src/share/vm/utilities/globalDefinitions.hpp

Sat, 11 Dec 2010 13:20:56 -0500

author
zgu
date
Sat, 11 Dec 2010 13:20:56 -0500
changeset 2364
2d4762ec74af
parent 2314
f95d63e2154a
child 2472
0fa27f37d4d4
permissions
-rw-r--r--

7003748: Decode C stack frames when symbols are presented (PhoneHome project)
Summary: Implemented in-process C native stack frame decoding when symbols are available.
Reviewed-by: coleenp, never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifdef TARGET_COMPILER_gcc
    29 # include "utilities/globalDefinitions_gcc.hpp"
    30 #endif
    31 #ifdef TARGET_COMPILER_visCPP
    32 # include "utilities/globalDefinitions_visCPP.hpp"
    33 #endif
    34 #ifdef TARGET_COMPILER_sparcWorks
    35 # include "utilities/globalDefinitions_sparcWorks.hpp"
    36 #endif
    38 #include "utilities/macros.hpp"
    40 // This file holds all globally used constants & types, class (forward)
    41 // declarations and a few frequently used utility functions.
    43 //----------------------------------------------------------------------------------------------------
    44 // Constants
    46 const int LogBytesPerShort   = 1;
    47 const int LogBytesPerInt     = 2;
    48 #ifdef _LP64
    49 const int LogBytesPerWord    = 3;
    50 #else
    51 const int LogBytesPerWord    = 2;
    52 #endif
    53 const int LogBytesPerLong    = 3;
    55 const int BytesPerShort      = 1 << LogBytesPerShort;
    56 const int BytesPerInt        = 1 << LogBytesPerInt;
    57 const int BytesPerWord       = 1 << LogBytesPerWord;
    58 const int BytesPerLong       = 1 << LogBytesPerLong;
    60 const int LogBitsPerByte     = 3;
    61 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    62 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    63 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    64 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    66 const int BitsPerByte        = 1 << LogBitsPerByte;
    67 const int BitsPerShort       = 1 << LogBitsPerShort;
    68 const int BitsPerInt         = 1 << LogBitsPerInt;
    69 const int BitsPerWord        = 1 << LogBitsPerWord;
    70 const int BitsPerLong        = 1 << LogBitsPerLong;
    72 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    73 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    75 const int WordsPerLong       = 2;       // Number of stack entries for longs
    77 const int oopSize            = sizeof(char*); // Full-width oop
    78 extern int heapOopSize;                       // Oop within a java object
    79 const int wordSize           = sizeof(char*);
    80 const int longSize           = sizeof(jlong);
    81 const int jintSize           = sizeof(jint);
    82 const int size_tSize         = sizeof(size_t);
    84 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    86 extern int LogBytesPerHeapOop;                // Oop within a java object
    87 extern int LogBitsPerHeapOop;
    88 extern int BytesPerHeapOop;
    89 extern int BitsPerHeapOop;
    91 // Oop encoding heap max
    92 extern uint64_t OopEncodingHeapMax;
    94 const int BitsPerJavaInteger = 32;
    95 const int BitsPerJavaLong    = 64;
    96 const int BitsPerSize_t      = size_tSize * BitsPerByte;
    98 // Size of a char[] needed to represent a jint as a string in decimal.
    99 const int jintAsStringSize = 12;
   101 // In fact this should be
   102 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   103 // see os::set_memory_serialize_page()
   104 #ifdef _LP64
   105 const int SerializePageShiftCount = 4;
   106 #else
   107 const int SerializePageShiftCount = 3;
   108 #endif
   110 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   111 // pointer into the heap.  We require that object sizes be measured in
   112 // units of heap words, so that that
   113 //   HeapWord* hw;
   114 //   hw += oop(hw)->foo();
   115 // works, where foo is a method (like size or scavenge) that returns the
   116 // object size.
   117 class HeapWord {
   118   friend class VMStructs;
   119  private:
   120   char* i;
   121 #ifndef PRODUCT
   122  public:
   123   char* value() { return i; }
   124 #endif
   125 };
   127 // HeapWordSize must be 2^LogHeapWordSize.
   128 const int HeapWordSize        = sizeof(HeapWord);
   129 #ifdef _LP64
   130 const int LogHeapWordSize     = 3;
   131 #else
   132 const int LogHeapWordSize     = 2;
   133 #endif
   134 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   135 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   137 // The larger HeapWordSize for 64bit requires larger heaps
   138 // for the same application running in 64bit.  See bug 4967770.
