src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Mon, 17 Sep 2012 12:57:58 -0700

author
twisti
date
Mon, 17 Sep 2012 12:57:58 -0700
changeset 4101
2cb2f30450c7
parent 4051
8a02ca5e5576
child 4103
137868b7aa6f
permissions
-rw-r--r--

7196262: JSR 292: java/lang/invoke/PrivateInvokeTest.java fails on solaris-sparc
Reviewed-by: kvn, jrose, bdelsart

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class SimpleRuntimeFrame {
    50   public:
    52   // Most of the runtime stubs have this simple frame layout.
    53   // This class exists to make the layout shared in one place.
    54   // Offsets are for compiler stack slots, which are jints.
    55   enum layout {
    56     // The frame sender code expects that rbp will be in the "natural" place and
    57     // will override any oopMap setting for it. We must therefore force the layout
    58     // so that it agrees with the frame sender code.
    59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    60     rbp_off2,
    61     return_off, return_off2,
    62     framesize
    63   };
    64 };
    66 class RegisterSaver {
    67   // Capture info about frame layout.  Layout offsets are in jint
    68   // units because compiler frame slots are jints.
    69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    70   enum layout {
    71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    73     DEF_XMM_OFFS(0),
    74     DEF_XMM_OFFS(1),
    75     DEF_XMM_OFFS(2),
    76     DEF_XMM_OFFS(3),
    77     DEF_XMM_OFFS(4),
    78     DEF_XMM_OFFS(5),
    79     DEF_XMM_OFFS(6),
    80     DEF_XMM_OFFS(7),
    81     DEF_XMM_OFFS(8),
    82     DEF_XMM_OFFS(9),
    83     DEF_XMM_OFFS(10),
    84     DEF_XMM_OFFS(11),
    85     DEF_XMM_OFFS(12),
    86     DEF_XMM_OFFS(13),
    87     DEF_XMM_OFFS(14),
    88     DEF_XMM_OFFS(15),
    89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    90     fpu_stateH_end,
    91     r15_off, r15H_off,
    92     r14_off, r14H_off,
    93     r13_off, r13H_off,
    94     r12_off, r12H_off,
    95     r11_off, r11H_off,
    96     r10_off, r10H_off,
    97     r9_off,  r9H_off,
    98     r8_off,  r8H_off,
    99     rdi_off, rdiH_off,
   100     rsi_off, rsiH_off,
   101     ignore_off, ignoreH_off,  // extra copy of rbp
   102     rsp_off, rspH_off,
   103     rbx_off, rbxH_off,
   104     rdx_off, rdxH_off,
   105     rcx_off, rcxH_off,
   106     rax_off, raxH_off,
   107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   108     align_off, alignH_off,
   109     flags_off, flagsH_off,
   110     // The frame sender code expects that rbp will be in the "natural" place and
   111     // will override any oopMap setting for it. We must therefore force the layout
   112     // so that it agrees with the frame sender code.
   113     rbp_off, rbpH_off,        // copy of rbp we will restore
   114     return_off, returnH_off,  // slot for return address
   115     reg_save_size             // size in compiler stack slots
   116   };
   118  public:
   119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   120   static void restore_live_registers(MacroAssembler* masm);
   122   // Offsets into the register save area
   123   // Used by deoptimization when it is managing result register
   124   // values on its own
   126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   132   // During deoptimization only the result registers need to be restored,
   133   // all the other values have already been extracted.
   134   static void restore_result_registers(MacroAssembler* masm);
   135 };
   137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   139   // Always make the frame size 16-byte aligned
   140   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   141                                      reg_save_size*BytesPerInt, 16);
   142   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   143   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   144   // The caller will allocate additional_frame_words
   145   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   146   // CodeBlob frame size is in words.
   147   int frame_size_in_words = frame_size_in_bytes / wordSize;
   148   *total_frame_words = frame_size_in_words;
   150   // Save registers, fpu state, and flags.
   151   // We assume caller has already pushed the return address onto the
   152   // stack, so rsp is 8-byte aligned here.
   153   // We push rpb twice in this sequence because we want the real rbp
   154   // to be under the return like a normal enter.
   156   __ enter();          // rsp becomes 16-byte aligned here
   157   __ push_CPU_state(); // Push a multiple of 16 bytes
   158   if (frame::arg_reg_save_area_bytes != 0) {
   159     // Allocate argument register save area
   160     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   161   }
   163   // Set an oopmap for the call site.  This oopmap will map all
   164   // oop-registers and debug-info registers as callee-saved.  This
   165   // will allow deoptimization at this safepoint to find all possible
   166   // debug-info recordings, as well as let GC find all oops.
   168   OopMapSet *oop_maps = new OopMapSet();
   169   OopMap* map = new OopMap(frame_size_in_slots, 0);
   170   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
   171   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
   172   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
   173   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
   174   // rbp location is known implicitly by the frame sender code, needs no oopmap
   175   // and the location where rbp was saved by is ignored
   176   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
   177   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
   178   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
   179   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
   180   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
   181   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
   182   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
   183   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
   184   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
   185   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
   186   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
   187   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
   188   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
   189   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
   190   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
   191   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
   192   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
   193   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
   194   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
   195   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
   196   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
   197   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
   198   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
   199   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
   200   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
   201   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
   203   // %%% These should all be a waste but we'll keep things as they were for now
   204   if (true) {
   205     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
   206                           rax->as_VMReg()->next());
   207     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
   208                           rcx->as_VMReg()->next());
   209     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
   210                           rdx->as_VMReg()->next());
   211     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
   212                           rbx->as_VMReg()->next());
   213     // rbp location is known implicitly by the frame sender code, needs no oopmap
   214     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
   215                           rsi->as_VMReg()->next());
   216     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
   217                           rdi->as_VMReg()->next());
   218     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
   219                           r8->as_VMReg()->next());
   220     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
   221                           r9->as_VMReg()->next());
   222     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
   223                           r10->as_VMReg()->next());
   224     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
   225                           r11->as_VMReg()->next());
   226     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
   227                           r12->as_VMReg()->next());
   228     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
   229                           r13->as_VMReg()->next());
   230     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
   231                           r14->as_VMReg()->next());
   232     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
   233                           r15->as_VMReg()->next());
   234     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
   235                           xmm0->as_VMReg()->next());
   236     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
   237                           xmm1->as_VMReg()->next());
   238     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
   239                           xmm2->as_VMReg()->next());
   240     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
   241                           xmm3->as_VMReg()->next());
   242     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
   243                           xmm4->as_VMReg()->next());
   244     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
   245                           xmm5->as_VMReg()->next());
   246     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
   247                           xmm6->as_VMReg()->next());
   248     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
   249                           xmm7->as_VMReg()->next());
   250     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
   251                           xmm8->as_VMReg()->next());
   252     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
   253                           xmm9->as_VMReg()->next());
   254     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
   255                           xmm10->as_VMReg()->next());
   256     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
   257                           xmm11->as_VMReg()->next());
   258     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
   259                           xmm12->as_VMReg()->next());
   260     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
   261                           xmm13->as_VMReg()->next());
   262     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
   263                           xmm14->as_VMReg()->next());
   264     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
   265                           xmm15->as_VMReg()->next());
   266   }
   268   return map;
   269 }
   271 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   272   if (frame::arg_reg_save_area_bytes != 0) {
   273     // Pop arg register save area
   274     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   275   }
   276   // Recover CPU state
   277   __ pop_CPU_state();
   278   // Get the rbp described implicitly by the calling convention (no oopMap)
   279   __ pop(rbp);
   280 }
   282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   284   // Just restore result register. Only used by deoptimization. By
   285   // now any callee save register that needs to be restored to a c2
   286   // caller of the deoptee has been extracted into the vframeArray
   287   // and will be stuffed into the c2i adapter we create for later
   288   // restoration so only result registers need to be restored here.
   290   // Restore fp result register
   291   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   292   // Restore integer result register
   293   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   294   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   296   // Pop all of the register save are off the stack except the return address
   297   __ addptr(rsp, return_offset_in_bytes());
   298 }
   300 // The java_calling_convention describes stack locations as ideal slots on
   301 // a frame with no abi restrictions. Since we must observe abi restrictions
   302 // (like the placement of the register window) the slots must be biased by
   303 // the following value.
   304 static int reg2offset_in(VMReg r) {
   305   // Account for saved rbp and return address
   306   // This should really be in_preserve_stack_slots
   307   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   308 }
   310 static int reg2offset_out(VMReg r) {
   311   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   312 }
   314 // ---------------------------------------------------------------------------
   315 // Read the array of BasicTypes from a signature, and compute where the
   316 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   317 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   318 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   319 // as framesizes are fixed.
   320 // VMRegImpl::stack0 refers to the first slot 0(sp).
   321 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   322 // up to RegisterImpl::number_of_registers) are the 64-bit
   323 // integer registers.
   325 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   326 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   327 // units regardless of build. Of course for i486 there is no 64 bit build
   329 // The Java calling convention is a "shifted" version of the C ABI.
   330 // By skipping the first C ABI register we can call non-static jni methods
   331 // with small numbers of arguments without having to shuffle the arguments
   332 // at all. Since we control the java ABI we ought to at least get some
   333 // advantage out of it.
   335 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   336                                            VMRegPair *regs,
   337                                            int total_args_passed,
   338                                            int is_outgoing) {
   340   // Create the mapping between argument positions and
   341   // registers.
   342   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   343     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   344   };
   345   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   346     j_farg0, j_farg1, j_farg2, j_farg3,
   347     j_farg4, j_farg5, j_farg6, j_farg7
   348   };
   351   uint int_args = 0;
   352   uint fp_args = 0;
   353   uint stk_args = 0; // inc by 2 each time
   355   for (int i = 0; i < total_args_passed; i++) {
   356     switch (sig_bt[i]) {
   357     case T_BOOLEAN:
   358     case T_CHAR:
   359     case T_BYTE:
   360     case T_SHORT:
   361     case T_INT:
   362       if (int_args < Argument::n_int_register_parameters_j) {
   363         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   364       } else {
   365         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   366         stk_args += 2;
   367       }
   368       break;
   369     case T_VOID:
   370       // halves of T_LONG or T_DOUBLE
   371       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   372       regs[i].set_bad();
   373       break;
   374     case T_LONG:
   375       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   376       // fall through
   377     case T_OBJECT:
   378     case T_ARRAY:
   379     case T_ADDRESS:
   380       if (int_args < Argument::n_int_register_parameters_j) {
   381         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   382       } else {
   383         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   384         stk_args += 2;
   385       }
   386       break;
   387     case T_FLOAT:
   388       if (fp_args < Argument::n_float_register_parameters_j) {
   389         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   390       } else {
   391         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   392         stk_args += 2;
   393       }
   394       break;
   395     case T_DOUBLE:
   396       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   397       if (fp_args < Argument::n_float_register_parameters_j) {
   398         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   399       } else {
   400         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   401         stk_args += 2;
   402       }
   403       break;
   404     default:
   405       ShouldNotReachHere();
   406       break;
   407     }
   408   }
   410   return round_to(stk_args, 2);
   411 }
   413 // Patch the callers callsite with entry to compiled code if it exists.
   414 static void patch_callers_callsite(MacroAssembler *masm) {
   415   Label L;
   416   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   417   __ jcc(Assembler::equal, L);
   419   // Save the current stack pointer
   420   __ mov(r13, rsp);
   421   // Schedule the branch target address early.
   422   // Call into the VM to patch the caller, then jump to compiled callee
   423   // rax isn't live so capture return address while we easily can
   424   __ movptr(rax, Address(rsp, 0));
   426   // align stack so push_CPU_state doesn't fault
   427   __ andptr(rsp, -(StackAlignmentInBytes));
   428   __ push_CPU_state();
   430   // VM needs caller's callsite
   431   // VM needs target method
   432   // This needs to be a long call since we will relocate this adapter to
   433   // the codeBuffer and it may not reach
   435   // Allocate argument register save area
   436   if (frame::arg_reg_save_area_bytes != 0) {
   437     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   438   }
   439   __ mov(c_rarg0, rbx);
   440   __ mov(c_rarg1, rax);
   441   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   443   // De-allocate argument register save area
   444   if (frame::arg_reg_save_area_bytes != 0) {
   445     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   446   }
   448   __ pop_CPU_state();
   449   // restore sp
   450   __ mov(rsp, r13);
   451   __ bind(L);
   452 }
   455 static void gen_c2i_adapter(MacroAssembler *masm,
   456                             int total_args_passed,
   457                             int comp_args_on_stack,
   458                             const BasicType *sig_bt,
   459                             const VMRegPair *regs,
   460                             Label& skip_fixup) {
   461   // Before we get into the guts of the C2I adapter, see if we should be here
   462   // at all.  We've come from compiled code and are attempting to jump to the
   463   // interpreter, which means the caller made a static call to get here
   464   // (vcalls always get a compiled target if there is one).  Check for a
   465   // compiled target.  If there is one, we need to patch the caller's call.
   466   patch_callers_callsite(masm);
   468   __ bind(skip_fixup);
   470   // Since all args are passed on the stack, total_args_passed *
   471   // Interpreter::stackElementSize is the space we need. Plus 1 because
   472   // we also account for the return address location since
   473   // we store it first rather than hold it in rax across all the shuffling
   475   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   477   // stack is aligned, keep it that way
   478   extraspace = round_to(extraspace, 2*wordSize);
   480   // Get return address
   481   __ pop(rax);
   483   // set senderSP value
   484   __ mov(r13, rsp);
   486   __ subptr(rsp, extraspace);
   488   // Store the return address in the expected location
   489   __ movptr(Address(rsp, 0), rax);
   491   // Now write the args into the outgoing interpreter space
   492   for (int i = 0; i < total_args_passed; i++) {
   493     if (sig_bt[i] == T_VOID) {
   494       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   495       continue;
   496     }
   498     // offset to start parameters
   499     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   500     int next_off = st_off - Interpreter::stackElementSize;
   502     // Say 4 args:
   503     // i   st_off
   504     // 0   32 T_LONG
   505     // 1   24 T_VOID
   506     // 2   16 T_OBJECT
   507     // 3    8 T_BOOL
   508     // -    0 return address
   509     //
   510     // However to make thing extra confusing. Because we can fit a long/double in
   511     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   512     // leaves one slot empty and only stores to a single slot. In this case the
   513     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   515     VMReg r_1 = regs[i].first();
   516     VMReg r_2 = regs[i].second();
   517     if (!r_1->is_valid()) {
   518       assert(!r_2->is_valid(), "");
   519       continue;
   520     }
   521     if (r_1->is_stack()) {
   522       // memory to memory use rax
   523       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   524       if (!r_2->is_valid()) {
   525         // sign extend??
