src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Tue, 04 Jun 2013 22:16:15 -0700

author
simonis
date
Tue, 04 Jun 2013 22:16:15 -0700
changeset 5230
2cb5d5f6d5e5
parent 4993
746b070f5022
child 5302
9ba41a4a71ff
permissions
-rw-r--r--

8015252: Enable HotSpot build with Clang
Reviewed-by: twisti, dholmes, kvn

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "asm/macroAssembler.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_linux.inline.hpp"
    36 #include "os_share_linux.hpp"
    37 #include "prims/jniFastGetField.hpp"
    38 #include "prims/jvm.h"
    39 #include "prims/jvm_misc.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/extendedPC.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/javaCalls.hpp"
    46 #include "runtime/mutexLocker.hpp"
    47 #include "runtime/osThread.hpp"
    48 #include "runtime/sharedRuntime.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "utilities/events.hpp"
    53 #include "utilities/vmError.hpp"
    55 // put OS-includes here
    56 # include <sys/types.h>
    57 # include <sys/mman.h>
    58 # include <pthread.h>
    59 # include <signal.h>
    60 # include <errno.h>
    61 # include <dlfcn.h>
    62 # include <stdlib.h>
    63 # include <stdio.h>
    64 # include <unistd.h>
    65 # include <sys/resource.h>
    66 # include <pthread.h>
    67 # include <sys/stat.h>
    68 # include <sys/time.h>
    69 # include <sys/utsname.h>
    70 # include <sys/socket.h>
    71 # include <sys/wait.h>
    72 # include <pwd.h>
    73 # include <poll.h>
    74 # include <ucontext.h>
    75 # include <fpu_control.h>
    77 #ifdef AMD64
    78 #define REG_SP REG_RSP
    79 #define REG_PC REG_RIP
    80 #define REG_FP REG_RBP
    81 #define SPELL_REG_SP "rsp"
    82 #define SPELL_REG_FP "rbp"
    83 #else
    84 #define REG_SP REG_UESP
    85 #define REG_PC REG_EIP
    86 #define REG_FP REG_EBP
    87 #define SPELL_REG_SP "esp"
    88 #define SPELL_REG_FP "ebp"
    89 #endif // AMD64
    91 address os::current_stack_pointer() {
    92 #ifdef SPARC_WORKS
    93   register void *esp;
    94   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
    95   return (address) ((char*)esp + sizeof(long)*2);
    96 #elif defined(__clang__)
    97   intptr_t* esp;
    98   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
    99   return (address) esp;
   100 #else
   101   register void *esp __asm__ (SPELL_REG_SP);
   102   return (address) esp;
   103 #endif
   104 }
   106 char* os::non_memory_address_word() {
   107   // Must never look like an address returned by reserve_memory,
   108   // even in its subfields (as defined by the CPU immediate fields,
   109   // if the CPU splits constants across multiple instructions).
   111   return (char*) -1;
   112 }
   114 void os::initialize_thread(Thread* thr) {
   115 // Nothing to do.
   116 }
   118 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
   119   return (address)uc->uc_mcontext.gregs[REG_PC];
   120 }
   122 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
   123   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   124 }
   126 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
   127   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   128 }
   130 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   131 // is currently interrupted by SIGPROF.
   132 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   133 // frames. Currently we don't do that on Linux, so it's the same as
   134 // os::fetch_frame_from_context().
   135 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   136   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   138   assert(thread != NULL, "just checking");
   139   assert(ret_sp != NULL, "just checking");
   140   assert(ret_fp != NULL, "just checking");
   142   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   143 }
   145 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   146                     intptr_t** ret_sp, intptr_t** ret_fp) {
   148   ExtendedPC  epc;
   149   ucontext_t* uc = (ucontext_t*)ucVoid;
   151   if (uc != NULL) {
   152     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   153     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   154     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   155   } else {
   156     // construct empty ExtendedPC for return value checking
   157     epc = ExtendedPC(NULL);
   158     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   159     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   160   }
   162   return epc;
   163 }
   165 frame os::fetch_frame_from_context(void* ucVoid) {
   166   intptr_t* sp;
   167   intptr_t* fp;
   168   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   169   return frame(sp, fp, epc.pc());
   170 }
   172 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   173 // turned off by -fomit-frame-pointer,
   174 frame os::get_sender_for_C_frame(frame* fr) {
   175   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   176 }
   178 intptr_t* _get_previous_fp() {
   179 #ifdef SPARC_WORKS
   180   register intptr_t **ebp;
   181   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
   182 #elif defined(__clang__)
   183   intptr_t **ebp;
   184   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
   185 #else
   186   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   187 #endif
   188   return (intptr_t*) *ebp;   // we want what it points to.