   139 // The minimum alignment to a heap word size is done.  Other
   140 // parts of the memory system may required additional alignment
   141 // and are responsible for those alignments.
   142 #ifdef _LP64
   143 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   144 #else
   145 #define ScaleForWordSize(x) (x)
   146 #endif
   148 // The minimum number of native machine words necessary to contain "byte_size"
   149 // bytes.
   150 inline size_t heap_word_size(size_t byte_size) {
   151   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   152 }
   155 const size_t K                  = 1024;
   156 const size_t M                  = K*K;
   157 const size_t G                  = M*K;
   158 const size_t HWperKB            = K / sizeof(HeapWord);
   160 const size_t LOG_K              = 10;
   161 const size_t LOG_M              = 2 * LOG_K;
   162 const size_t LOG_G              = 2 * LOG_M;
   164 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   165 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   167 // Constants for converting from a base unit to milli-base units.  For
   168 // example from seconds to milliseconds and microseconds
   170 const int MILLIUNITS    = 1000;         // milli units per base unit
   171 const int MICROUNITS    = 1000000;      // micro units per base unit
   172 const int NANOUNITS     = 1000000000;   // nano units per base unit
   174 inline const char* proper_unit_for_byte_size(size_t s) {
   175   if (s >= 10*M) {
   176     return "M";
   177   } else if (s >= 10*K) {
   178     return "K";
   179   } else {
   180     return "B";
   181   }
   182 }
   184 inline size_t byte_size_in_proper_unit(size_t s) {
   185   if (s >= 10*M) {
   186     return s/M;
   187   } else if (s >= 10*K) {
   188     return s/K;
   189   } else {
   190     return s;
   191   }
   192 }
   195 //----------------------------------------------------------------------------------------------------
   196 // VM type definitions
   198 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   199 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   201 typedef intptr_t  intx;
   202 typedef uintptr_t uintx;
   204 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   205 const intx  max_intx  = (uintx)min_intx - 1;
   206 const uintx max_uintx = (uintx)-1;
   208 // Table of values:
   209 //      sizeof intx         4               8
   210 // min_intx             0x80000000      0x8000000000000000
   211 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   212 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   214 typedef unsigned int uint;   NEEDS_CLEANUP
   217 //----------------------------------------------------------------------------------------------------
   218 // Java type definitions
   220 // All kinds of 'plain' byte addresses
   221 typedef   signed char s_char;
   222 typedef unsigned char u_char;
   223 typedef u_char*       address;
   224 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   225                                     // except for some implementations of a C++
   226                                     // linkage pointer to function. Should never
   227                                     // need one of those to be placed in this
   228                                     // type anyway.
   230 //  Utility functions to "portably" (?) bit twiddle pointers
   231 //  Where portable means keep ANSI C++ compilers quiet
   233 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   234 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   236 //  Utility functions to "portably" make cast to/from function pointers.
   238 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   239 inline address_word  castable_address(address x)              { return address_word(x) ; }
   240 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   242 // Pointer subtraction.
   243 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   244 // the range we might need to find differences from one end of the heap
   245 // to the other.
   246 // A typical use might be:
   247 //     if (pointer_delta(end(), top()) >= size) {
   248 //       // enough room for an object of size
   249 //       ...
   250 // and then additions like
   251 //       ... top() + size ...
   252 // are safe because we know that top() is at least size below end().
   253 inline size_t pointer_delta(const void* left,
   254                             const void* right,
   255                             size_t element_size) {
   256   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   257 }
   258 // A version specialized for HeapWord*'s.
   259 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   260   return pointer_delta(left, right, sizeof(HeapWord));
   261 }
   263 //
   264 // ANSI C++ does not allow casting from one pointer type to a function pointer
   265 // directly without at best a warning. This macro accomplishes it silently
   266 // In every case that is present at this point the value be cast is a pointer
   267 // to a C linkage function. In somecase the type used for the cast reflects
   268 // that linkage and a picky compiler would not complain. In other cases because
   269 // there is no convenient place to place a typedef with extern C linkage (i.e
   270 // a platform dependent header file) it doesn't. At this point no compiler seems
   271 // picky enough to catch these instances (which are few). It is possible that
   272 // using templates could fix these for all cases. This use of templates is likely
   273 // so far from the middle of the road that it is likely to be problematic in
   274 // many C++ compilers.
   275 //
   276 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   277 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   279 // Unsigned byte types for os and stream.hpp
   281 // Unsigned one, two, four and eigth byte quantities used for describing
   282 // the .class file format. See JVM book chapter 4.