   526         __ movl(rax, Address(rsp, ld_off));
   527         __ movptr(Address(rsp, st_off), rax);
   529       } else {
   531         __ movq(rax, Address(rsp, ld_off));
   533         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   534         // T_DOUBLE and T_LONG use two slots in the interpreter
   535         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   536           // ld_off == LSW, ld_off+wordSize == MSW
   537           // st_off == MSW, next_off == LSW
   538           __ movq(Address(rsp, next_off), rax);
   539 #ifdef ASSERT
   540           // Overwrite the unused slot with known junk
   541           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   542           __ movptr(Address(rsp, st_off), rax);
   543 #endif /* ASSERT */
   544         } else {
   545           __ movq(Address(rsp, st_off), rax);
   546         }
   547       }
   548     } else if (r_1->is_Register()) {
   549       Register r = r_1->as_Register();
   550       if (!r_2->is_valid()) {
   551         // must be only an int (or less ) so move only 32bits to slot
   552         // why not sign extend??
   553         __ movl(Address(rsp, st_off), r);
   554       } else {
   555         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   556         // T_DOUBLE and T_LONG use two slots in the interpreter
   557         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   558           // long/double in gpr
   559 #ifdef ASSERT
   560           // Overwrite the unused slot with known junk
   561           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   562           __ movptr(Address(rsp, st_off), rax);
   563 #endif /* ASSERT */
   564           __ movq(Address(rsp, next_off), r);
   565         } else {
   566           __ movptr(Address(rsp, st_off), r);
   567         }
   568       }
   569     } else {
   570       assert(r_1->is_XMMRegister(), "");
   571       if (!r_2->is_valid()) {
   572         // only a float use just part of the slot
   573         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   574       } else {
   575 #ifdef ASSERT
   576         // Overwrite the unused slot with known junk
   577         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   578         __ movptr(Address(rsp, st_off), rax);
   579 #endif /* ASSERT */
   580         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   581       }
   582     }
   583   }
   585   // Schedule the branch target address early.
   586   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   587   __ jmp(rcx);
   588 }
   590 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   591                         address code_start, address code_end,
   592                         Label& L_ok) {
   593   Label L_fail;
   594   __ lea(temp_reg, ExternalAddress(code_start));
   595   __ cmpptr(pc_reg, temp_reg);
   596   __ jcc(Assembler::belowEqual, L_fail);
   597   __ lea(temp_reg, ExternalAddress(code_end));
   598   __ cmpptr(pc_reg, temp_reg);
   599   __ jcc(Assembler::below, L_ok);
   600   __ bind(L_fail);
   601 }
   603 static void gen_i2c_adapter(MacroAssembler *masm,
   604                             int total_args_passed,
   605                             int comp_args_on_stack,
   606                             const BasicType *sig_bt,
   607                             const VMRegPair *regs) {
   609   // Note: r13 contains the senderSP on entry. We must preserve it since
   610   // we may do a i2c -> c2i transition if we lose a race where compiled
   611   // code goes non-entrant while we get args ready.
   612   // In addition we use r13 to locate all the interpreter args as
   613   // we must align the stack to 16 bytes on an i2c entry else we
   614   // lose alignment we expect in all compiled code and register
   615   // save code can segv when fxsave instructions find improperly
   616   // aligned stack pointer.
   618   // Adapters can be frameless because they do not require the caller
   619   // to perform additional cleanup work, such as correcting the stack pointer.
   620   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   621   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   622   // even if a callee has modified the stack pointer.
   623   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   624   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   625   // up via the senderSP register).
   626   // In other words, if *either* the caller or callee is interpreted, we can
   627   // get the stack pointer repaired after a call.
   628   // This is why c2i and i2c adapters cannot be indefinitely composed.
   629   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   630   // both caller and callee would be compiled methods, and neither would
   631   // clean up the stack pointer changes performed by the two adapters.
   632   // If this happens, control eventually transfers back to the compiled
   633   // caller, but with an uncorrected stack, causing delayed havoc.
   635   // Pick up the return address
   636   __ movptr(rax, Address(rsp, 0));
   638   if (VerifyAdapterCalls &&
   639       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   640     // So, let's test for cascading c2i/i2c adapters right now.
   641     //  assert(Interpreter::contains($return_addr) ||
   642     //         StubRoutines::contains($return_addr),
   643     //         "i2c adapter must return to an interpreter frame");
   644     __ block_comment("verify_i2c { ");
   645     Label L_ok;
   646     if (Interpreter::code() != NULL)
   647       range_check(masm, rax, r11,
   648                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   649                   L_ok);
   650     if (StubRoutines::code1() != NULL)
   651       range_check(masm, rax, r11,
   652                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   653                   L_ok);
   654     if (StubRoutines::code2() != NULL)
   655       range_check(masm, rax, r11,
   656                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   657                   L_ok);
   658     const char* msg = "i2c adapter must return to an interpreter frame";
   659     __ block_comment(msg);
   660     __ stop(msg);
   661     __ bind(L_ok);
   662     __ block_comment("} verify_i2ce ");
   663   }
   665   // Must preserve original SP for loading incoming arguments because
   666   // we need to align the outgoing SP for compiled code.
   667   __ movptr(r11, rsp);
   669   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   670   // in registers, we will occasionally have no stack args.
   671   int comp_words_on_stack = 0;
   672   if (comp_args_on_stack) {
   673     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   674     // registers are below.  By subtracting stack0, we either get a negative
   675     // number (all values in registers) or the maximum stack slot accessed.
   677     // Convert 4-byte c2 stack slots to words.
   678     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   679     // Round up to miminum stack alignment, in wordSize
   680     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   681     __ subptr(rsp, comp_words_on_stack * wordSize);
   682   }
   685   // Ensure compiled code always sees stack at proper alignment
   686   __ andptr(rsp, -16);
   688   // push the return address and misalign the stack that youngest frame always sees
   689   // as far as the placement of the call instruction
   690   __ push(rax);
   692   // Put saved SP in another register
   693   const Register saved_sp = rax;
   694   __ movptr(saved_sp, r11);
   696   // Will jump to the compiled code just as if compiled code was doing it.
   697   // Pre-load the register-jump target early, to schedule it better.
   698   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
   700   // Now generate the shuffle code.  Pick up all register args and move the
   701   // rest through the floating point stack top.
   702   for (int i = 0; i < total_args_passed; i++) {
   703     if (sig_bt[i] == T_VOID) {
   704       // Longs and doubles are passed in native word order, but misaligned
   705       // in the 32-bit build.
   706       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   707       continue;
   708     }
   710     // Pick up 0, 1 or 2 words from SP+offset.
   712     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   713             "scrambled load targets?");
   714     // Load in argument order going down.
   715     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   716     // Point to interpreter value (vs. tag)
   717     int next_off = ld_off - Interpreter::stackElementSize;
   718     //
   719     //
   720     //
   721     VMReg r_1 = regs[i].first();
   722     VMReg r_2 = regs[i].second();
   723     if (!r_1->is_valid()) {
   724       assert(!r_2->is_valid(), "");
   725       continue;
   726     }
   727     if (r_1->is_stack()) {
   728       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   729       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   731       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   732       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   733       // will be generated.
   734       if (!r_2->is_valid()) {
   735         // sign extend???
   736         __ movl(r13, Address(saved_sp, ld_off));
   737         __ movptr(Address(rsp, st_off), r13);
   738       } else {
   739         //
   740         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   741         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   742         // So we must adjust where to pick up the data to match the interpreter.
   743         //
   744         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   745         // are accessed as negative so LSW is at LOW address
   747         // ld_off is MSW so get LSW
   748         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   749                            next_off : ld_off;
   750         __ movq(r13, Address(saved_sp, offset));
   751         // st_off is LSW (i.e. reg.first())
   752         __ movq(Address(rsp, st_off), r13);
   753       }
   754     } else if (r_1->is_Register()) {  // Register argument
   755       Register r = r_1->as_Register();
   756       assert(r != rax, "must be different");
   757       if (r_2->is_valid()) {
   758         //
   759         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   760         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   761         // So we must adjust where to pick up the data to match the interpreter.
   763         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   764                            next_off : ld_off;
   766         // this can be a misaligned move
   767         __ movq(r, Address(saved_sp, offset));
   768       } else {
   769         // sign extend and use a full word?
   770         __ movl(r, Address(saved_sp, ld_off));
   771       }
   772     } else {
   773       if (!r_2->is_valid()) {
   774         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   775       } else {
   776         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   777       }
   778     }
   779   }
   781   // 6243940 We might end up in handle_wrong_method if
   782   // the callee is deoptimized as we race thru here. If that
   783   // happens we don't want to take a safepoint because the
   784   // caller frame will look interpreted and arguments are now
   785   // "compiled" so it is much better to make this transition
   786   // invisible to the stack walking code. Unfortunately if
   787   // we try and find the callee by normal means a safepoint
   788   // is possible. So we stash the desired callee in the thread
   789   // and the vm will find there should this case occur.
   791   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   793   // put Method* where a c2i would expect should we end up there
   794   // only needed becaus eof c2 resolve stubs return Method* as a result in
   795   // rax
   796   __ mov(rax, rbx);
   797   __ jmp(r11);
   798 }
   800 // ---------------------------------------------------------------
   801 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   802                                                             int total_args_passed,
   803                                                             int comp_args_on_stack,
   804                                                             const BasicType *sig_bt,
   805                                                             const VMRegPair *regs,
   806                                                             AdapterFingerPrint* fingerprint) {
   807   address i2c_entry = __ pc();
   809   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   811   // -------------------------------------------------------------------------
   812   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
   813   // to the interpreter.  The args start out packed in the compiled layout.  They
   814   // need to be unpacked into the interpreter layout.  This will almost always
   815   // require some stack space.  We grow the current (compiled) stack, then repack
   816   // the args.  We  finally end in a jump to the generic interpreter entry point.
   817   // On exit from the interpreter, the interpreter will restore our SP (lest the
   818   // compiled code, which relys solely on SP and not RBP, get sick).
   820   address c2i_unverified_entry = __ pc();
   821   Label skip_fixup;
   822   Label ok;
   824   Register holder = rax;
   825   Register receiver = j_rarg0;
   826   Register temp = rbx;
   828   {
   829     __ load_klass(temp, receiver);
   830     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   831     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
   832     __ jcc(Assembler::equal, ok);
   833     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   835     __ bind(ok);
   836     // Method might have been compiled since the call site was patched to
   837     // interpreted if that is the case treat it as a miss so we can get
   838     // the call site corrected.
   839     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   840     __ jcc(Assembler::equal, skip_fixup);
   841     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   842   }
   844   address c2i_entry = __ pc();
   846   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   848   __ flush();
   849   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   850 }
   852 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   853                                          VMRegPair *regs,
   854                                          int total_args_passed) {
   855 // We return the amount of VMRegImpl stack slots we need to reserve for all
   856 // the arguments NOT counting out_preserve_stack_slots.
   858 // NOTE: These arrays will have to change when c1 is ported
   859 #ifdef _WIN64
   860     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   861       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   862     };
   863     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   864       c_farg0, c_farg1, c_farg2, c_farg3
   865     };
   866 #else
   867     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   868       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   869     };
   870     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   871       c_farg0, c_farg1, c_farg2, c_farg3,
   872       c_farg4, c_farg5, c_farg6, c_farg7
   873     };
   874 #endif // _WIN64
   877     uint int_args = 0;
   878     uint fp_args = 0;
   879     uint stk_args = 0; // inc by 2 each time
   881     for (int i = 0; i < total_args_passed; i++) {
   882       switch (sig_bt[i]) {
   883       case T_BOOLEAN:
   884       case T_CHAR:
   885       case T_BYTE:
   886       case T_SHORT:
   887       case T_INT:
   888         if (int_args < Argument::n_int_register_parameters_c) {
   889           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   890 #ifdef _WIN64
   891           fp_args++;
   892           // Allocate slots for callee to stuff register args the stack.
   893           stk_args += 2;
   894 #endif
   895         } else {
   896           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   897           stk_args += 2;
   898         }
   899         break;
   900       case T_LONG:
   901         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   902         // fall through
   903       case T_OBJECT:
   904       case T_ARRAY:
   905       case T_ADDRESS:
   906       case T_METADATA:
   907         if (int_args < Argument::n_int_register_parameters_c) {
   908           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   909 #ifdef _WIN64
   910           fp_args++;
   911           stk_args += 2;
   912 #endif
   913         } else {
   914           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   915           stk_args += 2;
   916         }
   917         break;
   918       case T_FLOAT:
   919         if (fp_args < Argument::n_float_register_parameters_c) {
   920           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   921 #ifdef _WIN64
   922           int_args++;
   923           // Allocate slots for callee to stuff register args the stack.
   924           stk_args += 2;
   925 #endif
   926         } else {
   927           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   928           stk_args += 2;
   929         }
   930         break;
   931       case T_DOUBLE:
   932         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   933         if (fp_args < Argument::n_float_register_parameters_c) {
   934           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   935 #ifdef _WIN64
   936           int_args++;
   937           // Allocate slots for callee to stuff register args the stack.
   938           stk_args += 2;
   939 #endif
   940         } else {
   941           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   942           stk_args += 2;
   943         }
   944         break;
   945       case T_VOID: // Halves of longs and doubles
   946         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   947         regs[i].set_bad();
   948         break;
   949       default:
   950         ShouldNotReachHere();
   951         break;
   952       }
   953     }
   954 #ifdef _WIN64
   955   // windows abi requires that we always allocate enough stack space
   956   // for 4 64bit registers to be stored down.
   957   if (stk_args < 8) {
   958     stk_args = 8;
   959   }
   960 #endif // _WIN64
   962   return stk_args;
   963 }
   965 // On 64 bit we will store integer like items to the stack as
   966 // 64 bits items (sparc abi) even though java would only store
   967 // 32bits for a parameter. On 32bit it will simply be 32 bits
   968 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
   969 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   970   if (src.first()->is_stack()) {
   971     if (dst.first()->is_stack()) {
   972       // stack to stack
   973       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
   974       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   975     } else {
   976       // stack to reg
   977       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
   978     }
   979   } else if (dst.first()->is_stack()) {
   980     // reg to stack
   981     // Do we really have to sign extend???
   982     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
   983     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   984   } else {
   985     // Do we really have to sign extend???
   986     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
   987     if (dst.first() != src.first()) {
   988       __ movq(dst.first()->as_Register(), src.first()->as_Register());
   989     }
   990   }
   991 }
   993 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   994   if (src.first()->is_stack()) {
   995     if (dst.first()->is_stack()) {
   996       // stack to stack
   997       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
   998       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   999     } else {
  1000       // stack to reg
  1001       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1003   } else if (dst.first()->is_stack()) {
  1004     // reg to stack
  1005     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1006   } else {
  1007     if (dst.first() != src.first()) {
  1008       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1013 // An oop arg. Must pass a handle not the oop itself
  1014 static void object_move(MacroAssembler* masm,
  1015                         OopMap* map,
  1016                         int oop_handle_offset,
  1017                         int framesize_in_slots,
  1018                         VMRegPair src,
  1019                         VMRegPair dst,
  1020                         bool is_receiver,
  1021                         int* receiver_offset) {
  1023   // must pass a handle. First figure out the location we use as a handle
  1025   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
  1027   // See if oop is NULL if it is we need no handle
  1029   if (src.first()->is_stack()) {
  1031     // Oop is already on the stack as an argument
  1032     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1033     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1034     if (is_receiver) {
  1035       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1038     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1039     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1040     // conditionally move a NULL
  1041     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  1042   } else {
  1044     // Oop is in an a register we must store it to the space we reserve
  1045     // on the stack for oop_handles and pass a handle if oop is non-NULL
  1047     const Register rOop = src.first()->as_Register();
  1048     int oop_slot;
  1049     if (rOop == j_rarg0)
  1050       oop_slot = 0;
  1051     else if (rOop == j_rarg1)
  1052       oop_slot = 1;
  1053     else if (rOop == j_rarg2)
  1054       oop_slot = 2;
  1055     else if (rOop == j_rarg3)
  1056       oop_slot = 3;
  1057     else if (rOop == j_rarg4)
  1058       oop_slot = 4;
  1059     else {
  1060       assert(rOop == j_rarg5, "wrong register");
  1061       oop_slot = 5;
  1064     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1065     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1067     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1068     // Store oop in handle area, may be NULL
  1069     __ movptr(Address(rsp, offset), rOop);
  1070     if (is_receiver) {
  1071       *receiver_offset = offset;
  1074     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1075     __ lea(rHandle, Address(rsp, offset));
  1076     // conditionally move a NULL from the handle area where it was just stored
  1077     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1080   // If arg is on the stack then place it otherwise it is already in correct reg.
