src/os/linux/vm/os_linux.cpp

Sat, 11 Dec 2010 13:20:56 -0500

author
zgu
date
Sat, 11 Dec 2010 13:20:56 -0500
changeset 2364
2d4762ec74af
parent 2314
f95d63e2154a
child 2365
54f5dd2aa1d9
permissions
-rw-r--r--

7003748: Decode C stack frames when symbols are presented (PhoneHome project)
Summary: Implemented in-process C native stack frame decoding when symbols are available.
Reviewed-by: coleenp, never

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # define __STDC_FORMAT_MACROS
    27 // no precompiled headers
    28 #include "classfile/classLoader.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "classfile/vmSymbols.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "code/vtableStubs.hpp"
    33 #include "compiler/compileBroker.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "jvm_linux.h"
    36 #include "memory/allocation.inline.hpp"
    37 #include "memory/filemap.hpp"
    38 #include "mutex_linux.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "os_share_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/hpi.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "thread_linux.inline.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/growableArray.hpp"
    67 #include "utilities/vmError.hpp"
    68 #ifdef TARGET_ARCH_x86
    69 # include "assembler_x86.inline.hpp"
    70 # include "nativeInst_x86.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_sparc
    73 # include "assembler_sparc.inline.hpp"
    74 # include "nativeInst_sparc.hpp"
    75 #endif
    76 #ifdef TARGET_ARCH_zero
    77 # include "assembler_zero.inline.hpp"
    78 # include "nativeInst_zero.hpp"
    79 #endif
    80 #ifdef COMPILER1
    81 #include "c1/c1_Runtime1.hpp"
    82 #endif
    83 #ifdef COMPILER2
    84 #include "opto/runtime.hpp"
    85 #endif
    87 // put OS-includes here
    88 # include <sys/types.h>
    89 # include <sys/mman.h>
    90 # include <sys/stat.h>
    91 # include <sys/select.h>
    92 # include <pthread.h>
    93 # include <signal.h>
    94 # include <errno.h>
    95 # include <dlfcn.h>
    96 # include <stdio.h>
    97 # include <unistd.h>
    98 # include <sys/resource.h>
    99 # include <pthread.h>
   100 # include <sys/stat.h>
   101 # include <sys/time.h>
   102 # include <sys/times.h>
   103 # include <sys/utsname.h>
   104 # include <sys/socket.h>
   105 # include <sys/wait.h>
   106 # include <pwd.h>
   107 # include <poll.h>
   108 # include <semaphore.h>
   109 # include <fcntl.h>
   110 # include <string.h>
   111 # include <syscall.h>
   112 # include <sys/sysinfo.h>
   113 # include <gnu/libc-version.h>
   114 # include <sys/ipc.h>
   115 # include <sys/shm.h>
   116 # include <link.h>
   117 # include <stdint.h>
   118 # include <inttypes.h>
   120 #define MAX_PATH    (2 * K)
   122 // for timer info max values which include all bits
   123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   124 #define SEC_IN_NANOSECS  1000000000LL
   126 ////////////////////////////////////////////////////////////////////////////////
   127 // global variables
   128 julong os::Linux::_physical_memory = 0;
   130 address   os::Linux::_initial_thread_stack_bottom = NULL;
   131 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   133 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   134 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   135 Mutex* os::Linux::_createThread_lock = NULL;
   136 pthread_t os::Linux::_main_thread;
   137 int os::Linux::_page_size = -1;
   138 bool os::Linux::_is_floating_stack = false;
   139 bool os::Linux::_is_NPTL = false;
   140 bool os::Linux::_supports_fast_thread_cpu_time = false;
   141 const char * os::Linux::_glibc_version = NULL;
   142 const char * os::Linux::_libpthread_version = NULL;
   144 static jlong initial_time_count=0;
   146 static int clock_tics_per_sec = 100;
   148 // For diagnostics to print a message once. see run_periodic_checks
   149 static sigset_t check_signal_done;
   150 static bool check_signals = true;;
   152 static pid_t _initial_pid = 0;
   154 /* Signal number used to suspend/resume a thread */
   156 /* do not use any signal number less than SIGSEGV, see 4355769 */
   157 static int SR_signum = SIGUSR2;
   158 sigset_t SR_sigset;
   160 /* Used to protect dlsym() calls */
   161 static pthread_mutex_t dl_mutex;
   163 ////////////////////////////////////////////////////////////////////////////////
   164 // utility functions
   166 static int SR_initialize();
   167 static int SR_finalize();
   169 julong os::available_memory() {
   170   return Linux::available_memory();
   171 }
   173 julong os::Linux::available_memory() {
   174   // values in struct sysinfo are "unsigned long"
   175   struct sysinfo si;
   176   sysinfo(&si);
   178   return (julong)si.freeram * si.mem_unit;
   179 }
   181 julong os::physical_memory() {
   182   return Linux::physical_memory();
   183 }
   185 julong os::allocatable_physical_memory(julong size) {
   186 #ifdef _LP64
   187   return size;
   188 #else
   189   julong result = MIN2(size, (julong)3800*M);
   190    if (!is_allocatable(result)) {
   191      // See comments under solaris for alignment considerations
   192      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   193      result =  MIN2(size, reasonable_size);
   194    }
   195    return result;
   196 #endif // _LP64
   197 }
   199 ////////////////////////////////////////////////////////////////////////////////
   200 // environment support
   202 bool os::getenv(const char* name, char* buf, int len) {
   203   const char* val = ::getenv(name);
   204   if (val != NULL && strlen(val) < (size_t)len) {
   205     strcpy(buf, val);
   206     return true;
   207   }
   208   if (len > 0) buf[0] = 0;  // return a null string
   209   return false;
   210 }
   213 // Return true if user is running as root.
   215 bool os::have_special_privileges() {
   216   static bool init = false;
   217   static bool privileges = false;
   218   if (!init) {
   219     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   220     init = true;
   221   }
   222   return privileges;
   223 }
   226 #ifndef SYS_gettid
   227 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   228 #ifdef __ia64__
   229 #define SYS_gettid 1105
   230 #elif __i386__
   231 #define SYS_gettid 224
   232 #elif __amd64__
   233 #define SYS_gettid 186
   234 #elif __sparc__
   235 #define SYS_gettid 143
   236 #else
   237 #error define gettid for the arch
   238 #endif
   239 #endif
   241 // Cpu architecture string
   242 #if   defined(ZERO)
   243 static char cpu_arch[] = ZERO_LIBARCH;
   244 #elif defined(IA64)
   245 static char cpu_arch[] = "ia64";
   246 #elif defined(IA32)
   247 static char cpu_arch[] = "i386";
   248 #elif defined(AMD64)
   249 static char cpu_arch[] = "amd64";
   250 #elif defined(ARM)
   251 static char cpu_arch[] = "arm";
   252 #elif defined(PPC)
   253 static char cpu_arch[] = "ppc";
   254 #elif defined(SPARC)
   255 #  ifdef _LP64
   256 static char cpu_arch[] = "sparcv9";
   257 #  else
   258 static char cpu_arch[] = "sparc";
   259 #  endif
   260 #else
   261 #error Add appropriate cpu_arch setting
   262 #endif
   265 // pid_t gettid()
   266 //
   267 // Returns the kernel thread id of the currently running thread. Kernel
   268 // thread id is used to access /proc.
   269 //
   270 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   271 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   272 //
   273 pid_t os::Linux::gettid() {
   274   int rslt = syscall(SYS_gettid);
   275   if (rslt == -1) {
   276      // old kernel, no NPTL support
   277      return getpid();
   278   } else {
   279      return (pid_t)rslt;
   280   }
   281 }
   283 // Most versions of linux have a bug where the number of processors are
   284 // determined by looking at the /proc file system.  In a chroot environment,
   285 // the system call returns 1.  This causes the VM to act as if it is
   286 // a single processor and elide locking (see is_MP() call).
   287 static bool unsafe_chroot_detected = false;
   288 static const char *unstable_chroot_error = "/proc file system not found.\n"
   289                      "Java may be unstable running multithreaded in a chroot "
   290                      "environment on Linux when /proc filesystem is not mounted.";
   292 void os::Linux::initialize_system_info() {
   293   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   294   if (processor_count() == 1) {
   295     pid_t pid = os::Linux::gettid();
   296     char fname[32];
   297     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   298     FILE *fp = fopen(fname, "r");
   299     if (fp == NULL) {
   300       unsafe_chroot_detected = true;
   301     } else {
   302       fclose(fp);
   303     }
   304   }
   305   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   306   assert(processor_count() > 0, "linux error");
   307 }
   309 void os::init_system_properties_values() {
   310 //  char arch[12];
   311 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   313   // The next steps are taken in the product version:
   314   //
   315   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   316   // This library should be located at:
   317   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   318   //
   319   // If "/jre/lib/" appears at the right place in the path, then we
   320   // assume libjvm[_g].so is installed in a JDK and we use this path.
   321   //
   322   // Otherwise exit with message: "Could not create the Java virtual machine."
   323   //
   324   // The following extra steps are taken in the debugging version:
   325   //
   326   // If "/jre/lib/" does NOT appear at the right place in the path
   327   // instead of exit check for $JAVA_HOME environment variable.
   328   //
   329   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   330   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   331   // it looks like libjvm[_g].so is installed there
   332   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   333   //
   334   // Otherwise exit.
   335   //
   336   // Important note: if the location of libjvm.so changes this
   337   // code needs to be changed accordingly.
   339   // The next few definitions allow the code to be verbatim:
   340 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   341 #define getenv(n) ::getenv(n)
   343 /*
   344  * See ld(1):
   345  *      The linker uses the following search paths to locate required
   346  *      shared libraries:
   347  *        1: ...
   348  *        ...
   349  *        7: The default directories, normally /lib and /usr/lib.
   350  */
   351 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   352 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   353 #else
   354 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   355 #endif
   357 #define EXTENSIONS_DIR  "/lib/ext"
   358 #define ENDORSED_DIR    "/lib/endorsed"
   359 #define REG_DIR         "/usr/java/packages"
   361   {
   362     /* sysclasspath, java_home, dll_dir */
   363     {
   364         char *home_path;
   365         char *dll_path;
   366         char *pslash;
   367         char buf[MAXPATHLEN];
   368         os::jvm_path(buf, sizeof(buf));
   370         // Found the full path to libjvm.so.
   371         // Now cut the path to <java_home>/jre if we can.
   372         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   373         pslash = strrchr(buf, '/');
   374         if (pslash != NULL)
   375             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   376         dll_path = malloc(strlen(buf) + 1);
   377         if (dll_path == NULL)
   378             return;
   379         strcpy(dll_path, buf);
   380         Arguments::set_dll_dir(dll_path);
   382         if (pslash != NULL) {
   383             pslash = strrchr(buf, '/');
   384             if (pslash != NULL) {
   385                 *pslash = '\0';       /* get rid of /<arch> */
   386                 pslash = strrchr(buf, '/');
   387                 if (pslash != NULL)
   388                     *pslash = '\0';   /* get rid of /lib */
   389             }
   390         }
   392         home_path = malloc(strlen(buf) + 1);
   393         if (home_path == NULL)
   394             return;
   395         strcpy(home_path, buf);
   396         Arguments::set_java_home(home_path);
   398         if (!set_boot_path('/', ':'))
   399             return;
   400     }
   402     /*
   403      * Where to look for native libraries
   404      *
   405      * Note: Due to a legacy implementation, most of the library path
   406      * is set in the launcher.  This was to accomodate linking restrictions
   407      * on legacy Linux implementations (which are no longer supported).
   408      * Eventually, all the library path setting will be done here.
   409      *
   410      * However, to prevent the proliferation of improperly built native
   411      * libraries, the new path component /usr/java/packages is added here.
   412      * Eventually, all the library path setting will be done here.
   413      */
   414     {
   415         char *ld_library_path;
   417         /*
   418          * Construct the invariant part of ld_library_path. Note that the
   419          * space for the colon and the trailing null are provided by the
   420          * nulls included by the sizeof operator (so actually we allocate
   421          * a byte more than necessary).
   422          */
   423         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   424             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   425         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   427         /*
   428          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   429          * should always exist (until the legacy problem cited above is
   430          * addressed).
   431          */
   432         char *v = getenv("LD_LIBRARY_PATH");
   433         if (v != NULL) {
   434             char *t = ld_library_path;
   435             /* That's +1 for the colon and +1 for the trailing '\0' */
   436             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   437             sprintf(ld_library_path, "%s:%s", v, t);
   438         }
   439         Arguments::set_library_path(ld_library_path);
   440     }
   442     /*
   443      * Extensions directories.
   444      *
   445      * Note that the space for the colon and the trailing null are provided
   446      * by the nulls included by the sizeof operator (so actually one byte more
   447      * than necessary is allocated).
   448      */
   449     {
   450         char *buf = malloc(strlen(Arguments::get_java_home()) +
   451             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   452         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   453             Arguments::get_java_home());
   454         Arguments::set_ext_dirs(buf);
   455     }
   457     /* Endorsed standards default directory. */
   458     {
   459         char * buf;
   460         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   461         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   462         Arguments::set_endorsed_dirs(buf);
   463     }
   464   }
   466 #undef malloc
   467 #undef getenv
   468 #undef EXTENSIONS_DIR
   469 #undef ENDORSED_DIR
   471   // Done
   472   return;
   473 }
   475 ////////////////////////////////////////////////////////////////////////////////
   476 // breakpoint support
   478 void os::breakpoint() {
   479   BREAKPOINT;
   480 }
   482 extern "C" void breakpoint() {
   483   // use debugger to set breakpoint here
   484 }
   486 ////////////////////////////////////////////////////////////////////////////////
   487 // signal support
   489 debug_only(static bool signal_sets_initialized = false);
   490 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   492 bool os::Linux::is_sig_ignored(int sig) {
   493       struct sigaction oact;
   494       sigaction(sig, (struct sigaction*)NULL, &oact);
   495       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   496                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   497       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   498            return true;
   499       else
   500            return false;
   501 }
   503 void os::Linux::signal_sets_init() {
   504   // Should also have an assertion stating we are still single-threaded.
   505   assert(!signal_sets_initialized, "Already initialized");
   506   // Fill in signals that are necessarily unblocked for all threads in
   507   // the VM. Currently, we unblock the following signals:
   508   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   509   //                         by -Xrs (=ReduceSignalUsage));
   510   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   511   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   512   // the dispositions or masks wrt these signals.
   513   // Programs embedding the VM that want to use the above signals for their
   514   // own purposes must, at this time, use the "-Xrs" option to prevent
   515   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   516   // (See bug 4345157, and other related bugs).
   517   // In reality, though, unblocking these signals is really a nop, since
   518   // these signals are not blocked by default.
   519   sigemptyset(&unblocked_sigs);
   520   sigemptyset(&allowdebug_blocked_sigs);
   521   sigaddset(&unblocked_sigs, SIGILL);
   522   sigaddset(&unblocked_sigs, SIGSEGV);
   523   sigaddset(&unblocked_sigs, SIGBUS);
   524   sigaddset(&unblocked_sigs, SIGFPE);
   525   sigaddset(&unblocked_sigs, SR_signum);
   527   if (!ReduceSignalUsage) {
   528    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   529       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   530       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   531    }
   532    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   533       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   534       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   535    }
   536    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   537       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   538       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   539    }
   540   }
   541   // Fill in signals that are blocked by all but the VM thread.
   542   sigemptyset(&vm_sigs);
   543   if (!ReduceSignalUsage)
   544     sigaddset(&vm_sigs, BREAK_SIGNAL);
   545   debug_only(signal_sets_initialized = true);
   547 }
   549 // These are signals that are unblocked while a thread is running Java.
   550 // (For some reason, they get blocked by default.)
   551 sigset_t* os::Linux::unblocked_signals() {
   552   assert(signal_sets_initialized, "Not initialized");
   553   return &unblocked_sigs;
   554 }
   556 // These are the signals that are blocked while a (non-VM) thread is
   557 // running Java. Only the VM thread handles these signals.
   558 sigset_t* os::Linux::vm_signals() {
   559   assert(signal_sets_initialized, "Not initialized");
   560   return &vm_sigs;
   561 }
   563 // These are signals that are blocked during cond_wait to allow debugger in
   564 sigset_t* os::Linux::allowdebug_blocked_signals() {
   565   assert(signal_sets_initialized, "Not initialized");
   566   return &allowdebug_blocked_sigs;
   567 }
   569 void os::Linux::hotspot_sigmask(Thread* thread) {
   571   //Save caller's signal mask before setting VM signal mask
   572   sigset_t caller_sigmask;
   573   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   575   OSThread* osthread = thread->osthread();
   576   osthread->set_caller_sigmask(caller_sigmask);
   578   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   580   if (!ReduceSignalUsage) {
   581     if (thread->is_VM_thread()) {
   582       // Only the VM thread handles BREAK_SIGNAL ...
   583       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   584     } else {
   585       // ... all other threads block BREAK_SIGNAL
   586       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   587     }
   588   }
   589 }
   591 //////////////////////////////////////////////////////////////////////////////
   592 // detecting pthread library
   594 void os::Linux::libpthread_init() {
   595   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   596   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   597   // generic name for earlier versions.
   598   // Define macros here so we can build HotSpot on old systems.
   599 # ifndef _CS_GNU_LIBC_VERSION
   600 # define _CS_GNU_LIBC_VERSION 2
   601 # endif
   602 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   603 # define _CS_GNU_LIBPTHREAD_VERSION 3
   604 # endif
   606   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   607   if (n > 0) {
   608      char *str = (char *)malloc(n);
   609      confstr(_CS_GNU_LIBC_VERSION, str, n);
   610      os::Linux::set_glibc_version(str);
   611   } else {
   612      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   613      static char _gnu_libc_version[32];
   614      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   615               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   616      os::Linux::set_glibc_version(_gnu_libc_version);
   617   }
   619   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   620   if (n > 0) {
   621      char *str = (char *)malloc(n);
   622      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   623      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   624      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   625      // is the case. LinuxThreads has a hard limit on max number of threads.
   626      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   627      // On the other hand, NPTL does not have such a limit, sysconf()
   628      // will return -1 and errno is not changed. Check if it is really NPTL.
