src/os/bsd/vm/perfMemory_bsd.cpp

Wed, 04 Nov 2015 16:23:08 -0800

author
clanger
date
Wed, 04 Nov 2015 16:23:08 -0800
changeset 8210
2d23269a45a0
parent 8177
9f8038f83a6e
child 8604
04d83ba48607
child 9507
7e72702243a4
permissions
-rw-r--r--

8140244: Port fix of JDK-8075773 to AIX and possibly MacOSX
Reviewed-by: stuefe, dcubed

     1 /*
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_bsd.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "services/memTracker.hpp"
    34 #include "utilities/exceptions.hpp"
    36 // put OS-includes here
    37 # include <sys/types.h>
    38 # include <sys/mman.h>
    39 # include <errno.h>
    40 # include <stdio.h>
    41 # include <unistd.h>
    42 # include <sys/stat.h>
    43 # include <signal.h>
    44 # include <pwd.h>
    46 static char* backing_store_file_name = NULL;  // name of the backing store
    47                                               // file, if successfully created.
    49 // Standard Memory Implementation Details
    51 // create the PerfData memory region in standard memory.
    52 //
    53 static char* create_standard_memory(size_t size) {
    55   // allocate an aligned chuck of memory
    56   char* mapAddress = os::reserve_memory(size);
    58   if (mapAddress == NULL) {
    59     return NULL;
    60   }
    62   // commit memory
    63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    64     if (PrintMiscellaneous && Verbose) {
    65       warning("Could not commit PerfData memory\n");
    66     }
    67     os::release_memory(mapAddress, size);
    68     return NULL;
    69   }
    71   return mapAddress;
    72 }
    74 // delete the PerfData memory region
    75 //
    76 static void delete_standard_memory(char* addr, size_t size) {
    78   // there are no persistent external resources to cleanup for standard
    79   // memory. since DestroyJavaVM does not support unloading of the JVM,
    80   // cleanup of the memory resource is not performed. The memory will be
    81   // reclaimed by the OS upon termination of the process.
    82   //
    83   return;
    84 }
    86 // save the specified memory region to the given file
    87 //
    88 // Note: this function might be called from signal handler (by os::abort()),
    89 // don't allocate heap memory.
    90 //
    91 static void save_memory_to_file(char* addr, size_t size) {
    93  const char* destfile = PerfMemory::get_perfdata_file_path();
    94  assert(destfile[0] != '\0', "invalid PerfData file path");
    96   int result;
    98   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
    99               result);;
   100   if (result == OS_ERR) {
   101     if (PrintMiscellaneous && Verbose) {
   102       warning("Could not create Perfdata save file: %s: %s\n",
   103               destfile, strerror(errno));
   104     }
   105   } else {
   106     int fd = result;
   108     for (size_t remaining = size; remaining > 0;) {
   110       RESTARTABLE(::write(fd, addr, remaining), result);
   111       if (result == OS_ERR) {
   112         if (PrintMiscellaneous && Verbose) {
   113           warning("Could not write Perfdata save file: %s: %s\n",
   114                   destfile, strerror(errno));
   115         }
   116         break;
   117       }
   119       remaining -= (size_t)result;
   120       addr += result;
   121     }
   123     result = ::close(fd);
   124     if (PrintMiscellaneous && Verbose) {
   125       if (result == OS_ERR) {
   126         warning("Could not close %s: %s\n", destfile, strerror(errno));
   127       }
   128     }
   129   }
   130   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
   131 }
   134 // Shared Memory Implementation Details
   136 // Note: the solaris and bsd shared memory implementation uses the mmap
   137 // interface with a backing store file to implement named shared memory.
   138 // Using the file system as the name space for shared memory allows a
   139 // common name space to be supported across a variety of platforms. It
   140 // also provides a name space that Java applications can deal with through
   141 // simple file apis.
   142 //
   143 // The solaris and bsd implementations store the backing store file in
   144 // a user specific temporary directory located in the /tmp file system,
   145 // which is always a local file system and is sometimes a RAM based file
   146 // system.
   148 // return the user specific temporary directory name.
   149 //
   150 // the caller is expected to free the allocated memory.
   151 //
   152 static char* get_user_tmp_dir(const char* user) {
   154   const char* tmpdir = os::get_temp_directory();
   155   const char* perfdir = PERFDATA_NAME;
   156   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   157   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   159   // construct the path name to user specific tmp directory
   160   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
   162   return dirname;
   163 }
   165 // convert the given file name into a process id. if the file
   166 // does not meet the file naming constraints, return 0.