  1081   if (dst.first()->is_stack()) {
  1082     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1086 // A float arg may have to do float reg int reg conversion
  1087 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1088   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1090   // The calling conventions assures us that each VMregpair is either
  1091   // all really one physical register or adjacent stack slots.
  1092   // This greatly simplifies the cases here compared to sparc.
  1094   if (src.first()->is_stack()) {
  1095     if (dst.first()->is_stack()) {
  1096       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1097       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1098     } else {
  1099       // stack to reg
  1100       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1101       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1103   } else if (dst.first()->is_stack()) {
  1104     // reg to stack
  1105     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1106     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1107   } else {
  1108     // reg to reg
  1109     // In theory these overlap but the ordering is such that this is likely a nop
  1110     if ( src.first() != dst.first()) {
  1111       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1116 // A long move
  1117 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1119   // The calling conventions assures us that each VMregpair is either
  1120   // all really one physical register or adjacent stack slots.
  1121   // This greatly simplifies the cases here compared to sparc.
  1123   if (src.is_single_phys_reg() ) {
  1124     if (dst.is_single_phys_reg()) {
  1125       if (dst.first() != src.first()) {
  1126         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1128     } else {
  1129       assert(dst.is_single_reg(), "not a stack pair");
  1130       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1132   } else if (dst.is_single_phys_reg()) {
  1133     assert(src.is_single_reg(),  "not a stack pair");
  1134     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1135   } else {
  1136     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1137     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1138     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1142 // A double move
  1143 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1145   // The calling conventions assures us that each VMregpair is either
  1146   // all really one physical register or adjacent stack slots.
  1147   // This greatly simplifies the cases here compared to sparc.
  1149   if (src.is_single_phys_reg() ) {
  1150     if (dst.is_single_phys_reg()) {
  1151       // In theory these overlap but the ordering is such that this is likely a nop
  1152       if ( src.first() != dst.first()) {
  1153         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1155     } else {
  1156       assert(dst.is_single_reg(), "not a stack pair");
  1157       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1159   } else if (dst.is_single_phys_reg()) {
  1160     assert(src.is_single_reg(),  "not a stack pair");
  1161     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1162   } else {
  1163     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1164     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1165     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1170 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1171   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1172   // which by this time is free to use
  1173   switch (ret_type) {
  1174   case T_FLOAT:
  1175     __ movflt(Address(rbp, -wordSize), xmm0);
  1176     break;
  1177   case T_DOUBLE:
  1178     __ movdbl(Address(rbp, -wordSize), xmm0);
  1179     break;
  1180   case T_VOID:  break;
  1181   default: {
  1182     __ movptr(Address(rbp, -wordSize), rax);
  1187 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1188   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1189   // which by this time is free to use
  1190   switch (ret_type) {
  1191   case T_FLOAT:
  1192     __ movflt(xmm0, Address(rbp, -wordSize));
  1193     break;
  1194   case T_DOUBLE:
  1195     __ movdbl(xmm0, Address(rbp, -wordSize));
  1196     break;
  1197   case T_VOID:  break;
  1198   default: {
  1199     __ movptr(rax, Address(rbp, -wordSize));
  1204 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1205     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1206       if (args[i].first()->is_Register()) {
  1207         __ push(args[i].first()->as_Register());
  1208       } else if (args[i].first()->is_XMMRegister()) {
  1209         __ subptr(rsp, 2*wordSize);
  1210         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1215 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1216     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1217       if (args[i].first()->is_Register()) {
  1218         __ pop(args[i].first()->as_Register());
  1219       } else if (args[i].first()->is_XMMRegister()) {
  1220         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1221         __ addptr(rsp, 2*wordSize);
  1227 static void save_or_restore_arguments(MacroAssembler* masm,
  1228                                       const int stack_slots,
  1229                                       const int total_in_args,
  1230                                       const int arg_save_area,
  1231                                       OopMap* map,
  1232                                       VMRegPair* in_regs,
  1233                                       BasicType* in_sig_bt) {
  1234   // if map is non-NULL then the code should store the values,
  1235   // otherwise it should load them.
  1236   int slot = arg_save_area;
  1237   // Save down double word first
  1238   for ( int i = 0; i < total_in_args; i++) {
  1239     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1240       int offset = slot * VMRegImpl::stack_slot_size;
  1241       slot += VMRegImpl::slots_per_word;
  1242       assert(slot <= stack_slots, "overflow");
  1243       if (map != NULL) {
  1244         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1245       } else {
  1246         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1249     if (in_regs[i].first()->is_Register() &&
  1250         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1251       int offset = slot * VMRegImpl::stack_slot_size;
  1252       if (map != NULL) {
  1253         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
  1254         if (in_sig_bt[i] == T_ARRAY) {
  1255           map->set_oop(VMRegImpl::stack2reg(slot));;
  1257       } else {
  1258         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1260       slot += VMRegImpl::slots_per_word;
  1263   // Save or restore single word registers
  1264   for ( int i = 0; i < total_in_args; i++) {
  1265     if (in_regs[i].first()->is_Register()) {
  1266       int offset = slot * VMRegImpl::stack_slot_size;
  1267       slot++;
  1268       assert(slot <= stack_slots, "overflow");
  1270       // Value is in an input register pass we must flush it to the stack
  1271       const Register reg = in_regs[i].first()->as_Register();
  1272       switch (in_sig_bt[i]) {
  1273         case T_BOOLEAN:
  1274         case T_CHAR:
  1275         case T_BYTE:
  1276         case T_SHORT:
  1277         case T_INT:
  1278           if (map != NULL) {
  1279             __ movl(Address(rsp, offset), reg);
  1280           } else {
  1281             __ movl(reg, Address(rsp, offset));
  1283           break;
  1284         case T_ARRAY:
  1285         case T_LONG:
  1286           // handled above
  1287           break;
  1288         case T_OBJECT:
  1289         default: ShouldNotReachHere();
  1291     } else if (in_regs[i].first()->is_XMMRegister()) {
  1292       if (in_sig_bt[i] == T_FLOAT) {
  1293         int offset = slot * VMRegImpl::stack_slot_size;
  1294         slot++;
  1295         assert(slot <= stack_slots, "overflow");
  1296         if (map != NULL) {
  1297           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1298         } else {
  1299           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1302     } else if (in_regs[i].first()->is_stack()) {
  1303       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1304         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1305         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1312 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1313 // keeps a new JNI critical region from starting until a GC has been
  1314 // forced.  Save down any oops in registers and describe them in an
  1315 // OopMap.
  1316 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1317                                                int stack_slots,
  1318                                                int total_c_args,
  1319                                                int total_in_args,
  1320                                                int arg_save_area,
  1321                                                OopMapSet* oop_maps,
  1322                                                VMRegPair* in_regs,
  1323                                                BasicType* in_sig_bt) {
  1324   __ block_comment("check GC_locker::needs_gc");
  1325   Label cont;
  1326   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1327   __ jcc(Assembler::equal, cont);
  1329   // Save down any incoming oops and call into the runtime to halt for a GC
  1331   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1332   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1333                             arg_save_area, map, in_regs, in_sig_bt);
  1335   address the_pc = __ pc();
  1336   oop_maps->add_gc_map( __ offset(), map);
  1337   __ set_last_Java_frame(rsp, noreg, the_pc);
  1339   __ block_comment("block_for_jni_critical");
  1340   __ movptr(c_rarg0, r15_thread);
  1341   __ mov(r12, rsp); // remember sp
  1342   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1343   __ andptr(rsp, -16); // align stack as required by ABI
  1344   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1345   __ mov(rsp, r12); // restore sp
  1346   __ reinit_heapbase();
  1348   __ reset_last_Java_frame(false, true);
  1350   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1351                             arg_save_area, NULL, in_regs, in_sig_bt);
  1353   __ bind(cont);
  1354 #ifdef ASSERT
  1355   if (StressCriticalJNINatives) {
  1356     // Stress register saving
  1357     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1358     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1359                               arg_save_area, map, in_regs, in_sig_bt);
  1360     // Destroy argument registers
  1361     for (int i = 0; i < total_in_args - 1; i++) {
  1362       if (in_regs[i].first()->is_Register()) {
  1363         const Register reg = in_regs[i].first()->as_Register();
  1364         __ xorptr(reg, reg);
  1365       } else if (in_regs[i].first()->is_XMMRegister()) {
  1366         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1367       } else if (in_regs[i].first()->is_FloatRegister()) {
  1368         ShouldNotReachHere();
  1369       } else if (in_regs[i].first()->is_stack()) {
  1370         // Nothing to do
  1371       } else {
  1372         ShouldNotReachHere();
  1374       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1375         i++;
  1379     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1380                               arg_save_area, NULL, in_regs, in_sig_bt);
  1382 #endif
  1385 // Unpack an array argument into a pointer to the body and the length
  1386 // if the array is non-null, otherwise pass 0 for both.
  1387 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1388   Register tmp_reg = rax;
  1389   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1390          "possible collision");
  1391   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1392          "possible collision");
  1394   // Pass the length, ptr pair
  1395   Label is_null, done;
  1396   VMRegPair tmp;
  1397   tmp.set_ptr(tmp_reg->as_VMReg());
  1398   if (reg.first()->is_stack()) {
  1399     // Load the arg up from the stack
  1400     move_ptr(masm, reg, tmp);
  1401     reg = tmp;
  1403   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1404   __ jccb(Assembler::equal, is_null);
  1405   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1406   move_ptr(masm, tmp, body_arg);
  1407   // load the length relative to the body.
  1408   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1409                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1410   move32_64(masm, tmp, length_arg);
  1411   __ jmpb(done);
  1412   __ bind(is_null);
  1413   // Pass zeros
  1414   __ xorptr(tmp_reg, tmp_reg);
  1415   move_ptr(masm, tmp, body_arg);
  1416   move32_64(masm, tmp, length_arg);
  1417   __ bind(done);
  1421 // Different signatures may require very different orders for the move
  1422 // to avoid clobbering other arguments.  There's no simple way to
  1423 // order them safely.  Compute a safe order for issuing stores and
  1424 // break any cycles in those stores.  This code is fairly general but
  1425 // it's not necessary on the other platforms so we keep it in the
  1426 // platform dependent code instead of moving it into a shared file.
  1427 // (See bugs 7013347 & 7145024.)
  1428 // Note that this code is specific to LP64.
  1429 class ComputeMoveOrder: public StackObj {
  1430   class MoveOperation: public ResourceObj {
  1431     friend class ComputeMoveOrder;
  1432    private:
  1433     VMRegPair        _src;
  1434     VMRegPair        _dst;
  1435     int              _src_index;
  1436     int              _dst_index;
  1437     bool             _processed;
  1438     MoveOperation*  _next;
  1439     MoveOperation*  _prev;
  1441     static int get_id(VMRegPair r) {
  1442       return r.first()->value();
  1445    public:
  1446     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
  1447       _src(src)
  1448     , _src_index(src_index)
  1449     , _dst(dst)
  1450     , _dst_index(dst_index)
  1451     , _next(NULL)
  1452     , _prev(NULL)
  1453     , _processed(false) {
  1456     VMRegPair src() const              { return _src; }
  1457     int src_id() const                 { return get_id(src()); }
  1458     int src_index() const              { return _src_index; }
  1459     VMRegPair dst() const              { return _dst; }
  1460     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
  1461     int dst_index() const              { return _dst_index; }
  1462     int dst_id() const                 { return get_id(dst()); }
  1463     MoveOperation* next() const       { return _next; }
  1464     MoveOperation* prev() const       { return _prev; }
  1465     void set_processed()               { _processed = true; }
  1466     bool is_processed() const          { return _processed; }
  1468     // insert
  1469     void break_cycle(VMRegPair temp_register) {
  1470       // create a new store following the last store
  1471       // to move from the temp_register to the original
  1472       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
  1474       // break the cycle of links and insert new_store at the end
  1475       // break the reverse link.
  1476       MoveOperation* p = prev();
  1477       assert(p->next() == this, "must be");
  1478       _prev = NULL;
  1479       p->_next = new_store;
  1480       new_store->_prev = p;
  1482       // change the original store to save it's value in the temp.
  1483       set_dst(-1, temp_register);
  1486     void link(GrowableArray<MoveOperation*>& killer) {
  1487       // link this store in front the store that it depends on
  1488       MoveOperation* n = killer.at_grow(src_id(), NULL);
  1489       if (n != NULL) {
  1490         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
  1491         _next = n;
  1492         n->_prev = this;
  1495   };
  1497  private:
  1498   GrowableArray<MoveOperation*> edges;
  1500  public:
  1501   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
  1502                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
  1503     // Move operations where the dest is the stack can all be
  1504     // scheduled first since they can't interfere with the other moves.
  1505     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  1506       if (in_sig_bt[i] == T_ARRAY) {
  1507         c_arg--;
  1508         if (out_regs[c_arg].first()->is_stack() &&
  1509             out_regs[c_arg + 1].first()->is_stack()) {
  1510           arg_order.push(i);
  1511           arg_order.push(c_arg);
  1512         } else {
  1513           if (out_regs[c_arg].first()->is_stack() ||
  1514               in_regs[i].first() == out_regs[c_arg].first()) {
  1515             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
  1516           } else {
  1517             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1520       } else if (in_sig_bt[i] == T_VOID) {
  1521         arg_order.push(i);
  1522         arg_order.push(c_arg);
  1523       } else {
  1524         if (out_regs[c_arg].first()->is_stack() ||
  1525             in_regs[i].first() == out_regs[c_arg].first()) {
  1526           arg_order.push(i);
  1527           arg_order.push(c_arg);
  1528         } else {
  1529           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1533     // Break any cycles in the register moves and emit the in the
  1534     // proper order.