   629      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   630          strstr(str, "NPTL") &&
   631          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   632        free(str);
   633        os::Linux::set_libpthread_version("linuxthreads");
   634      } else {
   635        os::Linux::set_libpthread_version(str);
   636      }
   637   } else {
   638     // glibc before 2.3.2 only has LinuxThreads.
   639     os::Linux::set_libpthread_version("linuxthreads");
   640   }
   642   if (strstr(libpthread_version(), "NPTL")) {
   643      os::Linux::set_is_NPTL();
   644   } else {
   645      os::Linux::set_is_LinuxThreads();
   646   }
   648   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   649   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   650   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   651      os::Linux::set_is_floating_stack();
   652   }
   653 }
   655 /////////////////////////////////////////////////////////////////////////////
   656 // thread stack
   658 // Force Linux kernel to expand current thread stack. If "bottom" is close
   659 // to the stack guard, caller should block all signals.
   660 //
   661 // MAP_GROWSDOWN:
   662 //   A special mmap() flag that is used to implement thread stacks. It tells
   663 //   kernel that the memory region should extend downwards when needed. This
   664 //   allows early versions of LinuxThreads to only mmap the first few pages
   665 //   when creating a new thread. Linux kernel will automatically expand thread
   666 //   stack as needed (on page faults).
   667 //
   668 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   669 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   670 //   region, it's hard to tell if the fault is due to a legitimate stack
   671 //   access or because of reading/writing non-exist memory (e.g. buffer
   672 //   overrun). As a rule, if the fault happens below current stack pointer,
   673 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   674 //   application (see Linux kernel fault.c).
   675 //
   676 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   677 //   stack overflow detection.
   678 //
   679 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   680 //   not use this flag. However, the stack of initial thread is not created
   681 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   682 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   683 //   and then attach the thread to JVM.
   684 //
   685 // To get around the problem and allow stack banging on Linux, we need to
   686 // manually expand thread stack after receiving the SIGSEGV.
   687 //
   688 // There are two ways to expand thread stack to address "bottom", we used
   689 // both of them in JVM before 1.5:
   690 //   1. adjust stack pointer first so that it is below "bottom", and then
   691 //      touch "bottom"
   692 //   2. mmap() the page in question
   693 //
   694 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   695 // if current sp is already near the lower end of page 101, and we need to
   696 // call mmap() to map page 100, it is possible that part of the mmap() frame
   697 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   698 // That will destroy the mmap() frame and cause VM to crash.
   699 //
   700 // The following code works by adjusting sp first, then accessing the "bottom"
   701 // page to force a page fault. Linux kernel will then automatically expand the
   702 // stack mapping.
   703 //
   704 // _expand_stack_to() assumes its frame size is less than page size, which
   705 // should always be true if the function is not inlined.
   707 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   708 #define NOINLINE
   709 #else
   710 #define NOINLINE __attribute__ ((noinline))
   711 #endif
   713 static void _expand_stack_to(address bottom) NOINLINE;
   715 static void _expand_stack_to(address bottom) {
   716   address sp;
   717   size_t size;
   718   volatile char *p;
   720   // Adjust bottom to point to the largest address within the same page, it
   721   // gives us a one-page buffer if alloca() allocates slightly more memory.
   722   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   723   bottom += os::Linux::page_size() - 1;
   725   // sp might be slightly above current stack pointer; if that's the case, we
   726   // will alloca() a little more space than necessary, which is OK. Don't use
   727   // os::current_stack_pointer(), as its result can be slightly below current
   728   // stack pointer, causing us to not alloca enough to reach "bottom".
   729   sp = (address)&sp;
   731   if (sp > bottom) {
   732     size = sp - bottom;
   733     p = (volatile char *)alloca(size);
   734     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   735     p[0] = '\0';
   736   }
   737 }
   739 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   740   assert(t!=NULL, "just checking");
   741   assert(t->osthread()->expanding_stack(), "expand should be set");
   742   assert(t->stack_base() != NULL, "stack_base was not initialized");
   744   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   745     sigset_t mask_all, old_sigset;
   746     sigfillset(&mask_all);
   747     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   748     _expand_stack_to(addr);
   749     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   750     return true;
   751   }
   752   return false;
   753 }
   755 //////////////////////////////////////////////////////////////////////////////
   756 // create new thread
   758 static address highest_vm_reserved_address();
   760 // check if it's safe to start a new thread
   761 static bool _thread_safety_check(Thread* thread) {
   762   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   763     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   764     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   765     //   allocated (MAP_FIXED) from high address space. Every thread stack
   766     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   767     //   it to other values if they rebuild LinuxThreads).
   768     //
   769     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   770     // the memory region has already been mmap'ed. That means if we have too
   771     // many threads and/or very large heap, eventually thread stack will
   772     // collide with heap.
   773     //
   774     // Here we try to prevent heap/stack collision by comparing current
   775     // stack bottom with the highest address that has been mmap'ed by JVM
   776     // plus a safety margin for memory maps created by native code.
   777     //
   778     // This feature can be disabled by setting ThreadSafetyMargin to 0
   779     //
   780     if (ThreadSafetyMargin > 0) {
   781       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   783       // not safe if our stack extends below the safety margin
   784       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   785     } else {
   786       return true;
   787     }
   788   } else {
   789     // Floating stack LinuxThreads or NPTL:
   790     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   791     //   there's not enough space left, pthread_create() will fail. If we come
   792     //   here, that means enough space has been reserved for stack.
   793     return true;
   794   }
   795 }
   797 // Thread start routine for all newly created threads
   798 static void *java_start(Thread *thread) {
   799   // Try to randomize the cache line index of hot stack frames.
   800   // This helps when threads of the same stack traces evict each other's
   801   // cache lines. The threads can be either from the same JVM instance, or
   802   // from different JVM instances. The benefit is especially true for
   803   // processors with hyperthreading technology.
   804   static int counter = 0;
   805   int pid = os::current_process_id();
   806   alloca(((pid ^ counter++) & 7) * 128);
   808   ThreadLocalStorage::set_thread(thread);
   810   OSThread* osthread = thread->osthread();
   811   Monitor* sync = osthread->startThread_lock();
   813   // non floating stack LinuxThreads needs extra check, see above
   814   if (!_thread_safety_check(thread)) {
   815     // notify parent thread
   816     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   817     osthread->set_state(ZOMBIE);
   818     sync->notify_all();
   819     return NULL;
   820   }
   822   // thread_id is kernel thread id (similar to Solaris LWP id)
   823   osthread->set_thread_id(os::Linux::gettid());
   825   if (UseNUMA) {
   826     int lgrp_id = os::numa_get_group_id();
   827     if (lgrp_id != -1) {
   828       thread->set_lgrp_id(lgrp_id);
   829     }
   830   }
   831   // initialize signal mask for this thread
   832   os::Linux::hotspot_sigmask(thread);
   834   // initialize floating point control register
   835   os::Linux::init_thread_fpu_state();
   837   // handshaking with parent thread
   838   {
   839     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   841     // notify parent thread
   842     osthread->set_state(INITIALIZED);
   843     sync->notify_all();
   845     // wait until os::start_thread()
   846     while (osthread->get_state() == INITIALIZED) {
   847       sync->wait(Mutex::_no_safepoint_check_flag);
   848     }
   849   }
   851   // call one more level start routine
   852   thread->run();
   854   return 0;
   855 }
   857 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   858   assert(thread->osthread() == NULL, "caller responsible");
   860   // Allocate the OSThread object
   861   OSThread* osthread = new OSThread(NULL, NULL);
   862   if (osthread == NULL) {
   863     return false;
   864   }
   866   // set the correct thread state
   867   osthread->set_thread_type(thr_type);
   869   // Initial state is ALLOCATED but not INITIALIZED
   870   osthread->set_state(ALLOCATED);
   872   thread->set_osthread(osthread);
   874   // init thread attributes
   875   pthread_attr_t attr;
   876   pthread_attr_init(&attr);
   877   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   879   // stack size
   880   if (os::Linux::supports_variable_stack_size()) {
   881     // calculate stack size if it's not specified by caller
   882     if (stack_size == 0) {
   883       stack_size = os::Linux::default_stack_size(thr_type);
   885       switch (thr_type) {
   886       case os::java_thread:
   887         // Java threads use ThreadStackSize which default value can be
   888         // changed with the flag -Xss
   889         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   890         stack_size = JavaThread::stack_size_at_create();
   891         break;
   892       case os::compiler_thread:
   893         if (CompilerThreadStackSize > 0) {
   894           stack_size = (size_t)(CompilerThreadStackSize * K);
   895           break;
   896         } // else fall through:
   897           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   898       case os::vm_thread:
   899       case os::pgc_thread:
   900       case os::cgc_thread:
   901       case os::watcher_thread:
   902         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   903         break;
   904       }
   905     }
   907     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   908     pthread_attr_setstacksize(&attr, stack_size);
   909   } else {
   910     // let pthread_create() pick the default value.
   911   }
   913   // glibc guard page
   914   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   916   ThreadState state;
   918   {
   919     // Serialize thread creation if we are running with fixed stack LinuxThreads
   920     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   921     if (lock) {
   922       os::Linux::createThread_lock()->lock_without_safepoint_check();
   923     }
   925     pthread_t tid;
   926     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   928     pthread_attr_destroy(&attr);
   930     if (ret != 0) {
   931       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   932         perror("pthread_create()");
   933       }
   934       // Need to clean up stuff we've allocated so far
   935       thread->set_osthread(NULL);
   936       delete osthread;
   937       if (lock) os::Linux::createThread_lock()->unlock();
   938       return false;
   939     }
   941     // Store pthread info into the OSThread
   942     osthread->set_pthread_id(tid);
   944     // Wait until child thread is either initialized or aborted
   945     {
   946       Monitor* sync_with_child = osthread->startThread_lock();
   947       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   948       while ((state = osthread->get_state()) == ALLOCATED) {
   949         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   950       }
   951     }
   953     if (lock) {
   954       os::Linux::createThread_lock()->unlock();
   955     }
   956   }
   958   // Aborted due to thread limit being reached
   959   if (state == ZOMBIE) {
   960       thread->set_osthread(NULL);
   961       delete osthread;
   962       return false;
   963   }
   965   // The thread is returned suspended (in state INITIALIZED),
   966   // and is started higher up in the call chain
   967   assert(state == INITIALIZED, "race condition");
   968   return true;
   969 }
   971 /////////////////////////////////////////////////////////////////////////////
   972 // attach existing thread
   974 // bootstrap the main thread
   975 bool os::create_main_thread(JavaThread* thread) {
   976   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   977   return create_attached_thread(thread);
   978 }
   980 bool os::create_attached_thread(JavaThread* thread) {
   981 #ifdef ASSERT
   982     thread->verify_not_published();
   983 #endif
   985   // Allocate the OSThread object
   986   OSThread* osthread = new OSThread(NULL, NULL);
   988   if (osthread == NULL) {
   989     return false;
   990   }
   992   // Store pthread info into the OSThread
   993   osthread->set_thread_id(os::Linux::gettid());
   994   osthread->set_pthread_id(::pthread_self());
   996   // initialize floating point control register
   997   os::Linux::init_thread_fpu_state();
   999   // Initial thread state is RUNNABLE
  1000   osthread->set_state(RUNNABLE);
  1002   thread->set_osthread(osthread);
  1004   if (UseNUMA) {
  1005     int lgrp_id = os::numa_get_group_id();
  1006     if (lgrp_id != -1) {
  1007       thread->set_lgrp_id(lgrp_id);
  1011   if (os::Linux::is_initial_thread()) {
  1012     // If current thread is initial thread, its stack is mapped on demand,
  1013     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1014     // the entire stack region to avoid SEGV in stack banging.
  1015     // It is also useful to get around the heap-stack-gap problem on SuSE
  1016     // kernel (see 4821821 for details). We first expand stack to the top
  1017     // of yellow zone, then enable stack yellow zone (order is significant,
  1018     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1019     // is no gap between the last two virtual memory regions.
  1021     JavaThread *jt = (JavaThread *)thread;
  1022     address addr = jt->stack_yellow_zone_base();
  1023     assert(addr != NULL, "initialization problem?");
  1024     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1026     osthread->set_expanding_stack();
  1027     os::Linux::manually_expand_stack(jt, addr);
  1028     osthread->clear_expanding_stack();
  1031   // initialize signal mask for this thread
  1032   // and save the caller's signal mask
  1033   os::Linux::hotspot_sigmask(thread);
  1035   return true;
  1038 void os::pd_start_thread(Thread* thread) {
  1039   OSThread * osthread = thread->osthread();
  1040   assert(osthread->get_state() != INITIALIZED, "just checking");
  1041   Monitor* sync_with_child = osthread->startThread_lock();
  1042   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1043   sync_with_child->notify();
  1046 // Free Linux resources related to the OSThread
  1047 void os::free_thread(OSThread* osthread) {
  1048   assert(osthread != NULL, "osthread not set");
  1050   if (Thread::current()->osthread() == osthread) {
  1051     // Restore caller's signal mask
  1052     sigset_t sigmask = osthread->caller_sigmask();
  1053     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1056   delete osthread;
  1059 //////////////////////////////////////////////////////////////////////////////
  1060 // thread local storage
  1062 int os::allocate_thread_local_storage() {
  1063   pthread_key_t key;
  1064   int rslt = pthread_key_create(&key, NULL);
  1065   assert(rslt == 0, "cannot allocate thread local storage");
  1066   return (int)key;
  1069 // Note: This is currently not used by VM, as we don't destroy TLS key
  1070 // on VM exit.
  1071 void os::free_thread_local_storage(int index) {
  1072   int rslt = pthread_key_delete((pthread_key_t)index);
  1073   assert(rslt == 0, "invalid index");
  1076 void os::thread_local_storage_at_put(int index, void* value) {
  1077   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1078   assert(rslt == 0, "pthread_setspecific failed");
  1081 extern "C" Thread* get_thread() {
  1082   return ThreadLocalStorage::thread();
  1085 //////////////////////////////////////////////////////////////////////////////
  1086 // initial thread
  1088 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1089 bool os::Linux::is_initial_thread(void) {
  1090   char dummy;
  1091   // If called before init complete, thread stack bottom will be null.
  1092   // Can be called if fatal error occurs before initialization.
  1093   if (initial_thread_stack_bottom() == NULL) return false;
  1094   assert(initial_thread_stack_bottom() != NULL &&
  1095          initial_thread_stack_size()   != 0,
  1096          "os::init did not locate initial thread's stack region");
  1097   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1098       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1099        return true;
  1100   else return false;
  1103 // Find the virtual memory area that contains addr
  1104 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1105   FILE *fp = fopen("/proc/self/maps", "r");
  1106   if (fp) {
  1107     address low, high;
  1108     while (!feof(fp)) {
  1109       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1110         if (low <= addr && addr < high) {
  1111            if (vma_low)  *vma_low  = low;
  1112            if (vma_high) *vma_high = high;
  1113            fclose (fp);
  1114            return true;
  1117       for (;;) {
  1118         int ch = fgetc(fp);
  1119         if (ch == EOF || ch == (int)'\n') break;
  1122     fclose(fp);
  1124   return false;
  1127 // Locate initial thread stack. This special handling of initial thread stack
  1128 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1129 // bogus value for initial thread.
  1130 void os::Linux::capture_initial_stack(size_t max_size) {
  1131   // stack size is the easy part, get it from RLIMIT_STACK
  1132   size_t stack_size;
  1133   struct rlimit rlim;
  1134   getrlimit(RLIMIT_STACK, &rlim);
  1135   stack_size = rlim.rlim_cur;
  1137   // 6308388: a bug in ld.so will relocate its own .data section to the
  1138   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1139   //   so we won't install guard page on ld.so's data section.
  1140   stack_size -= 2 * page_size();
  1142   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1143   //   7.1, in both cases we will get 2G in return value.
  1144   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1145   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1146   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1147   //   in case other parts in glibc still assumes 2M max stack size.
  1148   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1149 #ifndef IA64
  1150   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1151 #else
  1152   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1153   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1154 #endif
  1156   // Try to figure out where the stack base (top) is. This is harder.
  1157   //
  1158   // When an application is started, glibc saves the initial stack pointer in
  1159   // a global variable "__libc_stack_end", which is then used by system
  1160   // libraries. __libc_stack_end should be pretty close to stack top. The
  1161   // variable is available since the very early days. However, because it is
  1162   // a private interface, it could disappear in the future.
  1163   //
  1164   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1165   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1166   // stack top. Note that /proc may not exist if VM is running as a chroot
  1167   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1168   // /proc/<pid>/stat could change in the future (though unlikely).
  1169   //
  1170   // We try __libc_stack_end first. If that doesn't work, look for
  1171   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1172   // as a hint, which should work well in most cases.
  1174   uintptr_t stack_start;
  1176   // try __libc_stack_end first
  1177   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1178   if (p && *p) {
  1179     stack_start = *p;
  1180   } else {
  1181     // see if we can get the start_stack field from /proc/self/stat
  1182     FILE *fp;
  1183     int pid;
  1184     char state;
  1185     int ppid;
  1186     int pgrp;
  1187     int session;
  1188     int nr;
  1189     int tpgrp;
  1190     unsigned long flags;
  1191     unsigned long minflt;
  1192     unsigned long cminflt;
  1193     unsigned long majflt;
  1194     unsigned long cmajflt;
  1195     unsigned long utime;
  1196     unsigned long stime;
  1197     long cutime;
  1198     long cstime;
  1199     long prio;
  1200     long nice;
  1201     long junk;
  1202     long it_real;
  1203     uintptr_t start;
  1204     uintptr_t vsize;
  1205     intptr_t rss;
  1206     uintptr_t rsslim;
  1207     uintptr_t scodes;
  1208     uintptr_t ecode;
  1209     int i;
  1211     // Figure what the primordial thread stack base is. Code is inspired
  1212     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1213     // followed by command name surrounded by parentheses, state, etc.
  1214     char stat[2048];
  1215     int statlen;
  1217     fp = fopen("/proc/self/stat", "r");
  1218     if (fp) {
  1219       statlen = fread(stat, 1, 2047, fp);
  1220       stat[statlen] = '\0';
  1221       fclose(fp);
  1223       // Skip pid and the command string. Note that we could be dealing with
  1224       // weird command names, e.g. user could decide to rename java launcher
  1225       // to "java 1.4.2 :)", then the stat file would look like
  1226       //                1234 (java 1.4.2 :)) R ... ...