   167 //
   168 static pid_t filename_to_pid(const char* filename) {
   170   // a filename that doesn't begin with a digit is not a
   171   // candidate for conversion.
   172   //
   173   if (!isdigit(*filename)) {
   174     return 0;
   175   }
   177   // check if file name can be converted to an integer without
   178   // any leftover characters.
   179   //
   180   char* remainder = NULL;
   181   errno = 0;
   182   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
   184   if (errno != 0) {
   185     return 0;
   186   }
   188   // check for left over characters. If any, then the filename is
   189   // not a candidate for conversion.
   190   //
   191   if (remainder != NULL && *remainder != '\0') {
   192     return 0;
   193   }
   195   // successful conversion, return the pid
   196   return pid;
   197 }
   200 // Check if the given statbuf is considered a secure directory for
   201 // the backing store files. Returns true if the directory is considered
   202 // a secure location. Returns false if the statbuf is a symbolic link or
   203 // if an error occurred.
   204 //
   205 static bool is_statbuf_secure(struct stat *statp) {
   206   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
   207     // The path represents a link or some non-directory file type,
   208     // which is not what we expected. Declare it insecure.
   209     //
   210     return false;
   211   }
   212   // We have an existing directory, check if the permissions are safe.
   213   //
   214   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
   215     // The directory is open for writing and could be subjected
   216     // to a symlink or a hard link attack. Declare it insecure.
   217     //
   218     return false;
   219   }
   220   // If user is not root then see if the uid of the directory matches the effective uid of the process.
   221   uid_t euid = geteuid();
   222   if ((euid != 0) && (statp->st_uid != euid)) {
   223     // The directory was not created by this user, declare it insecure.
   224     //
   225     return false;
   226   }
   227   return true;
   228 }
   231 // Check if the given path is considered a secure directory for
   232 // the backing store files. Returns true if the directory exists
   233 // and is considered a secure location. Returns false if the path
   234 // is a symbolic link or if an error occurred.
   235 //
   236 static bool is_directory_secure(const char* path) {
   237   struct stat statbuf;
   238   int result = 0;
   240   RESTARTABLE(::lstat(path, &statbuf), result);
   241   if (result == OS_ERR) {
   242     return false;
   243   }
   245   // The path exists, see if it is secure.
   246   return is_statbuf_secure(&statbuf);
   247 }
   250 // Check if the given directory file descriptor is considered a secure
   251 // directory for the backing store files. Returns true if the directory
   252 // exists and is considered a secure location. Returns false if the path
   253 // is a symbolic link or if an error occurred.
   254 //
   255 static bool is_dirfd_secure(int dir_fd) {
   256   struct stat statbuf;
   257   int result = 0;
   259   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
   260   if (result == OS_ERR) {
   261     return false;
   262   }
   264   // The path exists, now check its mode.
   265   return is_statbuf_secure(&statbuf);
   266 }
   269 // Check to make sure fd1 and fd2 are referencing the same file system object.
   270 //
   271 static bool is_same_fsobject(int fd1, int fd2) {
   272   struct stat statbuf1;
   273   struct stat statbuf2;
   274   int result = 0;
   276   RESTARTABLE(::fstat(fd1, &statbuf1), result);
   277   if (result == OS_ERR) {
   278     return false;
   279   }
   280   RESTARTABLE(::fstat(fd2, &statbuf2), result);
   281   if (result == OS_ERR) {
   282     return false;
   283   }
   285   if ((statbuf1.st_ino == statbuf2.st_ino) &&
   286       (statbuf1.st_dev == statbuf2.st_dev)) {
   287     return true;
   288   } else {
   289     return false;
   290   }
   291 }
   294 // Open the directory of the given path and validate it.
   295 // Return a DIR * of the open directory.
   296 //
   297 static DIR *open_directory_secure(const char* dirname) {
   298   // Open the directory using open() so that it can be verified
   299   // to be secure by calling is_dirfd_secure(), opendir() and then check
   300   // to see if they are the same file system object.  This method does not
   301   // introduce a window of opportunity for the directory to be attacked that
   302   // calling opendir() and is_directory_secure() does.
   303   int result;
   304   DIR *dirp = NULL;
   305   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
   306   if (result == OS_ERR) {
   307     // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
   308     if (PrintMiscellaneous && Verbose) {
   309       if (errno == ELOOP) {
   310         warning("directory %s is a symlink and is not secure\n", dirname);
   311       } else {
   312         warning("could not open directory %s: %s\n", dirname, strerror(errno));
   313       }
   314     }
   315     return dirp;
   316   }
   317   int fd = result;
   319   // Determine if the open directory is secure.