  1535     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
  1536     for (int i = 0; i < stores->length(); i++) {
  1537       arg_order.push(stores->at(i)->src_index());
  1538       arg_order.push(stores->at(i)->dst_index());
  1542   // Collected all the move operations
  1543   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
  1544     if (src.first() == dst.first()) return;
  1545     edges.append(new MoveOperation(src_index, src, dst_index, dst));
  1548   // Walk the edges breaking cycles between moves.  The result list
  1549   // can be walked in order to produce the proper set of loads
  1550   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
  1551     // Record which moves kill which values
  1552     GrowableArray<MoveOperation*> killer;
  1553     for (int i = 0; i < edges.length(); i++) {
  1554       MoveOperation* s = edges.at(i);
  1555       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
  1556       killer.at_put_grow(s->dst_id(), s, NULL);
  1558     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
  1559            "make sure temp isn't in the registers that are killed");
  1561     // create links between loads and stores
  1562     for (int i = 0; i < edges.length(); i++) {
  1563       edges.at(i)->link(killer);
  1566     // at this point, all the move operations are chained together
  1567     // in a doubly linked list.  Processing it backwards finds
  1568     // the beginning of the chain, forwards finds the end.  If there's
  1569     // a cycle it can be broken at any point,  so pick an edge and walk
  1570     // backward until the list ends or we end where we started.
  1571     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
  1572     for (int e = 0; e < edges.length(); e++) {
  1573       MoveOperation* s = edges.at(e);
  1574       if (!s->is_processed()) {
  1575         MoveOperation* start = s;
  1576         // search for the beginning of the chain or cycle
  1577         while (start->prev() != NULL && start->prev() != s) {
  1578           start = start->prev();
  1580         if (start->prev() == s) {
  1581           start->break_cycle(temp_register);
  1583         // walk the chain forward inserting to store list
  1584         while (start != NULL) {
  1585           stores->append(start);
  1586           start->set_processed();
  1587           start = start->next();
  1591     return stores;
  1593 };
  1595 static void verify_oop_args(MacroAssembler* masm,
  1596                             methodHandle method,
  1597                             const BasicType* sig_bt,
  1598                             const VMRegPair* regs) {
  1599   Register temp_reg = rbx;  // not part of any compiled calling seq
  1600   if (VerifyOops) {
  1601     for (int i = 0; i < method->size_of_parameters(); i++) {
  1602       if (sig_bt[i] == T_OBJECT ||
  1603           sig_bt[i] == T_ARRAY) {
  1604         VMReg r = regs[i].first();
  1605         assert(r->is_valid(), "bad oop arg");
  1606         if (r->is_stack()) {
  1607           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1608           __ verify_oop(temp_reg);
  1609         } else {
  1610           __ verify_oop(r->as_Register());
  1617 static void gen_special_dispatch(MacroAssembler* masm,
  1618                                  methodHandle method,
  1619                                  const BasicType* sig_bt,
  1620                                  const VMRegPair* regs) {
  1621   verify_oop_args(masm, method, sig_bt, regs);
  1622   vmIntrinsics::ID iid = method->intrinsic_id();
  1624   // Now write the args into the outgoing interpreter space
  1625   bool     has_receiver   = false;
  1626   Register receiver_reg   = noreg;
  1627   int      member_arg_pos = -1;
  1628   Register member_reg     = noreg;
  1629   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1630   if (ref_kind != 0) {
  1631     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1632     member_reg = rbx;  // known to be free at this point
  1633     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1634   } else if (iid == vmIntrinsics::_invokeBasic) {
  1635     has_receiver = true;
  1636   } else {
  1637     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1640   if (member_reg != noreg) {
  1641     // Load the member_arg into register, if necessary.
  1642     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1643     VMReg r = regs[member_arg_pos].first();
  1644     if (r->is_stack()) {
  1645       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1646     } else {
  1647       // no data motion is needed
  1648       member_reg = r->as_Register();
  1652   if (has_receiver) {
  1653     // Make sure the receiver is loaded into a register.
  1654     assert(method->size_of_parameters() > 0, "oob");
  1655     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1656     VMReg r = regs[0].first();
  1657     assert(r->is_valid(), "bad receiver arg");
  1658     if (r->is_stack()) {
  1659       // Porting note:  This assumes that compiled calling conventions always
  1660       // pass the receiver oop in a register.  If this is not true on some
  1661       // platform, pick a temp and load the receiver from stack.
  1662       fatal("receiver always in a register");
  1663       receiver_reg = j_rarg0;  // known to be free at this point
  1664       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1665     } else {
  1666       // no data motion is needed
  1667       receiver_reg = r->as_Register();
  1671   // Figure out which address we are really jumping to:
  1672   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1673                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1676 // ---------------------------------------------------------------------------
  1677 // Generate a native wrapper for a given method.  The method takes arguments
  1678 // in the Java compiled code convention, marshals them to the native
  1679 // convention (handlizes oops, etc), transitions to native, makes the call,
  1680 // returns to java state (possibly blocking), unhandlizes any result and
  1681 // returns.
  1682 //
  1683 // Critical native functions are a shorthand for the use of
  1684 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1685 // functions.  The wrapper is expected to unpack the arguments before
  1686 // passing them to the callee and perform checks before and after the
  1687 // native call to ensure that they GC_locker
  1688 // lock_critical/unlock_critical semantics are followed.  Some other
  1689 // parts of JNI setup are skipped like the tear down of the JNI handle
  1690 // block and the check for pending exceptions it's impossible for them
  1691 // to be thrown.
  1692 //
  1693 // They are roughly structured like this:
  1694 //    if (GC_locker::needs_gc())
  1695 //      SharedRuntime::block_for_jni_critical();
  1696 //    tranistion to thread_in_native
  1697 //    unpack arrray arguments and call native entry point
  1698 //    check for safepoint in progress
  1699 //    check if any thread suspend flags are set
  1700 //      call into JVM and possible unlock the JNI critical
  1701 //      if a GC was suppressed while in the critical native.
  1702 //    transition back to thread_in_Java
  1703 //    return to caller
  1704 //
  1705 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1706                                                 methodHandle method,
  1707                                                 int compile_id,
  1708                                                 BasicType* in_sig_bt,
  1709                                                 VMRegPair* in_regs,
  1710                                                 BasicType ret_type) {
  1711   if (method->is_method_handle_intrinsic()) {
  1712     vmIntrinsics::ID iid = method->intrinsic_id();
  1713     intptr_t start = (intptr_t)__ pc();
  1714     int vep_offset = ((intptr_t)__ pc()) - start;
  1715     gen_special_dispatch(masm,
  1716                          method,
  1717                          in_sig_bt,
  1718                          in_regs);
  1719     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1720     __ flush();
  1721     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1722     return nmethod::new_native_nmethod(method,
  1723                                        compile_id,
  1724                                        masm->code(),
  1725                                        vep_offset,
  1726                                        frame_complete,
  1727                                        stack_slots / VMRegImpl::slots_per_word,
  1728                                        in_ByteSize(-1),
  1729                                        in_ByteSize(-1),
  1730                                        (OopMapSet*)NULL);
  1732   bool is_critical_native = true;
  1733   address native_func = method->critical_native_function();
  1734   if (native_func == NULL) {
  1735     native_func = method->native_function();
  1736     is_critical_native = false;
  1738   assert(native_func != NULL, "must have function");
  1740   // An OopMap for lock (and class if static)
  1741   OopMapSet *oop_maps = new OopMapSet();
  1742   intptr_t start = (intptr_t)__ pc();
  1744   // We have received a description of where all the java arg are located
  1745   // on entry to the wrapper. We need to convert these args to where
  1746   // the jni function will expect them. To figure out where they go
  1747   // we convert the java signature to a C signature by inserting
  1748   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1750   const int total_in_args = method->size_of_parameters();
  1751   int total_c_args = total_in_args;
  1752   if (!is_critical_native) {
  1753     total_c_args += 1;
  1754     if (method->is_static()) {
  1755       total_c_args++;
  1757   } else {
  1758     for (int i = 0; i < total_in_args; i++) {
  1759       if (in_sig_bt[i] == T_ARRAY) {
  1760         total_c_args++;
  1765   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1766   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1767   BasicType* in_elem_bt = NULL;
  1769   int argc = 0;
  1770   if (!is_critical_native) {
  1771     out_sig_bt[argc++] = T_ADDRESS;
  1772     if (method->is_static()) {
  1773       out_sig_bt[argc++] = T_OBJECT;
  1776     for (int i = 0; i < total_in_args ; i++ ) {
  1777       out_sig_bt[argc++] = in_sig_bt[i];
  1779   } else {
  1780     Thread* THREAD = Thread::current();
  1781     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1782     SignatureStream ss(method->signature());
  1783     for (int i = 0; i < total_in_args ; i++ ) {
  1784       if (in_sig_bt[i] == T_ARRAY) {
  1785         // Arrays are passed as int, elem* pair
  1786         out_sig_bt[argc++] = T_INT;
  1787         out_sig_bt[argc++] = T_ADDRESS;
  1788         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1789         const char* at = atype->as_C_string();
  1790         if (strlen(at) == 2) {
  1791           assert(at[0] == '[', "must be");
  1792           switch (at[1]) {
  1793             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1794             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1795             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1796             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1797             case 'I': in_elem_bt[i]  = T_INT; break;
  1798             case 'J': in_elem_bt[i]  = T_LONG; break;
  1799             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1800             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1801             default: ShouldNotReachHere();
  1804       } else {
  1805         out_sig_bt[argc++] = in_sig_bt[i];
  1806         in_elem_bt[i] = T_VOID;
  1808       if (in_sig_bt[i] != T_VOID) {
  1809         assert(in_sig_bt[i] == ss.type(), "must match");
  1810         ss.next();
  1815   // Now figure out where the args must be stored and how much stack space
  1816   // they require.
  1817   int out_arg_slots;
  1818   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1820   // Compute framesize for the wrapper.  We need to handlize all oops in
  1821   // incoming registers
  1823   // Calculate the total number of stack slots we will need.
  1825   // First count the abi requirement plus all of the outgoing args
  1826   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1828   // Now the space for the inbound oop handle area
  1829   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
  1830   if (is_critical_native) {
  1831     // Critical natives may have to call out so they need a save area
  1832     // for register arguments.
  1833     int double_slots = 0;
  1834     int single_slots = 0;
  1835     for ( int i = 0; i < total_in_args; i++) {
  1836       if (in_regs[i].first()->is_Register()) {
  1837         const Register reg = in_regs[i].first()->as_Register();
  1838         switch (in_sig_bt[i]) {
  1839           case T_BOOLEAN:
  1840           case T_BYTE:
  1841           case T_SHORT:
  1842           case T_CHAR:
  1843           case T_INT:  single_slots++; break;
  1844           case T_ARRAY:  // specific to LP64 (7145024)
  1845           case T_LONG: double_slots++; break;
  1846           default:  ShouldNotReachHere();
  1848       } else if (in_regs[i].first()->is_XMMRegister()) {
  1849         switch (in_sig_bt[i]) {
  1850           case T_FLOAT:  single_slots++; break;
  1851           case T_DOUBLE: double_slots++; break;
  1852           default:  ShouldNotReachHere();
  1854       } else if (in_regs[i].first()->is_FloatRegister()) {
  1855         ShouldNotReachHere();
  1858     total_save_slots = double_slots * 2 + single_slots;
  1859     // align the save area
  1860     if (double_slots != 0) {
  1861       stack_slots = round_to(stack_slots, 2);
  1865   int oop_handle_offset = stack_slots;
  1866   stack_slots += total_save_slots;
  1868   // Now any space we need for handlizing a klass if static method
  1870   int klass_slot_offset = 0;
  1871   int klass_offset = -1;
  1872   int lock_slot_offset = 0;
  1873   bool is_static = false;
  1875   if (method->is_static()) {
  1876     klass_slot_offset = stack_slots;
  1877     stack_slots += VMRegImpl::slots_per_word;
  1878     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1879     is_static = true;
  1882   // Plus a lock if needed
  1884   if (method->is_synchronized()) {
  1885     lock_slot_offset = stack_slots;
  1886     stack_slots += VMRegImpl::slots_per_word;
  1889   // Now a place (+2) to save return values or temp during shuffling
  1890   // + 4 for return address (which we own) and saved rbp
  1891   stack_slots += 6;
  1893   // Ok The space we have allocated will look like:
  1894   //
  1895   //
  1896   // FP-> |                     |
  1897   //      |---------------------|
  1898   //      | 2 slots for moves   |
  1899   //      |---------------------|
  1900   //      | lock box (if sync)  |
  1901   //      |---------------------| <- lock_slot_offset
  1902   //      | klass (if static)   |
  1903   //      |---------------------| <- klass_slot_offset
  1904   //      | oopHandle area      |
  1905   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1906   //      | outbound memory     |
  1907   //      | based arguments     |
  1908   //      |                     |
  1909   //      |---------------------|
  1910   //      |                     |
  1911   // SP-> | out_preserved_slots |
  1912   //
  1913   //
  1916   // Now compute actual number of stack words we need rounding to make
  1917   // stack properly aligned.
  1918   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1920   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1922   // First thing make an ic check to see if we should even be here
  1924   // We are free to use all registers as temps without saving them and
  1925   // restoring them except rbp. rbp is the only callee save register
  1926   // as far as the interpreter and the compiler(s) are concerned.
  1929   const Register ic_reg = rax;
  1930   const Register receiver = j_rarg0;
  1932   Label hit;
  1933   Label exception_pending;
  1935   assert_different_registers(ic_reg, receiver, rscratch1);
  1936   __ verify_oop(receiver);
  1937   __ load_klass(rscratch1, receiver);
  1938   __ cmpq(ic_reg, rscratch1);
  1939   __ jcc(Assembler::equal, hit);
  1941   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1943   // Verified entry point must be aligned
  1944   __ align(8);
  1946   __ bind(hit);
  1948   int vep_offset = ((intptr_t)__ pc()) - start;
  1950   // The instruction at the verified entry point must be 5 bytes or longer
  1951   // because it can be patched on the fly by make_non_entrant. The stack bang
  1952   // instruction fits that requirement.
  1954   // Generate stack overflow check
  1956   if (UseStackBanging) {
  1957     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1958   } else {
  1959     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1960     __ fat_nop();
  1963   // Generate a new frame for the wrapper.
  1964   __ enter();
  1965   // -2 because return address is already present and so is saved rbp
  1966   __ subptr(rsp, stack_size - 2*wordSize);
  1968   // Frame is now completed as far as size and linkage.
  1969   int frame_complete = ((intptr_t)__ pc()) - start;
  1971 #ifdef ASSERT
  1973       Label L;
  1974       __ mov(rax, rsp);
  1975       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1976       __ cmpptr(rax, rsp);
  1977       __ jcc(Assembler::equal, L);
  1978       __ stop("improperly aligned stack");
  1979       __ bind(L);
  1981 #endif /* ASSERT */
  1984   // We use r14 as the oop handle for the receiver/klass
  1985   // It is callee save so it survives the call to native
  1987   const Register oop_handle_reg = r14;
  1989   if (is_critical_native) {
  1990     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
  1991                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  1994   //
  1995   // We immediately shuffle the arguments so that any vm call we have to
  1996   // make from here on out (sync slow path, jvmti, etc.) we will have
  1997   // captured the oops from our caller and have a valid oopMap for
  1998   // them.