   284 typedef jubyte  u1;
   285 typedef jushort u2;
   286 typedef juint   u4;
   287 typedef julong  u8;
   289 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   290 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   291 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   292 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   294 //----------------------------------------------------------------------------------------------------
   295 // JVM spec restrictions
   297 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   300 //----------------------------------------------------------------------------------------------------
   301 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   302 //
   303 // Determines whether on-the-fly class replacement and frame popping are enabled.
   305 #define HOTSWAP
   307 //----------------------------------------------------------------------------------------------------
   308 // Object alignment, in units of HeapWords.
   309 //
   310 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   311 // reference fields can be naturally aligned.
   313 extern int MinObjAlignment;
   314 extern int MinObjAlignmentInBytes;
   315 extern int MinObjAlignmentInBytesMask;
   317 extern int LogMinObjAlignment;
   318 extern int LogMinObjAlignmentInBytes;
   320 // Machine dependent stuff
   322 #ifdef TARGET_ARCH_x86
   323 # include "globalDefinitions_x86.hpp"
   324 #endif
   325 #ifdef TARGET_ARCH_sparc
   326 # include "globalDefinitions_sparc.hpp"
   327 #endif
   328 #ifdef TARGET_ARCH_zero
   329 # include "globalDefinitions_zero.hpp"
   330 #endif
   333 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   334 // Note: this value must be a power of 2
   336 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   338 // Signed variants of alignment helpers.  There are two versions of each, a macro
   339 // for use in places like enum definitions that require compile-time constant
   340 // expressions and a function for all other places so as to get type checking.
   342 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   344 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   345   return align_size_up_(size, alignment);
   346 }
   348 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   350 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   351   return align_size_down_(size, alignment);
   352 }
   354 // Align objects by rounding up their size, in HeapWord units.
   356 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   358 inline intptr_t align_object_size(intptr_t size) {
   359   return align_size_up(size, MinObjAlignment);
   360 }
   362 inline bool is_object_aligned(intptr_t addr) {
   363   return addr == align_object_size(addr);
   364 }
   366 // Pad out certain offsets to jlong alignment, in HeapWord units.
   368 inline intptr_t align_object_offset(intptr_t offset) {
   369   return align_size_up(offset, HeapWordsPerLong);
   370 }
   372 // The expected size in bytes of a cache line, used to pad data structures.
   373 #define DEFAULT_CACHE_LINE_SIZE 64
   375 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
   376 // expected cache line size (a power of two).  The first addend avoids sharing
   377 // when the start address is not a multiple of alignment; the second maintains
   378 // alignment of starting addresses that happen to be a multiple.
   379 #define PADDING_SIZE(type, alignment)                           \
   380   ((alignment) + align_size_up_(sizeof(type), alignment))
   382 // Templates to create a subclass padded to avoid cache line sharing.  These are
   383 // effective only when applied to derived-most (leaf) classes.
   385 // When no args are passed to the base ctor.
   386 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   387 class Padded: public T {
   388 private:
   389   char _pad_buf_[PADDING_SIZE(T, alignment)];
   390 };
   392 // When either 0 or 1 args may be passed to the base ctor.
   393 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   394 class Padded01: public T {
   395 public:
   396   Padded01(): T() { }
   397   Padded01(Arg1T arg1): T(arg1) { }
   398 private:
   399   char _pad_buf_[PADDING_SIZE(T, alignment)];
   400 };
   402 //----------------------------------------------------------------------------------------------------
   403 // Utility macros for compilers
   404 // used to silence compiler warnings
   406 #define Unused_Variable(var) var
   409 //----------------------------------------------------------------------------------------------------
   410 // Miscellaneous
   412 // 6302670 Eliminate Hotspot __fabsf dependency
   413 // All fabs() callers should call this function instead, which will implicitly
   414 // convert the operand to double, avoiding a dependency on __fabsf which
   415 // doesn't exist in early versions of Solaris 8.
