
  2773     if (!c->available()) {
  2774       warning("region " SIZE_FORMAT " not empty:   "
  2775               "destination_count=" SIZE_FORMAT,
  2776               cur_region, c->destination_count());
  2777       issued_a_warning = true;
  2781   if (issued_a_warning) {
  2782     print_region_ranges();
  2785 #endif  // #ifdef ASSERT
  2787 // Update interior oops in the ranges of regions [beg_region, end_region).
  2788 void
  2789 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2790                                                        SpaceId space_id,
  2791                                                        size_t beg_region,
  2792                                                        size_t end_region) {
  2793   ParallelCompactData& sd = summary_data();
  2794   ParMarkBitMap* const mbm = mark_bitmap();
  2796   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2797   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2798   assert(beg_region <= end_region, "bad region range");
  2799   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2801 #ifdef  ASSERT
  2802   // Claim the regions to avoid triggering an assert when they are marked as
  2803   // filled.
  2804   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2805     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2807 #endif  // #ifdef ASSERT
  2809   if (beg_addr != space(space_id)->bottom()) {
  2810     // Find the first live object or block of dead space that *starts* in this
  2811     // range of regions.  If a partial object crosses onto the region, skip it;
  2812     // it will be marked for 'deferred update' when the object head is
  2813     // processed.  If dead space crosses onto the region, it is also skipped; it
  2814     // will be filled when the prior region is processed.  If neither of those
  2815     // apply, the first word in the region is the start of a live object or dead
  2816     // space.
  2817     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2818     const RegionData* const cp = sd.region(beg_region);
  2819     if (cp->partial_obj_size() != 0) {
  2820       beg_addr = sd.partial_obj_end(beg_region);
  2821     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2822       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2826   if (beg_addr < end_addr) {
  2827     // A live object or block of dead space starts in this range of Regions.
  2828      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2830     // Create closures and iterate.
  2831     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2832     FillClosure fill_closure(cm, space_id);
  2833     ParMarkBitMap::IterationStatus status;
  2834     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2835                           dense_prefix_end);
  2836     if (status == ParMarkBitMap::incomplete) {
  2837       update_closure.do_addr(update_closure.source());
  2841   // Mark the regions as filled.
  2842   RegionData* const beg_cp = sd.region(beg_region);
  2843   RegionData* const end_cp = sd.region(end_region);
  2844   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2845     cp->set_completed();
  2849 // Return the SpaceId for the space containing addr.  If addr is not in the
  2850 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2851 // in the heap and asserts such.
  2852 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2853   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2855   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2856     if (_space_info[id].space()->contains(addr)) {
  2857       return SpaceId(id);
  2861   assert(false, "no space contains the addr");
  2862   return last_space_id;
  2865 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2866                                                 SpaceId id) {
  2867   assert(id < last_space_id, "bad space id");
  2869   ParallelCompactData& sd = summary_data();
  2870   const SpaceInfo* const space_info = _space_info + id;
  2871   ObjectStartArray* const start_array = space_info->start_array();
  2873   const MutableSpace* const space = space_info->space();
  2874   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2875   HeapWord* const beg_addr = space_info->dense_prefix();
  2876   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2878   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2879   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2880   const RegionData* cur_region;
  2881   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2882     HeapWord* const addr = cur_region->deferred_obj_addr();
  2883     if (addr != NULL) {
  2884       if (start_array != NULL) {
  2885         start_array->allocate_block(addr);
  2887       oop(addr)->update_contents(cm);
  2888       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2893 // Skip over count live words starting from beg, and return the address of the
  2894 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2895 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2896 // an object, or account for those live words in some other way.  Callers must
  2897 // also ensure that there are enough live words in the range [beg, end) to skip.
  2898 HeapWord*
  2899 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2901   assert(count > 0, "sanity");
  2903   ParMarkBitMap* m = mark_bitmap();
  2904   idx_t bits_to_skip = m->words_to_bits(count);
  2905   idx_t cur_beg = m->addr_to_bit(beg);
  2906   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2908   do {
  2909     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2910     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2911     const size_t obj_bits = cur_end - cur_beg + 1;
  2912     if (obj_bits > bits_to_skip) {
  2913       return m->bit_to_addr(cur_beg + bits_to_skip);
  2915     bits_to_skip -= obj_bits;
  2916     cur_beg = cur_end + 1;
  2917   } while (bits_to_skip > 0);
  2919   // Skipping the desired number of words landed just past the end of an object.
  2920   // Find the start of the next object.
  2921   cur_beg = m->find_obj_beg(cur_beg, search_end);
  2922   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  2923   return m->bit_to_addr(cur_beg);
  2926 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  2927                                             SpaceId src_space_id,
  2928                                             size_t src_region_idx)
  2930   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  2932   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  2933   if (split_info.dest_region_addr() == dest_addr) {
  2934     // The partial object ending at the split point contains the first word to
  2935     // be copied to dest_addr.