   320   if (!is_dirfd_secure(fd)) {
   321     // The directory is not a secure directory.
   322     os::close(fd);
   323     return dirp;
   324   }
   326   // Open the directory.
   327   dirp = ::opendir(dirname);
   328   if (dirp == NULL) {
   329     // The directory doesn't exist, close fd and return.
   330     os::close(fd);
   331     return dirp;
   332   }
   334   // Check to make sure fd and dirp are referencing the same file system object.
   335   if (!is_same_fsobject(fd, dirfd(dirp))) {
   336     // The directory is not secure.
   337     os::close(fd);
   338     os::closedir(dirp);
   339     dirp = NULL;
   340     return dirp;
   341   }
   343   // Close initial open now that we know directory is secure
   344   os::close(fd);
   346   return dirp;
   347 }
   349 // NOTE: The code below uses fchdir(), open() and unlink() because
   350 // fdopendir(), openat() and unlinkat() are not supported on all
   351 // versions.  Once the support for fdopendir(), openat() and unlinkat()
   352 // is available on all supported versions the code can be changed
   353 // to use these functions.
   355 // Open the directory of the given path, validate it and set the
   356 // current working directory to it.
   357 // Return a DIR * of the open directory and the saved cwd fd.
   358 //
   359 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
   361   // Open the directory.
   362   DIR* dirp = open_directory_secure(dirname);
   363   if (dirp == NULL) {
   364     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
   365     return dirp;
   366   }
   367   int fd = dirfd(dirp);
   369   // Open a fd to the cwd and save it off.
   370   int result;
   371   RESTARTABLE(::open(".", O_RDONLY), result);
   372   if (result == OS_ERR) {
   373     *saved_cwd_fd = -1;
   374   } else {
   375     *saved_cwd_fd = result;
   376   }
   378   // Set the current directory to dirname by using the fd of the directory and
   379   // handle errors, otherwise shared memory files will be created in cwd.
   380   result = fchdir(fd);
   381   if (result == OS_ERR) {
   382     if (PrintMiscellaneous && Verbose) {
   383       warning("could not change to directory %s", dirname);
   384     }
   385     if (*saved_cwd_fd != -1) {
   386       ::close(*saved_cwd_fd);
   387       *saved_cwd_fd = -1;
   388     }
   389     // Close the directory.
   390     os::closedir(dirp);
   391     return NULL;
   392   } else {
   393     return dirp;
   394   }
   395 }
   397 // Close the directory and restore the current working directory.
   398 //
   399 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
   401   int result;
   402   // If we have a saved cwd change back to it and close the fd.
   403   if (saved_cwd_fd != -1) {
   404     result = fchdir(saved_cwd_fd);
   405     ::close(saved_cwd_fd);
   406   }
   408   // Close the directory.
   409   os::closedir(dirp);
   410 }
   412 // Check if the given file descriptor is considered a secure.
   413 //
   414 static bool is_file_secure(int fd, const char *filename) {
   416   int result;
   417   struct stat statbuf;
   419   // Determine if the file is secure.
   420   RESTARTABLE(::fstat(fd, &statbuf), result);
   421   if (result == OS_ERR) {
   422     if (PrintMiscellaneous && Verbose) {
   423       warning("fstat failed on %s: %s\n", filename, strerror(errno));
   424     }
   425     return false;
   426   }
   427   if (statbuf.st_nlink > 1) {
   428     // A file with multiple links is not expected.
   429     if (PrintMiscellaneous && Verbose) {
   430       warning("file %s has multiple links\n", filename);
   431     }
   432     return false;
   433   }
   434   return true;
   435 }
   437 // return the user name for the given user id
   438 //
   439 // the caller is expected to free the allocated memory.
   440 //
   441 static char* get_user_name(uid_t uid) {
   443   struct passwd pwent;
   445   // determine the max pwbuf size from sysconf, and hardcode
   446   // a default if this not available through sysconf.
   447   //
   448   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
   449   if (bufsize == -1)
   450     bufsize = 1024;
   452   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   454   // POSIX interface to getpwuid_r is used on LINUX
   455   struct passwd* p;
   456   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
   458   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
   459     if (PrintMiscellaneous && Verbose) {
   460       if (result != 0) {
   461         warning("Could not retrieve passwd entry: %s\n",
   462                 strerror(result));
   463       }
   464       else if (p == NULL) {
   465         // this check is added to protect against an observed problem
   466         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
   467         // indicating success, but has p == NULL. This was observed when
   468         // inserting a file descriptor exhaustion fault prior to the call
   469         // getpwuid_r() call. In this case, error is set to the appropriate
   470         // error condition, but this is undocumented behavior. This check
   471         // is safe under any condition, but the use of errno in the output
   472         // message may result in an erroneous message.