   416 inline double fabsd(double value) {
   417   return fabs(value);
   418 }
   420 inline jint low (jlong value)                    { return jint(value); }
   421 inline jint high(jlong value)                    { return jint(value >> 32); }
   423 // the fancy casts are a hopefully portable way
   424 // to do unsigned 32 to 64 bit type conversion
   425 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   426                                                    *value |= (jlong)(julong)(juint)low; }
   428 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   429                                                    *value |= (jlong)high       << 32; }
   431 inline jlong jlong_from(jint h, jint l) {
   432   jlong result = 0; // initialization to avoid warning
   433   set_high(&result, h);
   434   set_low(&result,  l);
   435   return result;
   436 }
   438 union jlong_accessor {
   439   jint  words[2];
   440   jlong long_value;
   441 };
   443 void basic_types_init(); // cannot define here; uses assert
   446 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   447 enum BasicType {
   448   T_BOOLEAN  =  4,
   449   T_CHAR     =  5,
   450   T_FLOAT    =  6,
   451   T_DOUBLE   =  7,
   452   T_BYTE     =  8,
   453   T_SHORT    =  9,
   454   T_INT      = 10,
   455   T_LONG     = 11,
   456   T_OBJECT   = 12,
   457   T_ARRAY    = 13,
   458   T_VOID     = 14,
   459   T_ADDRESS  = 15,
   460   T_NARROWOOP= 16,
   461   T_CONFLICT = 17, // for stack value type with conflicting contents
   462   T_ILLEGAL  = 99
   463 };
   465 inline bool is_java_primitive(BasicType t) {
   466   return T_BOOLEAN <= t && t <= T_LONG;
   467 }
   469 inline bool is_subword_type(BasicType t) {
   470   // these guys are processed exactly like T_INT in calling sequences:
   471   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   472 }
   474 inline bool is_signed_subword_type(BasicType t) {
   475   return (t == T_BYTE || t == T_SHORT);
   476 }
   478 // Convert a char from a classfile signature to a BasicType
   479 inline BasicType char2type(char c) {
   480   switch( c ) {
   481   case 'B': return T_BYTE;
   482   case 'C': return T_CHAR;
   483   case 'D': return T_DOUBLE;
   484   case 'F': return T_FLOAT;
   485   case 'I': return T_INT;
   486   case 'J': return T_LONG;
   487   case 'S': return T_SHORT;
   488   case 'Z': return T_BOOLEAN;
   489   case 'V': return T_VOID;
   490   case 'L': return T_OBJECT;
   491   case '[': return T_ARRAY;
   492   }
   493   return T_ILLEGAL;
   494 }
   496 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   497 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   498 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   499 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   500 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   501 extern BasicType name2type(const char* name);
   503 // Auxilary math routines
   504 // least common multiple
   505 extern size_t lcm(size_t a, size_t b);
   508 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   509 enum BasicTypeSize {
   510   T_BOOLEAN_size = 1,
   511   T_CHAR_size    = 1,
   512   T_FLOAT_size   = 1,
   513   T_DOUBLE_size  = 2,
   514   T_BYTE_size    = 1,
   515   T_SHORT_size   = 1,
   516   T_INT_size     = 1,
   517   T_LONG_size    = 2,
   518   T_OBJECT_size  = 1,
   519   T_ARRAY_size   = 1,
   520   T_NARROWOOP_size = 1,
   521   T_VOID_size    = 0
   522 };
   525 // maps a BasicType to its instance field storage type:
   526 // all sub-word integral types are widened to T_INT
   527 extern BasicType type2field[T_CONFLICT+1];
   528 extern BasicType type2wfield[T_CONFLICT+1];
   531 // size in bytes
   532 enum ArrayElementSize {
   533   T_BOOLEAN_aelem_bytes = 1,
   534   T_CHAR_aelem_bytes    = 2,
   535   T_FLOAT_aelem_bytes   = 4,
   536   T_DOUBLE_aelem_bytes  = 8,
   537   T_BYTE_aelem_bytes    = 1,
   538   T_SHORT_aelem_bytes   = 2,
   539   T_INT_aelem_bytes     = 4,
   540   T_LONG_aelem_bytes    = 8,
   541 #ifdef _LP64
   542   T_OBJECT_aelem_bytes  = 8,
   543   T_ARRAY_aelem_bytes   = 8,
   544 #else
   545   T_OBJECT_aelem_bytes  = 4,
   546   T_ARRAY_aelem_bytes   = 4,
   547 #endif
   548   T_NARROWOOP_aelem_bytes = 4,
   549   T_VOID_aelem_bytes    = 0
   550 };
   552 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   553 #ifdef ASSERT
   554 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   555 #else
   556 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   557 #endif
   560 // JavaValue serves as a container for arbitrary Java values.