  2936     return split_info.first_src_addr();
  2939   const ParallelCompactData& sd = summary_data();
  2940   ParMarkBitMap* const bitmap = mark_bitmap();
  2941   const size_t RegionSize = ParallelCompactData::RegionSize;
  2943   assert(sd.is_region_aligned(dest_addr), "not aligned");
  2944   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  2945   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  2946   HeapWord* const src_region_destination = src_region_ptr->destination();
  2948   assert(dest_addr >= src_region_destination, "wrong src region");
  2949   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  2951   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  2952   HeapWord* const src_region_end = src_region_beg + RegionSize;
  2954   HeapWord* addr = src_region_beg;
  2955   if (dest_addr == src_region_destination) {
  2956     // Return the first live word in the source region.
  2957     if (partial_obj_size == 0) {
  2958       addr = bitmap->find_obj_beg(addr, src_region_end);
  2959       assert(addr < src_region_end, "no objects start in src region");
  2961     return addr;
  2964   // Must skip some live data.
  2965   size_t words_to_skip = dest_addr - src_region_destination;
  2966   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  2968   if (partial_obj_size >= words_to_skip) {
  2969     // All the live words to skip are part of the partial object.
  2970     addr += words_to_skip;
  2971     if (partial_obj_size == words_to_skip) {
  2972       // Find the first live word past the partial object.
  2973       addr = bitmap->find_obj_beg(addr, src_region_end);
  2974       assert(addr < src_region_end, "wrong src region");
  2976     return addr;
  2979   // Skip over the partial object (if any).
  2980   if (partial_obj_size != 0) {
  2981     words_to_skip -= partial_obj_size;
  2982     addr += partial_obj_size;
  2985   // Skip over live words due to objects that start in the region.
  2986   addr = skip_live_words(addr, src_region_end, words_to_skip);
  2987   assert(addr < src_region_end, "wrong src region");
  2988   return addr;
  2991 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  2992                                                      SpaceId src_space_id,
  2993                                                      size_t beg_region,
  2994                                                      HeapWord* end_addr)
  2996   ParallelCompactData& sd = summary_data();
  2998 #ifdef ASSERT
  2999   MutableSpace* const src_space = _space_info[src_space_id].space();
  3000   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  3001   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
  3002          "src_space_id does not match beg_addr");
  3003   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
  3004          "src_space_id does not match end_addr");
  3005 #endif // #ifdef ASSERT
  3007   RegionData* const beg = sd.region(beg_region);
  3008   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
  3010   // Regions up to new_top() are enqueued if they become available.
  3011   HeapWord* const new_top = _space_info[src_space_id].new_top();
  3012   RegionData* const enqueue_end =
  3013     sd.addr_to_region_ptr(sd.region_align_up(new_top));
  3015   for (RegionData* cur = beg; cur < end; ++cur) {
  3016     assert(cur->data_size() > 0, "region must have live data");
  3017     cur->decrement_destination_count();
  3018     if (cur < enqueue_end && cur->available() && cur->claim()) {
  3019       cm->push_region(sd.region(cur));
  3024 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  3025                                           SpaceId& src_space_id,
  3026                                           HeapWord*& src_space_top,
  3027                                           HeapWord* end_addr)
  3029   typedef ParallelCompactData::RegionData RegionData;
  3031   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3032   const size_t region_size = ParallelCompactData::RegionSize;
  3034   size_t src_region_idx = 0;
  3036   // Skip empty regions (if any) up to the top of the space.
  3037   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  3038   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  3039   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  3040   const RegionData* const top_region_ptr =
  3041     sd.addr_to_region_ptr(top_aligned_up);
  3042   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  3043     ++src_region_ptr;
  3046   if (src_region_ptr < top_region_ptr) {
  3047     // The next source region is in the current space.  Update src_region_idx
  3048     // and the source address to match src_region_ptr.
  3049     src_region_idx = sd.region(src_region_ptr);
  3050     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  3051     if (src_region_addr > closure.source()) {
  3052       closure.set_source(src_region_addr);
  3054     return src_region_idx;
  3057   // Switch to a new source space and find the first non-empty region.
  3058   unsigned int space_id = src_space_id + 1;
  3059   assert(space_id < last_space_id, "not enough spaces");
  3061   HeapWord* const destination = closure.destination();
  3063   do {
  3064     MutableSpace* space = _space_info[space_id].space();
  3065     HeapWord* const bottom = space->bottom();
  3066     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  3068     // Iterate over the spaces that do not compact into themselves.