  1227       // We don't really need to know the command string, just find the last
  1228       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1229       char * s = strrchr(stat, ')');
  1231       i = 0;
  1232       if (s) {
  1233         // Skip blank chars
  1234         do s++; while (isspace(*s));
  1236 #define _UFM UINTX_FORMAT
  1237 #define _DFM INTX_FORMAT
  1239         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1240         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1241         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1242              &state,          /* 3  %c  */
  1243              &ppid,           /* 4  %d  */
  1244              &pgrp,           /* 5  %d  */
  1245              &session,        /* 6  %d  */
  1246              &nr,             /* 7  %d  */
  1247              &tpgrp,          /* 8  %d  */
  1248              &flags,          /* 9  %lu  */
  1249              &minflt,         /* 10 %lu  */
  1250              &cminflt,        /* 11 %lu  */
  1251              &majflt,         /* 12 %lu  */
  1252              &cmajflt,        /* 13 %lu  */
  1253              &utime,          /* 14 %lu  */
  1254              &stime,          /* 15 %lu  */
  1255              &cutime,         /* 16 %ld  */
  1256              &cstime,         /* 17 %ld  */
  1257              &prio,           /* 18 %ld  */
  1258              &nice,           /* 19 %ld  */
  1259              &junk,           /* 20 %ld  */
  1260              &it_real,        /* 21 %ld  */
  1261              &start,          /* 22 UINTX_FORMAT */
  1262              &vsize,          /* 23 UINTX_FORMAT */
  1263              &rss,            /* 24 INTX_FORMAT  */
  1264              &rsslim,         /* 25 UINTX_FORMAT */
  1265              &scodes,         /* 26 UINTX_FORMAT */
  1266              &ecode,          /* 27 UINTX_FORMAT */
  1267              &stack_start);   /* 28 UINTX_FORMAT */
  1270 #undef _UFM
  1271 #undef _DFM
  1273       if (i != 28 - 2) {
  1274          assert(false, "Bad conversion from /proc/self/stat");
  1275          // product mode - assume we are the initial thread, good luck in the
  1276          // embedded case.
  1277          warning("Can't detect initial thread stack location - bad conversion");
  1278          stack_start = (uintptr_t) &rlim;
  1280     } else {
  1281       // For some reason we can't open /proc/self/stat (for example, running on
  1282       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1283       // most cases, so don't abort:
  1284       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1285       stack_start = (uintptr_t) &rlim;
  1289   // Now we have a pointer (stack_start) very close to the stack top, the
  1290   // next thing to do is to figure out the exact location of stack top. We
  1291   // can find out the virtual memory area that contains stack_start by
  1292   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1293   // and its upper limit is the real stack top. (again, this would fail if
  1294   // running inside chroot, because /proc may not exist.)
  1296   uintptr_t stack_top;
  1297   address low, high;
  1298   if (find_vma((address)stack_start, &low, &high)) {
  1299     // success, "high" is the true stack top. (ignore "low", because initial
  1300     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1301     stack_top = (uintptr_t)high;
  1302   } else {
  1303     // failed, likely because /proc/self/maps does not exist
  1304     warning("Can't detect initial thread stack location - find_vma failed");
  1305     // best effort: stack_start is normally within a few pages below the real
  1306     // stack top, use it as stack top, and reduce stack size so we won't put
  1307     // guard page outside stack.
  1308     stack_top = stack_start;
  1309     stack_size -= 16 * page_size();
  1312   // stack_top could be partially down the page so align it
  1313   stack_top = align_size_up(stack_top, page_size());
  1315   if (max_size && stack_size > max_size) {
  1316      _initial_thread_stack_size = max_size;
  1317   } else {
  1318      _initial_thread_stack_size = stack_size;
  1321   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1322   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1325 ////////////////////////////////////////////////////////////////////////////////
  1326 // time support
  1328 // Time since start-up in seconds to a fine granularity.
  1329 // Used by VMSelfDestructTimer and the MemProfiler.
  1330 double os::elapsedTime() {
  1332   return (double)(os::elapsed_counter()) * 0.000001;
  1335 jlong os::elapsed_counter() {
  1336   timeval time;
  1337   int status = gettimeofday(&time, NULL);
  1338   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1341 jlong os::elapsed_frequency() {
  1342   return (1000 * 1000);
  1345 // For now, we say that linux does not support vtime.  I have no idea
  1346 // whether it can actually be made to (DLD, 9/13/05).
  1348 bool os::supports_vtime() { return false; }
  1349 bool os::enable_vtime()   { return false; }
  1350 bool os::vtime_enabled()  { return false; }
  1351 double os::elapsedVTime() {
  1352   // better than nothing, but not much
  1353   return elapsedTime();
  1356 jlong os::javaTimeMillis() {
  1357   timeval time;
  1358   int status = gettimeofday(&time, NULL);
  1359   assert(status != -1, "linux error");
  1360   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1363 #ifndef CLOCK_MONOTONIC
  1364 #define CLOCK_MONOTONIC (1)
  1365 #endif
  1367 void os::Linux::clock_init() {
  1368   // we do dlopen's in this particular order due to bug in linux
  1369   // dynamical loader (see 6348968) leading to crash on exit
  1370   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1371   if (handle == NULL) {
  1372     handle = dlopen("librt.so", RTLD_LAZY);
  1375   if (handle) {
  1376     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1377            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1378     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1379            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1380     if (clock_getres_func && clock_gettime_func) {
  1381       // See if monotonic clock is supported by the kernel. Note that some
  1382       // early implementations simply return kernel jiffies (updated every
  1383       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1384       // for nano time (though the monotonic property is still nice to have).
  1385       // It's fixed in newer kernels, however clock_getres() still returns
  1386       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1387       // resolution for now. Hopefully as people move to new kernels, this
  1388       // won't be a problem.
  1389       struct timespec res;
  1390       struct timespec tp;
  1391       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1392           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1393         // yes, monotonic clock is supported
  1394         _clock_gettime = clock_gettime_func;
  1395       } else {
  1396         // close librt if there is no monotonic clock
  1397         dlclose(handle);
  1403 #ifndef SYS_clock_getres
  1405 #if defined(IA32) || defined(AMD64)
  1406 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1407 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1408 #else
  1409 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1410 #define sys_clock_getres(x,y)  -1
  1411 #endif
  1413 #else
  1414 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1415 #endif
  1417 void os::Linux::fast_thread_clock_init() {
  1418   if (!UseLinuxPosixThreadCPUClocks) {
  1419     return;
  1421   clockid_t clockid;
  1422   struct timespec tp;
  1423   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1424       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1426   // Switch to using fast clocks for thread cpu time if
  1427   // the sys_clock_getres() returns 0 error code.
  1428   // Note, that some kernels may support the current thread
  1429   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1430   // returned by the pthread_getcpuclockid().
  1431   // If the fast Posix clocks are supported then the sys_clock_getres()
  1432   // must return at least tp.tv_sec == 0 which means a resolution
  1433   // better than 1 sec. This is extra check for reliability.
  1435   if(pthread_getcpuclockid_func &&
  1436      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1437      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1439     _supports_fast_thread_cpu_time = true;
  1440     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1444 jlong os::javaTimeNanos() {
  1445   if (Linux::supports_monotonic_clock()) {
  1446     struct timespec tp;
  1447     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1448     assert(status == 0, "gettime error");
  1449     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1450     return result;
  1451   } else {
  1452     timeval time;
  1453     int status = gettimeofday(&time, NULL);
  1454     assert(status != -1, "linux error");
  1455     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1456     return 1000 * usecs;
  1460 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1461   if (Linux::supports_monotonic_clock()) {
  1462     info_ptr->max_value = ALL_64_BITS;
  1464     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1465     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1466     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1467   } else {
  1468     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1469     info_ptr->max_value = ALL_64_BITS;
  1471     // gettimeofday is a real time clock so it skips
  1472     info_ptr->may_skip_backward = true;
  1473     info_ptr->may_skip_forward = true;
  1476   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1479 // Return the real, user, and system times in seconds from an
  1480 // arbitrary fixed point in the past.
  1481 bool os::getTimesSecs(double* process_real_time,
  1482                       double* process_user_time,
  1483                       double* process_system_time) {
  1484   struct tms ticks;
  1485   clock_t real_ticks = times(&ticks);
  1487   if (real_ticks == (clock_t) (-1)) {
  1488     return false;
  1489   } else {
  1490     double ticks_per_second = (double) clock_tics_per_sec;
  1491     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1492     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1493     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1495     return true;
  1500 char * os::local_time_string(char *buf, size_t buflen) {
  1501   struct tm t;
  1502   time_t long_time;
  1503   time(&long_time);
  1504   localtime_r(&long_time, &t);
  1505   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1506                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1507                t.tm_hour, t.tm_min, t.tm_sec);
  1508   return buf;
  1511 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1512   return localtime_r(clock, res);
  1515 ////////////////////////////////////////////////////////////////////////////////
  1516 // runtime exit support
  1518 // Note: os::shutdown() might be called very early during initialization, or
  1519 // called from signal handler. Before adding something to os::shutdown(), make
  1520 // sure it is async-safe and can handle partially initialized VM.
  1521 void os::shutdown() {
  1523   // allow PerfMemory to attempt cleanup of any persistent resources
  1524   perfMemory_exit();
  1526   // needs to remove object in file system
  1527   AttachListener::abort();
  1529   // flush buffered output, finish log files
  1530   ostream_abort();
  1532   // Check for abort hook
  1533   abort_hook_t abort_hook = Arguments::abort_hook();
  1534   if (abort_hook != NULL) {
  1535     abort_hook();
  1540 // Note: os::abort() might be called very early during initialization, or
  1541 // called from signal handler. Before adding something to os::abort(), make
  1542 // sure it is async-safe and can handle partially initialized VM.
  1543 void os::abort(bool dump_core) {
  1544   os::shutdown();
  1545   if (dump_core) {
  1546 #ifndef PRODUCT
  1547     fdStream out(defaultStream::output_fd());
  1548     out.print_raw("Current thread is ");
  1549     char buf[16];
  1550     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1551     out.print_raw_cr(buf);
  1552     out.print_raw_cr("Dumping core ...");
  1553 #endif
  1554     ::abort(); // dump core
  1557   ::exit(1);
  1560 // Die immediately, no exit hook, no abort hook, no cleanup.
  1561 void os::die() {
  1562   // _exit() on LinuxThreads only kills current thread
  1563   ::abort();
  1566 // unused on linux for now.
  1567 void os::set_error_file(const char *logfile) {}
  1569 intx os::current_thread_id() { return (intx)pthread_self(); }
  1570 int os::current_process_id() {
  1572   // Under the old linux thread library, linux gives each thread
  1573   // its own process id. Because of this each thread will return
  1574   // a different pid if this method were to return the result
  1575   // of getpid(2). Linux provides no api that returns the pid
  1576   // of the launcher thread for the vm. This implementation
  1577   // returns a unique pid, the pid of the launcher thread
  1578   // that starts the vm 'process'.
  1580   // Under the NPTL, getpid() returns the same pid as the
  1581   // launcher thread rather than a unique pid per thread.
  1582   // Use gettid() if you want the old pre NPTL behaviour.
  1584   // if you are looking for the result of a call to getpid() that
  1585   // returns a unique pid for the calling thread, then look at the
  1586   // OSThread::thread_id() method in osThread_linux.hpp file
  1588   return (int)(_initial_pid ? _initial_pid : getpid());
  1591 // DLL functions
  1593 const char* os::dll_file_extension() { return ".so"; }
  1595 const char* os::get_temp_directory() {
  1596   const char *prop = Arguments::get_property("java.io.tmpdir");
  1597   return prop == NULL ? "/tmp" : prop;
  1600 static bool file_exists(const char* filename) {
  1601   struct stat statbuf;
  1602   if (filename == NULL || strlen(filename) == 0) {
  1603     return false;
  1605   return os::stat(filename, &statbuf) == 0;
  1608 void os::dll_build_name(char* buffer, size_t buflen,
  1609                         const char* pname, const char* fname) {
  1610   // Copied from libhpi
  1611   const size_t pnamelen = pname ? strlen(pname) : 0;
  1613   // Quietly truncate on buffer overflow.  Should be an error.
  1614   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1615       *buffer = '\0';
  1616       return;
  1619   if (pnamelen == 0) {
  1620     snprintf(buffer, buflen, "lib%s.so", fname);
  1621   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1622     int n;
  1623     char** pelements = split_path(pname, &n);
  1624     for (int i = 0 ; i < n ; i++) {
  1625       // Really shouldn't be NULL, but check can't hurt
  1626       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1627         continue; // skip the empty path values
  1629       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1630       if (file_exists(buffer)) {
  1631         break;
  1634     // release the storage
  1635     for (int i = 0 ; i < n ; i++) {
  1636       if (pelements[i] != NULL) {
  1637         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1640     if (pelements != NULL) {
  1641       FREE_C_HEAP_ARRAY(char*, pelements);
  1643   } else {
  1644     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1648 const char* os::get_current_directory(char *buf, int buflen) {
  1649   return getcwd(buf, buflen);
  1652 // check if addr is inside libjvm[_g].so
  1653 bool os::address_is_in_vm(address addr) {
  1654   static address libjvm_base_addr;
  1655   Dl_info dlinfo;
  1657   if (libjvm_base_addr == NULL) {
  1658     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1659     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1660     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1663   if (dladdr((void *)addr, &dlinfo)) {
  1664     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1667   return false;
  1670 bool os::dll_address_to_function_name(address addr, char *buf,
  1671                                       int buflen, int *offset) {
  1672   Dl_info dlinfo;
  1674   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1675     if (buf != NULL) {
  1676       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1677         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1680     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1681     return true;
  1682   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1683     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1684        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1685        return true;
  1689   if (buf != NULL) buf[0] = '\0';
  1690   if (offset != NULL) *offset = -1;
  1691   return false;
  1694 struct _address_to_library_name {
  1695   address addr;          // input : memory address
  1696   size_t  buflen;        //         size of fname
  1697   char*   fname;         // output: library name
  1698   address base;          //         library base addr
  1699 };
  1701 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1702                                             size_t size, void *data) {
  1703   int i;
  1704   bool found = false;
  1705   address libbase = NULL;
  1706   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1708   // iterate through all loadable segments
  1709   for (i = 0; i < info->dlpi_phnum; i++) {
  1710     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1711     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1712       // base address of a library is the lowest address of its loaded
  1713       // segments.
  1714       if (libbase == NULL || libbase > segbase) {
  1715         libbase = segbase;
  1717       // see if 'addr' is within current segment
  1718       if (segbase <= d->addr &&
  1719           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1720         found = true;
  1725   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1726   // so dll_address_to_library_name() can fall through to use dladdr() which
  1727   // can figure out executable name from argv[0].
  1728   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1729     d->base = libbase;
  1730     if (d->fname) {
  1731       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1733     return 1;
  1735   return 0;
  1738 bool os::dll_address_to_library_name(address addr, char* buf,
  1739                                      int buflen, int* offset) {
  1740   Dl_info dlinfo;
  1741   struct _address_to_library_name data;
  1743   // There is a bug in old glibc dladdr() implementation that it could resolve
  1744   // to wrong library name if the .so file has a base address != NULL. Here
  1745   // we iterate through the program headers of all loaded libraries to find
  1746   // out which library 'addr' really belongs to. This workaround can be
  1747   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1748   data.addr = addr;
  1749   data.fname = buf;
  1750   data.buflen = buflen;
  1751   data.base = NULL;
  1752   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1754   if (rslt) {
  1755      // buf already contains library name
  1756      if (offset) *offset = addr - data.base;
  1757      return true;
  1758   } else if (dladdr((void*)addr, &dlinfo)){
  1759      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1760      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1761      return true;
  1762   } else {
  1763      if (buf) buf[0] = '\0';
  1764      if (offset) *offset = -1;
  1765      return false;
  1769   // Loads .dll/.so and
  1770   // in case of error it checks if .dll/.so was built for the
  1771   // same architecture as Hotspot is running on
  1773 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1775   void * result= ::dlopen(filename, RTLD_LAZY);
  1776   if (result != NULL) {
  1777     // Successful loading
  1778     return result;
  1781   Elf32_Ehdr elf_head;
  1783   // Read system error message into ebuf
  1784   // It may or may not be overwritten below
  1785   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1786   ebuf[ebuflen-1]='\0';
  1787   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1788   char* diag_msg_buf=ebuf+strlen(ebuf);
  1790   if (diag_msg_max_length==0) {
  1791     // No more space in ebuf for additional diagnostics message
  1792     return NULL;
  1796   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1798   if (file_descriptor < 0) {
  1799     // Can't open library, report dlerror() message
  1800     return NULL;
  1803   bool failed_to_read_elf_head=
  1804     (sizeof(elf_head)!=
  1805         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1807   ::close(file_descriptor);
  1808   if (failed_to_read_elf_head) {
  1809     // file i/o error - report dlerror() msg
  1810     return NULL;
  1813   typedef struct {
  1814     Elf32_Half  code;         // Actual value as defined in elf.h
  1815     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1816     char        elf_class;    // 32 or 64 bit
  1817     char        endianess;    // MSB or LSB
  1818     char*       name;         // String representation
  1819   } arch_t;
  1821   #ifndef EM_486
  1822   #define EM_486          6               /* Intel 80486 */
  1823   #endif
  1825   static const arch_t arch_array[]={
  1826     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1827     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1828     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1829     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1830     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1831     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1832     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1833     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1834     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1835     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1836     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1837     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1838     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1839     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1840     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1841     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1842   };
  1844   #if  (defined IA32)
  1845     static  Elf32_Half running_arch_code=EM_386;
  1846   #elif   (defined AMD64)
  1847     static  Elf32_Half running_arch_code=EM_X86_64;
  1848   #elif  (defined IA64)
  1849     static  Elf32_Half running_arch_code=EM_IA_64;
  1850   #elif  (defined __sparc) && (defined _LP64)
  1851     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1852   #elif  (defined __sparc) && (!defined _LP64)
  1853     static  Elf32_Half running_arch_code=EM_SPARC;
  1854   #elif  (defined __powerpc64__)
  1855     static  Elf32_Half running_arch_code=EM_PPC64;
  1856   #elif  (defined __powerpc__)
  1857     static  Elf32_Half running_arch_code=EM_PPC;
  1858   #elif  (defined ARM)
  1859     static  Elf32_Half running_arch_code=EM_ARM;
  1860   #elif  (defined S390)
  1861     static  Elf32_Half running_arch_code=EM_S390;
  1862   #elif  (defined ALPHA)
  1863     static  Elf32_Half running_arch_code=EM_ALPHA;
  1864   #elif  (defined MIPSEL)
  1865     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1866   #elif  (defined PARISC)
  1867     static  Elf32_Half running_arch_code=EM_PARISC;
  1868   #elif  (defined MIPS)
  1869     static  Elf32_Half running_arch_code=EM_MIPS;
  1870   #elif  (defined M68K)
  1871     static  Elf32_Half running_arch_code=EM_68K;
  1872   #else
  1873     #error Method os::dll_load requires that one of following is defined:\
  1874          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1875   #endif
  1877   // Identify compatability class for VM's architecture and library's architecture
  1878   // Obtain string descriptions for architectures
  1880   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1881   int running_arch_index=-1;
  1883   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1884     if (running_arch_code == arch_array[i].code) {
  1885       running_arch_index    = i;
  1887     if (lib_arch.code == arch_array[i].code) {
  1888       lib_arch.compat_class = arch_array[i].compat_class;
  1889       lib_arch.name         = arch_array[i].name;
  1893   assert(running_arch_index != -1,
  1894     "Didn't find running architecture code (running_arch_code) in arch_array");
  1895   if (running_arch_index == -1) {
  1896     // Even though running architecture detection failed
  1897     // we may still continue with reporting dlerror() message
  1898     return NULL;
  1901   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1902     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1903     return NULL;
  1906 #ifndef S390
  1907   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1908     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1909     return NULL;
  1911 #endif // !S390
  1913   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1914     if ( lib_arch.name!=NULL ) {
  1915       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1916         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1917         lib_arch.name, arch_array[running_arch_index].name);
  1918     } else {
  1919       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1920       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1921         lib_arch.code,
  1922         arch_array[running_arch_index].name);
  1926   return NULL;
  1929 /*
  1930  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1931  * chances are you might want to run the generated bits against glibc-2.0
  1932  * libdl.so, so always use locking for any version of glibc.