   473         // Bug Id 89052 was opened with RedHat.
   474         //
   475         warning("Could not retrieve passwd entry: %s\n",
   476                 strerror(errno));
   477       }
   478       else {
   479         warning("Could not determine user name: %s\n",
   480                 p->pw_name == NULL ? "pw_name = NULL" :
   481                                      "pw_name zero length");
   482       }
   483     }
   484     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   485     return NULL;
   486   }
   488   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
   489   strcpy(user_name, p->pw_name);
   491   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   492   return user_name;
   493 }
   495 // return the name of the user that owns the process identified by vmid.
   496 //
   497 // This method uses a slow directory search algorithm to find the backing
   498 // store file for the specified vmid and returns the user name, as determined
   499 // by the user name suffix of the hsperfdata_<username> directory name.
   500 //
   501 // the caller is expected to free the allocated memory.
   502 //
   503 static char* get_user_name_slow(int vmid, TRAPS) {
   505   // short circuit the directory search if the process doesn't even exist.
   506   if (kill(vmid, 0) == OS_ERR) {
   507     if (errno == ESRCH) {
   508       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
   509                   "Process not found");
   510     }
   511     else /* EPERM */ {
   512       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
   513     }
   514   }
   516   // directory search
   517   char* oldest_user = NULL;
   518   time_t oldest_ctime = 0;
   520   const char* tmpdirname = os::get_temp_directory();
   522   // open the temp directory
   523   DIR* tmpdirp = os::opendir(tmpdirname);
   525   if (tmpdirp == NULL) {
   526     // Cannot open the directory to get the user name, return.
   527     return NULL;
   528   }
   530   // for each entry in the directory that matches the pattern hsperfdata_*,
   531   // open the directory and check if the file for the given vmid exists.
   532   // The file with the expected name and the latest creation date is used
   533   // to determine the user name for the process id.
   534   //
   535   struct dirent* dentry;
   536   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
   537   errno = 0;
   538   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   540     // check if the directory entry is a hsperfdata file
   541     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   542       continue;
   543     }
   545     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   546                  strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
   547     strcpy(usrdir_name, tmpdirname);
   548     strcat(usrdir_name, "/");
   549     strcat(usrdir_name, dentry->d_name);
   551     // open the user directory
   552     DIR* subdirp = open_directory_secure(usrdir_name);
   554     if (subdirp == NULL) {
   555       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   556       continue;
   557     }
   559     struct dirent* udentry;
   560     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
   561     errno = 0;
   562     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   564       if (filename_to_pid(udentry->d_name) == vmid) {
   565         struct stat statbuf;
   566         int result;
   568         char* filename = NEW_C_HEAP_ARRAY(char,
   569                  strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
   571         strcpy(filename, usrdir_name);
   572         strcat(filename, "/");
   573         strcat(filename, udentry->d_name);
   575         // don't follow symbolic links for the file
   576         RESTARTABLE(::lstat(filename, &statbuf), result);
   577         if (result == OS_ERR) {
   578            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   579            continue;
   580         }
   582         // skip over files that are not regular files.
   583         if (!S_ISREG(statbuf.st_mode)) {
   584           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   585           continue;
   586         }
   588         // compare and save filename with latest creation time
   589         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
   591           if (statbuf.st_ctime > oldest_ctime) {
   592             char* user = strchr(dentry->d_name, '_') + 1;
   594             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
   595             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
   597             strcpy(oldest_user, user);
   598             oldest_ctime = statbuf.st_ctime;
   599           }
   600         }
   602         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   603       }
   604     }
   605     os::closedir(subdirp);
   606     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
   607     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   608   }
   609   os::closedir(tmpdirp);
   610   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
   612   return(oldest_user);
   613 }
   615 // return the name of the user that owns the JVM indicated by the given vmid.
   616 //
   617 static char* get_user_name(int vmid, TRAPS) {
   618   return get_user_name_slow(vmid, CHECK_NULL);
   619 }
   621 // return the file name of the backing store file for the named
   622 // shared memory region for the given user name and vmid.
   623 //
   624 // the caller is expected to free the allocated memory.
   625 //
   626 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   628   // add 2 for the file separator and a null terminator.
   629   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   631   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   632   snprintf(name, nbytes, "%s/%d", dirname, vmid);
   634   return name;
   635 }
   638 // remove file
   639 //
   640 // this method removes the file specified by the given path
   641 //
   642 static void remove_file(const char* path) {
   644   int result;
   646   // if the file is a directory, the following unlink will fail. since
   647   // we don't expect to find directories in the user temp directory, we
   648   // won't try to handle this situation. even if accidentially or
   649   // maliciously planted, the directory's presence won't hurt anything.