  3069     if (bottom_cp->destination() != bottom) {
  3070       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  3071       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  3073       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3074         if (src_cp->live_obj_size() > 0) {
  3075           // Found it.
  3076           assert(src_cp->destination() == destination,
  3077                  "first live obj in the space must match the destination");
  3078           assert(src_cp->partial_obj_size() == 0,
  3079                  "a space cannot begin with a partial obj");
  3081           src_space_id = SpaceId(space_id);
  3082           src_space_top = space->top();
  3083           const size_t src_region_idx = sd.region(src_cp);
  3084           closure.set_source(sd.region_to_addr(src_region_idx));
  3085           return src_region_idx;
  3086         } else {
  3087           assert(src_cp->data_size() == 0, "sanity");
  3091   } while (++space_id < last_space_id);
  3093   assert(false, "no source region was found");
  3094   return 0;
  3097 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  3099   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3100   const size_t RegionSize = ParallelCompactData::RegionSize;
  3101   ParMarkBitMap* const bitmap = mark_bitmap();
  3102   ParallelCompactData& sd = summary_data();
  3103   RegionData* const region_ptr = sd.region(region_idx);
  3105   // Get the items needed to construct the closure.
  3106   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  3107   SpaceId dest_space_id = space_id(dest_addr);
  3108   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3109   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3110   assert(dest_addr < new_top, "sanity");
  3111   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  3113   // Get the source region and related info.
  3114   size_t src_region_idx = region_ptr->source_region();
  3115   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  3116   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3118   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3119   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  3121   // Adjust src_region_idx to prepare for decrementing destination counts (the
  3122   // destination count is not decremented when a region is copied to itself).
  3123   if (src_region_idx == region_idx) {
  3124     src_region_idx += 1;
  3127   if (bitmap->is_unmarked(closure.source())) {
  3128     // The first source word is in the middle of an object; copy the remainder
  3129     // of the object or as much as will fit.  The fact that pointer updates were
  3130     // deferred will be noted when the object header is processed.
  3131     HeapWord* const old_src_addr = closure.source();
  3132     closure.copy_partial_obj();
  3133     if (closure.is_full()) {
  3134       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3135                                    closure.source());
  3136       region_ptr->set_deferred_obj_addr(NULL);
  3137       region_ptr->set_completed();
  3138       return;
  3141     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3142     if (sd.region_align_down(old_src_addr) != end_addr) {
  3143       // The partial object was copied from more than one source region.
  3144       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3146       // Move to the next source region, possibly switching spaces as well.  All
  3147       // args except end_addr may be modified.
  3148       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3149                                        end_addr);
  3153   do {
  3154     HeapWord* const cur_addr = closure.source();
  3155     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3156                                     src_space_top);
  3157     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3159     if (status == ParMarkBitMap::incomplete) {
  3160       // The last obj that starts in the source region does not end in the
  3161       // region.
  3162       assert(closure.source() < end_addr, "sanity");
  3163       HeapWord* const obj_beg = closure.source();
  3164       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3165                                        src_space_top);
  3166       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3167       if (obj_end < range_end) {
  3168         // The end was found; the entire object will fit.
  3169         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3170         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3171       } else {
  3172         // The end was not found; the object will not fit.
  3173         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3174         status = ParMarkBitMap::would_overflow;
  3178     if (status == ParMarkBitMap::would_overflow) {
  3179       // The last object did not fit.  Note that interior oop updates were
  3180       // deferred, then copy enough of the object to fill the region.
  3181       region_ptr->set_deferred_obj_addr(closure.destination());
  3182       status = closure.copy_until_full(); // copies from closure.source()
  3184       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3185                                    closure.source());
  3186       region_ptr->set_completed();
  3187       return;
  3190     if (status == ParMarkBitMap::full) {
  3191       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3192                                    closure.source());
  3193       region_ptr->set_deferred_obj_addr(NULL);
  3194       region_ptr->set_completed();
  3195       return;
  3198     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3200     // Move to the next source region, possibly switching spaces as well.  All
  3201     // args except end_addr may be modified.
  3202     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3203                                      end_addr);
  3204   } while (true);
  3207 void PSParallelCompact::fill_blocks(size_t region_idx)
  3209   // Fill in the block table elements for the specified region.  Each block
  3210   // table element holds the number of live words in the region that are to the
  3211   // left of the first object that starts in the block.  Thus only blocks in
  3212   // which an object starts need to be filled.
  3213   //
  3214   // The algorithm scans the section of the bitmap that corresponds to the
  3215   // region, keeping a running total of the live words.  When an object start is
  3216   // found, if it's the first to start in the block that contains it, the
  3217   // current total is written to the block table element.