   189 }
   192 frame os::current_frame() {
   193   intptr_t* fp = _get_previous_fp();
   194   frame myframe((intptr_t*)os::current_stack_pointer(),
   195                 (intptr_t*)fp,
   196                 CAST_FROM_FN_PTR(address, os::current_frame));
   197   if (os::is_first_C_frame(&myframe)) {
   198     // stack is not walkable
   199     return frame();
   200   } else {
   201     return os::get_sender_for_C_frame(&myframe);
   202   }
   203 }
   205 // Utility functions
   207 // From IA32 System Programming Guide
   208 enum {
   209   trap_page_fault = 0xE
   210 };
   212 extern "C" void Fetch32PFI () ;
   213 extern "C" void Fetch32Resume () ;
   214 #ifdef AMD64
   215 extern "C" void FetchNPFI () ;
   216 extern "C" void FetchNResume () ;
   217 #endif // AMD64
   219 extern "C" JNIEXPORT int
   220 JVM_handle_linux_signal(int sig,
   221                         siginfo_t* info,
   222                         void* ucVoid,
   223                         int abort_if_unrecognized) {
   224   ucontext_t* uc = (ucontext_t*) ucVoid;
   226   Thread* t = ThreadLocalStorage::get_thread_slow();
   228   SignalHandlerMark shm(t);
   230   // Note: it's not uncommon that JNI code uses signal/sigset to install
   231   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   232   // or have a SIGILL handler when detecting CPU type). When that happens,
   233   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   234   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   235   // that do not require siginfo/ucontext first.
   237   if (sig == SIGPIPE || sig == SIGXFSZ) {
   238     // allow chained handler to go first
   239     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   240       return true;
   241     } else {
   242       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   243         char buf[64];
   244         warning("Ignoring %s - see bugs 4229104 or 646499219",
   245                 os::exception_name(sig, buf, sizeof(buf)));
   246       }
   247       return true;
   248     }
   249   }
   251   JavaThread* thread = NULL;
   252   VMThread* vmthread = NULL;
   253   if (os::Linux::signal_handlers_are_installed) {
   254     if (t != NULL ){
   255       if(t->is_Java_thread()) {
   256         thread = (JavaThread*)t;
   257       }
   258       else if(t->is_VM_thread()){
   259         vmthread = (VMThread *)t;
   260       }
   261     }
   262   }
   263 /*
   264   NOTE: does not seem to work on linux.
   265   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   266     // can't decode this kind of signal
   267     info = NULL;
   268   } else {
   269     assert(sig == info->si_signo, "bad siginfo");
   270   }
   271 */
   272   // decide if this trap can be handled by a stub
   273   address stub = NULL;
   275   address pc          = NULL;
   277   //%note os_trap_1
   278   if (info != NULL && uc != NULL && thread != NULL) {
   279     pc = (address) os::Linux::ucontext_get_pc(uc);
   281     if (pc == (address) Fetch32PFI) {
   282        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   283        return 1 ;
   284     }
   285 #ifdef AMD64
   286     if (pc == (address) FetchNPFI) {
   287        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
   288        return 1 ;
   289     }
   290 #endif // AMD64
   292     // Handle ALL stack overflow variations here
   293     if (sig == SIGSEGV) {
   294       address addr = (address) info->si_addr;
   296       // check if fault address is within thread stack
   297       if (addr < thread->stack_base() &&
   298           addr >= thread->stack_base() - thread->stack_size()) {
   299         // stack overflow
   300         if (thread->in_stack_yellow_zone(addr)) {
   301           thread->disable_stack_yellow_zone();
   302           if (thread->thread_state() == _thread_in_Java) {
   303             // Throw a stack overflow exception.  Guard pages will be reenabled
   304             // while unwinding the stack.
   305             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   306           } else {
   307             // Thread was in the vm or native code.  Return and try to finish.