   650   //
   651   RESTARTABLE(::unlink(path), result);
   652   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
   653     if (errno != ENOENT) {
   654       warning("Could not unlink shared memory backing"
   655               " store file %s : %s\n", path, strerror(errno));
   656     }
   657   }
   658 }
   661 // cleanup stale shared memory resources
   662 //
   663 // This method attempts to remove all stale shared memory files in
   664 // the named user temporary directory. It scans the named directory
   665 // for files matching the pattern ^$[0-9]*$. For each file found, the
   666 // process id is extracted from the file name and a test is run to
   667 // determine if the process is alive. If the process is not alive,
   668 // any stale file resources are removed.
   669 //
   670 static void cleanup_sharedmem_resources(const char* dirname) {
   672   int saved_cwd_fd;
   673   // open the directory and set the current working directory to it
   674   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   675   if (dirp == NULL) {
   676     // directory doesn't exist or is insecure, so there is nothing to cleanup
   677     return;
   678   }
   680   // for each entry in the directory that matches the expected file
   681   // name pattern, determine if the file resources are stale and if
   682   // so, remove the file resources. Note, instrumented HotSpot processes
   683   // for this user may start and/or terminate during this search and
   684   // remove or create new files in this directory. The behavior of this
   685   // loop under these conditions is dependent upon the implementation of
   686   // opendir/readdir.
   687   //
   688   struct dirent* entry;
   689   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
   691   errno = 0;
   692   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   694     pid_t pid = filename_to_pid(entry->d_name);
   696     if (pid == 0) {
   698       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   700         // attempt to remove all unexpected files, except "." and ".."
   701         unlink(entry->d_name);
   702       }
   704       errno = 0;
   705       continue;
   706     }
   708     // we now have a file name that converts to a valid integer
   709     // that could represent a process id . if this process id
   710     // matches the current process id or the process is not running,
   711     // then remove the stale file resources.
   712     //
   713     // process liveness is detected by sending signal number 0 to
   714     // the process id (see kill(2)). if kill determines that the
   715     // process does not exist, then the file resources are removed.
   716     // if kill determines that that we don't have permission to
   717     // signal the process, then the file resources are assumed to
   718     // be stale and are removed because the resources for such a
   719     // process should be in a different user specific directory.
   720     //
   721     if ((pid == os::current_process_id()) ||
   722         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
   724         unlink(entry->d_name);
   725     }
   726     errno = 0;
   727   }
   729   // close the directory and reset the current working directory
   730   close_directory_secure_cwd(dirp, saved_cwd_fd);
   732   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
   733 }
   735 // make the user specific temporary directory. Returns true if
   736 // the directory exists and is secure upon return. Returns false
   737 // if the directory exists but is either a symlink, is otherwise
   738 // insecure, or if an error occurred.
   739 //
   740 static bool make_user_tmp_dir(const char* dirname) {
   742   // create the directory with 0755 permissions. note that the directory
   743   // will be owned by euid::egid, which may not be the same as uid::gid.
   744   //
   745   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
   746     if (errno == EEXIST) {
   747       // The directory already exists and was probably created by another
   748       // JVM instance. However, this could also be the result of a
   749       // deliberate symlink. Verify that the existing directory is safe.
   750       //
   751       if (!is_directory_secure(dirname)) {
   752         // directory is not secure
   753         if (PrintMiscellaneous && Verbose) {
   754           warning("%s directory is insecure\n", dirname);
   755         }
   756         return false;
   757       }
   758     }
   759     else {
   760       // we encountered some other failure while attempting
   761       // to create the directory
   762       //
   763       if (PrintMiscellaneous && Verbose) {
   764         warning("could not create directory %s: %s\n",
   765                 dirname, strerror(errno));
   766       }
   767       return false;
   768     }
   769   }
   770   return true;
   771 }
   773 // create the shared memory file resources
   774 //
   775 // This method creates the shared memory file with the given size
   776 // This method also creates the user specific temporary directory, if
   777 // it does not yet exist.
   778 //
   779 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
   781   // make the user temporary directory
   782   if (!make_user_tmp_dir(dirname)) {
   783     // could not make/find the directory or the found directory
   784     // was not secure
   785     return -1;
   786   }
   788   int saved_cwd_fd;
   789   // open the directory and set the current working directory to it
   790   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   791   if (dirp == NULL) {
   792     // Directory doesn't exist or is insecure, so cannot create shared
   793     // memory file.