   562 class JavaValue {
   564  public:
   565   typedef union JavaCallValue {
   566     jfloat   f;
   567     jdouble  d;
   568     jint     i;
   569     jlong    l;
   570     jobject  h;
   571   } JavaCallValue;
   573  private:
   574   BasicType _type;
   575   JavaCallValue _value;
   577  public:
   578   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   580   JavaValue(jfloat value) {
   581     _type    = T_FLOAT;
   582     _value.f = value;
   583   }
   585   JavaValue(jdouble value) {
   586     _type    = T_DOUBLE;
   587     _value.d = value;
   588   }
   590  jfloat get_jfloat() const { return _value.f; }
   591  jdouble get_jdouble() const { return _value.d; }
   592  jint get_jint() const { return _value.i; }
   593  jlong get_jlong() const { return _value.l; }
   594  jobject get_jobject() const { return _value.h; }
   595  JavaCallValue* get_value_addr() { return &_value; }
   596  BasicType get_type() const { return _type; }
   598  void set_jfloat(jfloat f) { _value.f = f;}
   599  void set_jdouble(jdouble d) { _value.d = d;}
   600  void set_jint(jint i) { _value.i = i;}
   601  void set_jlong(jlong l) { _value.l = l;}
   602  void set_jobject(jobject h) { _value.h = h;}
   603  void set_type(BasicType t) { _type = t; }
   605  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   606  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   607  jchar get_jchar() const { return (jchar) (_value.i);}
   608  jshort get_jshort() const { return (jshort) (_value.i);}
   610 };
   613 #define STACK_BIAS      0
   614 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   615 // in order to extend the reach of the stack pointer.
   616 #if defined(SPARC) && defined(_LP64)
   617 #undef STACK_BIAS
   618 #define STACK_BIAS      0x7ff
   619 #endif
   622 // TosState describes the top-of-stack state before and after the execution of
   623 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   624 // registers. The TosState corresponds to the 'machine represention' of this cached
   625 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   626 // as well as a 5th state in case the top-of-stack value is actually on the top
   627 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   628 // state when it comes to machine representation but is used separately for (oop)
   629 // type specific operations (e.g. verification code).
   631 enum TosState {         // describes the tos cache contents
   632   btos = 0,             // byte, bool tos cached
   633   ctos = 1,             // char tos cached
   634   stos = 2,             // short tos cached
   635   itos = 3,             // int tos cached
   636   ltos = 4,             // long tos cached
   637   ftos = 5,             // float tos cached
   638   dtos = 6,             // double tos cached
   639   atos = 7,             // object cached
   640   vtos = 8,             // tos not cached
   641   number_of_states,
   642   ilgl                  // illegal state: should not occur
   643 };
   646 inline TosState as_TosState(BasicType type) {
   647   switch (type) {
   648     case T_BYTE   : return btos;
   649     case T_BOOLEAN: return btos; // FIXME: Add ztos
   650     case T_CHAR   : return ctos;
   651     case T_SHORT  : return stos;
   652     case T_INT    : return itos;
   653     case T_LONG   : return ltos;
   654     case T_FLOAT  : return ftos;
   655     case T_DOUBLE : return dtos;
   656     case T_VOID   : return vtos;
   657     case T_ARRAY  : // fall through
   658     case T_OBJECT : return atos;
   659   }
   660   return ilgl;
   661 }
   663 inline BasicType as_BasicType(TosState state) {
   664   switch (state) {
   665     //case ztos: return T_BOOLEAN;//FIXME
   666     case btos : return T_BYTE;
   667     case ctos : return T_CHAR;
   668     case stos : return T_SHORT;
   669     case itos : return T_INT;
   670     case ltos : return T_LONG;
   671     case ftos : return T_FLOAT;
   672     case dtos : return T_DOUBLE;
   673     case atos : return T_OBJECT;
   674     case vtos : return T_VOID;
   675   }
   676   return T_ILLEGAL;
   677 }
   680 // Helper function to convert BasicType info into TosState
   681 // Note: Cannot define here as it uses global constant at the time being.
   682 TosState as_TosState(BasicType type);
   685 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   687 enum ReferenceType {
   688  REF_NONE,      // Regular class
   689  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   690  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   691  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   692  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   693  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   694 };
   697 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   698 // information is needed by the safepoint code.
   699 //
   700 // There are 4 essential states:
   701 //
   702 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   703 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   704 //  _thread_in_vm       : Executing in the vm
   705 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   706 //
   707 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   708 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   709 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   710 //
   711 // Given a state, the xxx_trans state can always be found by adding 1.
   712 //
   713 enum JavaThreadState {
   714   _thread_uninitialized     =  0, // should never happen (missing initialization)
   715   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   716   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   717   _thread_in_native         =  4, // running in native code
   718   _thread_in_native_trans   =  5, // corresponding transition state
   719   _thread_in_vm             =  6, // running in VM
   720   _thread_in_vm_trans       =  7, // corresponding transition state
   721   _thread_in_Java           =  8, // running in Java or in stub code
   722   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   723   _thread_blocked           = 10, // blocked in vm
   724   _thread_blocked_trans     = 11, // corresponding transition state
   725   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   726 };
   729 // Handy constants for deciding which compiler mode to use.