   308             return 1;
   309           }
   310         } else if (thread->in_stack_red_zone(addr)) {
   311           // Fatal red zone violation.  Disable the guard pages and fall through
   312           // to handle_unexpected_exception way down below.
   313           thread->disable_stack_red_zone();
   314           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   316           // This is a likely cause, but hard to verify. Let's just print
   317           // it as a hint.
   318           tty->print_raw_cr("Please check if any of your loaded .so files has "
   319                             "enabled executable stack (see man page execstack(8))");
   320         } else {
   321           // Accessing stack address below sp may cause SEGV if current
   322           // thread has MAP_GROWSDOWN stack. This should only happen when
   323           // current thread was created by user code with MAP_GROWSDOWN flag
   324           // and then attached to VM. See notes in os_linux.cpp.
   325           if (thread->osthread()->expanding_stack() == 0) {
   326              thread->osthread()->set_expanding_stack();
   327              if (os::Linux::manually_expand_stack(thread, addr)) {
   328                thread->osthread()->clear_expanding_stack();
   329                return 1;
   330              }
   331              thread->osthread()->clear_expanding_stack();
   332           } else {
   333              fatal("recursive segv. expanding stack.");
   334           }
   335         }
   336       }
   337     }
   339     if (thread->thread_state() == _thread_in_Java) {
   340       // Java thread running in Java code => find exception handler if any
   341       // a fault inside compiled code, the interpreter, or a stub
   343       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   344         stub = SharedRuntime::get_poll_stub(pc);
   345       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   346         // BugId 4454115: A read from a MappedByteBuffer can fault
   347         // here if the underlying file has been truncated.
   348         // Do not crash the VM in such a case.
   349         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   350         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
   351         if (nm != NULL && nm->has_unsafe_access()) {
   352           stub = StubRoutines::handler_for_unsafe_access();
   353         }
   354       }
   355       else
   357 #ifdef AMD64
   358       if (sig == SIGFPE  &&
   359           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   360         stub =
   361           SharedRuntime::
   362           continuation_for_implicit_exception(thread,
   363                                               pc,
   364                                               SharedRuntime::
   365                                               IMPLICIT_DIVIDE_BY_ZERO);
   366 #else
   367       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   368         // HACK: si_code does not work on linux 2.2.12-20!!!
   369         int op = pc[0];
   370         if (op == 0xDB) {
   371           // FIST
   372           // TODO: The encoding of D2I in i486.ad can cause an exception
   373           // prior to the fist instruction if there was an invalid operation
   374           // pending. We want to dismiss that exception. From the win_32
   375           // side it also seems that if it really was the fist causing
   376           // the exception that we do the d2i by hand with different
   377           // rounding. Seems kind of weird.
   378           // NOTE: that we take the exception at the NEXT floating point instruction.
   379           assert(pc[0] == 0xDB, "not a FIST opcode");
   380           assert(pc[1] == 0x14, "not a FIST opcode");
   381           assert(pc[2] == 0x24, "not a FIST opcode");
   382           return true;
   383         } else if (op == 0xF7) {
   384           // IDIV
   385           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   386         } else {
   387           // TODO: handle more cases if we are using other x86 instructions
   388           //   that can generate SIGFPE signal on linux.
   389           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   390           fatal("please update this code.");
   391         }
   392 #endif // AMD64
   393       } else if (sig == SIGSEGV &&
   394                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   395           // Determination of interpreter/vtable stub/compiled code null exception
   396           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   397       }
   398     } else if (thread->thread_state() == _thread_in_vm &&
   399                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   400                thread->doing_unsafe_access()) {
   401         stub = StubRoutines::handler_for_unsafe_access();
   402     }
   404     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   405     // and the heap gets shrunk before the field access.
   406     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   407       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   408       if (addr != (address)-1) {
   409         stub = addr;
   410       }
   411     }
   413     // Check to see if we caught the safepoint code in the
   414     // process of write protecting the memory serialization page.
   415     // It write enables the page immediately after protecting it
   416     // so we can just return to retry the write.
   417     if ((sig == SIGSEGV) &&
   418         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   419       // Block current thread until the memory serialize page permission restored.