   794     return -1;
   795   }
   797   // Open the filename in the current directory.
   798   // Cannot use O_TRUNC here; truncation of an existing file has to happen
   799   // after the is_file_secure() check below.
   800   int result;
   801   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
   802   if (result == OS_ERR) {
   803     if (PrintMiscellaneous && Verbose) {
   804       if (errno == ELOOP) {
   805         warning("file %s is a symlink and is not secure\n", filename);
   806       } else {
   807         warning("could not create file %s: %s\n", filename, strerror(errno));
   808       }
   809     }
   810     // close the directory and reset the current working directory
   811     close_directory_secure_cwd(dirp, saved_cwd_fd);
   813     return -1;
   814   }
   815   // close the directory and reset the current working directory
   816   close_directory_secure_cwd(dirp, saved_cwd_fd);
   818   // save the file descriptor
   819   int fd = result;
   821   // check to see if the file is secure
   822   if (!is_file_secure(fd, filename)) {
   823     ::close(fd);
   824     return -1;
   825   }
   827   // truncate the file to get rid of any existing data
   828   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
   829   if (result == OS_ERR) {
   830     if (PrintMiscellaneous && Verbose) {
   831       warning("could not truncate shared memory file: %s\n", strerror(errno));
   832     }
   833     ::close(fd);
   834     return -1;
   835   }
   836   // set the file size
   837   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
   838   if (result == OS_ERR) {
   839     if (PrintMiscellaneous && Verbose) {
   840       warning("could not set shared memory file size: %s\n", strerror(errno));
   841     }
   842     ::close(fd);
   843     return -1;
   844   }
   846   // Verify that we have enough disk space for this file.
   847   // We'll get random SIGBUS crashes on memory accesses if
   848   // we don't.
   850   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
   851     int zero_int = 0;
   852     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
   853     if (result == -1 ) break;
   854     RESTARTABLE(::write(fd, &zero_int, 1), result);
   855     if (result != 1) {
   856       if (errno == ENOSPC) {
   857         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
   858       }
   859       break;
   860     }
   861   }
   863   if (result != -1) {
   864     return fd;
   865   } else {
   866     ::close(fd);
   867     return -1;
   868   }
   869 }
   871 // open the shared memory file for the given user and vmid. returns
   872 // the file descriptor for the open file or -1 if the file could not
   873 // be opened.
   874 //
   875 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
   877   // open the file
   878   int result;
   879   RESTARTABLE(::open(filename, oflags), result);
   880   if (result == OS_ERR) {
   881     if (errno == ENOENT) {
   882       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   883                   "Process not found", OS_ERR);
   884     }
   885     else if (errno == EACCES) {
   886       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   887                   "Permission denied", OS_ERR);
   888     }
   889     else {
   890       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
   891     }
   892   }
   893   int fd = result;
   895   // check to see if the file is secure
   896   if (!is_file_secure(fd, filename)) {
   897     ::close(fd);
   898     return -1;
   899   }
   901   return fd;
   902 }
   904 // create a named shared memory region. returns the address of the
   905 // memory region on success or NULL on failure. A return value of
   906 // NULL will ultimately disable the shared memory feature.
   907 //
   908 // On Solaris and Bsd, the name space for shared memory objects
   909 // is the file system name space.
   910 //
   911 // A monitoring application attaching to a JVM does not need to know
   912 // the file system name of the shared memory object. However, it may
   913 // be convenient for applications to discover the existence of newly
   914 // created and terminating JVMs by watching the file system name space
   915 // for files being created or removed.
   916 //
   917 static char* mmap_create_shared(size_t size) {
   919   int result;
   920   int fd;
   921   char* mapAddress;
   923   int vmid = os::current_process_id();
   925   char* user_name = get_user_name(geteuid());
   927   if (user_name == NULL)
   928     return NULL;
   930   char* dirname = get_user_tmp_dir(user_name);
   931   char* filename = get_sharedmem_filename(dirname, vmid);
   933   // get the short filename
   934   char* short_filename = strrchr(filename, '/');
   935   if (short_filename == NULL) {
   936     short_filename = filename;
   937   } else {
   938     short_filename++;
   939   }
   941   // cleanup any stale shared memory files
   942   cleanup_sharedmem_resources(dirname);
   944   assert(((size > 0) && (size % os::vm_page_size() == 0)),
   945          "unexpected PerfMemory region size");
   947   fd = create_sharedmem_resources(dirname, short_filename, size);
   949   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
   950   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
   952   if (fd == -1) {
   953     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   954     return NULL;
   955   }
   957   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
   959   result = ::close(fd);
   960   assert(result != OS_ERR, "could not close file");
   962   if (mapAddress == MAP_FAILED) {
   963     if (PrintMiscellaneous && Verbose) {
   964       warning("mmap failed -  %s\n", strerror(errno));
   965     }
   966     remove_file(filename);
   967     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   968     return NULL;
   969   }
   971   // save the file name for use in delete_shared_memory()
   972   backing_store_file_name = filename;
   974   // clear the shared memory region
   975   (void)::memset((void*) mapAddress, 0, size);
   977   // it does not go through os api, the operation has to record from here
   978   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
   980   return mapAddress;
   981 }
   983 // release a named shared memory region
   984 //
   985 static void unmap_shared(char* addr, size_t bytes) {
   986   os::release_memory(addr, bytes);
   987 }
   989 // create the PerfData memory region in shared memory.