  1933  */
  1934 void* os::dll_lookup(void* handle, const char* name) {
  1935   pthread_mutex_lock(&dl_mutex);
  1936   void* res = dlsym(handle, name);
  1937   pthread_mutex_unlock(&dl_mutex);
  1938   return res;
  1942 bool _print_ascii_file(const char* filename, outputStream* st) {
  1943   int fd = open(filename, O_RDONLY);
  1944   if (fd == -1) {
  1945      return false;
  1948   char buf[32];
  1949   int bytes;
  1950   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
  1951     st->print_raw(buf, bytes);
  1954   close(fd);
  1956   return true;
  1959 void os::print_dll_info(outputStream *st) {
  1960    st->print_cr("Dynamic libraries:");
  1962    char fname[32];
  1963    pid_t pid = os::Linux::gettid();
  1965    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1967    if (!_print_ascii_file(fname, st)) {
  1968      st->print("Can not get library information for pid = %d\n", pid);
  1973 void os::print_os_info(outputStream* st) {
  1974   st->print("OS:");
  1976   // Try to identify popular distros.
  1977   // Most Linux distributions have /etc/XXX-release file, which contains
  1978   // the OS version string. Some have more than one /etc/XXX-release file
  1979   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  1980   // so the order is important.
  1981   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  1982       !_print_ascii_file("/etc/sun-release", st) &&
  1983       !_print_ascii_file("/etc/redhat-release", st) &&
  1984       !_print_ascii_file("/etc/SuSE-release", st) &&
  1985       !_print_ascii_file("/etc/turbolinux-release", st) &&
  1986       !_print_ascii_file("/etc/gentoo-release", st) &&
  1987       !_print_ascii_file("/etc/debian_version", st) &&
  1988       !_print_ascii_file("/etc/ltib-release", st) &&
  1989       !_print_ascii_file("/etc/angstrom-version", st)) {
  1990       st->print("Linux");
  1992   st->cr();
  1994   // kernel
  1995   st->print("uname:");
  1996   struct utsname name;
  1997   uname(&name);
  1998   st->print(name.sysname); st->print(" ");
  1999   st->print(name.release); st->print(" ");
  2000   st->print(name.version); st->print(" ");
  2001   st->print(name.machine);
  2002   st->cr();
  2004   // Print warning if unsafe chroot environment detected
  2005   if (unsafe_chroot_detected) {
  2006     st->print("WARNING!! ");
  2007     st->print_cr(unstable_chroot_error);
  2010   // libc, pthread
  2011   st->print("libc:");
  2012   st->print(os::Linux::glibc_version()); st->print(" ");
  2013   st->print(os::Linux::libpthread_version()); st->print(" ");
  2014   if (os::Linux::is_LinuxThreads()) {
  2015      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2017   st->cr();
  2019   // rlimit
  2020   st->print("rlimit:");
  2021   struct rlimit rlim;
  2023   st->print(" STACK ");
  2024   getrlimit(RLIMIT_STACK, &rlim);
  2025   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2026   else st->print("%uk", rlim.rlim_cur >> 10);
  2028   st->print(", CORE ");
  2029   getrlimit(RLIMIT_CORE, &rlim);
  2030   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2031   else st->print("%uk", rlim.rlim_cur >> 10);
  2033   st->print(", NPROC ");
  2034   getrlimit(RLIMIT_NPROC, &rlim);
  2035   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2036   else st->print("%d", rlim.rlim_cur);
  2038   st->print(", NOFILE ");
  2039   getrlimit(RLIMIT_NOFILE, &rlim);
  2040   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2041   else st->print("%d", rlim.rlim_cur);
  2043   st->print(", AS ");
  2044   getrlimit(RLIMIT_AS, &rlim);
  2045   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2046   else st->print("%uk", rlim.rlim_cur >> 10);
  2047   st->cr();
  2049   // load average
  2050   st->print("load average:");
  2051   double loadavg[3];
  2052   os::loadavg(loadavg, 3);
  2053   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2054   st->cr();
  2056   // meminfo
  2057   st->print("\n/proc/meminfo:\n");
  2058   _print_ascii_file("/proc/meminfo", st);
  2059   st->cr();
  2062 void os::print_memory_info(outputStream* st) {
  2064   st->print("Memory:");
  2065   st->print(" %dk page", os::vm_page_size()>>10);
  2067   // values in struct sysinfo are "unsigned long"
  2068   struct sysinfo si;
  2069   sysinfo(&si);
  2071   st->print(", physical " UINT64_FORMAT "k",
  2072             os::physical_memory() >> 10);
  2073   st->print("(" UINT64_FORMAT "k free)",
  2074             os::available_memory() >> 10);
  2075   st->print(", swap " UINT64_FORMAT "k",
  2076             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2077   st->print("(" UINT64_FORMAT "k free)",
  2078             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2079   st->cr();
  2082 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2083 // but they're the same for all the linux arch that we support
  2084 // and they're the same for solaris but there's no common place to put this.
  2085 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2086                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2087                           "ILL_COPROC", "ILL_BADSTK" };
  2089 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2090                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2091                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2093 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2095 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2097 void os::print_siginfo(outputStream* st, void* siginfo) {
  2098   st->print("siginfo:");
  2100   const int buflen = 100;
  2101   char buf[buflen];
  2102   siginfo_t *si = (siginfo_t*)siginfo;
  2103   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2104   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2105     st->print("si_errno=%s", buf);
  2106   } else {
  2107     st->print("si_errno=%d", si->si_errno);
  2109   const int c = si->si_code;
  2110   assert(c > 0, "unexpected si_code");
  2111   switch (si->si_signo) {
  2112   case SIGILL:
  2113     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2114     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2115     break;
  2116   case SIGFPE:
  2117     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2118     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2119     break;
  2120   case SIGSEGV:
  2121     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2122     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2123     break;
  2124   case SIGBUS:
  2125     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2126     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2127     break;
  2128   default:
  2129     st->print(", si_code=%d", si->si_code);
  2130     // no si_addr
  2133   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2134       UseSharedSpaces) {
  2135     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2136     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2137       st->print("\n\nError accessing class data sharing archive."   \
  2138                 " Mapped file inaccessible during execution, "      \
  2139                 " possible disk/network problem.");
  2142   st->cr();
  2146 static void print_signal_handler(outputStream* st, int sig,
  2147                                  char* buf, size_t buflen);
  2149 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2150   st->print_cr("Signal Handlers:");
  2151   print_signal_handler(st, SIGSEGV, buf, buflen);
  2152   print_signal_handler(st, SIGBUS , buf, buflen);
  2153   print_signal_handler(st, SIGFPE , buf, buflen);
  2154   print_signal_handler(st, SIGPIPE, buf, buflen);
  2155   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2156   print_signal_handler(st, SIGILL , buf, buflen);
  2157   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2158   print_signal_handler(st, SR_signum, buf, buflen);
  2159   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2160   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2161   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2162   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2165 static char saved_jvm_path[MAXPATHLEN] = {0};
  2167 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2168 void os::jvm_path(char *buf, jint buflen) {
  2169   // Error checking.
  2170   if (buflen < MAXPATHLEN) {
  2171     assert(false, "must use a large-enough buffer");
  2172     buf[0] = '\0';
  2173     return;
  2175   // Lazy resolve the path to current module.
  2176   if (saved_jvm_path[0] != 0) {
  2177     strcpy(buf, saved_jvm_path);
  2178     return;
  2181   char dli_fname[MAXPATHLEN];
  2182   bool ret = dll_address_to_library_name(
  2183                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2184                 dli_fname, sizeof(dli_fname), NULL);
  2185   assert(ret != 0, "cannot locate libjvm");
  2186   char *rp = realpath(dli_fname, buf);
  2187   if (rp == NULL)
  2188     return;
  2190   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2191     // Support for the gamma launcher.  Typical value for buf is
  2192     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2193     // the right place in the string, then assume we are installed in a JDK and
  2194     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2195     // up the path so it looks like libjvm.so is installed there (append a
  2196     // fake suffix hotspot/libjvm.so).
  2197     const char *p = buf + strlen(buf) - 1;
  2198     for (int count = 0; p > buf && count < 5; ++count) {
  2199       for (--p; p > buf && *p != '/'; --p)
  2200         /* empty */ ;
  2203     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2204       // Look for JAVA_HOME in the environment.
  2205       char* java_home_var = ::getenv("JAVA_HOME");
  2206       if (java_home_var != NULL && java_home_var[0] != 0) {
  2207         char* jrelib_p;
  2208         int len;
  2210         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2211         p = strrchr(buf, '/');
  2212         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2213         p = strstr(p, "_g") ? "_g" : "";
  2215         rp = realpath(java_home_var, buf);
  2216         if (rp == NULL)
  2217           return;
  2219         // determine if this is a legacy image or modules image
  2220         // modules image doesn't have "jre" subdirectory
  2221         len = strlen(buf);
  2222         jrelib_p = buf + len;
  2223         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2224         if (0 != access(buf, F_OK)) {
  2225           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2228         if (0 == access(buf, F_OK)) {
  2229           // Use current module name "libjvm[_g].so" instead of
  2230           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2231           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2232           // It is used when we are choosing the HPI library's name
  2233           // "libhpi[_g].so" in hpi::initialize_get_interface().
  2234           len = strlen(buf);
  2235           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2236         } else {
  2237           // Go back to path of .so
  2238           rp = realpath(dli_fname, buf);
  2239           if (rp == NULL)
  2240             return;
  2246   strcpy(saved_jvm_path, buf);
  2249 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2250   // no prefix required, not even "_"
  2253 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2254   // no suffix required
  2257 ////////////////////////////////////////////////////////////////////////////////
  2258 // sun.misc.Signal support
  2260 static volatile jint sigint_count = 0;
  2262 static void
  2263 UserHandler(int sig, void *siginfo, void *context) {
  2264   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2265   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2266   // don't want to flood the manager thread with sem_post requests.
  2267   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2268       return;
  2270   // Ctrl-C is pressed during error reporting, likely because the error
  2271   // handler fails to abort. Let VM die immediately.
  2272   if (sig == SIGINT && is_error_reported()) {
  2273      os::die();
  2276   os::signal_notify(sig);
  2279 void* os::user_handler() {
  2280   return CAST_FROM_FN_PTR(void*, UserHandler);
  2283 extern "C" {
  2284   typedef void (*sa_handler_t)(int);
  2285   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2288 void* os::signal(int signal_number, void* handler) {
  2289   struct sigaction sigAct, oldSigAct;
  2291   sigfillset(&(sigAct.sa_mask));
  2292   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2293   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2295   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2296     // -1 means registration failed
  2297     return (void *)-1;
  2300   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2303 void os::signal_raise(int signal_number) {
  2304   ::raise(signal_number);
  2307 /*
  2308  * The following code is moved from os.cpp for making this
  2309  * code platform specific, which it is by its very nature.
  2310  */
  2312 // Will be modified when max signal is changed to be dynamic
  2313 int os::sigexitnum_pd() {
  2314   return NSIG;
  2317 // a counter for each possible signal value
  2318 static volatile jint pending_signals[NSIG+1] = { 0 };
  2320 // Linux(POSIX) specific hand shaking semaphore.
  2321 static sem_t sig_sem;
  2323 void os::signal_init_pd() {
  2324   // Initialize signal structures
  2325   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2327   // Initialize signal semaphore
  2328   ::sem_init(&sig_sem, 0, 0);
  2331 void os::signal_notify(int sig) {
  2332   Atomic::inc(&pending_signals[sig]);
  2333   ::sem_post(&sig_sem);
  2336 static int check_pending_signals(bool wait) {
  2337   Atomic::store(0, &sigint_count);
  2338   for (;;) {
  2339     for (int i = 0; i < NSIG + 1; i++) {
  2340       jint n = pending_signals[i];
  2341       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2342         return i;
  2345     if (!wait) {
  2346       return -1;
  2348     JavaThread *thread = JavaThread::current();
  2349     ThreadBlockInVM tbivm(thread);
  2351     bool threadIsSuspended;
  2352     do {
  2353       thread->set_suspend_equivalent();
  2354       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2355       ::sem_wait(&sig_sem);
  2357       // were we externally suspended while we were waiting?
  2358       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2359       if (threadIsSuspended) {
  2360         //
  2361         // The semaphore has been incremented, but while we were waiting
  2362         // another thread suspended us. We don't want to continue running
  2363         // while suspended because that would surprise the thread that
  2364         // suspended us.
  2365         //
  2366         ::sem_post(&sig_sem);
  2368         thread->java_suspend_self();
  2370     } while (threadIsSuspended);
  2374 int os::signal_lookup() {
  2375   return check_pending_signals(false);
  2378 int os::signal_wait() {
  2379   return check_pending_signals(true);
  2382 ////////////////////////////////////////////////////////////////////////////////
  2383 // Virtual Memory
  2385 int os::vm_page_size() {
  2386   // Seems redundant as all get out
  2387   assert(os::Linux::page_size() != -1, "must call os::init");
  2388   return os::Linux::page_size();
  2391 // Solaris allocates memory by pages.
  2392 int os::vm_allocation_granularity() {
  2393   assert(os::Linux::page_size() != -1, "must call os::init");
  2394   return os::Linux::page_size();
  2397 // Rationale behind this function:
  2398 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2399 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2400 //  samples for JITted code. Here we create private executable mapping over the code cache
  2401 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2402 //  info for the reporting script by storing timestamp and location of symbol
  2403 void linux_wrap_code(char* base, size_t size) {
  2404   static volatile jint cnt = 0;
  2406   if (!UseOprofile) {
  2407     return;
  2410   char buf[PATH_MAX+1];
  2411   int num = Atomic::add(1, &cnt);
  2413   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2414            os::get_temp_directory(), os::current_process_id(), num);
  2415   unlink(buf);
  2417   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2419   if (fd != -1) {
  2420     off_t rv = lseek(fd, size-2, SEEK_SET);
  2421     if (rv != (off_t)-1) {
  2422       if (write(fd, "", 1) == 1) {
  2423         mmap(base, size,
  2424              PROT_READ|PROT_WRITE|PROT_EXEC,
  2425              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2428     close(fd);
  2429     unlink(buf);
  2433 // NOTE: Linux kernel does not really reserve the pages for us.
  2434 //       All it does is to check if there are enough free pages
  2435 //       left at the time of mmap(). This could be a potential
  2436 //       problem.
  2437 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2438   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2439   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2440                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2441   return res != (uintptr_t) MAP_FAILED;
  2444 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2445                        bool exec) {
  2446   return commit_memory(addr, size, exec);
  2449 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2451 void os::free_memory(char *addr, size_t bytes) {
  2452   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
  2453          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2456 void os::numa_make_global(char *addr, size_t bytes) {
  2457   Linux::numa_interleave_memory(addr, bytes);
  2460 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2461   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2464 bool os::numa_topology_changed()   { return false; }
  2466 size_t os::numa_get_groups_num() {
  2467   int max_node = Linux::numa_max_node();
  2468   return max_node > 0 ? max_node + 1 : 1;
  2471 int os::numa_get_group_id() {
  2472   int cpu_id = Linux::sched_getcpu();
  2473   if (cpu_id != -1) {
  2474     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2475     if (lgrp_id != -1) {
  2476       return lgrp_id;
  2479   return 0;
  2482 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2483   for (size_t i = 0; i < size; i++) {
  2484     ids[i] = i;
  2486   return size;
  2489 bool os::get_page_info(char *start, page_info* info) {
  2490   return false;
  2493 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2494   return end;
  2497 extern "C" void numa_warn(int number, char *where, ...) { }
  2498 extern "C" void numa_error(char *where) { }
  2501 // If we are running with libnuma version > 2, then we should
  2502 // be trying to use symbols with versions 1.1
  2503 // If we are running with earlier version, which did not have symbol versions,
  2504 // we should use the base version.
  2505 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2506   void *f = dlvsym(handle, name, "libnuma_1.1");
  2507   if (f == NULL) {
  2508     f = dlsym(handle, name);
  2510   return f;
  2513 bool os::Linux::libnuma_init() {
  2514   // sched_getcpu() should be in libc.
  2515   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2516                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2518   if (sched_getcpu() != -1) { // Does it work?