   730 enum MethodCompilation {
   731   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   732   InvalidOSREntryBci = -2
   733 };
   735 // Enumeration to distinguish tiers of compilation
   736 enum CompLevel {
   737   CompLevel_any               = -1,
   738   CompLevel_all               = -1,
   739   CompLevel_none              = 0,         // Interpreter
   740   CompLevel_simple            = 1,         // C1
   741   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   742   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   743   CompLevel_full_optimization = 4,         // C2
   745 #if defined(COMPILER2)
   746   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   747 #elif defined(COMPILER1)
   748   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   749 #else
   750   CompLevel_highest_tier      = CompLevel_none,
   751 #endif
   753 #if defined(TIERED)
   754   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   755 #elif defined(COMPILER1)
   756   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   757 #elif defined(COMPILER2)
   758   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   759 #else
   760   CompLevel_initial_compile   = CompLevel_none
   761 #endif
   762 };
   764 inline bool is_c1_compile(int comp_level) {
   765   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   766 }
   768 inline bool is_c2_compile(int comp_level) {
   769   return comp_level == CompLevel_full_optimization;
   770 }
   772 inline bool is_highest_tier_compile(int comp_level) {
   773   return comp_level == CompLevel_highest_tier;
   774 }
   776 //----------------------------------------------------------------------------------------------------
   777 // 'Forward' declarations of frequently used classes
   778 // (in order to reduce interface dependencies & reduce
   779 // number of unnecessary compilations after changes)
   781 class symbolTable;
   782 class ClassFileStream;
   784 class Event;
   786 class Thread;
   787 class  VMThread;
   788 class  JavaThread;
   789 class Threads;
   791 class VM_Operation;
   792 class VMOperationQueue;
   794 class CodeBlob;
   795 class  nmethod;
   796 class  OSRAdapter;
   797 class  I2CAdapter;
   798 class  C2IAdapter;
   799 class CompiledIC;
   800 class relocInfo;
   801 class ScopeDesc;
   802 class PcDesc;
   804 class Recompiler;
   805 class Recompilee;
   806 class RecompilationPolicy;
   807 class RFrame;
   808 class  CompiledRFrame;
   809 class  InterpretedRFrame;
   811 class frame;
   813 class vframe;
   814 class   javaVFrame;
   815 class     interpretedVFrame;
   816 class     compiledVFrame;
   817 class     deoptimizedVFrame;
   818 class   externalVFrame;
   819 class     entryVFrame;
   821 class RegisterMap;
   823 class Mutex;
   824 class Monitor;
   825 class BasicLock;
   826 class BasicObjectLock;
   828 class PeriodicTask;
   830 class JavaCallWrapper;
   832 class   oopDesc;
   834 class NativeCall;
   836 class zone;
   838 class StubQueue;
   840 class outputStream;
   842 class ResourceArea;
   844 class DebugInformationRecorder;
   845 class ScopeValue;
   846 class CompressedStream;
   847 class   DebugInfoReadStream;
   848 class   DebugInfoWriteStream;
   849 class LocationValue;
   850 class ConstantValue;
   851 class IllegalValue;
   853 class PrivilegedElement;
   854 class MonitorArray;
   856 class MonitorInfo;
   858 class OffsetClosure;
   859 class OopMapCache;
   860 class InterpreterOopMap;
   861 class OopMapCacheEntry;
   862 class OSThread;
   864 typedef int (*OSThreadStartFunc)(void*);
   866 class Space;
   868 class JavaValue;
   869 class methodHandle;
   870 class JavaCallArguments;
   872 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   874 extern void basic_fatal(const char* msg);
   877 //----------------------------------------------------------------------------------------------------
   878 // Special constants for debugging
   880 const jint     badInt           = -3;                       // generic "bad int" value
   881 const long     badAddressVal    = -2;                       // generic "bad address" value
   882 const long     badOopVal        = -1;                       // generic "bad oop" value
   883 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   884 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   885 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   886 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   887 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   888 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   889 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   890 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   891 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   894 // (These must be implemented as #defines because C++ compilers are
   895 // not obligated to inline non-integral constants!)