   990 //
   991 static char* create_shared_memory(size_t size) {
   993   // create the shared memory region.
   994   return mmap_create_shared(size);
   995 }
   997 // delete the shared PerfData memory region
   998 //
   999 static void delete_shared_memory(char* addr, size_t size) {
  1001   // cleanup the persistent shared memory resources. since DestroyJavaVM does
  1002   // not support unloading of the JVM, unmapping of the memory resource is
  1003   // not performed. The memory will be reclaimed by the OS upon termination of
  1004   // the process. The backing store file is deleted from the file system.
  1006   assert(!PerfDisableSharedMem, "shouldn't be here");
  1008   if (backing_store_file_name != NULL) {
  1009     remove_file(backing_store_file_name);
  1010     // Don't.. Free heap memory could deadlock os::abort() if it is called
  1011     // from signal handler. OS will reclaim the heap memory.
  1012     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
  1013     backing_store_file_name = NULL;
  1017 // return the size of the file for the given file descriptor
  1018 // or 0 if it is not a valid size for a shared memory file
  1019 //
  1020 static size_t sharedmem_filesize(int fd, TRAPS) {
  1022   struct stat statbuf;
  1023   int result;
  1025   RESTARTABLE(::fstat(fd, &statbuf), result);
  1026   if (result == OS_ERR) {
  1027     if (PrintMiscellaneous && Verbose) {
  1028       warning("fstat failed: %s\n", strerror(errno));
  1030     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1031                 "Could not determine PerfMemory size");
  1034   if ((statbuf.st_size == 0) ||
  1035      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
  1036     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1037                 "Invalid PerfMemory size");
  1040   return (size_t)statbuf.st_size;
  1043 // attach to a named shared memory region.
  1044 //
  1045 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
  1047   char* mapAddress;
  1048   int result;
  1049   int fd;
  1050   size_t size = 0;
  1051   const char* luser = NULL;
  1053   int mmap_prot;
  1054   int file_flags;
  1056   ResourceMark rm;
  1058   // map the high level access mode to the appropriate permission
  1059   // constructs for the file and the shared memory mapping.
  1060   if (mode == PerfMemory::PERF_MODE_RO) {
  1061     mmap_prot = PROT_READ;
  1062     file_flags = O_RDONLY | O_NOFOLLOW;
  1064   else if (mode == PerfMemory::PERF_MODE_RW) {
  1065 #ifdef LATER
  1066     mmap_prot = PROT_READ | PROT_WRITE;
  1067     file_flags = O_RDWR | O_NOFOLLOW;
  1068 #else
  1069     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1070               "Unsupported access mode");
  1071 #endif
  1073   else {
  1074     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1075               "Illegal access mode");
  1078   if (user == NULL || strlen(user) == 0) {
  1079     luser = get_user_name(vmid, CHECK);
  1081   else {
  1082     luser = user;
  1085   if (luser == NULL) {
  1086     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1087               "Could not map vmid to user Name");
  1090   char* dirname = get_user_tmp_dir(luser);
  1092   // since we don't follow symbolic links when creating the backing
  1093   // store file, we don't follow them when attaching either.
  1094   //
  1095   if (!is_directory_secure(dirname)) {
  1096     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1097     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1098               "Process not found");
  1101   char* filename = get_sharedmem_filename(dirname, vmid);
  1103   // copy heap memory to resource memory. the open_sharedmem_file
  1104   // method below need to use the filename, but could throw an
  1105   // exception. using a resource array prevents the leak that
  1106   // would otherwise occur.