   420       os::block_on_serialize_page_trap();
   421       return true;
   422     }
   423   }
   425 #ifndef AMD64
   426   // Execution protection violation
   427   //
   428   // This should be kept as the last step in the triage.  We don't
   429   // have a dedicated trap number for a no-execute fault, so be
   430   // conservative and allow other handlers the first shot.
   431   //
   432   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   433   // this si_code is so generic that it is almost meaningless; and
   434   // the si_code for this condition may change in the future.
   435   // Furthermore, a false-positive should be harmless.
   436   if (UnguardOnExecutionViolation > 0 &&
   437       (sig == SIGSEGV || sig == SIGBUS) &&
   438       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   439     int page_size = os::vm_page_size();
   440     address addr = (address) info->si_addr;
   441     address pc = os::Linux::ucontext_get_pc(uc);
   442     // Make sure the pc and the faulting address are sane.
   443     //
   444     // If an instruction spans a page boundary, and the page containing
   445     // the beginning of the instruction is executable but the following
   446     // page is not, the pc and the faulting address might be slightly
   447     // different - we still want to unguard the 2nd page in this case.
   448     //
   449     // 15 bytes seems to be a (very) safe value for max instruction size.
   450     bool pc_is_near_addr =
   451       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   452     bool instr_spans_page_boundary =
   453       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   454                        (intptr_t) page_size) > 0);
   456     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   457       static volatile address last_addr =
   458         (address) os::non_memory_address_word();
   460       // In conservative mode, don't unguard unless the address is in the VM
   461       if (addr != last_addr &&
   462           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   464         // Set memory to RWX and retry
   465         address page_start =
   466           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   467         bool res = os::protect_memory((char*) page_start, page_size,
   468                                       os::MEM_PROT_RWX);
   470         if (PrintMiscellaneous && Verbose) {
   471           char buf[256];
   472           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   473                        "at " INTPTR_FORMAT
   474                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   475                        page_start, (res ? "success" : "failed"), errno);
   476           tty->print_raw_cr(buf);
   477         }
   478         stub = pc;
   480         // Set last_addr so if we fault again at the same address, we don't end
   481         // up in an endless loop.
   482         //
   483         // There are two potential complications here.  Two threads trapping at
   484         // the same address at the same time could cause one of the threads to
   485         // think it already unguarded, and abort the VM.  Likely very rare.
   486         //
   487         // The other race involves two threads alternately trapping at
   488         // different addresses and failing to unguard the page, resulting in
   489         // an endless loop.  This condition is probably even more unlikely than
   490         // the first.
   491         //
   492         // Although both cases could be avoided by using locks or thread local
   493         // last_addr, these solutions are unnecessary complication: this
   494         // handler is a best-effort safety net, not a complete solution.  It is
   495         // disabled by default and should only be used as a workaround in case
   496         // we missed any no-execute-unsafe VM code.
   498         last_addr = addr;
   499       }
   500     }
   501   }
   502 #endif // !AMD64
   504   if (stub != NULL) {
   505     // save all thread context in case we need to restore it
   506     if (thread != NULL) thread->set_saved_exception_pc(pc);
   508     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   509     return true;
   510   }
   512   // signal-chaining
   513   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   514      return true;
   515   }
   517   if (!abort_if_unrecognized) {
   518     // caller wants another chance, so give it to him
   519     return false;
   520   }
   522   if (pc == NULL && uc != NULL) {
   523     pc = os::Linux::ucontext_get_pc(uc);
   524   }
   526   // unmask current signal
   527   sigset_t newset;
   528   sigemptyset(&newset);
   529   sigaddset(&newset, sig);
   530   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   532   VMError err(t, sig, pc, info, ucVoid);
   533   err.report_and_die();
   535   ShouldNotReachHere();
   536 }
   538 void os::Linux::init_thread_fpu_state(void) {
   539 #ifndef AMD64
   540   // set fpu to 53 bit precision
   541   set_fpu_control_word(0x27f);
   542 #endif // !AMD64
   543 }
   545 int os::Linux::get_fpu_control_word(void) {
   546 #ifdef AMD64
   547   return 0;
   548 #else
   549   int fpu_control;
   550   _FPU_GETCW(fpu_control);
   551   return fpu_control & 0xffff;
   552 #endif // AMD64
   553 }
   555 void os::Linux::set_fpu_control_word(int fpu_control) {
   556 #ifndef AMD64
   557   _FPU_SETCW(fpu_control);
   558 #endif // !AMD64
   559 }
   561 // Check that the linux kernel version is 2.4 or higher since earlier
   562 // versions do not support SSE without patches.