  2000   // -----------------
  2001   // The Grand Shuffle
  2003   // The Java calling convention is either equal (linux) or denser (win64) than the
  2004   // c calling convention. However the because of the jni_env argument the c calling
  2005   // convention always has at least one more (and two for static) arguments than Java.
  2006   // Therefore if we move the args from java -> c backwards then we will never have
  2007   // a register->register conflict and we don't have to build a dependency graph
  2008   // and figure out how to break any cycles.
  2009   //
  2011   // Record esp-based slot for receiver on stack for non-static methods
  2012   int receiver_offset = -1;
  2014   // This is a trick. We double the stack slots so we can claim
  2015   // the oops in the caller's frame. Since we are sure to have
  2016   // more args than the caller doubling is enough to make
  2017   // sure we can capture all the incoming oop args from the
  2018   // caller.
  2019   //
  2020   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2022   // Mark location of rbp (someday)
  2023   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  2025   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  2026   // All inbound args are referenced based on rbp and all outbound args via rsp.
  2029 #ifdef ASSERT
  2030   bool reg_destroyed[RegisterImpl::number_of_registers];
  2031   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  2032   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2033     reg_destroyed[r] = false;
  2035   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  2036     freg_destroyed[f] = false;
  2039 #endif /* ASSERT */
  2041   // This may iterate in two different directions depending on the
  2042   // kind of native it is.  The reason is that for regular JNI natives
  2043   // the incoming and outgoing registers are offset upwards and for
  2044   // critical natives they are offset down.
  2045   GrowableArray<int> arg_order(2 * total_in_args);
  2046   VMRegPair tmp_vmreg;
  2047   tmp_vmreg.set1(rbx->as_VMReg());
  2049   if (!is_critical_native) {
  2050     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  2051       arg_order.push(i);
  2052       arg_order.push(c_arg);
  2054   } else {
  2055     // Compute a valid move order, using tmp_vmreg to break any cycles
  2056     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
  2059   int temploc = -1;
  2060   for (int ai = 0; ai < arg_order.length(); ai += 2) {
  2061     int i = arg_order.at(ai);
  2062     int c_arg = arg_order.at(ai + 1);
  2063     __ block_comment(err_msg("move %d -> %d", i, c_arg));
  2064     if (c_arg == -1) {
  2065       assert(is_critical_native, "should only be required for critical natives");
  2066       // This arg needs to be moved to a temporary
  2067       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
  2068       in_regs[i] = tmp_vmreg;
  2069       temploc = i;
  2070       continue;
  2071     } else if (i == -1) {
  2072       assert(is_critical_native, "should only be required for critical natives");
  2073       // Read from the temporary location
  2074       assert(temploc != -1, "must be valid");
  2075       i = temploc;
  2076       temploc = -1;
  2078 #ifdef ASSERT
  2079     if (in_regs[i].first()->is_Register()) {
  2080       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  2081     } else if (in_regs[i].first()->is_XMMRegister()) {
  2082       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  2084     if (out_regs[c_arg].first()->is_Register()) {
  2085       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2086     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2087       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2089 #endif /* ASSERT */
  2090     switch (in_sig_bt[i]) {
  2091       case T_ARRAY:
  2092         if (is_critical_native) {
  2093           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  2094           c_arg++;
  2095 #ifdef ASSERT
  2096           if (out_regs[c_arg].first()->is_Register()) {
  2097             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2098           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2099             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2101 #endif
  2102           break;
  2104       case T_OBJECT:
  2105         assert(!is_critical_native, "no oop arguments");
  2106         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2107                     ((i == 0) && (!is_static)),
  2108                     &receiver_offset);
  2109         break;
  2110       case T_VOID:
  2111         break;
  2113       case T_FLOAT:
  2114         float_move(masm, in_regs[i], out_regs[c_arg]);
  2115           break;
  2117       case T_DOUBLE:
  2118         assert( i + 1 < total_in_args &&
  2119                 in_sig_bt[i + 1] == T_VOID &&
  2120                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2121         double_move(masm, in_regs[i], out_regs[c_arg]);
  2122         break;
  2124       case T_LONG :
  2125         long_move(masm, in_regs[i], out_regs[c_arg]);
  2126         break;
  2128       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2130       default:
  2131         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2135   // point c_arg at the first arg that is already loaded in case we
  2136   // need to spill before we call out
  2137   int c_arg = total_c_args - total_in_args;
  2139   // Pre-load a static method's oop into r14.  Used both by locking code and
  2140   // the normal JNI call code.
  2141   if (method->is_static() && !is_critical_native) {
  2143     //  load oop into a register
  2144     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  2146     // Now handlize the static class mirror it's known not-null.
  2147     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  2148     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2150     // Now get the handle
  2151     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  2152     // store the klass handle as second argument
  2153     __ movptr(c_rarg1, oop_handle_reg);
  2154     // and protect the arg if we must spill
  2155     c_arg--;
  2158   // Change state to native (we save the return address in the thread, since it might not
  2159   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  2160   // points into the right code segment. It does not have to be the correct return pc.
  2161   // We use the same pc/oopMap repeatedly when we call out
  2163   intptr_t the_pc = (intptr_t) __ pc();
  2164   oop_maps->add_gc_map(the_pc - start, map);
  2166   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  2169   // We have all of the arguments setup at this point. We must not touch any register
  2170   // argument registers at this point (what if we save/restore them there are no oop?
  2173     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2174     // protect the args we've loaded
  2175     save_args(masm, total_c_args, c_arg, out_regs);
  2176     __ mov_metadata(c_rarg1, method());
  2177     __ call_VM_leaf(
  2178       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2179       r15_thread, c_rarg1);
  2180     restore_args(masm, total_c_args, c_arg, out_regs);
  2183   // RedefineClasses() tracing support for obsolete method entry
  2184   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2185     // protect the args we've loaded
  2186     save_args(masm, total_c_args, c_arg, out_regs);
  2187     __ mov_metadata(c_rarg1, method());
  2188     __ call_VM_leaf(
  2189       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2190       r15_thread, c_rarg1);
  2191     restore_args(masm, total_c_args, c_arg, out_regs);
  2194   // Lock a synchronized method
  2196   // Register definitions used by locking and unlocking
  2198   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  2199   const Register obj_reg  = rbx;  // Will contain the oop
  2200   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  2201   const Register old_hdr  = r13;  // value of old header at unlock time
  2203   Label slow_path_lock;
  2204   Label lock_done;
  2206   if (method->is_synchronized()) {
  2207     assert(!is_critical_native, "unhandled");
  2210     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  2212     // Get the handle (the 2nd argument)
  2213     __ mov(oop_handle_reg, c_rarg1);
  2215     // Get address of the box
  2217     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2219     // Load the oop from the handle
  2220     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2222     if (UseBiasedLocking) {
  2223       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  2226     // Load immediate 1 into swap_reg %rax
  2227     __ movl(swap_reg, 1);
  2229     // Load (object->mark() | 1) into swap_reg %rax
  2230     __ orptr(swap_reg, Address(obj_reg, 0));
  2232     // Save (object->mark() | 1) into BasicLock's displaced header
  2233     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2235     if (os::is_MP()) {
  2236       __ lock();
  2239     // src -> dest iff dest == rax else rax <- dest
  2240     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2241     __ jcc(Assembler::equal, lock_done);
  2243     // Hmm should this move to the slow path code area???
  2245     // Test if the oopMark is an obvious stack pointer, i.e.,
  2246     //  1) (mark & 3) == 0, and
  2247     //  2) rsp <= mark < mark + os::pagesize()
  2248     // These 3 tests can be done by evaluating the following
  2249     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2250     // assuming both stack pointer and pagesize have their
  2251     // least significant 2 bits clear.
  2252     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  2254     __ subptr(swap_reg, rsp);
  2255     __ andptr(swap_reg, 3 - os::vm_page_size());
  2257     // Save the test result, for recursive case, the result is zero
  2258     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2259     __ jcc(Assembler::notEqual, slow_path_lock);
  2261     // Slow path will re-enter here
  2263     __ bind(lock_done);
  2267   // Finally just about ready to make the JNI call
  2270   // get JNIEnv* which is first argument to native
  2271   if (!is_critical_native) {
  2272     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  2275   // Now set thread in native
  2276   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  2278   __ call(RuntimeAddress(native_func));
  2280     // Either restore the MXCSR register after returning from the JNI Call
  2281     // or verify that it wasn't changed.
  2282     if (RestoreMXCSROnJNICalls) {
  2283       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  2286     else if (CheckJNICalls ) {
  2287       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  2291   // Unpack native results.
  2292   switch (ret_type) {
  2293   case T_BOOLEAN: __ c2bool(rax);            break;
  2294   case T_CHAR   : __ movzwl(rax, rax);      break;
  2295   case T_BYTE   : __ sign_extend_byte (rax); break;
  2296   case T_SHORT  : __ sign_extend_short(rax); break;
  2297   case T_INT    : /* nothing to do */        break;
  2298   case T_DOUBLE :
  2299   case T_FLOAT  :
  2300     // Result is in xmm0 we'll save as needed
  2301     break;
  2302   case T_ARRAY:                 // Really a handle
  2303   case T_OBJECT:                // Really a handle
  2304       break; // can't de-handlize until after safepoint check
  2305   case T_VOID: break;
  2306   case T_LONG: break;
  2307   default       : ShouldNotReachHere();
  2310   // Switch thread to "native transition" state before reading the synchronization state.
  2311   // This additional state is necessary because reading and testing the synchronization
  2312   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2313   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2314   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2315   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2316   //     didn't see any synchronization is progress, and escapes.
  2317   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2319   if(os::is_MP()) {
  2320     if (UseMembar) {
  2321       // Force this write out before the read below
  2322       __ membar(Assembler::Membar_mask_bits(
  2323            Assembler::LoadLoad | Assembler::LoadStore |
  2324            Assembler::StoreLoad | Assembler::StoreStore));
  2325     } else {
  2326       // Write serialization page so VM thread can do a pseudo remote membar.
  2327       // We use the current thread pointer to calculate a thread specific
  2328       // offset to write to within the page. This minimizes bus traffic
  2329       // due to cache line collision.
  2330       __ serialize_memory(r15_thread, rcx);
  2334   Label after_transition;
  2336   // check for safepoint operation in progress and/or pending suspend requests
  2338     Label Continue;
  2340     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2341              SafepointSynchronize::_not_synchronized);
  2343     Label L;
  2344     __ jcc(Assembler::notEqual, L);
  2345     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  2346     __ jcc(Assembler::equal, Continue);
  2347     __ bind(L);
  2349     // Don't use call_VM as it will see a possible pending exception and forward it
  2350     // and never return here preventing us from clearing _last_native_pc down below.
  2351     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2352     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2353     // by hand.
  2354     //
  2355     save_native_result(masm, ret_type, stack_slots);
  2356     __ mov(c_rarg0, r15_thread);
  2357     __ mov(r12, rsp); // remember sp
  2358     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2359     __ andptr(rsp, -16); // align stack as required by ABI
  2360     if (!is_critical_native) {
  2361       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  2362     } else {
  2363       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
  2365     __ mov(rsp, r12); // restore sp
  2366     __ reinit_heapbase();
  2367     // Restore any method result value
  2368     restore_native_result(masm, ret_type, stack_slots);
  2370     if (is_critical_native) {
  2371       // The call above performed the transition to thread_in_Java so
  2372       // skip the transition logic below.
  2373       __ jmpb(after_transition);
  2376     __ bind(Continue);
  2379   // change thread state
  2380   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2381   __ bind(after_transition);
  2383   Label reguard;
  2384   Label reguard_done;
  2385   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2386   __ jcc(Assembler::equal, reguard);
  2387   __ bind(reguard_done);
  2389   // native result if any is live
  2391   // Unlock
  2392   Label unlock_done;
  2393   Label slow_path_unlock;
  2394   if (method->is_synchronized()) {
  2396     // Get locked oop from the handle we passed to jni
  2397     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2399     Label done;
  2401     if (UseBiasedLocking) {
  2402       __ biased_locking_exit(obj_reg, old_hdr, done);
  2405     // Simple recursive lock?
  2407     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  2408     __ jcc(Assembler::equal, done);
  2410     // Must save rax if if it is live now because cmpxchg must use it
  2411     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2412       save_native_result(masm, ret_type, stack_slots);
  2416     // get address of the stack lock
  2417     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2418     //  get old displaced header
  2419     __ movptr(old_hdr, Address(rax, 0));
  2421     // Atomic swap old header if oop still contains the stack lock
  2422     if (os::is_MP()) {
  2423       __ lock();
  2425     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  2426     __ jcc(Assembler::notEqual, slow_path_unlock);
  2428     // slow path re-enters here
  2429     __ bind(unlock_done);
  2430     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2431       restore_native_result(masm, ret_type, stack_slots);
  2434     __ bind(done);
  2438     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2439     save_native_result(masm, ret_type, stack_slots);
  2440     __ mov_metadata(c_rarg1, method());
  2441     __ call_VM_leaf(
  2442          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2443          r15_thread, c_rarg1);
  2444     restore_native_result(masm, ret_type, stack_slots);
  2447   __ reset_last_Java_frame(false, true);
  2449   // Unpack oop result
  2450   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2451       Label L;
  2452       __ testptr(rax, rax);
  2453       __ jcc(Assembler::zero, L);
  2454       __ movptr(rax, Address(rax, 0));
  2455       __ bind(L);
  2456       __ verify_oop(rax);
  2459   if (!is_critical_native) {
  2460     // reset handle block
  2461     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  2462     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  2465   // pop our frame
  2467   __ leave();
  2469   if (!is_critical_native) {
  2470     // Any exception pending?
  2471     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2472     __ jcc(Assembler::notEqual, exception_pending);
  2475   // Return
  2477   __ ret(0);
  2479   // Unexpected paths are out of line and go here
  2481   if (!is_critical_native) {
  2482     // forward the exception
  2483     __ bind(exception_pending);
  2485     // and forward the exception
  2486     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2489   // Slow path locking & unlocking
  2490   if (method->is_synchronized()) {
  2492     // BEGIN Slow path lock
  2493     __ bind(slow_path_lock);
  2495     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2496     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2498     // protect the args we've loaded
  2499     save_args(masm, total_c_args, c_arg, out_regs);
  2501     __ mov(c_rarg0, obj_reg);
  2502     __ mov(c_rarg1, lock_reg);
  2503     __ mov(c_rarg2, r15_thread);
  2505     // Not a leaf but we have last_Java_frame setup as we want
  2506     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  2507     restore_args(masm, total_c_args, c_arg, out_regs);
  2509 #ifdef ASSERT
  2510     { Label L;
  2511     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2512     __ jcc(Assembler::equal, L);
  2513     __ stop("no pending exception allowed on exit from monitorenter");
  2514     __ bind(L);
  2516 #endif
  2517     __ jmp(lock_done);
  2519     // END Slow path lock
  2521     // BEGIN Slow path unlock
  2522     __ bind(slow_path_unlock);
  2524     // If we haven't already saved the native result we must save it now as xmm registers
  2525     // are still exposed.