  2519     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2520     if (handle != NULL) {
  2521       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2522                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2523       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2524                                        libnuma_dlsym(handle, "numa_max_node")));
  2525       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2526                                         libnuma_dlsym(handle, "numa_available")));
  2527       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2528                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2529       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2530                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2533       if (numa_available() != -1) {
  2534         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2535         // Create a cpu -> node mapping
  2536         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2537         rebuild_cpu_to_node_map();
  2538         return true;
  2542   return false;
  2545 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2546 // The table is later used in get_node_by_cpu().
  2547 void os::Linux::rebuild_cpu_to_node_map() {
  2548   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2549                               // in libnuma (possible values are starting from 16,
  2550                               // and continuing up with every other power of 2, but less
  2551                               // than the maximum number of CPUs supported by kernel), and
  2552                               // is a subject to change (in libnuma version 2 the requirements
  2553                               // are more reasonable) we'll just hardcode the number they use
  2554                               // in the library.
  2555   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2557   size_t cpu_num = os::active_processor_count();
  2558   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2559   size_t cpu_map_valid_size =
  2560     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2562   cpu_to_node()->clear();
  2563   cpu_to_node()->at_grow(cpu_num - 1);
  2564   size_t node_num = numa_get_groups_num();
  2566   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2567   for (size_t i = 0; i < node_num; i++) {
  2568     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2569       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2570         if (cpu_map[j] != 0) {
  2571           for (size_t k = 0; k < BitsPerCLong; k++) {
  2572             if (cpu_map[j] & (1UL << k)) {
  2573               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2580   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2583 int os::Linux::get_node_by_cpu(int cpu_id) {
  2584   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2585     return cpu_to_node()->at(cpu_id);
  2587   return -1;
  2590 GrowableArray<int>* os::Linux::_cpu_to_node;
  2591 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2592 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2593 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2594 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2595 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2596 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2597 unsigned long* os::Linux::_numa_all_nodes;
  2599 bool os::uncommit_memory(char* addr, size_t size) {
  2600   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2601                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2602   return res  != (uintptr_t) MAP_FAILED;
  2605 // Linux uses a growable mapping for the stack, and if the mapping for
  2606 // the stack guard pages is not removed when we detach a thread the
  2607 // stack cannot grow beyond the pages where the stack guard was
  2608 // mapped.  If at some point later in the process the stack expands to
  2609 // that point, the Linux kernel cannot expand the stack any further
  2610 // because the guard pages are in the way, and a segfault occurs.
  2611 //
  2612 // However, it's essential not to split the stack region by unmapping
  2613 // a region (leaving a hole) that's already part of the stack mapping,
  2614 // so if the stack mapping has already grown beyond the guard pages at
  2615 // the time we create them, we have to truncate the stack mapping.
  2616 // So, we need to know the extent of the stack mapping when
  2617 // create_stack_guard_pages() is called.
  2619 // Find the bounds of the stack mapping.  Return true for success.
  2620 //
  2621 // We only need this for stacks that are growable: at the time of
  2622 // writing thread stacks don't use growable mappings (i.e. those
  2623 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2624 // only applies to the main thread.
  2625 static bool
  2626 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
  2628   FILE *f = fopen("/proc/self/maps", "r");
  2629   if (f == NULL)
  2630     return false;
  2632   while (!feof(f)) {
  2633     size_t dummy;
  2634     char *str = NULL;
  2635     ssize_t len = getline(&str, &dummy, f);
  2636     if (len == -1) {
  2637       fclose(f);
  2638       return false;
  2641     if (len > 0 && str[len-1] == '\n') {
  2642       str[len-1] = 0;
  2643       len--;
  2646     static const char *stack_str = "[stack]";
  2647     if (len > (ssize_t)strlen(stack_str)
  2648        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
  2649       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2650         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
  2651         if (sp >= *bottom && sp <= *top) {
  2652           free(str);
  2653           fclose(f);
  2654           return true;
  2658     free(str);
  2660   fclose(f);
  2661   return false;
  2664 // If the (growable) stack mapping already extends beyond the point
  2665 // where we're going to put our guard pages, truncate the mapping at
  2666 // that point by munmap()ping it.  This ensures that when we later
  2667 // munmap() the guard pages we don't leave a hole in the stack
  2668 // mapping. This only affects the main/initial thread, but guard
  2669 // against future OS changes
  2670 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2671   uintptr_t stack_extent, stack_base;
  2672   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2673   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2674       assert(os::Linux::is_initial_thread(),
  2675            "growable stack in non-initial thread");
  2676     if (stack_extent < (uintptr_t)addr)
  2677       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2680   return os::commit_memory(addr, size);
  2683 // If this is a growable mapping, remove the guard pages entirely by
  2684 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2685 // affects the main/initial thread, but guard against future OS changes
  2686 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2687   uintptr_t stack_extent, stack_base;
  2688   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2689   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2690       assert(os::Linux::is_initial_thread(),
  2691            "growable stack in non-initial thread");
  2693     return ::munmap(addr, size) == 0;
  2696   return os::uncommit_memory(addr, size);
  2699 static address _highest_vm_reserved_address = NULL;
  2701 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2702 // at 'requested_addr'. If there are existing memory mappings at the same
  2703 // location, however, they will be overwritten. If 'fixed' is false,
  2704 // 'requested_addr' is only treated as a hint, the return value may or
  2705 // may not start from the requested address. Unlike Linux mmap(), this
  2706 // function returns NULL to indicate failure.
  2707 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2708   char * addr;
  2709   int flags;
  2711   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2712   if (fixed) {
  2713     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2714     flags |= MAP_FIXED;
  2717   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2718   // to PROT_EXEC if executable when we commit the page.
  2719   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2720                        flags, -1, 0);
  2722   if (addr != MAP_FAILED) {
  2723     // anon_mmap() should only get called during VM initialization,
  2724     // don't need lock (actually we can skip locking even it can be called
  2725     // from multiple threads, because _highest_vm_reserved_address is just a
  2726     // hint about the upper limit of non-stack memory regions.)
  2727     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2728       _highest_vm_reserved_address = (address)addr + bytes;
  2732   return addr == MAP_FAILED ? NULL : addr;
  2735 // Don't update _highest_vm_reserved_address, because there might be memory
  2736 // regions above addr + size. If so, releasing a memory region only creates
  2737 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2738 //
  2739 static int anon_munmap(char * addr, size_t size) {
  2740   return ::munmap(addr, size) == 0;
  2743 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2744                          size_t alignment_hint) {
  2745   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2748 bool os::release_memory(char* addr, size_t size) {
  2749   return anon_munmap(addr, size);
  2752 static address highest_vm_reserved_address() {
  2753   return _highest_vm_reserved_address;
  2756 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2757   // Linux wants the mprotect address argument to be page aligned.
  2758   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2760   // According to SUSv3, mprotect() should only be used with mappings
  2761   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2762   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2763   // protection of malloc'ed or statically allocated memory). Check the
  2764   // caller if you hit this assert.
  2765   assert(addr == bottom, "sanity check");
  2767   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2768   return ::mprotect(bottom, size, prot) == 0;
  2771 // Set protections specified
  2772 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2773                         bool is_committed) {
  2774   unsigned int p = 0;
  2775   switch (prot) {
  2776   case MEM_PROT_NONE: p = PROT_NONE; break;
  2777   case MEM_PROT_READ: p = PROT_READ; break;
  2778   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2779   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2780   default:
  2781     ShouldNotReachHere();
  2783   // is_committed is unused.
  2784   return linux_mprotect(addr, bytes, p);
  2787 bool os::guard_memory(char* addr, size_t size) {
  2788   return linux_mprotect(addr, size, PROT_NONE);
  2791 bool os::unguard_memory(char* addr, size_t size) {
  2792   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2795 // Large page support
  2797 static size_t _large_page_size = 0;
  2799 bool os::large_page_init() {
  2800   if (!UseLargePages) return false;
  2802   if (LargePageSizeInBytes) {
  2803     _large_page_size = LargePageSizeInBytes;
  2804   } else {
  2805     // large_page_size on Linux is used to round up heap size. x86 uses either
  2806     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2807     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2808     // page as large as 256M.
  2809     //
  2810     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2811     // for a line with the following format:
  2812     //    Hugepagesize:     2048 kB
  2813     //
  2814     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2815     // format has been changed), we'll use the largest page size supported by
  2816     // the processor.
  2818 #ifndef ZERO
  2819     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  2820                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  2821 #endif // ZERO
  2823     FILE *fp = fopen("/proc/meminfo", "r");
  2824     if (fp) {
  2825       while (!feof(fp)) {
  2826         int x = 0;
  2827         char buf[16];
  2828         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  2829           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  2830             _large_page_size = x * K;
  2831             break;
  2833         } else {
  2834           // skip to next line
  2835           for (;;) {
  2836             int ch = fgetc(fp);
  2837             if (ch == EOF || ch == (int)'\n') break;
  2841       fclose(fp);
  2845   const size_t default_page_size = (size_t)Linux::page_size();
  2846   if (_large_page_size > default_page_size) {
  2847     _page_sizes[0] = _large_page_size;
  2848     _page_sizes[1] = default_page_size;
  2849     _page_sizes[2] = 0;
  2852   // Large page support is available on 2.6 or newer kernel, some vendors
  2853   // (e.g. Redhat) have backported it to their 2.4 based distributions.
  2854   // We optimistically assume the support is available. If later it turns out
  2855   // not true, VM will automatically switch to use regular page size.
  2856   return true;
  2859 #ifndef SHM_HUGETLB
  2860 #define SHM_HUGETLB 04000
  2861 #endif
  2863 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  2864   // "exec" is passed in but not used.  Creating the shared image for
  2865   // the code cache doesn't have an SHM_X executable permission to check.
  2866   assert(UseLargePages, "only for large pages");
  2868   key_t key = IPC_PRIVATE;
  2869   char *addr;
  2871   bool warn_on_failure = UseLargePages &&
  2872                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2873                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2874                         );
  2875   char msg[128];
  2877   // Create a large shared memory region to attach to based on size.
  2878   // Currently, size is the total size of the heap
  2879   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  2880   if (shmid == -1) {
  2881      // Possible reasons for shmget failure:
  2882      // 1. shmmax is too small for Java heap.
  2883      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2884      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2885      // 2. not enough large page memory.
  2886      //    > check available large pages: cat /proc/meminfo
  2887      //    > increase amount of large pages:
  2888      //          echo new_value > /proc/sys/vm/nr_hugepages
  2889      //      Note 1: different Linux may use different name for this property,
  2890      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2891      //      Note 2: it's possible there's enough physical memory available but
  2892      //            they are so fragmented after a long run that they can't
  2893      //            coalesce into large pages. Try to reserve large pages when
  2894      //            the system is still "fresh".
  2895      if (warn_on_failure) {
  2896        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2897        warning(msg);
  2899      return NULL;
  2902   // attach to the region
  2903   addr = (char*)shmat(shmid, req_addr, 0);
  2904   int err = errno;
  2906   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2907   // will be deleted when it's detached by shmdt() or when the process
  2908   // terminates. If shmat() is not successful this will remove the shared
  2909   // segment immediately.
  2910   shmctl(shmid, IPC_RMID, NULL);
  2912   if ((intptr_t)addr == -1) {
  2913      if (warn_on_failure) {
  2914        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2915        warning(msg);
  2917      return NULL;
  2920   return addr;
  2923 bool os::release_memory_special(char* base, size_t bytes) {
  2924   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2925   int rslt = shmdt(base);
  2926   return rslt == 0;
  2929 size_t os::large_page_size() {
  2930   return _large_page_size;
  2933 // Linux does not support anonymous mmap with large page memory. The only way
  2934 // to reserve large page memory without file backing is through SysV shared
  2935 // memory API. The entire memory region is committed and pinned upfront.
  2936 // Hopefully this will change in the future...
  2937 bool os::can_commit_large_page_memory() {
  2938   return false;
  2941 bool os::can_execute_large_page_memory() {
  2942   return false;
  2945 // Reserve memory at an arbitrary address, only if that area is
  2946 // available (and not reserved for something else).
  2948 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2949   const int max_tries = 10;
  2950   char* base[max_tries];
  2951   size_t size[max_tries];
  2952   const size_t gap = 0x000000;
  2954   // Assert only that the size is a multiple of the page size, since
  2955   // that's all that mmap requires, and since that's all we really know
  2956   // about at this low abstraction level.  If we need higher alignment,
  2957   // we can either pass an alignment to this method or verify alignment
  2958   // in one of the methods further up the call chain.  See bug 5044738.
  2959   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2961   // Repeatedly allocate blocks until the block is allocated at the
  2962   // right spot. Give up after max_tries. Note that reserve_memory() will
  2963   // automatically update _highest_vm_reserved_address if the call is
  2964   // successful. The variable tracks the highest memory address every reserved
  2965   // by JVM. It is used to detect heap-stack collision if running with
  2966   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  2967   // space than needed, it could confuse the collision detecting code. To
  2968   // solve the problem, save current _highest_vm_reserved_address and
  2969   // calculate the correct value before return.
  2970   address old_highest = _highest_vm_reserved_address;
  2972   // Linux mmap allows caller to pass an address as hint; give it a try first,
  2973   // if kernel honors the hint then we can return immediately.
  2974   char * addr = anon_mmap(requested_addr, bytes, false);
  2975   if (addr == requested_addr) {
  2976      return requested_addr;
  2979   if (addr != NULL) {
  2980      // mmap() is successful but it fails to reserve at the requested address
  2981      anon_munmap(addr, bytes);
  2984   int i;
  2985   for (i = 0; i < max_tries; ++i) {
  2986     base[i] = reserve_memory(bytes);
  2988     if (base[i] != NULL) {
  2989       // Is this the block we wanted?
  2990       if (base[i] == requested_addr) {
  2991         size[i] = bytes;
  2992         break;
  2995       // Does this overlap the block we wanted? Give back the overlapped
  2996       // parts and try again.
  2998       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2999       if (top_overlap >= 0 && top_overlap < bytes) {
  3000         unmap_memory(base[i], top_overlap);
  3001         base[i] += top_overlap;
  3002         size[i] = bytes - top_overlap;
  3003       } else {
  3004         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3005         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3006           unmap_memory(requested_addr, bottom_overlap);
  3007           size[i] = bytes - bottom_overlap;
  3008         } else {
  3009           size[i] = bytes;
  3015   // Give back the unused reserved pieces.
  3017   for (int j = 0; j < i; ++j) {
  3018     if (base[j] != NULL) {
  3019       unmap_memory(base[j], size[j]);
  3023   if (i < max_tries) {
  3024     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3025     return requested_addr;
  3026   } else {
  3027     _highest_vm_reserved_address = old_highest;
  3028     return NULL;
  3032 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3033   return ::read(fd, buf, nBytes);
  3036 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3037 // Solaris uses poll(), linux uses park().
  3038 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3039 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3040 // SIGSEGV, see 4355769.
  3042 const int NANOSECS_PER_MILLISECS = 1000000;
  3044 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3045   assert(thread == Thread::current(),  "thread consistency check");
  3047   ParkEvent * const slp = thread->_SleepEvent ;
  3048   slp->reset() ;
  3049   OrderAccess::fence() ;
  3051   if (interruptible) {
  3052     jlong prevtime = javaTimeNanos();
  3054     for (;;) {
  3055       if (os::is_interrupted(thread, true)) {
  3056         return OS_INTRPT;
  3059       jlong newtime = javaTimeNanos();
  3061       if (newtime - prevtime < 0) {
  3062         // time moving backwards, should only happen if no monotonic clock
  3063         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3064         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3065       } else {
  3066         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3069       if(millis <= 0) {
  3070         return OS_OK;
  3073       prevtime = newtime;
  3076         assert(thread->is_Java_thread(), "sanity check");
  3077         JavaThread *jt = (JavaThread *) thread;
  3078         ThreadBlockInVM tbivm(jt);
  3079         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3081         jt->set_suspend_equivalent();
  3082         // cleared by handle_special_suspend_equivalent_condition() or
  3083         // java_suspend_self() via check_and_wait_while_suspended()
  3085         slp->park(millis);
  3087         // were we externally suspended while we were waiting?
  3088         jt->check_and_wait_while_suspended();
  3091   } else {
  3092     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3093     jlong prevtime = javaTimeNanos();
  3095     for (;;) {
  3096       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3097       // the 1st iteration ...
  3098       jlong newtime = javaTimeNanos();
  3100       if (newtime - prevtime < 0) {
  3101         // time moving backwards, should only happen if no monotonic clock
  3102         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3103         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3104       } else {
  3105         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3108       if(millis <= 0) break ;
  3110       prevtime = newtime;
  3111       slp->park(millis);
  3113     return OS_OK ;
  3117 int os::naked_sleep() {
  3118   // %% make the sleep time an integer flag. for now use 1 millisec.
  3119   return os::sleep(Thread::current(), 1, false);
  3122 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3123 void os::infinite_sleep() {
  3124   while (true) {    // sleep forever ...
  3125     ::sleep(100);   // ... 100 seconds at a time
  3129 // Used to convert frequent JVM_Yield() to nops
  3130 bool os::dont_yield() {
  3131   return DontYieldALot;
  3134 void os::yield() {
  3135   sched_yield();
  3138 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3140 void os::yield_all(int attempts) {
  3141   // Yields to all threads, including threads with lower priorities
  3142   // Threads on Linux are all with same priority. The Solaris style
  3143   // os::yield_all() with nanosleep(1ms) is not necessary.
  3144   sched_yield();
  3147 // Called from the tight loops to possibly influence time-sharing heuristics
  3148 void os::loop_breaker(int attempts) {
  3149   os::yield_all(attempts);
  3152 ////////////////////////////////////////////////////////////////////////////////
  3153 // thread priority support
  3155 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3156 // only supports dynamic priority, static priority must be zero. For real-time
  3157 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3158 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3159 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3160 // of 5 runs - Sep 2005).