   563 bool os::supports_sse() {
   564 #ifdef AMD64
   565   return true;
   566 #else
   567   struct utsname uts;
   568   if( uname(&uts) != 0 ) return false; // uname fails?
   569   char *minor_string;
   570   int major = strtol(uts.release,&minor_string,10);
   571   int minor = strtol(minor_string+1,NULL,10);
   572   bool result = (major > 2 || (major==2 && minor >= 4));
   573 #ifndef PRODUCT
   574   if (PrintMiscellaneous && Verbose) {
   575     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   576                major,minor, result ? "DOES" : "does NOT");
   577   }
   578 #endif
   579   return result;
   580 #endif // AMD64
   581 }
   583 bool os::is_allocatable(size_t bytes) {
   584 #ifdef AMD64
   585   // unused on amd64?
   586   return true;
   587 #else
   589   if (bytes < 2 * G) {
   590     return true;
   591   }
   593   char* addr = reserve_memory(bytes, NULL);
   595   if (addr != NULL) {
   596     release_memory(addr, bytes);
   597   }
   599   return addr != NULL;
   600 #endif // AMD64
   601 }
   603 ////////////////////////////////////////////////////////////////////////////////
   604 // thread stack
   606 #ifdef AMD64
   607 size_t os::Linux::min_stack_allowed  = 64 * K;
   609 // amd64: pthread on amd64 is always in floating stack mode
   610 bool os::Linux::supports_variable_stack_size() {  return true; }
   611 #else
   612 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   614 #ifdef __GNUC__
   615 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   616 #endif
   618 // Test if pthread library can support variable thread stack size. LinuxThreads
   619 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   620 // in floating stack mode and NPTL support variable stack size.
   621 bool os::Linux::supports_variable_stack_size() {
   622   if (os::Linux::is_NPTL()) {
   623      // NPTL, yes
   624      return true;
   626   } else {
   627     // Note: We can't control default stack size when creating a thread.
   628     // If we use non-default stack size (pthread_attr_setstacksize), both
   629     // floating stack and non-floating stack LinuxThreads will return the
   630     // same value. This makes it impossible to implement this function by
   631     // detecting thread stack size directly.
   632     //
   633     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   634     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   635     // %gs (either as LDT selector or GDT selector, depending on kernel)
   636     // to access thread specific data.
   637     //
   638     // Note that %gs is a reserved glibc register since early 2001, so
   639     // applications are not allowed to change its value (Ulrich Drepper from
   640     // Redhat confirmed that all known offenders have been modified to use
   641     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   642     // a native application that plays with %gs, we might see non-zero %gs
   643     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   644     // return true and skip _thread_safety_check(), so we may not be able to
   645     // detect stack-heap collisions. But otherwise it's harmless.
   646     //
   647 #ifdef __GNUC__
   648     return (GET_GS() != 0);
   649 #else
   650     return false;
   651 #endif
   652   }
   653 }
   654 #endif // AMD64
   656 // return default stack size for thr_type
   657 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   658   // default stack size (compiler thread needs larger stack)
   659 #ifdef AMD64
   660   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   661 #else
   662   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   663 #endif // AMD64
   664   return s;
   665 }
   667 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   668   // Creating guard page is very expensive. Java thread has HotSpot
   669   // guard page, only enable glibc guard page for non-Java threads.
   670   return (thr_type == java_thread ? 0 : page_size());
   671 }
   673 // Java thread:
   674 //
   675 //   Low memory addresses
   676 //    +------------------------+
   677 //    |                        |\  JavaThread created by VM does not have glibc
   678 //    |    glibc guard page    | - guard, attached Java thread usually has
   679 //    |                        |/  1 page glibc guard.