  2527     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2528       save_native_result(masm, ret_type, stack_slots);
  2531     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2533     __ mov(c_rarg0, obj_reg);
  2534     __ mov(r12, rsp); // remember sp
  2535     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2536     __ andptr(rsp, -16); // align stack as required by ABI
  2538     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2539     // NOTE that obj_reg == rbx currently
  2540     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  2541     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2543     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2544     __ mov(rsp, r12); // restore sp
  2545     __ reinit_heapbase();
  2546 #ifdef ASSERT
  2548       Label L;
  2549       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2550       __ jcc(Assembler::equal, L);
  2551       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2552       __ bind(L);
  2554 #endif /* ASSERT */
  2556     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  2558     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2559       restore_native_result(masm, ret_type, stack_slots);
  2561     __ jmp(unlock_done);
  2563     // END Slow path unlock
  2565   } // synchronized
  2567   // SLOW PATH Reguard the stack if needed
  2569   __ bind(reguard);
  2570   save_native_result(masm, ret_type, stack_slots);
  2571   __ mov(r12, rsp); // remember sp
  2572   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2573   __ andptr(rsp, -16); // align stack as required by ABI
  2574   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2575   __ mov(rsp, r12); // restore sp
  2576   __ reinit_heapbase();
  2577   restore_native_result(masm, ret_type, stack_slots);
  2578   // and continue
  2579   __ jmp(reguard_done);
  2583   __ flush();
  2585   nmethod *nm = nmethod::new_native_nmethod(method,
  2586                                             compile_id,
  2587                                             masm->code(),
  2588                                             vep_offset,
  2589                                             frame_complete,
  2590                                             stack_slots / VMRegImpl::slots_per_word,
  2591                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2592                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2593                                             oop_maps);
  2595   if (is_critical_native) {
  2596     nm->set_lazy_critical_native(true);
  2599   return nm;
  2603 #ifdef HAVE_DTRACE_H
  2604 // ---------------------------------------------------------------------------
  2605 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2606 // in the Java compiled code convention, marshals them to the native
  2607 // abi and then leaves nops at the position you would expect to call a native
  2608 // function. When the probe is enabled the nops are replaced with a trap
  2609 // instruction that dtrace inserts and the trace will cause a notification
  2610 // to dtrace.
  2611 //
  2612 // The probes are only able to take primitive types and java/lang/String as
  2613 // arguments.  No other java types are allowed. Strings are converted to utf8
  2614 // strings so that from dtrace point of view java strings are converted to C
  2615 // strings. There is an arbitrary fixed limit on the total space that a method
  2616 // can use for converting the strings. (256 chars per string in the signature).
  2617 // So any java string larger then this is truncated.
  2619 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2620 static bool offsets_initialized = false;
  2623 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  2624                                                 methodHandle method) {
  2627   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2628   // be single threaded in this method.
  2629   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2631   if (!offsets_initialized) {
  2632     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  2633     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  2634     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  2635     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  2636     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  2637     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  2639     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  2640     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  2641     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  2642     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  2643     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  2644     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  2645     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  2646     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  2648     offsets_initialized = true;
  2650   // Fill in the signature array, for the calling-convention call.
  2651   int total_args_passed = method->size_of_parameters();
  2653   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2654   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2656   // The signature we are going to use for the trap that dtrace will see
  2657   // java/lang/String is converted. We drop "this" and any other object
  2658   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2659   // is converted to a two-slot long, which is why we double the allocation).
  2660   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2661   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2663   int i=0;
  2664   int total_strings = 0;
  2665   int first_arg_to_pass = 0;
  2666   int total_c_args = 0;
  2668   // Skip the receiver as dtrace doesn't want to see it
  2669   if( !method->is_static() ) {
  2670     in_sig_bt[i++] = T_OBJECT;
  2671     first_arg_to_pass = 1;
  2674   // We need to convert the java args to where a native (non-jni) function
  2675   // would expect them. To figure out where they go we convert the java
  2676   // signature to a C signature.
  2678   SignatureStream ss(method->signature());
  2679   for ( ; !ss.at_return_type(); ss.next()) {
  2680     BasicType bt = ss.type();
  2681     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2682     out_sig_bt[total_c_args++] = bt;
  2683     if( bt == T_OBJECT) {
  2684       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2685       if (s == vmSymbols::java_lang_String()) {
  2686         total_strings++;
  2687         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2688       } else if (s == vmSymbols::java_lang_Boolean() ||
  2689                  s == vmSymbols::java_lang_Character() ||
  2690                  s == vmSymbols::java_lang_Byte() ||
  2691                  s == vmSymbols::java_lang_Short() ||
  2692                  s == vmSymbols::java_lang_Integer() ||
  2693                  s == vmSymbols::java_lang_Float()) {
  2694         out_sig_bt[total_c_args-1] = T_INT;
  2695       } else if (s == vmSymbols::java_lang_Long() ||
  2696                  s == vmSymbols::java_lang_Double()) {
  2697         out_sig_bt[total_c_args-1] = T_LONG;
  2698         out_sig_bt[total_c_args++] = T_VOID;
  2700     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2701       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2702       // We convert double to long
  2703       out_sig_bt[total_c_args-1] = T_LONG;
  2704       out_sig_bt[total_c_args++] = T_VOID;
  2705     } else if ( bt == T_FLOAT) {
  2706       // We convert float to int
  2707       out_sig_bt[total_c_args-1] = T_INT;
  2711   assert(i==total_args_passed, "validly parsed signature");
  2713   // Now get the compiled-Java layout as input arguments
  2714   int comp_args_on_stack;
  2715   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2716       in_sig_bt, in_regs, total_args_passed, false);
  2718   // Now figure out where the args must be stored and how much stack space
  2719   // they require (neglecting out_preserve_stack_slots but space for storing
  2720   // the 1st six register arguments). It's weird see int_stk_helper.
  2722   int out_arg_slots;
  2723   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2725   // Calculate the total number of stack slots we will need.
  2727   // First count the abi requirement plus all of the outgoing args
  2728   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2730   // Now space for the string(s) we must convert
  2731   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2732   for (i = 0; i < total_strings ; i++) {
  2733     string_locs[i] = stack_slots;
  2734     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2737   // Plus the temps we might need to juggle register args
  2738   // regs take two slots each
  2739   stack_slots += (Argument::n_int_register_parameters_c +
  2740                   Argument::n_float_register_parameters_c) * 2;
  2743   // + 4 for return address (which we own) and saved rbp,
  2745   stack_slots += 4;
  2747   // Ok The space we have allocated will look like:
  2748   //
  2749   //
  2750   // FP-> |                     |
  2751   //      |---------------------|
  2752   //      | string[n]           |
  2753   //      |---------------------| <- string_locs[n]
  2754   //      | string[n-1]         |
  2755   //      |---------------------| <- string_locs[n-1]
  2756   //      | ...                 |
  2757   //      | ...                 |
  2758   //      |---------------------| <- string_locs[1]
  2759   //      | string[0]           |
  2760   //      |---------------------| <- string_locs[0]
  2761   //      | outbound memory     |
  2762   //      | based arguments     |
  2763   //      |                     |
  2764   //      |---------------------|
  2765   //      |                     |
  2766   // SP-> | out_preserved_slots |
  2767   //
  2768   //
  2770   // Now compute actual number of stack words we need rounding to make
  2771   // stack properly aligned.
  2772   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2774   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2776   intptr_t start = (intptr_t)__ pc();
  2778   // First thing make an ic check to see if we should even be here
  2780   // We are free to use all registers as temps without saving them and
  2781   // restoring them except rbp. rbp, is the only callee save register
  2782   // as far as the interpreter and the compiler(s) are concerned.
  2784   const Register ic_reg = rax;
  2785   const Register receiver = rcx;
  2786   Label hit;
  2787   Label exception_pending;
  2790   __ verify_oop(receiver);
  2791   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2792   __ jcc(Assembler::equal, hit);
  2794   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2796   // verified entry must be aligned for code patching.
  2797   // and the first 5 bytes must be in the same cache line
  2798   // if we align at 8 then we will be sure 5 bytes are in the same line
  2799   __ align(8);
  2801   __ bind(hit);
  2803   int vep_offset = ((intptr_t)__ pc()) - start;
  2806   // The instruction at the verified entry point must be 5 bytes or longer
  2807   // because it can be patched on the fly by make_non_entrant. The stack bang
  2808   // instruction fits that requirement.
  2810   // Generate stack overflow check
  2812   if (UseStackBanging) {
  2813     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2814       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2815     } else {
  2816       __ movl(rax, stack_size);
  2817       __ bang_stack_size(rax, rbx);
  2819   } else {
  2820     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2821     __ fat_nop();
  2824   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2825          "valid size for make_non_entrant");
  2827   // Generate a new frame for the wrapper.
  2828   __ enter();
  2830   // -4 because return address is already present and so is saved rbp,
  2831   if (stack_size - 2*wordSize != 0) {
  2832     __ subq(rsp, stack_size - 2*wordSize);
  2835   // Frame is now completed as far a size and linkage.
  2837   int frame_complete = ((intptr_t)__ pc()) - start;
  2839   int c_arg, j_arg;
  2841   // State of input register args
  2843   bool  live[ConcreteRegisterImpl::number_of_registers];
  2845   live[j_rarg0->as_VMReg()->value()] = false;
  2846   live[j_rarg1->as_VMReg()->value()] = false;
  2847   live[j_rarg2->as_VMReg()->value()] = false;
  2848   live[j_rarg3->as_VMReg()->value()] = false;
  2849   live[j_rarg4->as_VMReg()->value()] = false;
  2850   live[j_rarg5->as_VMReg()->value()] = false;
  2852   live[j_farg0->as_VMReg()->value()] = false;
  2853   live[j_farg1->as_VMReg()->value()] = false;
  2854   live[j_farg2->as_VMReg()->value()] = false;
  2855   live[j_farg3->as_VMReg()->value()] = false;
  2856   live[j_farg4->as_VMReg()->value()] = false;
  2857   live[j_farg5->as_VMReg()->value()] = false;
  2858   live[j_farg6->as_VMReg()->value()] = false;
  2859   live[j_farg7->as_VMReg()->value()] = false;
  2862   bool rax_is_zero = false;
  2864   // All args (except strings) destined for the stack are moved first
  2865   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2866        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2867     VMRegPair src = in_regs[j_arg];
  2868     VMRegPair dst = out_regs[c_arg];
  2870     // Get the real reg value or a dummy (rsp)
  2872     int src_reg = src.first()->is_reg() ?
  2873                   src.first()->value() :
  2874                   rsp->as_VMReg()->value();
  2876     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2877                     (in_sig_bt[j_arg] == T_OBJECT &&
  2878                      out_sig_bt[c_arg] != T_INT &&
  2879                      out_sig_bt[c_arg] != T_ADDRESS &&
  2880                      out_sig_bt[c_arg] != T_LONG);
  2882     live[src_reg] = !useless;
  2884     if (dst.first()->is_stack()) {
  2886       // Even though a string arg in a register is still live after this loop
  2887       // after the string conversion loop (next) it will be dead so we take
  2888       // advantage of that now for simpler code to manage live.
  2890       live[src_reg] = false;
  2891       switch (in_sig_bt[j_arg]) {
  2893         case T_ARRAY:
  2894         case T_OBJECT:
  2896             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2898             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2899               // need to unbox a one-word value
  2900               Register in_reg = rax;
  2901               if ( src.first()->is_reg() ) {
  2902                 in_reg = src.first()->as_Register();
  2903               } else {
  2904                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2905                 rax_is_zero = false;
  2907               Label skipUnbox;
  2908               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2909                         (int32_t)NULL_WORD);
  2910               __ testq(in_reg, in_reg);
  2911               __ jcc(Assembler::zero, skipUnbox);
  2913               BasicType bt = out_sig_bt[c_arg];
  2914               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2915               Address src1(in_reg, box_offset);
  2916               if ( bt == T_LONG ) {
  2917                 __ movq(in_reg,  src1);
  2918                 __ movq(stack_dst, in_reg);
  2919                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2920                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2921               } else {
  2922                 __ movl(in_reg,  src1);
  2923                 __ movl(stack_dst, in_reg);
  2926               __ bind(skipUnbox);
  2927             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2928               // Convert the arg to NULL
  2929               if (!rax_is_zero) {
  2930                 __ xorq(rax, rax);
  2931                 rax_is_zero = true;
  2933               __ movq(stack_dst, rax);
  2936           break;
  2938         case T_VOID:
  2939           break;
  2941         case T_FLOAT:
  2942           // This does the right thing since we know it is destined for the
  2943           // stack
  2944           float_move(masm, src, dst);
  2945           break;
  2947         case T_DOUBLE:
  2948           // This does the right thing since we know it is destined for the
  2949           // stack
  2950           double_move(masm, src, dst);
  2951           break;
  2953         case T_LONG :
  2954           long_move(masm, src, dst);
  2955           break;
  2957         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2959         default:
  2960           move32_64(masm, src, dst);
  2966   // If we have any strings we must store any register based arg to the stack
  2967   // This includes any still live xmm registers too.
  2969   int sid = 0;
  2971   if (total_strings > 0 ) {
  2972     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2973          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2974       VMRegPair src = in_regs[j_arg];
  2975       VMRegPair dst = out_regs[c_arg];
  2977       if (src.first()->is_reg()) {
  2978         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  2980         // string oops were left untouched by the previous loop even if the
  2981         // eventual (converted) arg is destined for the stack so park them
  2982         // away now (except for first)
  2984         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2985           Address utf8_addr = Address(
  2986               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2987           if (sid != 1) {
  2988             // The first string arg won't be killed until after the utf8
  2989             // conversion
  2990             __ movq(utf8_addr, src.first()->as_Register());
  2992         } else if (dst.first()->is_reg()) {
  2993           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  2995             // Convert the xmm register to an int and store it in the reserved
  2996             // location for the eventual c register arg
  2997             XMMRegister f = src.first()->as_XMMRegister();
  2998             if (in_sig_bt[j_arg] == T_FLOAT) {
  2999               __ movflt(src_tmp, f);
  3000             } else {
  3001               __ movdbl(src_tmp, f);
  3003           } else {
  3004             // If the arg is an oop type we don't support don't bother to store
  3005             // it remember string was handled above.
  3006             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3007                             (in_sig_bt[j_arg] == T_OBJECT &&
  3008                              out_sig_bt[c_arg] != T_INT &&
  3009                              out_sig_bt[c_arg] != T_LONG);
  3011             if (!useless) {
  3012               __ movq(src_tmp, src.first()->as_Register());
  3017       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3018         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3019         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3023     // Now that the volatile registers are safe, convert all the strings
  3024     sid = 0;
  3026     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3027          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3028       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3029         // It's a string
  3030         Address utf8_addr = Address(
  3031             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3032         // The first string we find might still be in the original java arg
  3033         // register
  3035         VMReg src = in_regs[j_arg].first();
  3037         // We will need to eventually save the final argument to the trap
  3038         // in the von-volatile location dedicated to src. This is the offset
  3039         // from fp we will use.
  3040         int src_off = src->is_reg() ?