  3161 //
  3162 // The following code actually changes the niceness of kernel-thread/LWP. It
  3163 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3164 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3165 // threads. It has always been the case, but could change in the future. For
  3166 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3167 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3169 int os::java_to_os_priority[MaxPriority + 1] = {
  3170   19,              // 0 Entry should never be used
  3172    4,              // 1 MinPriority
  3173    3,              // 2
  3174    2,              // 3
  3176    1,              // 4
  3177    0,              // 5 NormPriority
  3178   -1,              // 6
  3180   -2,              // 7
  3181   -3,              // 8
  3182   -4,              // 9 NearMaxPriority
  3184   -5               // 10 MaxPriority
  3185 };
  3187 static int prio_init() {
  3188   if (ThreadPriorityPolicy == 1) {
  3189     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3190     // if effective uid is not root. Perhaps, a more elegant way of doing
  3191     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3192     if (geteuid() != 0) {
  3193       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3194         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3196       ThreadPriorityPolicy = 0;
  3199   return 0;
  3202 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3203   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3205   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3206   return (ret == 0) ? OS_OK : OS_ERR;
  3209 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3210   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3211     *priority_ptr = java_to_os_priority[NormPriority];
  3212     return OS_OK;
  3215   errno = 0;
  3216   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3217   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3220 // Hint to the underlying OS that a task switch would not be good.
  3221 // Void return because it's a hint and can fail.
  3222 void os::hint_no_preempt() {}
  3224 ////////////////////////////////////////////////////////////////////////////////
  3225 // suspend/resume support
  3227 //  the low-level signal-based suspend/resume support is a remnant from the
  3228 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3229 //  within hotspot. Now there is a single use-case for this:
  3230 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3231 //      that runs in the watcher thread.
  3232 //  The remaining code is greatly simplified from the more general suspension
  3233 //  code that used to be used.
  3234 //
  3235 //  The protocol is quite simple:
  3236 //  - suspend:
  3237 //      - sends a signal to the target thread
  3238 //      - polls the suspend state of the osthread using a yield loop
  3239 //      - target thread signal handler (SR_handler) sets suspend state
  3240 //        and blocks in sigsuspend until continued
  3241 //  - resume:
  3242 //      - sets target osthread state to continue
  3243 //      - sends signal to end the sigsuspend loop in the SR_handler
  3244 //
  3245 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3246 //
  3248 static void resume_clear_context(OSThread *osthread) {
  3249   osthread->set_ucontext(NULL);
  3250   osthread->set_siginfo(NULL);
  3252   // notify the suspend action is completed, we have now resumed
  3253   osthread->sr.clear_suspended();
  3256 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3257   osthread->set_ucontext(context);
  3258   osthread->set_siginfo(siginfo);
  3261 //
  3262 // Handler function invoked when a thread's execution is suspended or
  3263 // resumed. We have to be careful that only async-safe functions are
  3264 // called here (Note: most pthread functions are not async safe and
  3265 // should be avoided.)
  3266 //
  3267 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3268 // interface point of view, but sigwait() prevents the signal hander
  3269 // from being run. libpthread would get very confused by not having
  3270 // its signal handlers run and prevents sigwait()'s use with the
  3271 // mutex granting granting signal.
  3272 //
  3273 // Currently only ever called on the VMThread
  3274 //
  3275 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3276   // Save and restore errno to avoid confusing native code with EINTR
  3277   // after sigsuspend.
  3278   int old_errno = errno;
  3280   Thread* thread = Thread::current();
  3281   OSThread* osthread = thread->osthread();
  3282   assert(thread->is_VM_thread(), "Must be VMThread");
  3283   // read current suspend action
  3284   int action = osthread->sr.suspend_action();
  3285   if (action == SR_SUSPEND) {
  3286     suspend_save_context(osthread, siginfo, context);
  3288     // Notify the suspend action is about to be completed. do_suspend()
  3289     // waits until SR_SUSPENDED is set and then returns. We will wait
  3290     // here for a resume signal and that completes the suspend-other
  3291     // action. do_suspend/do_resume is always called as a pair from
  3292     // the same thread - so there are no races
  3294     // notify the caller
  3295     osthread->sr.set_suspended();
  3297     sigset_t suspend_set;  // signals for sigsuspend()
  3299     // get current set of blocked signals and unblock resume signal
  3300     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3301     sigdelset(&suspend_set, SR_signum);
  3303     // wait here until we are resumed
  3304     do {
  3305       sigsuspend(&suspend_set);
  3306       // ignore all returns until we get a resume signal
  3307     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3309     resume_clear_context(osthread);
  3311   } else {
  3312     assert(action == SR_CONTINUE, "unexpected sr action");
  3313     // nothing special to do - just leave the handler
  3316   errno = old_errno;
  3320 static int SR_initialize() {
  3321   struct sigaction act;
  3322   char *s;
  3323   /* Get signal number to use for suspend/resume */
  3324   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3325     int sig = ::strtol(s, 0, 10);
  3326     if (sig > 0 || sig < _NSIG) {
  3327         SR_signum = sig;
  3331   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3332         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3334   sigemptyset(&SR_sigset);
  3335   sigaddset(&SR_sigset, SR_signum);
  3337   /* Set up signal handler for suspend/resume */
  3338   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3339   act.sa_handler = (void (*)(int)) SR_handler;
  3341   // SR_signum is blocked by default.
  3342   // 4528190 - We also need to block pthread restart signal (32 on all
  3343   // supported Linux platforms). Note that LinuxThreads need to block
  3344   // this signal for all threads to work properly. So we don't have
  3345   // to use hard-coded signal number when setting up the mask.
  3346   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3348   if (sigaction(SR_signum, &act, 0) == -1) {
  3349     return -1;
  3352   // Save signal flag
  3353   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3354   return 0;
  3357 static int SR_finalize() {
  3358   return 0;
  3362 // returns true on success and false on error - really an error is fatal
  3363 // but this seems the normal response to library errors
  3364 static bool do_suspend(OSThread* osthread) {
  3365   // mark as suspended and send signal
  3366   osthread->sr.set_suspend_action(SR_SUSPEND);
  3367   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3368   assert_status(status == 0, status, "pthread_kill");
  3370   // check status and wait until notified of suspension
  3371   if (status == 0) {
  3372     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3373       os::yield_all(i);
  3375     osthread->sr.set_suspend_action(SR_NONE);
  3376     return true;
  3378   else {
  3379     osthread->sr.set_suspend_action(SR_NONE);
  3380     return false;
  3384 static void do_resume(OSThread* osthread) {
  3385   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3386   osthread->sr.set_suspend_action(SR_CONTINUE);
  3388   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3389   assert_status(status == 0, status, "pthread_kill");
  3390   // check status and wait unit notified of resumption
  3391   if (status == 0) {
  3392     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3393       os::yield_all(i);
  3396   osthread->sr.set_suspend_action(SR_NONE);
  3399 ////////////////////////////////////////////////////////////////////////////////
  3400 // interrupt support
  3402 void os::interrupt(Thread* thread) {
  3403   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3404     "possibility of dangling Thread pointer");
  3406   OSThread* osthread = thread->osthread();
  3408   if (!osthread->interrupted()) {
  3409     osthread->set_interrupted(true);
  3410     // More than one thread can get here with the same value of osthread,
  3411     // resulting in multiple notifications.  We do, however, want the store
  3412     // to interrupted() to be visible to other threads before we execute unpark().
  3413     OrderAccess::fence();
  3414     ParkEvent * const slp = thread->_SleepEvent ;
  3415     if (slp != NULL) slp->unpark() ;
  3418   // For JSR166. Unpark even if interrupt status already was set
  3419   if (thread->is_Java_thread())
  3420     ((JavaThread*)thread)->parker()->unpark();
  3422   ParkEvent * ev = thread->_ParkEvent ;
  3423   if (ev != NULL) ev->unpark() ;
  3427 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3428   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3429     "possibility of dangling Thread pointer");
  3431   OSThread* osthread = thread->osthread();
  3433   bool interrupted = osthread->interrupted();
  3435   if (interrupted && clear_interrupted) {
  3436     osthread->set_interrupted(false);
  3437     // consider thread->_SleepEvent->reset() ... optional optimization
  3440   return interrupted;
  3443 ///////////////////////////////////////////////////////////////////////////////////
  3444 // signal handling (except suspend/resume)
  3446 // This routine may be used by user applications as a "hook" to catch signals.
  3447 // The user-defined signal handler must pass unrecognized signals to this
  3448 // routine, and if it returns true (non-zero), then the signal handler must
  3449 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3450 // routine will never retun false (zero), but instead will execute a VM panic
  3451 // routine kill the process.
  3452 //
  3453 // If this routine returns false, it is OK to call it again.  This allows
  3454 // the user-defined signal handler to perform checks either before or after
  3455 // the VM performs its own checks.  Naturally, the user code would be making
  3456 // a serious error if it tried to handle an exception (such as a null check
  3457 // or breakpoint) that the VM was generating for its own correct operation.
  3458 //
  3459 // This routine may recognize any of the following kinds of signals:
  3460 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3461 // It should be consulted by handlers for any of those signals.
  3462 //
  3463 // The caller of this routine must pass in the three arguments supplied
  3464 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3465 // field of the structure passed to sigaction().  This routine assumes that
  3466 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3467 //
  3468 // Note that the VM will print warnings if it detects conflicting signal
  3469 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3470 //
  3471 extern "C" int
  3472 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3473                         void* ucontext, int abort_if_unrecognized);
  3475 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3476   assert(info != NULL && uc != NULL, "it must be old kernel");
  3477   JVM_handle_linux_signal(sig, info, uc, true);
  3481 // This boolean allows users to forward their own non-matching signals
  3482 // to JVM_handle_linux_signal, harmlessly.
  3483 bool os::Linux::signal_handlers_are_installed = false;
  3485 // For signal-chaining
  3486 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3487 unsigned int os::Linux::sigs = 0;
  3488 bool os::Linux::libjsig_is_loaded = false;
  3489 typedef struct sigaction *(*get_signal_t)(int);
  3490 get_signal_t os::Linux::get_signal_action = NULL;
  3492 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3493   struct sigaction *actp = NULL;
  3495   if (libjsig_is_loaded) {
  3496     // Retrieve the old signal handler from libjsig
  3497     actp = (*get_signal_action)(sig);
  3499   if (actp == NULL) {
  3500     // Retrieve the preinstalled signal handler from jvm
  3501     actp = get_preinstalled_handler(sig);
  3504   return actp;
  3507 static bool call_chained_handler(struct sigaction *actp, int sig,
  3508                                  siginfo_t *siginfo, void *context) {
  3509   // Call the old signal handler
  3510   if (actp->sa_handler == SIG_DFL) {
  3511     // It's more reasonable to let jvm treat it as an unexpected exception
  3512     // instead of taking the default action.
  3513     return false;
  3514   } else if (actp->sa_handler != SIG_IGN) {
  3515     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3516       // automaticlly block the signal
  3517       sigaddset(&(actp->sa_mask), sig);
  3520     sa_handler_t hand;
  3521     sa_sigaction_t sa;
  3522     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3523     // retrieve the chained handler
  3524     if (siginfo_flag_set) {
  3525       sa = actp->sa_sigaction;
  3526     } else {
  3527       hand = actp->sa_handler;
  3530     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3531       actp->sa_handler = SIG_DFL;
  3534     // try to honor the signal mask
  3535     sigset_t oset;
  3536     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3538     // call into the chained handler
  3539     if (siginfo_flag_set) {
  3540       (*sa)(sig, siginfo, context);
  3541     } else {
  3542       (*hand)(sig);
  3545     // restore the signal mask
  3546     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3548   // Tell jvm's signal handler the signal is taken care of.
  3549   return true;
  3552 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3553   bool chained = false;
  3554   // signal-chaining
  3555   if (UseSignalChaining) {
  3556     struct sigaction *actp = get_chained_signal_action(sig);
  3557     if (actp != NULL) {
  3558       chained = call_chained_handler(actp, sig, siginfo, context);
  3561   return chained;
  3564 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3565   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3566     return &sigact[sig];
  3568   return NULL;
  3571 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3572   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3573   sigact[sig] = oldAct;
  3574   sigs |= (unsigned int)1 << sig;
  3577 // for diagnostic
  3578 int os::Linux::sigflags[MAXSIGNUM];
  3580 int os::Linux::get_our_sigflags(int sig) {
  3581   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3582   return sigflags[sig];
  3585 void os::Linux::set_our_sigflags(int sig, int flags) {
  3586   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3587   sigflags[sig] = flags;
  3590 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3591   // Check for overwrite.
  3592   struct sigaction oldAct;
  3593   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3595   void* oldhand = oldAct.sa_sigaction
  3596                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3597                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3598   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3599       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3600       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3601     if (AllowUserSignalHandlers || !set_installed) {
  3602       // Do not overwrite; user takes responsibility to forward to us.
  3603       return;
  3604     } else if (UseSignalChaining) {
  3605       // save the old handler in jvm
  3606       save_preinstalled_handler(sig, oldAct);
  3607       // libjsig also interposes the sigaction() call below and saves the
  3608       // old sigaction on it own.
  3609     } else {
  3610       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3611                     "%#lx for signal %d.", (long)oldhand, sig));
  3615   struct sigaction sigAct;
  3616   sigfillset(&(sigAct.sa_mask));
  3617   sigAct.sa_handler = SIG_DFL;
  3618   if (!set_installed) {
  3619     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3620   } else {
  3621     sigAct.sa_sigaction = signalHandler;
  3622     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3624   // Save flags, which are set by ours
  3625   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3626   sigflags[sig] = sigAct.sa_flags;
  3628   int ret = sigaction(sig, &sigAct, &oldAct);
  3629   assert(ret == 0, "check");
  3631   void* oldhand2  = oldAct.sa_sigaction
  3632                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3633                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3634   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3637 // install signal handlers for signals that HotSpot needs to
  3638 // handle in order to support Java-level exception handling.
  3640 void os::Linux::install_signal_handlers() {
  3641   if (!signal_handlers_are_installed) {
  3642     signal_handlers_are_installed = true;
  3644     // signal-chaining
  3645     typedef void (*signal_setting_t)();
  3646     signal_setting_t begin_signal_setting = NULL;
  3647     signal_setting_t end_signal_setting = NULL;
  3648     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3649                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3650     if (begin_signal_setting != NULL) {
  3651       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3652                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3653       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3654                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3655       libjsig_is_loaded = true;
  3656       assert(UseSignalChaining, "should enable signal-chaining");
  3658     if (libjsig_is_loaded) {
  3659       // Tell libjsig jvm is setting signal handlers
  3660       (*begin_signal_setting)();
  3663     set_signal_handler(SIGSEGV, true);
  3664     set_signal_handler(SIGPIPE, true);
  3665     set_signal_handler(SIGBUS, true);
  3666     set_signal_handler(SIGILL, true);
  3667     set_signal_handler(SIGFPE, true);
  3668     set_signal_handler(SIGXFSZ, true);
  3670     if (libjsig_is_loaded) {
  3671       // Tell libjsig jvm finishes setting signal handlers
  3672       (*end_signal_setting)();
  3675     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3676     // and if UserSignalHandler is installed all bets are off
  3677     if (CheckJNICalls) {
  3678       if (libjsig_is_loaded) {
  3679         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3680         check_signals = false;
  3682       if (AllowUserSignalHandlers) {
  3683         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3684         check_signals = false;
  3690 // This is the fastest way to get thread cpu time on Linux.
  3691 // Returns cpu time (user+sys) for any thread, not only for current.
  3692 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3693 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3694 // For reference, please, see IEEE Std 1003.1-2004:
  3695 //   http://www.unix.org/single_unix_specification
  3697 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3698   struct timespec tp;
  3699   int rc = os::Linux::clock_gettime(clockid, &tp);
  3700   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3702   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3705 /////
  3706 // glibc on Linux platform uses non-documented flag
  3707 // to indicate, that some special sort of signal
  3708 // trampoline is used.
  3709 // We will never set this flag, and we should
  3710 // ignore this flag in our diagnostic
  3711 #ifdef SIGNIFICANT_SIGNAL_MASK
  3712 #undef SIGNIFICANT_SIGNAL_MASK
  3713 #endif
  3714 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3716 static const char* get_signal_handler_name(address handler,
  3717                                            char* buf, int buflen) {
  3718   int offset;
  3719   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3720   if (found) {
  3721     // skip directory names
  3722     const char *p1, *p2;
  3723     p1 = buf;
  3724     size_t len = strlen(os::file_separator());
  3725     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3726     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3727   } else {
  3728     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3730   return buf;
  3733 static void print_signal_handler(outputStream* st, int sig,
  3734                                  char* buf, size_t buflen) {
  3735   struct sigaction sa;
  3737   sigaction(sig, NULL, &sa);
  3739   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3740   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3742   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3744   address handler = (sa.sa_flags & SA_SIGINFO)
  3745     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3746     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3748   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3749     st->print("SIG_DFL");
  3750   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3751     st->print("SIG_IGN");
  3752   } else {
  3753     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3756   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3758   address rh = VMError::get_resetted_sighandler(sig);
  3759   // May be, handler was resetted by VMError?
  3760   if(rh != NULL) {
  3761     handler = rh;
  3762     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3765   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3767   // Check: is it our handler?
  3768   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3769      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3770     // It is our signal handler
  3771     // check for flags, reset system-used one!