   680 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   681 //    |                        |\
   682 //    |  HotSpot Guard Pages   | - red and yellow pages
   683 //    |                        |/
   684 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   685 //    |                        |\
   686 //    |      Normal Stack      | -
   687 //    |                        |/
   688 // P2 +------------------------+ Thread::stack_base()
   689 //
   690 // Non-Java thread:
   691 //
   692 //   Low memory addresses
   693 //    +------------------------+
   694 //    |                        |\
   695 //    |  glibc guard page      | - usually 1 page
   696 //    |                        |/
   697 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   698 //    |                        |\
   699 //    |      Normal Stack      | -
   700 //    |                        |/
   701 // P2 +------------------------+ Thread::stack_base()
   702 //
   703 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   704 //    pthread_attr_getstack()
   706 static void current_stack_region(address * bottom, size_t * size) {
   707   if (os::Linux::is_initial_thread()) {
   708      // initial thread needs special handling because pthread_getattr_np()
   709      // may return bogus value.
   710      *bottom = os::Linux::initial_thread_stack_bottom();
   711      *size   = os::Linux::initial_thread_stack_size();
   712   } else {
   713      pthread_attr_t attr;
   715      int rslt = pthread_getattr_np(pthread_self(), &attr);
   717      // JVM needs to know exact stack location, abort if it fails
   718      if (rslt != 0) {
   719        if (rslt == ENOMEM) {
   720          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
   721        } else {
   722          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
   723        }
   724      }
   726      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   727          fatal("Can not locate current stack attributes!");
   728      }
   730      pthread_attr_destroy(&attr);
   732   }
   733   assert(os::current_stack_pointer() >= *bottom &&
   734          os::current_stack_pointer() < *bottom + *size, "just checking");
   735 }
   737 address os::current_stack_base() {
   738   address bottom;
   739   size_t size;
   740   current_stack_region(&bottom, &size);
   741   return (bottom + size);
   742 }
   744 size_t os::current_stack_size() {
   745   // stack size includes normal stack and HotSpot guard pages
   746   address bottom;
   747   size_t size;
   748   current_stack_region(&bottom, &size);
   749   return size;
   750 }
   752 /////////////////////////////////////////////////////////////////////////////
   753 // helper functions for fatal error handler
   755 void os::print_context(outputStream *st, void *context) {
   756   if (context == NULL) return;
   758   ucontext_t *uc = (ucontext_t*)context;
   759   st->print_cr("Registers:");
   760 #ifdef AMD64
   761   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   762   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   763   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   764   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   765   st->cr();
   766   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   767   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   768   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   769   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   770   st->cr();
   771   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   772   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   773   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   774   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   775   st->cr();
   776   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   777   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   778   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   779   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   780   st->cr();
   781   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   782   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   783   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   784   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   785   st->cr();
   786   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   787 #else
   788   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   789   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   790   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   791   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   792   st->cr();
   793   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   794   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   795   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   796   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   797   st->cr();
   798   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   799   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   800   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   801 #endif // AMD64
   802   st->cr();
   803   st->cr();
   805   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   806   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   807   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   808   st->cr();
   810   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   811   // point to garbage if entry point in an nmethod is corrupted. Leave
   812   // this at the end, and hope for the best.
   813   address pc = os::Linux::ucontext_get_pc(uc);
   814   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   815   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   816 }
   818 void os::print_register_info(outputStream *st, void *context) {
   819   if (context == NULL) return;
   821   ucontext_t *uc = (ucontext_t*)context;
   823   st->print_cr("Register to memory mapping:");
   824   st->cr();
   826   // this is horrendously verbose but the layout of the registers in the
   827   // context does not match how we defined our abstract Register set, so
   828   // we can't just iterate through the gregs area
   830   // this is only for the "general purpose" registers
   832 #ifdef AMD64
   833   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   834   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   835   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   836   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   837   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   838   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   839   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   840   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   841   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   842   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   843   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   844   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   845   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   846   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   847   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   848   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   849 #else
   850   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
   851   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
   852   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
   853   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
   854   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
   855   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
   856   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
   857   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
   858 #endif // AMD64
   860   st->cr();
   861 }
   863 void os::setup_fpu() {
   864 #ifndef AMD64
   865   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   866   __asm__ volatile (  "fldcw (%0)" :
   867                       : "r" (fpu_cntrl) : "memory");
   868 #endif // !AMD64
   869 }
   871 #ifndef PRODUCT
   872 void os::verify_stack_alignment() {
   873 #ifdef AMD64
   874   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   875 #endif
   876 }
   877 #endif

mercurial