  3041             fp_offset[src->value()] : reg2offset_in(src);
  3043         // This is where the argument will eventually reside
  3044         VMRegPair dst = out_regs[c_arg];
  3046         if (src->is_reg()) {
  3047           if (sid == 1) {
  3048             __ movq(c_rarg0, src->as_Register());
  3049           } else {
  3050             __ movq(c_rarg0, utf8_addr);
  3052         } else {
  3053           // arg is still in the original location
  3054           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  3056         Label done, convert;
  3058         // see if the oop is NULL
  3059         __ testq(c_rarg0, c_rarg0);
  3060         __ jcc(Assembler::notEqual, convert);
  3062         if (dst.first()->is_reg()) {
  3063           // Save the ptr to utf string in the origina src loc or the tmp
  3064           // dedicated to it
  3065           __ movq(Address(rbp, src_off), c_rarg0);
  3066         } else {
  3067           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  3069         __ jmp(done);
  3071         __ bind(convert);
  3073         __ lea(c_rarg1, utf8_addr);
  3074         if (dst.first()->is_reg()) {
  3075           __ movq(Address(rbp, src_off), c_rarg1);
  3076         } else {
  3077           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  3079         // And do the conversion
  3080         __ call(RuntimeAddress(
  3081                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  3083         __ bind(done);
  3085       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3086         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3087         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3090     // The get_utf call killed all the c_arg registers
  3091     live[c_rarg0->as_VMReg()->value()] = false;
  3092     live[c_rarg1->as_VMReg()->value()] = false;
  3093     live[c_rarg2->as_VMReg()->value()] = false;
  3094     live[c_rarg3->as_VMReg()->value()] = false;
  3095     live[c_rarg4->as_VMReg()->value()] = false;
  3096     live[c_rarg5->as_VMReg()->value()] = false;
  3098     live[c_farg0->as_VMReg()->value()] = false;
  3099     live[c_farg1->as_VMReg()->value()] = false;
  3100     live[c_farg2->as_VMReg()->value()] = false;
  3101     live[c_farg3->as_VMReg()->value()] = false;
  3102     live[c_farg4->as_VMReg()->value()] = false;
  3103     live[c_farg5->as_VMReg()->value()] = false;
  3104     live[c_farg6->as_VMReg()->value()] = false;
  3105     live[c_farg7->as_VMReg()->value()] = false;
  3108   // Now we can finally move the register args to their desired locations
  3110   rax_is_zero = false;
  3112   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3113        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3115     VMRegPair src = in_regs[j_arg];
  3116     VMRegPair dst = out_regs[c_arg];
  3118     // Only need to look for args destined for the interger registers (since we
  3119     // convert float/double args to look like int/long outbound)
  3120     if (dst.first()->is_reg()) {
  3121       Register r =  dst.first()->as_Register();
  3123       // Check if the java arg is unsupported and thereofre useless
  3124       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3125                       (in_sig_bt[j_arg] == T_OBJECT &&
  3126                        out_sig_bt[c_arg] != T_INT &&
  3127                        out_sig_bt[c_arg] != T_ADDRESS &&
  3128                        out_sig_bt[c_arg] != T_LONG);
  3131       // If we're going to kill an existing arg save it first
  3132       if (live[dst.first()->value()]) {
  3133         // you can't kill yourself
  3134         if (src.first() != dst.first()) {
  3135           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  3138       if (src.first()->is_reg()) {
  3139         if (live[src.first()->value()] ) {
  3140           if (in_sig_bt[j_arg] == T_FLOAT) {
  3141             __ movdl(r, src.first()->as_XMMRegister());
  3142           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  3143             __ movdq(r, src.first()->as_XMMRegister());
  3144           } else if (r != src.first()->as_Register()) {
  3145             if (!useless) {
  3146               __ movq(r, src.first()->as_Register());
  3149         } else {
  3150           // If the arg is an oop type we don't support don't bother to store
  3151           // it
  3152           if (!useless) {
  3153             if (in_sig_bt[j_arg] == T_DOUBLE ||
  3154                 in_sig_bt[j_arg] == T_LONG  ||
  3155                 in_sig_bt[j_arg] == T_OBJECT ) {
  3156               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  3157             } else {
  3158               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  3162         live[src.first()->value()] = false;
  3163       } else if (!useless) {
  3164         // full sized move even for int should be ok
  3165         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  3168       // At this point r has the original java arg in the final location
  3169       // (assuming it wasn't useless). If the java arg was an oop
  3170       // we have a bit more to do
  3172       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  3173         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3174           // need to unbox a one-word value
  3175           Label skip;
  3176           __ testq(r, r);
  3177           __ jcc(Assembler::equal, skip);
  3178           BasicType bt = out_sig_bt[c_arg];
  3179           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3180           Address src1(r, box_offset);
  3181           if ( bt == T_LONG ) {
  3182             __ movq(r, src1);
  3183           } else {
  3184             __ movl(r, src1);
  3186           __ bind(skip);
  3188         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  3189           // Convert the arg to NULL
  3190           __ xorq(r, r);
  3194       // dst can longer be holding an input value
  3195       live[dst.first()->value()] = false;
  3197     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3198       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3199       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3204   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3205   // patch in the trap
  3206   int patch_offset = ((intptr_t)__ pc()) - start;
  3208   __ nop();
  3211   // Return
  3213   __ leave();
  3214   __ ret(0);
  3216   __ flush();
  3218   nmethod *nm = nmethod::new_dtrace_nmethod(
  3219       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3220       stack_slots / VMRegImpl::slots_per_word);
  3221   return nm;
  3225 #endif // HAVE_DTRACE_H
  3227 // this function returns the adjust size (in number of words) to a c2i adapter
  3228 // activation for use during deoptimization
  3229 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  3230   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3234 uint SharedRuntime::out_preserve_stack_slots() {
  3235   return 0;
  3239 //------------------------------generate_deopt_blob----------------------------
  3240 void SharedRuntime::generate_deopt_blob() {
  3241   // Allocate space for the code
  3242   ResourceMark rm;
  3243   // Setup code generation tools
  3244   CodeBuffer buffer("deopt_blob", 2048, 1024);
  3245   MacroAssembler* masm = new MacroAssembler(&buffer);
  3246   int frame_size_in_words;
  3247   OopMap* map = NULL;
  3248   OopMapSet *oop_maps = new OopMapSet();
  3250   // -------------
  3251   // This code enters when returning to a de-optimized nmethod.  A return
  3252   // address has been pushed on the the stack, and return values are in
  3253   // registers.
  3254   // If we are doing a normal deopt then we were called from the patched
  3255   // nmethod from the point we returned to the nmethod. So the return
  3256   // address on the stack is wrong by NativeCall::instruction_size
  3257   // We will adjust the value so it looks like we have the original return
  3258   // address on the stack (like when we eagerly deoptimized).
  3259   // In the case of an exception pending when deoptimizing, we enter
  3260   // with a return address on the stack that points after the call we patched
  3261   // into the exception handler. We have the following register state from,
  3262   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  3263   //    rax: exception oop
  3264   //    rbx: exception handler
  3265   //    rdx: throwing pc
  3266   // So in this case we simply jam rdx into the useless return address and
  3267   // the stack looks just like we want.
  3268   //
  3269   // At this point we need to de-opt.  We save the argument return
  3270   // registers.  We call the first C routine, fetch_unroll_info().  This
  3271   // routine captures the return values and returns a structure which
  3272   // describes the current frame size and the sizes of all replacement frames.
  3273   // The current frame is compiled code and may contain many inlined
  3274   // functions, each with their own JVM state.  We pop the current frame, then
  3275   // push all the new frames.  Then we call the C routine unpack_frames() to
  3276   // populate these frames.  Finally unpack_frames() returns us the new target
  3277   // address.  Notice that callee-save registers are BLOWN here; they have
  3278   // already been captured in the vframeArray at the time the return PC was
  3279   // patched.
  3280   address start = __ pc();
  3281   Label cont;
  3283   // Prolog for non exception case!
  3285   // Save everything in sight.
  3286   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3288   // Normal deoptimization.  Save exec mode for unpack_frames.
  3289   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  3290   __ jmp(cont);
  3292   int reexecute_offset = __ pc() - start;
  3294   // Reexecute case
  3295   // return address is the pc describes what bci to do re-execute at
  3297   // No need to update map as each call to save_live_registers will produce identical oopmap
  3298   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3300   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  3301   __ jmp(cont);
  3303   int exception_offset = __ pc() - start;
  3305   // Prolog for exception case
  3307   // all registers are dead at this entry point, except for rax, and
  3308   // rdx which contain the exception oop and exception pc
  3309   // respectively.  Set them in TLS and fall thru to the
  3310   // unpack_with_exception_in_tls entry point.
  3312   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3313   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  3315   int exception_in_tls_offset = __ pc() - start;
  3317   // new implementation because exception oop is now passed in JavaThread
  3319   // Prolog for exception case
  3320   // All registers must be preserved because they might be used by LinearScan
  3321   // Exceptiop oop and throwing PC are passed in JavaThread
  3322   // tos: stack at point of call to method that threw the exception (i.e. only
  3323   // args are on the stack, no return address)
  3325   // make room on stack for the return address
  3326   // It will be patched later with the throwing pc. The correct value is not
  3327   // available now because loading it from memory would destroy registers.
  3328   __ push(0);
  3330   // Save everything in sight.
  3331   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3333   // Now it is safe to overwrite any register
  3335   // Deopt during an exception.  Save exec mode for unpack_frames.
  3336   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  3338   // load throwing pc from JavaThread and patch it as the return address
  3339   // of the current frame. Then clear the field in JavaThread
  3341   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3342   __ movptr(Address(rbp, wordSize), rdx);
  3343   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3345 #ifdef ASSERT
  3346   // verify that there is really an exception oop in JavaThread
  3347   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3348   __ verify_oop(rax);
  3350   // verify that there is no pending exception
  3351   Label no_pending_exception;
  3352   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3353   __ testptr(rax, rax);
  3354   __ jcc(Assembler::zero, no_pending_exception);
  3355   __ stop("must not have pending exception here");
  3356   __ bind(no_pending_exception);
  3357 #endif
  3359   __ bind(cont);
  3361   // Call C code.  Need thread and this frame, but NOT official VM entry
  3362   // crud.  We cannot block on this call, no GC can happen.
  3363   //
  3364   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  3366   // fetch_unroll_info needs to call last_java_frame().
  3368   __ set_last_Java_frame(noreg, noreg, NULL);
  3369 #ifdef ASSERT
  3370   { Label L;
  3371     __ cmpptr(Address(r15_thread,
  3372                     JavaThread::last_Java_fp_offset()),
  3373             (int32_t)0);
  3374     __ jcc(Assembler::equal, L);
  3375     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  3376     __ bind(L);
  3378 #endif // ASSERT
  3379   __ mov(c_rarg0, r15_thread);
  3380   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  3382   // Need to have an oopmap that tells fetch_unroll_info where to
  3383   // find any register it might need.
  3384   oop_maps->add_gc_map(__ pc() - start, map);
  3386   __ reset_last_Java_frame(false, false);
  3388   // Load UnrollBlock* into rdi
  3389   __ mov(rdi, rax);
  3391    Label noException;
  3392   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  3393   __ jcc(Assembler::notEqual, noException);
  3394   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3395   // QQQ this is useless it was NULL above
  3396   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3397   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  3398   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3400   __ verify_oop(rax);
  3402   // Overwrite the result registers with the exception results.
  3403   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3404   // I think this is useless
  3405   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  3407   __ bind(noException);
  3409   // Only register save data is on the stack.
  3410   // Now restore the result registers.  Everything else is either dead
  3411   // or captured in the vframeArray.
  3412   RegisterSaver::restore_result_registers(masm);
  3414   // All of the register save area has been popped of the stack. Only the
  3415   // return address remains.
  3417   // Pop all the frames we must move/replace.
  3418   //
  3419   // Frame picture (youngest to oldest)
  3420   // 1: self-frame (no frame link)
  3421   // 2: deopting frame  (no frame link)
  3422   // 3: caller of deopting frame (could be compiled/interpreted).
  3423   //
  3424   // Note: by leaving the return address of self-frame on the stack
  3425   // and using the size of frame 2 to adjust the stack
  3426   // when we are done the return to frame 3 will still be on the stack.
  3428   // Pop deoptimized frame
  3429   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3430   __ addptr(rsp, rcx);
  3432   // rsp should be pointing at the return address to the caller (3)
  3434   // Stack bang to make sure there's enough room for these interpreter frames.
  3435   if (UseStackBanging) {
  3436     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3437     __ bang_stack_size(rbx, rcx);
  3440   // Load address of array of frame pcs into rcx
  3441   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3443   // Trash the old pc
  3444   __ addptr(rsp, wordSize);
  3446   // Load address of array of frame sizes into rsi
  3447   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3449   // Load counter into rdx
  3450   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3452   // Pick up the initial fp we should save
  3453   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3455   // Now adjust the caller's stack to make up for the extra locals
  3456   // but record the original sp so that we can save it in the skeletal interpreter
  3457   // frame and the stack walking of interpreter_sender will get the unextended sp
  3458   // value and not the "real" sp value.
  3460   const Register sender_sp = r8;
  3462   __ mov(sender_sp, rsp);
  3463   __ movl(rbx, Address(rdi,
  3464                        Deoptimization::UnrollBlock::
  3465                        caller_adjustment_offset_in_bytes()));
  3466   __ subptr(rsp, rbx);
  3468   // Push interpreter frames in a loop
  3469   Label loop;
  3470   __ bind(loop);
  3471   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3472 #ifdef CC_INTERP
  3473   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3474 #ifdef ASSERT
  3475   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3476   __ push(0xDEADDEAD);
  3477 #else /* ASSERT */
  3478   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3479 #endif /* ASSERT */
  3480 #else
  3481   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  3482 #endif // CC_INTERP
  3483   __ pushptr(Address(rcx, 0));          // Save return address
  3484   __ enter();                           // Save old & set new ebp
  3485   __ subptr(rsp, rbx);                  // Prolog
  3486 #ifdef CC_INTERP
  3487   __ movptr(Address(rbp,
  3488                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3489             sender_sp); // Make it walkable
  3490 #else /* CC_INTERP */
  3491   // This value is corrected by layout_activation_impl
  3492   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3493   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  3494 #endif /* CC_INTERP */
  3495   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  3496   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3497   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3498   __ decrementl(rdx);                   // Decrement counter
  3499   __ jcc(Assembler::notZero, loop);
  3500   __ pushptr(Address(rcx, 0));          // Save final return address
  3502   // Re-push self-frame
  3503   __ enter();                           // Save old & set new ebp
  3505   // Allocate a full sized register save area.
  3506   // Return address and rbp are in place, so we allocate two less words.
  3507   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  3509   // Restore frame locals after moving the frame
  3510   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  3511   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3513   // Call C code.  Need thread but NOT official VM entry
  3514   // crud.  We cannot block on this call, no GC can happen.  Call should
  3515   // restore return values to their stack-slots with the new SP.