  3772     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3773       st->print(
  3774                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3775                 os::Linux::get_our_sigflags(sig));
  3778   st->cr();
  3782 #define DO_SIGNAL_CHECK(sig) \
  3783   if (!sigismember(&check_signal_done, sig)) \
  3784     os::Linux::check_signal_handler(sig)
  3786 // This method is a periodic task to check for misbehaving JNI applications
  3787 // under CheckJNI, we can add any periodic checks here
  3789 void os::run_periodic_checks() {
  3791   if (check_signals == false) return;
  3793   // SEGV and BUS if overridden could potentially prevent
  3794   // generation of hs*.log in the event of a crash, debugging
  3795   // such a case can be very challenging, so we absolutely
  3796   // check the following for a good measure:
  3797   DO_SIGNAL_CHECK(SIGSEGV);
  3798   DO_SIGNAL_CHECK(SIGILL);
  3799   DO_SIGNAL_CHECK(SIGFPE);
  3800   DO_SIGNAL_CHECK(SIGBUS);
  3801   DO_SIGNAL_CHECK(SIGPIPE);
  3802   DO_SIGNAL_CHECK(SIGXFSZ);
  3805   // ReduceSignalUsage allows the user to override these handlers
  3806   // see comments at the very top and jvm_solaris.h
  3807   if (!ReduceSignalUsage) {
  3808     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3809     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3810     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3811     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3814   DO_SIGNAL_CHECK(SR_signum);
  3815   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3818 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3820 static os_sigaction_t os_sigaction = NULL;
  3822 void os::Linux::check_signal_handler(int sig) {
  3823   char buf[O_BUFLEN];
  3824   address jvmHandler = NULL;
  3827   struct sigaction act;
  3828   if (os_sigaction == NULL) {
  3829     // only trust the default sigaction, in case it has been interposed
  3830     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3831     if (os_sigaction == NULL) return;
  3834   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3837   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3839   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3840     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3841     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3844   switch(sig) {
  3845   case SIGSEGV:
  3846   case SIGBUS:
  3847   case SIGFPE:
  3848   case SIGPIPE:
  3849   case SIGILL:
  3850   case SIGXFSZ:
  3851     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3852     break;
  3854   case SHUTDOWN1_SIGNAL:
  3855   case SHUTDOWN2_SIGNAL:
  3856   case SHUTDOWN3_SIGNAL:
  3857   case BREAK_SIGNAL:
  3858     jvmHandler = (address)user_handler();
  3859     break;
  3861   case INTERRUPT_SIGNAL:
  3862     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3863     break;
  3865   default:
  3866     if (sig == SR_signum) {
  3867       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3868     } else {
  3869       return;
  3871     break;
  3874   if (thisHandler != jvmHandler) {
  3875     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3876     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3877     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3878     // No need to check this sig any longer
  3879     sigaddset(&check_signal_done, sig);
  3880   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3881     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3882     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  3883     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3884     // No need to check this sig any longer
  3885     sigaddset(&check_signal_done, sig);
  3888   // Dump all the signal
  3889   if (sigismember(&check_signal_done, sig)) {
  3890     print_signal_handlers(tty, buf, O_BUFLEN);
  3894 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3896 extern bool signal_name(int signo, char* buf, size_t len);
  3898 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3899   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3900     // signal
  3901     if (!signal_name(exception_code, buf, size)) {
  3902       jio_snprintf(buf, size, "SIG%d", exception_code);
  3904     return buf;
  3905   } else {
  3906     return NULL;
  3910 // this is called _before_ the most of global arguments have been parsed
  3911 void os::init(void) {
  3912   char dummy;   /* used to get a guess on initial stack address */
  3913 //  first_hrtime = gethrtime();
  3915   // With LinuxThreads the JavaMain thread pid (primordial thread)
  3916   // is different than the pid of the java launcher thread.
  3917   // So, on Linux, the launcher thread pid is passed to the VM
  3918   // via the sun.java.launcher.pid property.
  3919   // Use this property instead of getpid() if it was correctly passed.
  3920   // See bug 6351349.
  3921   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3923   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3925   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  3927   init_random(1234567);
  3929   ThreadCritical::initialize();
  3931   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  3932   if (Linux::page_size() == -1) {
  3933     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  3934                   strerror(errno)));
  3936   init_page_sizes((size_t) Linux::page_size());
  3938   Linux::initialize_system_info();
  3940   // main_thread points to the aboriginal thread
  3941   Linux::_main_thread = pthread_self();
  3943   Linux::clock_init();
  3944   initial_time_count = os::elapsed_counter();
  3945   pthread_mutex_init(&dl_mutex, NULL);
  3948 // To install functions for atexit system call
  3949 extern "C" {
  3950   static void perfMemory_exit_helper() {
  3951     perfMemory_exit();
  3955 // this is called _after_ the global arguments have been parsed
  3956 jint os::init_2(void)
  3958   Linux::fast_thread_clock_init();
  3960   // Allocate a single page and mark it as readable for safepoint polling
  3961   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3962   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3964   os::set_polling_page( polling_page );
  3966 #ifndef PRODUCT
  3967   if(Verbose && PrintMiscellaneous)
  3968     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3969 #endif
  3971   if (!UseMembar) {
  3972     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3973     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  3974     os::set_memory_serialize_page( mem_serialize_page );
  3976 #ifndef PRODUCT
  3977     if(Verbose && PrintMiscellaneous)
  3978       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3979 #endif
  3982   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3984   // initialize suspend/resume support - must do this before signal_sets_init()
  3985   if (SR_initialize() != 0) {
  3986     perror("SR_initialize failed");
  3987     return JNI_ERR;
  3990   Linux::signal_sets_init();
  3991   Linux::install_signal_handlers();
  3993   // Check minimum allowable stack size for thread creation and to initialize
  3994   // the java system classes, including StackOverflowError - depends on page
  3995   // size.  Add a page for compiler2 recursion in main thread.
  3996   // Add in 2*BytesPerWord times page size to account for VM stack during
  3997   // class initialization depending on 32 or 64 bit VM.
  3998   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  3999             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4000                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4002   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4003   if (threadStackSizeInBytes != 0 &&
  4004       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4005         tty->print_cr("\nThe stack size specified is too small, "
  4006                       "Specify at least %dk",
  4007                       os::Linux::min_stack_allowed/ K);
  4008         return JNI_ERR;
  4011   // Make the stack size a multiple of the page size so that
  4012   // the yellow/red zones can be guarded.
  4013   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4014         vm_page_size()));
  4016   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4018   Linux::libpthread_init();
  4019   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4020      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4021           Linux::glibc_version(), Linux::libpthread_version(),
  4022           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4025   if (UseNUMA) {
  4026     if (!Linux::libnuma_init()) {
  4027       UseNUMA = false;
  4028     } else {
  4029       if ((Linux::numa_max_node() < 1)) {
  4030         // There's only one node(they start from 0), disable NUMA.
  4031         UseNUMA = false;
  4034     if (!UseNUMA && ForceNUMA) {
  4035       UseNUMA = true;
  4039   if (MaxFDLimit) {
  4040     // set the number of file descriptors to max. print out error
  4041     // if getrlimit/setrlimit fails but continue regardless.
  4042     struct rlimit nbr_files;
  4043     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4044     if (status != 0) {
  4045       if (PrintMiscellaneous && (Verbose || WizardMode))
  4046         perror("os::init_2 getrlimit failed");
  4047     } else {
  4048       nbr_files.rlim_cur = nbr_files.rlim_max;
  4049       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4050       if (status != 0) {
  4051         if (PrintMiscellaneous && (Verbose || WizardMode))
  4052           perror("os::init_2 setrlimit failed");
  4057   // Initialize lock used to serialize thread creation (see os::create_thread)
  4058   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4060   // Initialize HPI.
  4061   jint hpi_result = hpi::initialize();
  4062   if (hpi_result != JNI_OK) {
  4063     tty->print_cr("There was an error trying to initialize the HPI library.");
  4064     return hpi_result;
  4067   // at-exit methods are called in the reverse order of their registration.
  4068   // atexit functions are called on return from main or as a result of a
  4069   // call to exit(3C). There can be only 32 of these functions registered
  4070   // and atexit() does not set errno.
  4072   if (PerfAllowAtExitRegistration) {
  4073     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4074     // atexit functions can be delayed until process exit time, which
  4075     // can be problematic for embedded VM situations. Embedded VMs should
  4076     // call DestroyJavaVM() to assure that VM resources are released.
  4078     // note: perfMemory_exit_helper atexit function may be removed in
  4079     // the future if the appropriate cleanup code can be added to the
  4080     // VM_Exit VMOperation's doit method.
  4081     if (atexit(perfMemory_exit_helper) != 0) {
  4082       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4086   // initialize thread priority policy
  4087   prio_init();
  4089   return JNI_OK;
  4092 // this is called at the end of vm_initialization
  4093 void os::init_3(void) { }
  4095 // Mark the polling page as unreadable
  4096 void os::make_polling_page_unreadable(void) {
  4097   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4098     fatal("Could not disable polling page");
  4099 };
  4101 // Mark the polling page as readable
  4102 void os::make_polling_page_readable(void) {
  4103   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4104     fatal("Could not enable polling page");
  4106 };
  4108 int os::active_processor_count() {
  4109   // Linux doesn't yet have a (official) notion of processor sets,
  4110   // so just return the number of online processors.
  4111   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4112   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4113   return online_cpus;
  4116 bool os::distribute_processes(uint length, uint* distribution) {
  4117   // Not yet implemented.
  4118   return false;
  4121 bool os::bind_to_processor(uint processor_id) {
  4122   // Not yet implemented.
  4123   return false;
  4126 ///
  4128 // Suspends the target using the signal mechanism and then grabs the PC before
  4129 // resuming the target. Used by the flat-profiler only
  4130 ExtendedPC os::get_thread_pc(Thread* thread) {
  4131   // Make sure that it is called by the watcher for the VMThread
  4132   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4133   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4135   ExtendedPC epc;
  4137   OSThread* osthread = thread->osthread();
  4138   if (do_suspend(osthread)) {
  4139     if (osthread->ucontext() != NULL) {
  4140       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4141     } else {
  4142       // NULL context is unexpected, double-check this is the VMThread
  4143       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4145     do_resume(osthread);
  4147   // failure means pthread_kill failed for some reason - arguably this is
  4148   // a fatal problem, but such problems are ignored elsewhere
  4150   return epc;
  4153 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4155    if (is_NPTL()) {
  4156       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4157    } else {
  4158 #ifndef IA64
  4159       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4160       // word back to default 64bit precision if condvar is signaled. Java
  4161       // wants 53bit precision.  Save and restore current value.
  4162       int fpu = get_fpu_control_word();
  4163 #endif // IA64
  4164       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4165 #ifndef IA64
  4166       set_fpu_control_word(fpu);
  4167 #endif // IA64
  4168       return status;
  4172 ////////////////////////////////////////////////////////////////////////////////
  4173 // debug support
  4175 static address same_page(address x, address y) {
  4176   int page_bits = -os::vm_page_size();
  4177   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4178     return x;
  4179   else if (x > y)
  4180     return (address)(intptr_t(y) | ~page_bits) + 1;
  4181   else
  4182     return (address)(intptr_t(y) & page_bits);
  4185 bool os::find(address addr, outputStream* st) {
  4186   Dl_info dlinfo;
  4187   memset(&dlinfo, 0, sizeof(dlinfo));
  4188   if (dladdr(addr, &dlinfo)) {
  4189     st->print(PTR_FORMAT ": ", addr);
  4190     if (dlinfo.dli_sname != NULL) {
  4191       st->print("%s+%#x", dlinfo.dli_sname,
  4192                  addr - (intptr_t)dlinfo.dli_saddr);
  4193     } else if (dlinfo.dli_fname) {
  4194       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4195     } else {
  4196       st->print("<absolute address>");
  4198     if (dlinfo.dli_fname) {
  4199       st->print(" in %s", dlinfo.dli_fname);
  4201     if (dlinfo.dli_fbase) {
  4202       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4204     st->cr();
  4206     if (Verbose) {
  4207       // decode some bytes around the PC
  4208       address begin = same_page(addr-40, addr);
  4209       address end   = same_page(addr+40, addr);
  4210       address       lowest = (address) dlinfo.dli_sname;
  4211       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4212       if (begin < lowest)  begin = lowest;
  4213       Dl_info dlinfo2;
  4214       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4215           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4216         end = (address) dlinfo2.dli_saddr;
  4217       Disassembler::decode(begin, end, st);
  4219     return true;
  4221   return false;
  4224 ////////////////////////////////////////////////////////////////////////////////
  4225 // misc
  4227 // This does not do anything on Linux. This is basically a hook for being
  4228 // able to use structured exception handling (thread-local exception filters)
  4229 // on, e.g., Win32.
  4230 void
  4231 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4232                          JavaCallArguments* args, Thread* thread) {
  4233   f(value, method, args, thread);
  4236 void os::print_statistics() {
  4239 int os::message_box(const char* title, const char* message) {
  4240   int i;
  4241   fdStream err(defaultStream::error_fd());
  4242   for (i = 0; i < 78; i++) err.print_raw("=");
  4243   err.cr();
  4244   err.print_raw_cr(title);
  4245   for (i = 0; i < 78; i++) err.print_raw("-");
  4246   err.cr();
  4247   err.print_raw_cr(message);
  4248   for (i = 0; i < 78; i++) err.print_raw("=");
  4249   err.cr();
  4251   char buf[16];
  4252   // Prevent process from exiting upon "read error" without consuming all CPU
  4253   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4255   return buf[0] == 'y' || buf[0] == 'Y';
  4258 int os::stat(const char *path, struct stat *sbuf) {
  4259   char pathbuf[MAX_PATH];
  4260   if (strlen(path) > MAX_PATH - 1) {
  4261     errno = ENAMETOOLONG;
  4262     return -1;
  4264   hpi::native_path(strcpy(pathbuf, path));
  4265   return ::stat(pathbuf, sbuf);
  4268 bool os::check_heap(bool force) {
  4269   return true;
  4272 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4273   return ::vsnprintf(buf, count, format, args);
  4276 // Is a (classpath) directory empty?
  4277 bool os::dir_is_empty(const char* path) {
  4278   DIR *dir = NULL;
  4279   struct dirent *ptr;
  4281   dir = opendir(path);
  4282   if (dir == NULL) return true;
  4284   /* Scan the directory */
  4285   bool result = true;
  4286   char buf[sizeof(struct dirent) + MAX_PATH];
  4287   while (result && (ptr = ::readdir(dir)) != NULL) {
  4288     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4289       result = false;
  4292   closedir(dir);
  4293   return result;
  4296 // create binary file, rewriting existing file if required
  4297 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4298   int oflags = O_WRONLY | O_CREAT;
  4299   if (!rewrite_existing) {
  4300     oflags |= O_EXCL;
  4302   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4305 // return current position of file pointer
  4306 jlong os::current_file_offset(int fd) {
  4307   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4310 // move file pointer to the specified offset
  4311 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4312   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4315 // Map a block of memory.
  4316 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4317                      char *addr, size_t bytes, bool read_only,
  4318                      bool allow_exec) {
  4319   int prot;
  4320   int flags;
  4322   if (read_only) {
  4323     prot = PROT_READ;
  4324     flags = MAP_SHARED;
  4325   } else {
  4326     prot = PROT_READ | PROT_WRITE;
  4327     flags = MAP_PRIVATE;
  4330   if (allow_exec) {
  4331     prot |= PROT_EXEC;
  4334   if (addr != NULL) {
  4335     flags |= MAP_FIXED;
  4338   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4339                                      fd, file_offset);
  4340   if (mapped_address == MAP_FAILED) {
  4341     return NULL;
  4343   return mapped_address;
  4347 // Remap a block of memory.
  4348 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4349                        char *addr, size_t bytes, bool read_only,
  4350                        bool allow_exec) {
  4351   // same as map_memory() on this OS
  4352   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4353                         allow_exec);
  4357 // Unmap a block of memory.
  4358 bool os::unmap_memory(char* addr, size_t bytes) {
  4359   return munmap(addr, bytes) == 0;
  4362 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4364 static clockid_t thread_cpu_clockid(Thread* thread) {
  4365   pthread_t tid = thread->osthread()->pthread_id();
  4366   clockid_t clockid;
  4368   // Get thread clockid
  4369   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4370   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4371   return clockid;
  4374 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4375 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4376 // of a thread.
  4377 //
  4378 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4379 // the fast estimate available on the platform.
  4381 jlong os::current_thread_cpu_time() {
  4382   if (os::Linux::supports_fast_thread_cpu_time()) {
  4383     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4384   } else {
  4385     // return user + sys since the cost is the same
  4386     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4390 jlong os::thread_cpu_time(Thread* thread) {
  4391   // consistent with what current_thread_cpu_time() returns
  4392   if (os::Linux::supports_fast_thread_cpu_time()) {
  4393     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4394   } else {
  4395     return slow_thread_cpu_time(thread, true /* user + sys */);
  4399 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4400   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4401     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4402   } else {
  4403     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4407 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4408   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4409     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4410   } else {
  4411     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4415 //
  4416 //  -1 on error.
  4417 //
  4419 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4420   static bool proc_pid_cpu_avail = true;
  4421   static bool proc_task_unchecked = true;
  4422   static const char *proc_stat_path = "/proc/%d/stat";
  4423   pid_t  tid = thread->osthread()->thread_id();
  4424   int i;
  4425   char *s;
  4426   char stat[2048];
  4427   int statlen;
  4428   char proc_name[64];
  4429   int count;
  4430   long sys_time, user_time;
  4431   char string[64];
  4432   char cdummy;
  4433   int idummy;
  4434   long ldummy;
  4435   FILE *fp;
  4437   // We first try accessing /proc/<pid>/cpu since this is faster to
  4438   // process.  If this file is not present (linux kernels 2.5 and above)
  4439   // then we open /proc/<pid>/stat.
  4440   if ( proc_pid_cpu_avail ) {
  4441     sprintf(proc_name, "/proc/%d/cpu", tid);
  4442     fp =  fopen(proc_name, "r");
  4443     if ( fp != NULL ) {
  4444       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4445       fclose(fp);
  4446       if ( count != 3 ) return -1;
  4448       if (user_sys_cpu_time) {
  4449         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4450       } else {
  4451         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4454     else proc_pid_cpu_avail = false;
  4457   // The /proc/<tid>/stat aggregates per-process usage on
  4458   // new Linux kernels 2.6+ where NPTL is supported.
  4459   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4460   // See bug 6328462.
  4461   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4462   // and possibly in some other cases, so we check its availability.
  4463   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4464     // This is executed only once
  4465     proc_task_unchecked = false;
  4466     fp = fopen("/proc/self/task", "r");
  4467     if (fp != NULL) {
  4468       proc_stat_path = "/proc/self/task/%d/stat";
  4469       fclose(fp);
  4473   sprintf(proc_name, proc_stat_path, tid);
  4474   fp = fopen(proc_name, "r");
  4475   if ( fp == NULL ) return -1;
  4476   statlen = fread(stat, 1, 2047, fp);
  4477   stat[statlen] = '\0';
  4478   fclose(fp);
  4480   // Skip pid and the command string. Note that we could be dealing with
  4481   // weird command names, e.g. user could decide to rename java launcher
  4482   // to "java 1.4.2 :)", then the stat file would look like
  4483   //                1234 (java 1.4.2 :)) R ... ...