  1107   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1108   strcpy(rfilename, filename);
  1110   // free the c heap resources that are no longer needed
  1111   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  1112   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1113   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  1115   // open the shared memory file for the give vmid
  1116   fd = open_sharedmem_file(rfilename, file_flags, CHECK);
  1117   assert(fd != OS_ERR, "unexpected value");
  1119   if (*sizep == 0) {
  1120     size = sharedmem_filesize(fd, CHECK);
  1121   } else {
  1122     size = *sizep;
  1125   assert(size > 0, "unexpected size <= 0");
  1127   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
  1129   // attempt to close the file - restart if it gets interrupted,
  1130   // but ignore other failures
  1131   result = ::close(fd);
  1132   assert(result != OS_ERR, "could not close file");
  1134   if (mapAddress == MAP_FAILED) {
  1135     if (PrintMiscellaneous && Verbose) {
  1136       warning("mmap failed: %s\n", strerror(errno));
  1138     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1139               "Could not map PerfMemory");
  1142   // it does not go through os api, the operation has to record from here
  1143   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
  1145   *addr = mapAddress;
  1146   *sizep = size;
  1148   if (PerfTraceMemOps) {
  1149     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1150                INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
  1157 // create the PerfData memory region
  1158 //
  1159 // This method creates the memory region used to store performance
  1160 // data for the JVM. The memory may be created in standard or
  1161 // shared memory.
  1162 //
  1163 void PerfMemory::create_memory_region(size_t size) {
  1165   if (PerfDisableSharedMem) {
  1166     // do not share the memory for the performance data.
  1167     _start = create_standard_memory(size);
  1169   else {
  1170     _start = create_shared_memory(size);
  1171     if (_start == NULL) {
  1173       // creation of the shared memory region failed, attempt
  1174       // to create a contiguous, non-shared memory region instead.
  1175       //
  1176       if (PrintMiscellaneous && Verbose) {
  1177         warning("Reverting to non-shared PerfMemory region.\n");
  1179       PerfDisableSharedMem = true;
  1180       _start = create_standard_memory(size);
  1184   if (_start != NULL) _capacity = size;
  1188 // delete the PerfData memory region
  1189 //
  1190 // This method deletes the memory region used to store performance
  1191 // data for the JVM. The memory region indicated by the <address, size>
  1192 // tuple will be inaccessible after a call to this method.
  1193 //
  1194 void PerfMemory::delete_memory_region() {
  1196   assert((start() != NULL && capacity() > 0), "verify proper state");
  1198   // If user specifies PerfDataSaveFile, it will save the performance data
  1199   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1200   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1201   // -XX:+PerfDataSaveToFile.
  1202   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1203     save_memory_to_file(start(), capacity());
  1206   if (PerfDisableSharedMem) {
  1207     delete_standard_memory(start(), capacity());
  1209   else {
  1210     delete_shared_memory(start(), capacity());
  1214 // attach to the PerfData memory region for another JVM
  1215 //
  1216 // This method returns an <address, size> tuple that points to
  1217 // a memory buffer that is kept reasonably synchronized with
  1218 // the PerfData memory region for the indicated JVM. This
  1219 // buffer may be kept in synchronization via shared memory
  1220 // or some other mechanism that keeps the buffer updated.
  1221 //
  1222 // If the JVM chooses not to support the attachability feature,
  1223 // this method should throw an UnsupportedOperation exception.
  1224 //
  1225 // This implementation utilizes named shared memory to map
  1226 // the indicated process's PerfData memory region into this JVMs
  1227 // address space.
  1228 //
  1229 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
  1231   if (vmid == 0 || vmid == os::current_process_id()) {
  1232      *addrp = start();
  1233      *sizep = capacity();
  1234      return;
  1237   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
  1240 // detach from the PerfData memory region of another JVM
  1241 //
  1242 // This method detaches the PerfData memory region of another
  1243 // JVM, specified as an <address, size> tuple of a buffer
  1244 // in this process's address space. This method may perform
  1245 // arbitrary actions to accomplish the detachment. The memory
  1246 // region specified by <address, size> will be inaccessible after
  1247 // a call to this method.
  1248 //
  1249 // If the JVM chooses not to support the attachability feature,
  1250 // this method should throw an UnsupportedOperation exception.
  1251 //
  1252 // This implementation utilizes named shared memory to detach
  1253 // the indicated process's PerfData memory region from this
  1254 // process's address space.
  1255 //
  1256 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1258   assert(addr != 0, "address sanity check");
  1259   assert(bytes > 0, "capacity sanity check");
  1261   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1262     // prevent accidental detachment of this process's PerfMemory region
  1263     return;
  1266   unmap_shared(addr, bytes);
  1269 char* PerfMemory::backing_store_filename() {
  1270   return backing_store_file_name;

mercurial