  3516   //
  3517   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  3519   // Use rbp because the frames look interpreted now
  3520   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3521   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3522   address the_pc = __ pc();
  3523   __ set_last_Java_frame(noreg, rbp, the_pc);
  3525   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
  3526   __ mov(c_rarg0, r15_thread);
  3527   __ movl(c_rarg1, r14); // second arg: exec_mode
  3528   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3529   // Revert SP alignment after call since we're going to do some SP relative addressing below
  3530   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
  3532   // Set an oopmap for the call site
  3533   // Use the same PC we used for the last java frame
  3534   oop_maps->add_gc_map(the_pc - start,
  3535                        new OopMap( frame_size_in_words, 0 ));
  3537   // Clear fp AND pc
  3538   __ reset_last_Java_frame(true, true);
  3540   // Collect return values
  3541   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  3542   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  3543   // I think this is useless (throwing pc?)
  3544   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  3546   // Pop self-frame.
  3547   __ leave();                           // Epilog
  3549   // Jump to interpreter
  3550   __ ret(0);
  3552   // Make sure all code is generated
  3553   masm->flush();
  3555   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3556   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3559 #ifdef COMPILER2
  3560 //------------------------------generate_uncommon_trap_blob--------------------
  3561 void SharedRuntime::generate_uncommon_trap_blob() {
  3562   // Allocate space for the code
  3563   ResourceMark rm;
  3564   // Setup code generation tools
  3565   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  3566   MacroAssembler* masm = new MacroAssembler(&buffer);
  3568   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3570   address start = __ pc();
  3572   // Push self-frame.  We get here with a return address on the
  3573   // stack, so rsp is 8-byte aligned until we allocate our frame.
  3574   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  3576   // No callee saved registers. rbp is assumed implicitly saved
  3577   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3579   // compiler left unloaded_class_index in j_rarg0 move to where the
  3580   // runtime expects it.
  3581   __ movl(c_rarg1, j_rarg0);
  3583   __ set_last_Java_frame(noreg, noreg, NULL);
  3585   // Call C code.  Need thread but NOT official VM entry
  3586   // crud.  We cannot block on this call, no GC can happen.  Call should
  3587   // capture callee-saved registers as well as return values.
  3588   // Thread is in rdi already.
  3589   //
  3590   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  3592   __ mov(c_rarg0, r15_thread);
  3593   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3595   // Set an oopmap for the call site
  3596   OopMapSet* oop_maps = new OopMapSet();
  3597   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  3599   // location of rbp is known implicitly by the frame sender code
  3601   oop_maps->add_gc_map(__ pc() - start, map);
  3603   __ reset_last_Java_frame(false, false);
  3605   // Load UnrollBlock* into rdi
  3606   __ mov(rdi, rax);
  3608   // Pop all the frames we must move/replace.
  3609   //
  3610   // Frame picture (youngest to oldest)
  3611   // 1: self-frame (no frame link)
  3612   // 2: deopting frame  (no frame link)
  3613   // 3: caller of deopting frame (could be compiled/interpreted).
  3615   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  3616   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  3618   // Pop deoptimized frame (int)
  3619   __ movl(rcx, Address(rdi,
  3620                        Deoptimization::UnrollBlock::
  3621                        size_of_deoptimized_frame_offset_in_bytes()));
  3622   __ addptr(rsp, rcx);
  3624   // rsp should be pointing at the return address to the caller (3)
  3626   // Stack bang to make sure there's enough room for these interpreter frames.
  3627   if (UseStackBanging) {
  3628     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3629     __ bang_stack_size(rbx, rcx);
  3632   // Load address of array of frame pcs into rcx (address*)
  3633   __ movptr(rcx,
  3634             Address(rdi,
  3635                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3637   // Trash the return pc
  3638   __ addptr(rsp, wordSize);
  3640   // Load address of array of frame sizes into rsi (intptr_t*)
  3641   __ movptr(rsi, Address(rdi,
  3642                          Deoptimization::UnrollBlock::
  3643                          frame_sizes_offset_in_bytes()));
  3645   // Counter
  3646   __ movl(rdx, Address(rdi,
  3647                        Deoptimization::UnrollBlock::
  3648                        number_of_frames_offset_in_bytes())); // (int)
  3650   // Pick up the initial fp we should save
  3651   __ movptr(rbp,
  3652             Address(rdi,
  3653                     Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3655   // Now adjust the caller's stack to make up for the extra locals but
  3656   // record the original sp so that we can save it in the skeletal
  3657   // interpreter frame and the stack walking of interpreter_sender
  3658   // will get the unextended sp value and not the "real" sp value.
  3660   const Register sender_sp = r8;
  3662   __ mov(sender_sp, rsp);
  3663   __ movl(rbx, Address(rdi,
  3664                        Deoptimization::UnrollBlock::
  3665                        caller_adjustment_offset_in_bytes())); // (int)
  3666   __ subptr(rsp, rbx);
  3668   // Push interpreter frames in a loop
  3669   Label loop;
  3670   __ bind(loop);
  3671   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  3672   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  3673   __ pushptr(Address(rcx, 0));     // Save return address
  3674   __ enter();                      // Save old & set new rbp
  3675   __ subptr(rsp, rbx);             // Prolog
  3676 #ifdef CC_INTERP
  3677   __ movptr(Address(rbp,
  3678                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3679             sender_sp); // Make it walkable
  3680 #else // CC_INTERP
  3681   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  3682             sender_sp);            // Make it walkable
  3683   // This value is corrected by layout_activation_impl
  3684   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3685 #endif // CC_INTERP
  3686   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  3687   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  3688   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  3689   __ decrementl(rdx);              // Decrement counter
  3690   __ jcc(Assembler::notZero, loop);
  3691   __ pushptr(Address(rcx, 0));     // Save final return address
  3693   // Re-push self-frame
  3694   __ enter();                 // Save old & set new rbp
  3695   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  3696                               // Prolog
  3698   // Use rbp because the frames look interpreted now
  3699   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3700   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3701   address the_pc = __ pc();
  3702   __ set_last_Java_frame(noreg, rbp, the_pc);
  3704   // Call C code.  Need thread but NOT official VM entry
  3705   // crud.  We cannot block on this call, no GC can happen.  Call should
  3706   // restore return values to their stack-slots with the new SP.
  3707   // Thread is in rdi already.
  3708   //
  3709   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3711   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
  3712   __ mov(c_rarg0, r15_thread);
  3713   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3714   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3716   // Set an oopmap for the call site
  3717   // Use the same PC we used for the last java frame
  3718   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3720   // Clear fp AND pc
  3721   __ reset_last_Java_frame(true, true);
  3723   // Pop self-frame.
  3724   __ leave();                 // Epilog
  3726   // Jump to interpreter
  3727   __ ret(0);
  3729   // Make sure all code is generated
  3730   masm->flush();
  3732   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3733                                                  SimpleRuntimeFrame::framesize >> 1);
  3735 #endif // COMPILER2
  3738 //------------------------------generate_handler_blob------
  3739 //
  3740 // Generate a special Compile2Runtime blob that saves all registers,
  3741 // and setup oopmap.
  3742 //
  3743 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3744   assert(StubRoutines::forward_exception_entry() != NULL,
  3745          "must be generated before");
  3747   ResourceMark rm;
  3748   OopMapSet *oop_maps = new OopMapSet();
  3749   OopMap* map;
  3751   // Allocate space for the code.  Setup code generation tools.
  3752   CodeBuffer buffer("handler_blob", 2048, 1024);
  3753   MacroAssembler* masm = new MacroAssembler(&buffer);
  3755   address start   = __ pc();
  3756   address call_pc = NULL;
  3757   int frame_size_in_words;
  3759   // Make room for return address (or push it again)
  3760   if (!cause_return) {
  3761     __ push(rbx);
  3764   // Save registers, fpu state, and flags
  3765   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3767   // The following is basically a call_VM.  However, we need the precise
  3768   // address of the call in order to generate an oopmap. Hence, we do all the
  3769   // work outselves.
  3771   __ set_last_Java_frame(noreg, noreg, NULL);
  3773   // The return address must always be correct so that frame constructor never
  3774   // sees an invalid pc.
  3776   if (!cause_return) {
  3777     // overwrite the dummy value we pushed on entry
  3778     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3779     __ movptr(Address(rbp, wordSize), c_rarg0);
  3782   // Do the call
  3783   __ mov(c_rarg0, r15_thread);
  3784   __ call(RuntimeAddress(call_ptr));
  3786   // Set an oopmap for the call site.  This oopmap will map all
  3787   // oop-registers and debug-info registers as callee-saved.  This
  3788   // will allow deoptimization at this safepoint to find all possible
  3789   // debug-info recordings, as well as let GC find all oops.
  3791   oop_maps->add_gc_map( __ pc() - start, map);
  3793   Label noException;
  3795   __ reset_last_Java_frame(false, false);
  3797   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3798   __ jcc(Assembler::equal, noException);
  3800   // Exception pending
  3802   RegisterSaver::restore_live_registers(masm);
  3804   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3806   // No exception case
  3807   __ bind(noException);
  3809   // Normal exit, restore registers and exit.
  3810   RegisterSaver::restore_live_registers(masm);
  3812   __ ret(0);
  3814   // Make sure all code is generated
  3815   masm->flush();
  3817   // Fill-out other meta info
  3818   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3821 //
  3822 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3823 //
  3824 // Generate a stub that calls into vm to find out the proper destination
  3825 // of a java call. All the argument registers are live at this point
  3826 // but since this is generic code we don't know what they are and the caller
  3827 // must do any gc of the args.
  3828 //
  3829 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3830   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3832   // allocate space for the code
  3833   ResourceMark rm;
  3835   CodeBuffer buffer(name, 1000, 512);
  3836   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3838   int frame_size_in_words;
  3840   OopMapSet *oop_maps = new OopMapSet();
  3841   OopMap* map = NULL;
  3843   int start = __ offset();
  3845   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3847   int frame_complete = __ offset();
  3849   __ set_last_Java_frame(noreg, noreg, NULL);
  3851   __ mov(c_rarg0, r15_thread);
  3853   __ call(RuntimeAddress(destination));
  3856   // Set an oopmap for the call site.
  3857   // We need this not only for callee-saved registers, but also for volatile
  3858   // registers that the compiler might be keeping live across a safepoint.
  3860   oop_maps->add_gc_map( __ offset() - start, map);
  3862   // rax contains the address we are going to jump to assuming no exception got installed
  3864   // clear last_Java_sp
  3865   __ reset_last_Java_frame(false, false);
  3866   // check for pending exceptions
  3867   Label pending;
  3868   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3869   __ jcc(Assembler::notEqual, pending);
  3871   // get the returned Method*
  3872   __ get_vm_result_2(rbx, r15_thread);
  3873   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3875   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3877   RegisterSaver::restore_live_registers(masm);
  3879   // We are back the the original state on entry and ready to go.
  3881   __ jmp(rax);
  3883   // Pending exception after the safepoint
  3885   __ bind(pending);
  3887   RegisterSaver::restore_live_registers(masm);
  3889   // exception pending => remove activation and forward to exception handler
  3891   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3893   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3894   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3896   // -------------
  3897   // make sure all code is generated
  3898   masm->flush();
  3900   // return the  blob
  3901   // frame_size_words or bytes??
  3902   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3906 #ifdef COMPILER2
  3907 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3908 //
  3909 //------------------------------generate_exception_blob---------------------------
  3910 // creates exception blob at the end
  3911 // Using exception blob, this code is jumped from a compiled method.
  3912 // (see emit_exception_handler in x86_64.ad file)
  3913 //
  3914 // Given an exception pc at a call we call into the runtime for the
  3915 // handler in this method. This handler might merely restore state
  3916 // (i.e. callee save registers) unwind the frame and jump to the
  3917 // exception handler for the nmethod if there is no Java level handler
  3918 // for the nmethod.
  3919 //
  3920 // This code is entered with a jmp.
  3921 //
  3922 // Arguments:
  3923 //   rax: exception oop
  3924 //   rdx: exception pc
  3925 //
  3926 // Results:
  3927 //   rax: exception oop
  3928 //   rdx: exception pc in caller or ???
  3929 //   destination: exception handler of caller
  3930 //
  3931 // Note: the exception pc MUST be at a call (precise debug information)
  3932 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3933 //
  3935 void OptoRuntime::generate_exception_blob() {
  3936   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3937   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3938   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3940   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3942   // Allocate space for the code
  3943   ResourceMark rm;
  3944   // Setup code generation tools
  3945   CodeBuffer buffer("exception_blob", 2048, 1024);
  3946   MacroAssembler* masm = new MacroAssembler(&buffer);
  3949   address start = __ pc();
  3951   // Exception pc is 'return address' for stack walker
  3952   __ push(rdx);
  3953   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3955   // Save callee-saved registers.  See x86_64.ad.
  3957   // rbp is an implicitly saved callee saved register (i.e. the calling
  3958   // convention will save restore it in prolog/epilog) Other than that
  3959   // there are no callee save registers now that adapter frames are gone.
  3961   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3963   // Store exception in Thread object. We cannot pass any arguments to the
  3964   // handle_exception call, since we do not want to make any assumption
  3965   // about the size of the frame where the exception happened in.
  3966   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  3967   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  3968   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3970   // This call does all the hard work.  It checks if an exception handler
  3971   // exists in the method.
  3972   // If so, it returns the handler address.
  3973   // If not, it prepares for stack-unwinding, restoring the callee-save
  3974   // registers of the frame being removed.
  3975   //
  3976   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  3978   // At a method handle call, the stack may not be properly aligned
  3979   // when returning with an exception.
  3980   address the_pc = __ pc();
  3981   __ set_last_Java_frame(noreg, noreg, the_pc);
  3982   __ mov(c_rarg0, r15_thread);
  3983   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  3984   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  3986   // Set an oopmap for the call site.  This oopmap will only be used if we
  3987   // are unwinding the stack.  Hence, all locations will be dead.
  3988   // Callee-saved registers will be the same as the frame above (i.e.,
  3989   // handle_exception_stub), since they were restored when we got the
  3990   // exception.
  3992   OopMapSet* oop_maps = new OopMapSet();
  3994   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3996   __ reset_last_Java_frame(false, true);
  3998   // Restore callee-saved registers
  4000   // rbp is an implicitly saved callee saved register (i.e. the calling
  4001   // convention will save restore it in prolog/epilog) Other than that
  4002   // there are no callee save registers no that adapter frames are gone.
  4004   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  4006   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  4007   __ pop(rdx);                  // No need for exception pc anymore
  4009   // rax: exception handler
  4011   // Restore SP from BP if the exception PC is a MethodHandle call site.
  4012   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  4013   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
  4015   // We have a handler in rax (could be deopt blob).
  4016   __ mov(r8, rax);
  4018   // Get the exception oop
  4019   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  4020   // Get the exception pc in case we are deoptimized
  4021   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  4022 #ifdef ASSERT
  4023   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  4024   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  4025 #endif
  4026   // Clear the exception oop so GC no longer processes it as a root.
  4027   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  4029   // rax: exception oop
  4030   // r8:  exception handler
  4031   // rdx: exception pc
  4032   // Jump to handler
  4034   __ jmp(r8);
  4036   // Make sure all code is generated
  4037   masm->flush();
  4039   // Set exception blob
  4040   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  4042 #endif // COMPILER2

mercurial