  4484   // We don't really need to know the command string, just find the last
  4485   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4486   s = strrchr(stat, ')');
  4487   i = 0;
  4488   if (s == NULL ) return -1;
  4490   // Skip blank chars
  4491   do s++; while (isspace(*s));
  4493   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4494                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4495                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4496                  &user_time, &sys_time);
  4497   if ( count != 13 ) return -1;
  4498   if (user_sys_cpu_time) {
  4499     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4500   } else {
  4501     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4505 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4506   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4507   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4508   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4509   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4512 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4513   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4514   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4515   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4516   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4519 bool os::is_thread_cpu_time_supported() {
  4520   return true;
  4523 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4524 // Linux doesn't yet have a (official) notion of processor sets,
  4525 // so just return the system wide load average.
  4526 int os::loadavg(double loadavg[], int nelem) {
  4527   return ::getloadavg(loadavg, nelem);
  4530 void os::pause() {
  4531   char filename[MAX_PATH];
  4532   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4533     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4534   } else {
  4535     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4538   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4539   if (fd != -1) {
  4540     struct stat buf;
  4541     close(fd);
  4542     while (::stat(filename, &buf) == 0) {
  4543       (void)::poll(NULL, 0, 100);
  4545   } else {
  4546     jio_fprintf(stderr,
  4547       "Could not open pause file '%s', continuing immediately.\n", filename);
  4551 extern "C" {
  4553 /**
  4554  * NOTE: the following code is to keep the green threads code
  4555  * in the libjava.so happy. Once the green threads is removed,
  4556  * these code will no longer be needed.
  4557  */
  4558 int
  4559 jdk_waitpid(pid_t pid, int* status, int options) {
  4560     return waitpid(pid, status, options);
  4563 int
  4564 fork1() {
  4565     return fork();
  4568 int
  4569 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
  4570     return sem_init(sem, pshared, value);
  4573 int
  4574 jdk_sem_post(sem_t *sem) {
  4575     return sem_post(sem);
  4578 int
  4579 jdk_sem_wait(sem_t *sem) {
  4580     return sem_wait(sem);
  4583 int
  4584 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
  4585     return pthread_sigmask(how , newmask, oldmask);
  4590 // Refer to the comments in os_solaris.cpp park-unpark.
  4591 //
  4592 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4593 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4594 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4595 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4596 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4597 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4598 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4599 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4600 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4601 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4602 // of libpthread avoids the problem, but isn't practical.
  4603 //
  4604 // Possible remedies:
  4605 //
  4606 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4607 //      This is palliative and probabilistic, however.  If the thread is preempted
  4608 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4609 //      than the minimum period may have passed, and the abstime may be stale (in the
  4610 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4611 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4612 //
  4613 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4614 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4615 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4616 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4617 //      thread.
  4618 //
  4619 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4620 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4621 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4622 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4623 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4624 //      timers in a graceful fashion.
  4625 //
  4626 // 4.   When the abstime value is in the past it appears that control returns
  4627 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4628 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4629 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4630 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4631 //      It may be possible to avoid reinitialization by checking the return
  4632 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4633 //      condvar we must establish the invariant that cond_signal() is only called
  4634 //      within critical sections protected by the adjunct mutex.  This prevents
  4635 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4636 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4637 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4638 //
  4639 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4640 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4641 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4642 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4643 //
  4644 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4645 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4646 // and only enabling the work-around for vulnerable environments.
  4648 // utility to compute the abstime argument to timedwait:
  4649 // millis is the relative timeout time
  4650 // abstime will be the absolute timeout time
  4651 // TODO: replace compute_abstime() with unpackTime()
  4653 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4654   if (millis < 0)  millis = 0;
  4655   struct timeval now;
  4656   int status = gettimeofday(&now, NULL);
  4657   assert(status == 0, "gettimeofday");
  4658   jlong seconds = millis / 1000;
  4659   millis %= 1000;
  4660   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4661     seconds = 50000000;
  4663   abstime->tv_sec = now.tv_sec  + seconds;
  4664   long       usec = now.tv_usec + millis * 1000;
  4665   if (usec >= 1000000) {
  4666     abstime->tv_sec += 1;
  4667     usec -= 1000000;
  4669   abstime->tv_nsec = usec * 1000;
  4670   return abstime;
  4674 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4675 // Conceptually TryPark() should be equivalent to park(0).
  4677 int os::PlatformEvent::TryPark() {
  4678   for (;;) {
  4679     const int v = _Event ;
  4680     guarantee ((v == 0) || (v == 1), "invariant") ;
  4681     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4685 void os::PlatformEvent::park() {       // AKA "down()"
  4686   // Invariant: Only the thread associated with the Event/PlatformEvent
  4687   // may call park().
  4688   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4689   int v ;
  4690   for (;;) {
  4691       v = _Event ;
  4692       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4694   guarantee (v >= 0, "invariant") ;
  4695   if (v == 0) {
  4696      // Do this the hard way by blocking ...
  4697      int status = pthread_mutex_lock(_mutex);
  4698      assert_status(status == 0, status, "mutex_lock");
  4699      guarantee (_nParked == 0, "invariant") ;
  4700      ++ _nParked ;
  4701      while (_Event < 0) {
  4702         status = pthread_cond_wait(_cond, _mutex);
  4703         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4704         // Treat this the same as if the wait was interrupted
  4705         if (status == ETIME) { status = EINTR; }
  4706         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4708      -- _nParked ;
  4710     // In theory we could move the ST of 0 into _Event past the unlock(),
  4711     // but then we'd need a MEMBAR after the ST.
  4712     _Event = 0 ;
  4713      status = pthread_mutex_unlock(_mutex);
  4714      assert_status(status == 0, status, "mutex_unlock");
  4716   guarantee (_Event >= 0, "invariant") ;
  4719 int os::PlatformEvent::park(jlong millis) {
  4720   guarantee (_nParked == 0, "invariant") ;
  4722   int v ;
  4723   for (;;) {
  4724       v = _Event ;
  4725       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4727   guarantee (v >= 0, "invariant") ;
  4728   if (v != 0) return OS_OK ;
  4730   // We do this the hard way, by blocking the thread.
  4731   // Consider enforcing a minimum timeout value.
  4732   struct timespec abst;
  4733   compute_abstime(&abst, millis);
  4735   int ret = OS_TIMEOUT;
  4736   int status = pthread_mutex_lock(_mutex);
  4737   assert_status(status == 0, status, "mutex_lock");
  4738   guarantee (_nParked == 0, "invariant") ;
  4739   ++_nParked ;
  4741   // Object.wait(timo) will return because of
  4742   // (a) notification
  4743   // (b) timeout
  4744   // (c) thread.interrupt
  4745   //
  4746   // Thread.interrupt and object.notify{All} both call Event::set.
  4747   // That is, we treat thread.interrupt as a special case of notification.
  4748   // The underlying Solaris implementation, cond_timedwait, admits
  4749   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4750   // JVM from making those visible to Java code.  As such, we must
  4751   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4752   //
  4753   // TODO: properly differentiate simultaneous notify+interrupt.
  4754   // In that case, we should propagate the notify to another waiter.
  4756   while (_Event < 0) {
  4757     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  4758     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4759       pthread_cond_destroy (_cond);
  4760       pthread_cond_init (_cond, NULL) ;
  4762     assert_status(status == 0 || status == EINTR ||
  4763                   status == ETIME || status == ETIMEDOUT,
  4764                   status, "cond_timedwait");
  4765     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4766     if (status == ETIME || status == ETIMEDOUT) break ;
  4767     // We consume and ignore EINTR and spurious wakeups.
  4769   --_nParked ;
  4770   if (_Event >= 0) {
  4771      ret = OS_OK;
  4773   _Event = 0 ;
  4774   status = pthread_mutex_unlock(_mutex);
  4775   assert_status(status == 0, status, "mutex_unlock");
  4776   assert (_nParked == 0, "invariant") ;
  4777   return ret;
  4780 void os::PlatformEvent::unpark() {
  4781   int v, AnyWaiters ;
  4782   for (;;) {
  4783       v = _Event ;
  4784       if (v > 0) {
  4785          // The LD of _Event could have reordered or be satisfied
  4786          // by a read-aside from this processor's write buffer.
  4787          // To avoid problems execute a barrier and then
  4788          // ratify the value.
  4789          OrderAccess::fence() ;
  4790          if (_Event == v) return ;
  4791          continue ;
  4793       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4795   if (v < 0) {
  4796      // Wait for the thread associated with the event to vacate
  4797      int status = pthread_mutex_lock(_mutex);
  4798      assert_status(status == 0, status, "mutex_lock");
  4799      AnyWaiters = _nParked ;
  4800      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  4801      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4802         AnyWaiters = 0 ;
  4803         pthread_cond_signal (_cond);
  4805      status = pthread_mutex_unlock(_mutex);
  4806      assert_status(status == 0, status, "mutex_unlock");
  4807      if (AnyWaiters != 0) {
  4808         status = pthread_cond_signal(_cond);
  4809         assert_status(status == 0, status, "cond_signal");
  4813   // Note that we signal() _after dropping the lock for "immortal" Events.
  4814   // This is safe and avoids a common class of  futile wakeups.  In rare
  4815   // circumstances this can cause a thread to return prematurely from
  4816   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4817   // simply re-test the condition and re-park itself.
  4821 // JSR166
  4822 // -------------------------------------------------------
  4824 /*
  4825  * The solaris and linux implementations of park/unpark are fairly
  4826  * conservative for now, but can be improved. They currently use a
  4827  * mutex/condvar pair, plus a a count.
  4828  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4829  * sets count to 1 and signals condvar.  Only one thread ever waits
  4830  * on the condvar. Contention seen when trying to park implies that someone
  4831  * is unparking you, so don't wait. And spurious returns are fine, so there
  4832  * is no need to track notifications.
  4833  */
  4836 #define NANOSECS_PER_SEC 1000000000
  4837 #define NANOSECS_PER_MILLISEC 1000000
  4838 #define MAX_SECS 100000000
  4839 /*
  4840  * This code is common to linux and solaris and will be moved to a
  4841  * common place in dolphin.
  4843  * The passed in time value is either a relative time in nanoseconds
  4844  * or an absolute time in milliseconds. Either way it has to be unpacked
  4845  * into suitable seconds and nanoseconds components and stored in the
  4846  * given timespec structure.
  4847  * Given time is a 64-bit value and the time_t used in the timespec is only
  4848  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  4849  * overflow if times way in the future are given. Further on Solaris versions
  4850  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4851  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4852  * As it will be 28 years before "now + 100000000" will overflow we can
  4853  * ignore overflow and just impose a hard-limit on seconds using the value
  4854  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4855  * years from "now".
  4856  */
  4858 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  4859   assert (time > 0, "convertTime");
  4861   struct timeval now;
  4862   int status = gettimeofday(&now, NULL);
  4863   assert(status == 0, "gettimeofday");
  4865   time_t max_secs = now.tv_sec + MAX_SECS;
  4867   if (isAbsolute) {
  4868     jlong secs = time / 1000;
  4869     if (secs > max_secs) {
  4870       absTime->tv_sec = max_secs;
  4872     else {
  4873       absTime->tv_sec = secs;
  4875     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4877   else {
  4878     jlong secs = time / NANOSECS_PER_SEC;
  4879     if (secs >= MAX_SECS) {
  4880       absTime->tv_sec = max_secs;
  4881       absTime->tv_nsec = 0;
  4883     else {
  4884       absTime->tv_sec = now.tv_sec + secs;
  4885       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4886       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4887         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4888         ++absTime->tv_sec; // note: this must be <= max_secs
  4892   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4893   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4894   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4895   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4898 void Parker::park(bool isAbsolute, jlong time) {
  4899   // Optional fast-path check:
  4900   // Return immediately if a permit is available.
  4901   if (_counter > 0) {
  4902       _counter = 0 ;
  4903       OrderAccess::fence();
  4904       return ;
  4907   Thread* thread = Thread::current();
  4908   assert(thread->is_Java_thread(), "Must be JavaThread");
  4909   JavaThread *jt = (JavaThread *)thread;
  4911   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4912   // Check interrupt before trying to wait
  4913   if (Thread::is_interrupted(thread, false)) {
  4914     return;
  4917   // Next, demultiplex/decode time arguments
  4918   timespec absTime;
  4919   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  4920     return;
  4922   if (time > 0) {
  4923     unpackTime(&absTime, isAbsolute, time);
  4927   // Enter safepoint region
  4928   // Beware of deadlocks such as 6317397.
  4929   // The per-thread Parker:: mutex is a classic leaf-lock.
  4930   // In particular a thread must never block on the Threads_lock while
  4931   // holding the Parker:: mutex.  If safepoints are pending both the
  4932   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4933   ThreadBlockInVM tbivm(jt);
  4935   // Don't wait if cannot get lock since interference arises from
  4936   // unblocking.  Also. check interrupt before trying wait
  4937   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4938     return;
  4941   int status ;
  4942   if (_counter > 0)  { // no wait needed
  4943     _counter = 0;
  4944     status = pthread_mutex_unlock(_mutex);
  4945     assert (status == 0, "invariant") ;
  4946     OrderAccess::fence();
  4947     return;
  4950 #ifdef ASSERT
  4951   // Don't catch signals while blocked; let the running threads have the signals.
  4952   // (This allows a debugger to break into the running thread.)
  4953   sigset_t oldsigs;
  4954   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  4955   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4956 #endif
  4958   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4959   jt->set_suspend_equivalent();
  4960   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4962   if (time == 0) {
  4963     status = pthread_cond_wait (_cond, _mutex) ;
  4964   } else {
  4965     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4966     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4967       pthread_cond_destroy (_cond) ;
  4968       pthread_cond_init    (_cond, NULL);
  4971   assert_status(status == 0 || status == EINTR ||
  4972                 status == ETIME || status == ETIMEDOUT,
  4973                 status, "cond_timedwait");
  4975 #ifdef ASSERT
  4976   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4977 #endif
  4979   _counter = 0 ;
  4980   status = pthread_mutex_unlock(_mutex) ;
  4981   assert_status(status == 0, status, "invariant") ;
  4982   // If externally suspended while waiting, re-suspend
  4983   if (jt->handle_special_suspend_equivalent_condition()) {
  4984     jt->java_suspend_self();
  4987   OrderAccess::fence();
  4990 void Parker::unpark() {
  4991   int s, status ;
  4992   status = pthread_mutex_lock(_mutex);
  4993   assert (status == 0, "invariant") ;
  4994   s = _counter;
  4995   _counter = 1;
  4996   if (s < 1) {
  4997      if (WorkAroundNPTLTimedWaitHang) {
  4998         status = pthread_cond_signal (_cond) ;
  4999         assert (status == 0, "invariant") ;
  5000         status = pthread_mutex_unlock(_mutex);
  5001         assert (status == 0, "invariant") ;
  5002      } else {
  5003         status = pthread_mutex_unlock(_mutex);
  5004         assert (status == 0, "invariant") ;
  5005         status = pthread_cond_signal (_cond) ;
  5006         assert (status == 0, "invariant") ;
  5008   } else {
  5009     pthread_mutex_unlock(_mutex);
  5010     assert (status == 0, "invariant") ;
  5015 extern char** environ;
  5017 #ifndef __NR_fork
  5018 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5019 #endif
  5021 #ifndef __NR_execve
  5022 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5023 #endif
  5025 // Run the specified command in a separate process. Return its exit value,
  5026 // or -1 on failure (e.g. can't fork a new process).
  5027 // Unlike system(), this function can be called from signal handler. It
  5028 // doesn't block SIGINT et al.
  5029 int os::fork_and_exec(char* cmd) {
  5030   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5032   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5033   // pthread_atfork handlers and reset pthread library. All we need is a
  5034   // separate process to execve. Make a direct syscall to fork process.
  5035   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5036   // the best...
  5037   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5038               IA64_ONLY(fork();)
  5040   if (pid < 0) {
  5041     // fork failed
  5042     return -1;
  5044   } else if (pid == 0) {
  5045     // child process
  5047     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5048     // first to kill every thread on the thread list. Because this list is
  5049     // not reset by fork() (see notes above), execve() will instead kill
  5050     // every thread in the parent process. We know this is the only thread
  5051     // in the new process, so make a system call directly.
  5052     // IA64 should use normal execve() from glibc to match the glibc fork()
  5053     // above.
  5054     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5055     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5057     // execve failed
  5058     _exit(-1);
  5060   } else  {
  5061     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5062     // care about the actual exit code, for now.
  5064     int status;
  5066     // Wait for the child process to exit.  This returns immediately if
  5067     // the child has already exited. */
  5068     while (waitpid(pid, &status, 0) < 0) {
  5069         switch (errno) {
  5070         case ECHILD: return 0;
  5071         case EINTR: break;
  5072         default: return -1;
  5076     if (WIFEXITED(status)) {
  5077        // The child exited normally; get its exit code.
  5078        return WEXITSTATUS(status);
  5079     } else if (WIFSIGNALED(status)) {
  5080        // The child exited because of a signal
  5081        // The best value to return is 0x80 + signal number,
  5082        // because that is what all Unix shells do, and because
  5083        // it allows callers to distinguish between process exit and
  5084        // process death by signal.
  5085        return 0x80 + WTERMSIG(status);
  5086     } else {
  5087        // Unknown exit code; pass it through
  5088        return status;
  5093 // is_headless_jre()
  5094 //
  5095 // Test for the existence of libmawt in motif21 or xawt directories
  5096 // in order to report if we are running in a headless jre
  5097 //
  5098 bool os::is_headless_jre() {
  5099     struct stat statbuf;
  5100     char buf[MAXPATHLEN];
  5101     char libmawtpath[MAXPATHLEN];
  5102     const char *xawtstr  = "/xawt/libmawt.so";
  5103     const char *motifstr = "/motif21/libmawt.so";
  5104     char *p;
  5106     // Get path to libjvm.so
  5107     os::jvm_path(buf, sizeof(buf));
  5109     // Get rid of libjvm.so
  5110     p = strrchr(buf, '/');
  5111     if (p == NULL) return false;
  5112     else *p = '\0';
  5114     // Get rid of client or server
  5115     p = strrchr(buf, '/');
  5116     if (p == NULL) return false;
  5117     else *p = '\0';
  5119     // check xawt/libmawt.so
  5120     strcpy(libmawtpath, buf);
  5121     strcat(libmawtpath, xawtstr);
  5122     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5124     // check motif21/libmawt.so
  5125     strcpy(libmawtpath, buf);
  5126     strcat(libmawtpath, motifstr);
  5127     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5129     return true;

mercurial