   896 #define       badAddress        ((address)::badAddressVal)
   897 #define       badOop            ((oop)::badOopVal)
   898 #define       badHeapWord       (::badHeapWordVal)
   899 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   901 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
   902 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
   904 //----------------------------------------------------------------------------------------------------
   905 // Utility functions for bitfield manipulations
   907 const intptr_t AllBits    = ~0; // all bits set in a word
   908 const intptr_t NoBits     =  0; // no bits set in a word
   909 const jlong    NoLongBits =  0; // no bits set in a long
   910 const intptr_t OneBit     =  1; // only right_most bit set in a word
   912 // get a word with the n.th or the right-most or left-most n bits set
   913 // (note: #define used only so that they can be used in enum constant definitions)
   914 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   915 #define right_n_bits(n)   (nth_bit(n) - 1)
   916 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   918 // bit-operations using a mask m
   919 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   920 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   921 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   922 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   923 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   925 // bit-operations using the n.th bit
   926 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   927 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   928 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   930 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   931 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   932   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   933 }
   936 //----------------------------------------------------------------------------------------------------
   937 // Utility functions for integers
   939 // Avoid use of global min/max macros which may cause unwanted double
   940 // evaluation of arguments.
   941 #ifdef max
   942 #undef max
   943 #endif
   945 #ifdef min
   946 #undef min
   947 #endif
   949 #define max(a,b) Do_not_use_max_use_MAX2_instead
   950 #define min(a,b) Do_not_use_min_use_MIN2_instead
   952 // It is necessary to use templates here. Having normal overloaded
   953 // functions does not work because it is necessary to provide both 32-
   954 // and 64-bit overloaded functions, which does not work, and having
   955 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   956 // will be even more error-prone than macros.
   957 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   958 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   959 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   960 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   961 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   962 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   964 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   966 // true if x is a power of 2, false otherwise
   967 inline bool is_power_of_2(intptr_t x) {
   968   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   969 }
   971 // long version of is_power_of_2
   972 inline bool is_power_of_2_long(jlong x) {
   973   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   974 }
   976 //* largest i such that 2^i <= x
   977 //  A negative value of 'x' will return '31'
   978 inline int log2_intptr(intptr_t x) {
   979   int i = -1;
   980   uintptr_t p =  1;
   981   while (p != 0 && p <= (uintptr_t)x) {
   982     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   983     i++; p *= 2;
   984   }
   985   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   986   // (if p = 0 then overflow occurred and i = 31)
   987   return i;
   988 }
   990 //* largest i such that 2^i <= x
   991 //  A negative value of 'x' will return '63'
   992 inline int log2_long(jlong x) {
   993   int i = -1;
   994   julong p =  1;
   995   while (p != 0 && p <= (julong)x) {
   996     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   997     i++; p *= 2;
   998   }
   999   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1000   // (if p = 0 then overflow occurred and i = 63)
  1001   return i;
  1004 //* the argument must be exactly a power of 2
  1005 inline int exact_log2(intptr_t x) {
  1006   #ifdef ASSERT
  1007     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1008   #endif
  1009   return log2_intptr(x);
  1012 //* the argument must be exactly a power of 2
  1013 inline int exact_log2_long(jlong x) {
  1014   #ifdef ASSERT
  1015     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1016   #endif
  1017   return log2_long(x);
  1021 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1022 inline intptr_t round_to(intptr_t x, uintx s) {
  1023   #ifdef ASSERT
  1024     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1025   #endif
  1026   const uintx m = s - 1;
  1027   return mask_bits(x + m, ~m);
  1030 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1031 inline intptr_t round_down(intptr_t x, uintx s) {
  1032   #ifdef ASSERT
  1033     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1034   #endif
  1035   const uintx m = s - 1;
  1036   return mask_bits(x, ~m);
  1040 inline bool is_odd (intx x) { return x & 1;      }
  1041 inline bool is_even(intx x) { return !is_odd(x); }
  1043 // "to" should be greater than "from."
  1044 inline intx byte_size(void* from, void* to) {
  1045   return (address)to - (address)from;
  1048 //----------------------------------------------------------------------------------------------------
  1049 // Avoid non-portable casts with these routines (DEPRECATED)
  1051 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1052 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1054 // Given sequence of four bytes, build into a 32-bit word
  1055 // following the conventions used in class files.
  1056 // On the 386, this could be realized with a simple address cast.