  3218   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
  3219   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
  3220   const size_t RegionSize = ParallelCompactData::RegionSize;
  3222   ParallelCompactData& sd = summary_data();
  3223   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
  3224   if (partial_obj_size >= RegionSize) {
  3225     return; // No objects start in this region.
  3228   // Ensure the first loop iteration decides that the block has changed.
  3229   size_t cur_block = sd.block_count();
  3231   const ParMarkBitMap* const bitmap = mark_bitmap();
  3233   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
  3234   assert((size_t)1 << Log2BitsPerBlock ==
  3235          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
  3237   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
  3238   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
  3239   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
  3240   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
  3241   while (beg_bit < range_end) {
  3242     const size_t new_block = beg_bit >> Log2BitsPerBlock;
  3243     if (new_block != cur_block) {
  3244       cur_block = new_block;
  3245       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
  3248     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
  3249     if (end_bit < range_end - 1) {
  3250       live_bits += end_bit - beg_bit + 1;
  3251       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
  3252     } else {
  3253       return;
  3258 void
  3259 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3260   const MutableSpace* sp = space(space_id);
  3261   if (sp->is_empty()) {
  3262     return;
  3265   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3266   ParMarkBitMap* const bitmap = mark_bitmap();
  3267   HeapWord* const dp_addr = dense_prefix(space_id);
  3268   HeapWord* beg_addr = sp->bottom();
  3269   HeapWord* end_addr = sp->top();
  3271   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3273   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3274   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3275   if (beg_region < dp_region) {
  3276     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3279   // The destination of the first live object that starts in the region is one
  3280   // past the end of the partial object entering the region (if any).
  3281   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3282   HeapWord* const new_top = _space_info[space_id].new_top();
  3283   assert(new_top >= dest_addr, "bad new_top value");
  3284   const size_t words = pointer_delta(new_top, dest_addr);
  3286   if (words > 0) {
  3287     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3288     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3290     ParMarkBitMap::IterationStatus status;
  3291     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3292     assert(status == ParMarkBitMap::full, "iteration not complete");
  3293     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3294            "live objects skipped because closure is full");
  3298 jlong PSParallelCompact::millis_since_last_gc() {
  3299   // We need a monotonically non-deccreasing time in ms but
  3300   // os::javaTimeMillis() does not guarantee monotonicity.
  3301   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3302   jlong ret_val = now - _time_of_last_gc;
  3303   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3304   if (ret_val < 0) {
  3305     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
  3306     return 0;
  3308   return ret_val;
  3311 void PSParallelCompact::reset_millis_since_last_gc() {
  3312   // We need a monotonically non-deccreasing time in ms but
  3313   // os::javaTimeMillis() does not guarantee monotonicity.
  3314   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3317 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3319   if (source() != destination()) {
  3320     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3321     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3323   update_state(words_remaining());
  3324   assert(is_full(), "sanity");
  3325   return ParMarkBitMap::full;
  3328 void MoveAndUpdateClosure::copy_partial_obj()
  3330   size_t words = words_remaining();
  3332   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3333   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3334   if (end_addr < range_end) {
  3335     words = bitmap()->obj_size(source(), end_addr);
  3338   // This test is necessary; if omitted, the pointer updates to a partial object
  3339   // that crosses the dense prefix boundary could be overwritten.
  3340   if (source() != destination()) {
  3341     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3342     Copy::aligned_conjoint_words(source(), destination(), words);
  3344   update_state(words);
  3347 ParMarkBitMapClosure::IterationStatus
  3348 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3349   assert(destination() != NULL, "sanity");
  3350   assert(bitmap()->obj_size(addr) == words, "bad size");
  3352   _source = addr;
  3353   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3354          destination(), "wrong destination");
  3356   if (words > words_remaining()) {
  3357     return ParMarkBitMap::would_overflow;
  3360   // The start_array must be updated even if the object is not moving.
  3361   if (_start_array != NULL) {
  3362     _start_array->allocate_block(destination());
  3365   if (destination() != source()) {
  3366     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3367     Copy::aligned_conjoint_words(source(), destination(), words);
  3370   oop moved_oop = (oop) destination();
  3371   moved_oop->update_contents(compaction_manager());
  3372   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3374   update_state(words);
  3375   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3376   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3379 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3380                                      ParCompactionManager* cm,
  3381                                      PSParallelCompact::SpaceId space_id) :
  3382   ParMarkBitMapClosure(mbm, cm),
  3383   _space_id(space_id),
  3384   _start_array(PSParallelCompact::start_array(space_id))
  3388 // Updates the references in the object to their new values.
  3389 ParMarkBitMapClosure::IterationStatus
  3390 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3391   do_addr(addr);
  3392   return ParMarkBitMap::incomplete;

mercurial