  1057 //
  1059 // This routine takes eight bytes:
  1060 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1061   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1062        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1063        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1064        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1065        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1066        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1067        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1068        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1071 // This routine takes four bytes:
  1072 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1073   return  (( u4(c1) << 24 )  &  0xff000000)
  1074        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1075        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1076        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1079 // And this one works if the four bytes are contiguous in memory:
  1080 inline u4 build_u4_from( u1* p ) {
  1081   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1084 // Ditto for two-byte ints:
  1085 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1086   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1087           |  (( u2(c2) <<  0 )  &  0x00ff));
  1090 // And this one works if the two bytes are contiguous in memory:
  1091 inline u2 build_u2_from( u1* p ) {
  1092   return  build_u2_from( p[0], p[1] );
  1095 // Ditto for floats:
  1096 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1097   u4 u = build_u4_from( c1, c2, c3, c4 );
  1098   return  *(jfloat*)&u;
  1101 inline jfloat build_float_from( u1* p ) {
  1102   u4 u = build_u4_from( p );
  1103   return  *(jfloat*)&u;
  1107 // now (64-bit) longs
  1109 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1110   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1111        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1112        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1113        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1114        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1115        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1116        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1117        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1120 inline jlong build_long_from( u1* p ) {
  1121   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1125 // Doubles, too!
  1126 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1127   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1128   return  *(jdouble*)&u;
  1131 inline jdouble build_double_from( u1* p ) {
  1132   jlong u = build_long_from( p );
  1133   return  *(jdouble*)&u;
  1137 // Portable routines to go the other way:
  1139 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1140   c1 = u1(x >> 8);
  1141   c2 = u1(x);
  1144 inline void explode_short_to( u2 x, u1* p ) {
  1145   explode_short_to( x, p[0], p[1]);
  1148 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1149   c1 = u1(x >> 24);
  1150   c2 = u1(x >> 16);
  1151   c3 = u1(x >>  8);
  1152   c4 = u1(x);
  1155 inline void explode_int_to( u4 x, u1* p ) {
  1156   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1160 // Pack and extract shorts to/from ints:
  1162 inline int extract_low_short_from_int(jint x) {
  1163   return x & 0xffff;
  1166 inline int extract_high_short_from_int(jint x) {
  1167   return (x >> 16) & 0xffff;
  1170 inline int build_int_from_shorts( jushort low, jushort high ) {
  1171   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1174 // Printf-style formatters for fixed- and variable-width types as pointers and
  1175 // integers.
  1176 //
  1177 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1178 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
  1179 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
  1180 // (in ILP32).
  1182 // Format 32-bit quantities.
  1183 #define INT32_FORMAT  "%d"
  1184 #define UINT32_FORMAT "%u"
  1185 #define INT32_FORMAT_W(width)   "%" #width "d"
  1186 #define UINT32_FORMAT_W(width)  "%" #width "u"
  1188 #define PTR32_FORMAT  "0x%08x"
  1190 // Format 64-bit quantities.
  1191 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
  1192 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
  1193 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
  1195 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
  1196 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
  1198 // Format macros that allow the field width to be specified.  The width must be
  1199 // a string literal (e.g., "8") or a macro that evaluates to one.
  1200 #ifdef _LP64
  1201 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
  1202 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
  1203 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
  1204 #else
  1205 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
  1206 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
  1207 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
  1208 #endif // _LP64
  1210 // Format pointers and size_t (or size_t-like integer types) which change size
  1211 // between 32- and 64-bit. The pointer format theoretically should be "%p",
  1212 // however, it has different output on different platforms. On Windows, the data
  1213 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
  1214 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
  1215 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
  1216 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
  1217 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
  1218 // using "%x".
  1219 #ifdef  _LP64
  1220 #define PTR_FORMAT    PTR64_FORMAT
  1221 #define UINTX_FORMAT  UINT64_FORMAT
  1222 #define INTX_FORMAT   INT64_FORMAT
  1223 #define SIZE_FORMAT   UINT64_FORMAT
  1224 #define SSIZE_FORMAT  INT64_FORMAT
  1225 #else   // !_LP64
  1226 #define PTR_FORMAT    PTR32_FORMAT
  1227 #define UINTX_FORMAT  UINT32_FORMAT
  1228 #define INTX_FORMAT   INT32_FORMAT
  1229 #define SIZE_FORMAT   UINT32_FORMAT
  1230 #define SSIZE_FORMAT  INT32_FORMAT
  1231 #endif  // _LP64
  1233 #define INTPTR_FORMAT PTR_FORMAT
  1235 // Enable zap-a-lot if in debug version.
  1237 # ifdef ASSERT
  1238 # ifdef COMPILER2
  1239 #   define ENABLE_ZAP_DEAD_LOCALS
  1240 #endif /* COMPILER2 */
  1241 # endif /* ASSERT */
  1243 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1245 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial