src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Mon, 17 Sep 2012 12:57:58 -0700

author
twisti
date
Mon, 17 Sep 2012 12:57:58 -0700
changeset 4101
2cb2f30450c7
parent 4051
8a02ca5e5576
child 4103
137868b7aa6f
permissions
-rw-r--r--

7196262: JSR 292: java/lang/invoke/PrivateInvokeTest.java fails on solaris-sparc
Reviewed-by: kvn, jrose, bdelsart

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_sparc.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    43 #ifdef SHARK
    44 #include "compiler/compileBroker.hpp"
    45 #include "shark/sharkCompiler.hpp"
    46 #endif
    48 #define __ masm->
    51 class RegisterSaver {
    53   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    54   // The Oregs are problematic. In the 32bit build the compiler can
    55   // have O registers live with 64 bit quantities. A window save will
    56   // cut the heads off of the registers. We have to do a very extensive
    57   // stack dance to save and restore these properly.
    59   // Note that the Oregs problem only exists if we block at either a polling
    60   // page exception a compiled code safepoint that was not originally a call
    61   // or deoptimize following one of these kinds of safepoints.
    63   // Lots of registers to save.  For all builds, a window save will preserve
    64   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    65   // builds a window-save will preserve the %o registers.  In the LION build
    66   // we need to save the 64-bit %o registers which requires we save them
    67   // before the window-save (as then they become %i registers and get their
    68   // heads chopped off on interrupt).  We have to save some %g registers here
    69   // as well.
    70   enum {
    71     // This frame's save area.  Includes extra space for the native call:
    72     // vararg's layout space and the like.  Briefly holds the caller's
    73     // register save area.
    74     call_args_area = frame::register_save_words_sp_offset +
    75                      frame::memory_parameter_word_sp_offset*wordSize,
    76     // Make sure save locations are always 8 byte aligned.
    77     // can't use round_to because it doesn't produce compile time constant
    78     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    79     g1_offset = start_of_extra_save_area, // g-regs needing saving
    80     g3_offset = g1_offset+8,
    81     g4_offset = g3_offset+8,
    82     g5_offset = g4_offset+8,
    83     o0_offset = g5_offset+8,
    84     o1_offset = o0_offset+8,
    85     o2_offset = o1_offset+8,
    86     o3_offset = o2_offset+8,
    87     o4_offset = o3_offset+8,
    88     o5_offset = o4_offset+8,
    89     start_of_flags_save_area = o5_offset+8,
    90     ccr_offset = start_of_flags_save_area,
    91     fsr_offset = ccr_offset + 8,
    92     d00_offset = fsr_offset+8,  // Start of float save area
    93     register_save_size = d00_offset+8*32
    94   };
    97   public:
    99   static int Oexception_offset() { return o0_offset; };
   100   static int G3_offset() { return g3_offset; };
   101   static int G5_offset() { return g5_offset; };
   102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   103   static void restore_live_registers(MacroAssembler* masm);
   105   // During deoptimization only the result register need to be restored
   106   // all the other values have already been extracted.
   108   static void restore_result_registers(MacroAssembler* masm);
   109 };
   111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   112   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   113   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   114   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   115   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   116   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   117   int i;
   118   // Always make the frame size 16 byte aligned.
   119   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   120   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   121   int frame_size_in_slots = frame_size / sizeof(jint);
   122   // CodeBlob frame size is in words.
   123   *total_frame_words = frame_size / wordSize;
   124   // OopMap* map = new OopMap(*total_frame_words, 0);
   125   OopMap* map = new OopMap(frame_size_in_slots, 0);
   127 #if !defined(_LP64)
   129   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   130   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   131   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   132   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   133   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   134   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   135   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   136 #endif /* _LP64 */
   138   __ save(SP, -frame_size, SP);
   140 #ifndef _LP64
   141   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   142   // to Oregs here to avoid interrupts cutting off their heads
   144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   149   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   151   __ stx(O0, SP, o0_offset+STACK_BIAS);
   152   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   154   __ stx(O1, SP, o1_offset+STACK_BIAS);
   156   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   158   __ stx(O2, SP, o2_offset+STACK_BIAS);
   159   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   161   __ stx(O3, SP, o3_offset+STACK_BIAS);
   162   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   164   __ stx(O4, SP, o4_offset+STACK_BIAS);
   165   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   167   __ stx(O5, SP, o5_offset+STACK_BIAS);
   168   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   169 #endif /* _LP64 */
   172 #ifdef _LP64
   173   int debug_offset = 0;
   174 #else
   175   int debug_offset = 4;
   176 #endif
   177   // Save the G's
   178   __ stx(G1, SP, g1_offset+STACK_BIAS);
   179   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   181   __ stx(G3, SP, g3_offset+STACK_BIAS);
   182   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   184   __ stx(G4, SP, g4_offset+STACK_BIAS);
   185   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   187   __ stx(G5, SP, g5_offset+STACK_BIAS);
   188   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   190   // This is really a waste but we'll keep things as they were for now
   191   if (true) {
   192 #ifndef _LP64
   193     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   195     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   196     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   197     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   198     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   199     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   200     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   201     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   202     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   203 #endif /* _LP64 */
   204   }
   207   // Save the flags
   208   __ rdccr( G5 );
   209   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   210   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   212   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   213   int offset = d00_offset;
   214   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   215     FloatRegister f = as_FloatRegister(i);
   216     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   217     // Record as callee saved both halves of double registers (2 float registers).
   218     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   219     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   220     offset += sizeof(double);
   221   }
   223   // And we're done.
   225   return map;
   226 }
   229 // Pop the current frame and restore all the registers that we
   230 // saved.
   231 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   233   // Restore all the FP registers
   234   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   235     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   236   }
   238   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   239   __ wrccr (G1) ;
   241   // Restore the G's
   242   // Note that G2 (AKA GThread) must be saved and restored separately.
   243   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   245   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   246   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   247   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   248   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   251 #if !defined(_LP64)
   252   // Restore the 64-bit O's.
   253   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   254   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   255   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   256   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   257   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   258   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   260   // And temporarily place them in TLS
   262   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   263   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   264   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   265   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   266   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   267   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   268 #endif /* _LP64 */
   270   // Restore flags
   272   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   274   __ restore();
   276 #if !defined(_LP64)
   277   // Now reload the 64bit Oregs after we've restore the window.
   278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   283   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   284 #endif /* _LP64 */
   286 }
   288 // Pop the current frame and restore the registers that might be holding
   289 // a result.
   290 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   292 #if !defined(_LP64)
   293   // 32bit build returns longs in G1
   294   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   296   // Retrieve the 64-bit O's.
   297   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   298   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   299   // and save to TLS
   300   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   301   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   302 #endif /* _LP64 */
   304   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   306   __ restore();
   308 #if !defined(_LP64)
   309   // Now reload the 64bit Oregs after we've restore the window.
   310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   311   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   312 #endif /* _LP64 */
   314 }
   316 // The java_calling_convention describes stack locations as ideal slots on
   317 // a frame with no abi restrictions. Since we must observe abi restrictions
   318 // (like the placement of the register window) the slots must be biased by
   319 // the following value.
   320 static int reg2offset(VMReg r) {
   321   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   322 }
   324 static VMRegPair reg64_to_VMRegPair(Register r) {
   325   VMRegPair ret;
   326   if (wordSize == 8) {
   327     ret.set2(r->as_VMReg());
   328   } else {
   329     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
   330   }
   331   return ret;
   332 }
   334 // ---------------------------------------------------------------------------
   335 // Read the array of BasicTypes from a signature, and compute where the
   336 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   337 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   338 // refer to 4-byte stack slots.  All stack slots are based off of the window
   339 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   340 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   341 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   342 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   343 // Each 32-bit quantity is given its own number, so the integer registers
   344 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   345 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   347 // Register results are passed in O0-O5, for outgoing call arguments.  To
   348 // convert to incoming arguments, convert all O's to I's.  The regs array
   349 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   350 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   351 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   352 // passed (used as a placeholder for the other half of longs and doubles in
   353 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   354 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   355 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   356 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   357 // same VMRegPair.
   359 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   360 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   361 // units regardless of build.
   364 // ---------------------------------------------------------------------------
   365 // The compiled Java calling convention.  The Java convention always passes
   366 // 64-bit values in adjacent aligned locations (either registers or stack),
   367 // floats in float registers and doubles in aligned float pairs.  There is
   368 // no backing varargs store for values in registers.
   369 // In the 32-bit build, longs are passed on the stack (cannot be
   370 // passed in I's, because longs in I's get their heads chopped off at
   371 // interrupt).
   372 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   373                                            VMRegPair *regs,
   374                                            int total_args_passed,
   375                                            int is_outgoing) {
   376   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   378   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   379   const int flt_reg_max = 8;
   381   int int_reg = 0;
   382   int flt_reg = 0;
   383   int slot = 0;
   385   for (int i = 0; i < total_args_passed; i++) {
   386     switch (sig_bt[i]) {
   387     case T_INT:
   388     case T_SHORT:
   389     case T_CHAR:
   390     case T_BYTE:
   391     case T_BOOLEAN:
   392 #ifndef _LP64
   393     case T_OBJECT:
   394     case T_ARRAY:
   395     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   396 #endif // _LP64
   397       if (int_reg < int_reg_max) {
   398         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   399         regs[i].set1(r->as_VMReg());
   400       } else {
   401         regs[i].set1(VMRegImpl::stack2reg(slot++));
   402       }
   403       break;
   405 #ifdef _LP64
   406     case T_LONG:
   407       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   408       // fall-through
   409     case T_OBJECT:
   410     case T_ARRAY:
   411     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   412       if (int_reg < int_reg_max) {
   413         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   414         regs[i].set2(r->as_VMReg());
   415       } else {
   416         slot = round_to(slot, 2);  // align
   417         regs[i].set2(VMRegImpl::stack2reg(slot));
   418         slot += 2;
   419       }
   420       break;
   421 #else
   422     case T_LONG:
   423       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   424       // On 32-bit SPARC put longs always on the stack to keep the pressure off
   425       // integer argument registers.  They should be used for oops.
   426       slot = round_to(slot, 2);  // align
   427       regs[i].set2(VMRegImpl::stack2reg(slot));
   428       slot += 2;
   429 #endif
   430       break;
   432     case T_FLOAT:
   433       if (flt_reg < flt_reg_max) {
   434         FloatRegister r = as_FloatRegister(flt_reg++);
   435         regs[i].set1(r->as_VMReg());
   436       } else {
   437         regs[i].set1(VMRegImpl::stack2reg(slot++));
   438       }
   439       break;
   441     case T_DOUBLE:
   442       assert(sig_bt[i+1] == T_VOID, "expecting half");
   443       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
   444         flt_reg = round_to(flt_reg, 2);  // align
   445         FloatRegister r = as_FloatRegister(flt_reg);
   446         regs[i].set2(r->as_VMReg());
   447         flt_reg += 2;
   448       } else {
   449         slot = round_to(slot, 2);  // align
   450         regs[i].set2(VMRegImpl::stack2reg(slot));
   451         slot += 2;
   452       }
   453       break;
   455     case T_VOID:
   456       regs[i].set_bad();   // Halves of longs & doubles
   457       break;
   459     default:
   460       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
   461       break;
   462     }
   463   }
   465   // retun the amount of stack space these arguments will need.
   466   return slot;
   467 }
   469 // Helper class mostly to avoid passing masm everywhere, and handle
   470 // store displacement overflow logic.
   471 class AdapterGenerator {
   472   MacroAssembler *masm;
   473   Register Rdisp;
   474   void set_Rdisp(Register r)  { Rdisp = r; }
   476   void patch_callers_callsite();
   478   // base+st_off points to top of argument
   479   int arg_offset(const int st_off) { return st_off; }
   480   int next_arg_offset(const int st_off) {
   481     return st_off - Interpreter::stackElementSize;
   482   }
   484   // Argument slot values may be loaded first into a register because
   485   // they might not fit into displacement.
   486   RegisterOrConstant arg_slot(const int st_off);
   487   RegisterOrConstant next_arg_slot(const int st_off);
   489   // Stores long into offset pointed to by base
   490   void store_c2i_long(Register r, Register base,
   491                       const int st_off, bool is_stack);
   492   void store_c2i_object(Register r, Register base,
   493                         const int st_off);
   494   void store_c2i_int(Register r, Register base,
   495                      const int st_off);
   496   void store_c2i_double(VMReg r_2,
   497                         VMReg r_1, Register base, const int st_off);
   498   void store_c2i_float(FloatRegister f, Register base,
   499                        const int st_off);
   501  public:
   502   void gen_c2i_adapter(int total_args_passed,
   503                               // VMReg max_arg,
   504                               int comp_args_on_stack, // VMRegStackSlots
   505                               const BasicType *sig_bt,
   506                               const VMRegPair *regs,
   507                               Label& skip_fixup);
   508   void gen_i2c_adapter(int total_args_passed,
   509                               // VMReg max_arg,
   510                               int comp_args_on_stack, // VMRegStackSlots
   511                               const BasicType *sig_bt,
   512                               const VMRegPair *regs);
   514   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   515 };
   518 // Patch the callers callsite with entry to compiled code if it exists.
   519 void AdapterGenerator::patch_callers_callsite() {
   520   Label L;
   521   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
   522   __ br_null(G3_scratch, false, Assembler::pt, L);
   523   __ delayed()->nop();
   524   // Call into the VM to patch the caller, then jump to compiled callee
   525   __ save_frame(4);     // Args in compiled layout; do not blow them
   527   // Must save all the live Gregs the list is:
   528   // G1: 1st Long arg (32bit build)
   529   // G2: global allocated to TLS
   530   // G3: used in inline cache check (scratch)
   531   // G4: 2nd Long arg (32bit build);
   532   // G5: used in inline cache check (Method*)
   534   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   536 #ifdef _LP64
   537   // mov(s,d)
   538   __ mov(G1, L1);
   539   __ mov(G4, L4);
   540   __ mov(G5_method, L5);
   541   __ mov(G5_method, O0);         // VM needs target method
   542   __ mov(I7, O1);                // VM needs caller's callsite
   543   // Must be a leaf call...
   544   // can be very far once the blob has been relocated
   545   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   546   __ relocate(relocInfo::runtime_call_type);
   547   __ jumpl_to(dest, O7, O7);
   548   __ delayed()->mov(G2_thread, L7_thread_cache);
   549   __ mov(L7_thread_cache, G2_thread);
   550   __ mov(L1, G1);
   551   __ mov(L4, G4);
   552   __ mov(L5, G5_method);
   553 #else
   554   __ stx(G1, FP, -8 + STACK_BIAS);
   555   __ stx(G4, FP, -16 + STACK_BIAS);
   556   __ mov(G5_method, L5);
   557   __ mov(G5_method, O0);         // VM needs target method
   558   __ mov(I7, O1);                // VM needs caller's callsite
   559   // Must be a leaf call...
   560   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   561   __ delayed()->mov(G2_thread, L7_thread_cache);
   562   __ mov(L7_thread_cache, G2_thread);
   563   __ ldx(FP, -8 + STACK_BIAS, G1);
   564   __ ldx(FP, -16 + STACK_BIAS, G4);
   565   __ mov(L5, G5_method);
   566 #endif /* _LP64 */
   568   __ restore();      // Restore args
   569   __ bind(L);
   570 }
   573 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   574   RegisterOrConstant roc(arg_offset(st_off));
   575   return __ ensure_simm13_or_reg(roc, Rdisp);
   576 }
   578 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   579   RegisterOrConstant roc(next_arg_offset(st_off));
   580   return __ ensure_simm13_or_reg(roc, Rdisp);
   581 }
   584 // Stores long into offset pointed to by base
   585 void AdapterGenerator::store_c2i_long(Register r, Register base,
   586                                       const int st_off, bool is_stack) {
   587 #ifdef _LP64
   588   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   589   // data is passed in only 1 slot.
   590   __ stx(r, base, next_arg_slot(st_off));
   591 #else
   592 #ifdef COMPILER2
   593   // Misaligned store of 64-bit data
   594   __ stw(r, base, arg_slot(st_off));    // lo bits
   595   __ srlx(r, 32, r);
   596   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   597 #else
   598   if (is_stack) {
   599     // Misaligned store of 64-bit data
   600     __ stw(r, base, arg_slot(st_off));    // lo bits
   601     __ srlx(r, 32, r);
   602     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   603   } else {
   604     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   605     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   606   }
   607 #endif // COMPILER2
   608 #endif // _LP64
   609 }
   611 void AdapterGenerator::store_c2i_object(Register r, Register base,
   612                       const int st_off) {
   613   __ st_ptr (r, base, arg_slot(st_off));
   614 }
   616 void AdapterGenerator::store_c2i_int(Register r, Register base,
   617                    const int st_off) {
   618   __ st (r, base, arg_slot(st_off));
   619 }
   621 // Stores into offset pointed to by base
   622 void AdapterGenerator::store_c2i_double(VMReg r_2,
   623                       VMReg r_1, Register base, const int st_off) {
   624 #ifdef _LP64
   625   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   626   // data is passed in only 1 slot.
   627   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   628 #else
   629   // Need to marshal 64-bit value from misaligned Lesp loads
   630   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   631   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   632 #endif
   633 }
   635 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   636                                        const int st_off) {
   637   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   638 }
   640 void AdapterGenerator::gen_c2i_adapter(
   641                             int total_args_passed,
   642                             // VMReg max_arg,
   643                             int comp_args_on_stack, // VMRegStackSlots
   644                             const BasicType *sig_bt,
   645                             const VMRegPair *regs,
   646                             Label& L_skip_fixup) {
   648   // Before we get into the guts of the C2I adapter, see if we should be here
   649   // at all.  We've come from compiled code and are attempting to jump to the
   650   // interpreter, which means the caller made a static call to get here
   651   // (vcalls always get a compiled target if there is one).  Check for a
   652   // compiled target.  If there is one, we need to patch the caller's call.
   653   // However we will run interpreted if we come thru here. The next pass
   654   // thru the call site will run compiled. If we ran compiled here then
   655   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   656   // deopt/uncommon trap cycles. If we always go interpreted here then
   657   // we can have at most one and don't need to play any tricks to keep
   658   // from endlessly growing the stack.
   659   //
   660   // Actually if we detected that we had an i2c->c2i transition here we
   661   // ought to be able to reset the world back to the state of the interpreted
   662   // call and not bother building another interpreter arg area. We don't
   663   // do that at this point.
   665   patch_callers_callsite();
   667   __ bind(L_skip_fixup);
   669   // Since all args are passed on the stack, total_args_passed*wordSize is the
   670   // space we need.  Add in varargs area needed by the interpreter. Round up
   671   // to stack alignment.
   672   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   673   const int varargs_area =
   674                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   675   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   677   const int bias = STACK_BIAS;
   678   const int interp_arg_offset = frame::varargs_offset*wordSize +
   679                         (total_args_passed-1)*Interpreter::stackElementSize;
   681   const Register base = SP;
   683   // Make some extra space on the stack.
   684   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
   685   set_Rdisp(G3_scratch);
   687   // Write the args into the outgoing interpreter space.
   688   for (int i = 0; i < total_args_passed; i++) {
   689     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   690     VMReg r_1 = regs[i].first();
   691     VMReg r_2 = regs[i].second();
   692     if (!r_1->is_valid()) {
   693       assert(!r_2->is_valid(), "");
   694       continue;
   695     }
   696     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   697       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
   698       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
   699       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   700       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   701       else                  __ ldx(base, ld_off, G1_scratch);
   702     }
   704     if (r_1->is_Register()) {
   705       Register r = r_1->as_Register()->after_restore();
   706       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   707         store_c2i_object(r, base, st_off);
   708       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   709         store_c2i_long(r, base, st_off, r_2->is_stack());
   710       } else {
   711         store_c2i_int(r, base, st_off);
   712       }
   713     } else {
   714       assert(r_1->is_FloatRegister(), "");
   715       if (sig_bt[i] == T_FLOAT) {
   716         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   717       } else {
   718         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   719         store_c2i_double(r_2, r_1, base, st_off);
   720       }
   721     }
   722   }
   724   // Load the interpreter entry point.
   725   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
   727   // Pass O5_savedSP as an argument to the interpreter.
   728   // The interpreter will restore SP to this value before returning.
   729   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
   731   __ mov((frame::varargs_offset)*wordSize -
   732          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   733   // Jump to the interpreter just as if interpreter was doing it.
   734   __ jmpl(G3_scratch, 0, G0);
   735   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   736   // (really L0) is in use by the compiled frame as a generic temp.  However,
   737   // the interpreter does not know where its args are without some kind of
   738   // arg pointer being passed in.  Pass it in Gargs.
   739   __ delayed()->add(SP, G1, Gargs);
   740 }
   742 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
   743                         address code_start, address code_end,
   744                         Label& L_ok) {
   745   Label L_fail;
   746   __ set(ExternalAddress(code_start), temp_reg);
   747   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
   748   __ cmp(pc_reg, temp_reg);
   749   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
   750   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
   751   __ cmp(pc_reg, temp_reg);
   752   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   753   __ bind(L_fail);
   754 }
   756 void AdapterGenerator::gen_i2c_adapter(
   757                             int total_args_passed,
   758                             // VMReg max_arg,
   759                             int comp_args_on_stack, // VMRegStackSlots
   760                             const BasicType *sig_bt,
   761                             const VMRegPair *regs) {
   763   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   764   // layout.  Lesp was saved by the calling I-frame and will be restored on
   765   // return.  Meanwhile, outgoing arg space is all owned by the callee
   766   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   767   // hoist register arguments and repack other args according to the compiled
   768   // code convention.  Finally, end in a jump to the compiled code.  The entry
   769   // point address is the start of the buffer.
   771   // We will only enter here from an interpreted frame and never from after
   772   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   773   // race and use a c2i we will remain interpreted for the race loser(s).
   774   // This removes all sorts of headaches on the x86 side and also eliminates
   775   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   777   // More detail:
   778   // Adapters can be frameless because they do not require the caller
   779   // to perform additional cleanup work, such as correcting the stack pointer.
   780   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   781   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   782   // even if a callee has modified the stack pointer.
   783   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   784   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   785   // up via the senderSP register).
   786   // In other words, if *either* the caller or callee is interpreted, we can
   787   // get the stack pointer repaired after a call.
   788   // This is why c2i and i2c adapters cannot be indefinitely composed.
   789   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   790   // both caller and callee would be compiled methods, and neither would
   791   // clean up the stack pointer changes performed by the two adapters.
   792   // If this happens, control eventually transfers back to the compiled
   793   // caller, but with an uncorrected stack, causing delayed havoc.
   795   if (VerifyAdapterCalls &&
   796       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   797     // So, let's test for cascading c2i/i2c adapters right now.
   798     //  assert(Interpreter::contains($return_addr) ||
   799     //         StubRoutines::contains($return_addr),
   800     //         "i2c adapter must return to an interpreter frame");
   801     __ block_comment("verify_i2c { ");
   802     Label L_ok;
   803     if (Interpreter::code() != NULL)
   804       range_check(masm, O7, O0, O1,
   805                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   806                   L_ok);
   807     if (StubRoutines::code1() != NULL)
   808       range_check(masm, O7, O0, O1,
   809                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   810                   L_ok);
   811     if (StubRoutines::code2() != NULL)
   812       range_check(masm, O7, O0, O1,
   813                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   814                   L_ok);
   815     const char* msg = "i2c adapter must return to an interpreter frame";
   816     __ block_comment(msg);
   817     __ stop(msg);
   818     __ bind(L_ok);
   819     __ block_comment("} verify_i2ce ");
   820   }
   822   // As you can see from the list of inputs & outputs there are not a lot
   823   // of temp registers to work with: mostly G1, G3 & G4.
   825   // Inputs:
   826   // G2_thread      - TLS
   827   // G5_method      - Method oop
   828   // G4 (Gargs)     - Pointer to interpreter's args
   829   // O0..O4         - free for scratch
   830   // O5_savedSP     - Caller's saved SP, to be restored if needed
   831   // O6             - Current SP!
   832   // O7             - Valid return address
   833   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   835   // Outputs:
   836   // G2_thread      - TLS
   837   // O0-O5          - Outgoing args in compiled layout
   838   // O6             - Adjusted or restored SP
   839   // O7             - Valid return address
   840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   841   // F0-F7          - more outgoing args
   844   // Gargs is the incoming argument base, and also an outgoing argument.
   845   __ sub(Gargs, BytesPerWord, Gargs);
   847   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   848   // WITH O7 HOLDING A VALID RETURN PC
   849   //
   850   // |              |
   851   // :  java stack  :
   852   // |              |
   853   // +--------------+ <--- start of outgoing args
   854   // |   receiver   |   |
   855   // : rest of args :   |---size is java-arg-words
   856   // |              |   |
   857   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   858   // |              |   |
   859   // :    unused    :   |---Space for max Java stack, plus stack alignment
   860   // |              |   |
   861   // +--------------+ <--- SP + 16*wordsize
   862   // |              |
   863   // :    window    :
   864   // |              |
   865   // +--------------+ <--- SP
   867   // WE REPACK THE STACK.  We use the common calling convention layout as
   868   // discovered by calling SharedRuntime::calling_convention.  We assume it
   869   // causes an arbitrary shuffle of memory, which may require some register
   870   // temps to do the shuffle.  We hope for (and optimize for) the case where
   871   // temps are not needed.  We may have to resize the stack slightly, in case
   872   // we need alignment padding (32-bit interpreter can pass longs & doubles
   873   // misaligned, but the compilers expect them aligned).
   874   //
   875   // |              |
   876   // :  java stack  :
   877   // |              |
   878   // +--------------+ <--- start of outgoing args
   879   // |  pad, align  |   |
   880   // +--------------+   |
   881   // | ints, longs, |   |
   882   // |    floats,   |   |---Outgoing stack args.
   883   // :    doubles   :   |   First few args in registers.
   884   // |              |   |
   885   // +--------------+ <--- SP' + 16*wordsize
   886   // |              |
   887   // :    window    :
   888   // |              |
   889   // +--------------+ <--- SP'
   891   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
   892   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
   893   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
   895   // Cut-out for having no stack args.  Since up to 6 args are passed
   896   // in registers, we will commonly have no stack args.
   897   if (comp_args_on_stack > 0) {
   898     // Convert VMReg stack slots to words.
   899     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   900     // Round up to miminum stack alignment, in wordSize
   901     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   902     // Now compute the distance from Lesp to SP.  This calculation does not
   903     // include the space for total_args_passed because Lesp has not yet popped
   904     // the arguments.
   905     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
   906   }
   908   // Now generate the shuffle code.  Pick up all register args and move the
   909   // rest through G1_scratch.
   910   for (int i = 0; i < total_args_passed; i++) {
   911     if (sig_bt[i] == T_VOID) {
   912       // Longs and doubles are passed in native word order, but misaligned
   913       // in the 32-bit build.
   914       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   915       continue;
   916     }
   918     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
   919     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
   920     // ldx/lddf optimizations.
   922     // Load in argument order going down.
   923     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
   924     set_Rdisp(G1_scratch);
   926     VMReg r_1 = regs[i].first();
   927     VMReg r_2 = regs[i].second();
   928     if (!r_1->is_valid()) {
   929       assert(!r_2->is_valid(), "");
   930       continue;
   931     }
   932     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
   933       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
   934       if (r_2->is_valid()) r_2 = r_1->next();
   935     }
   936     if (r_1->is_Register()) {  // Register argument
   937       Register r = r_1->as_Register()->after_restore();
   938       if (!r_2->is_valid()) {
   939         __ ld(Gargs, arg_slot(ld_off), r);
   940       } else {
   941 #ifdef _LP64
   942         // In V9, longs are given 2 64-bit slots in the interpreter, but the
   943         // data is passed in only 1 slot.
   944         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
   945               next_arg_slot(ld_off) : arg_slot(ld_off);
   946         __ ldx(Gargs, slot, r);
   947 #else
   948         fatal("longs should be on stack");
   949 #endif
   950       }
   951     } else {
   952       assert(r_1->is_FloatRegister(), "");
   953       if (!r_2->is_valid()) {
   954         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
   955       } else {
   956 #ifdef _LP64
   957         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   958         // data is passed in only 1 slot.  This code also handles longs that
   959         // are passed on the stack, but need a stack-to-stack move through a
   960         // spare float register.
   961         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
   962               next_arg_slot(ld_off) : arg_slot(ld_off);
   963         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
   964 #else
   965         // Need to marshal 64-bit value from misaligned Lesp loads
   966         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
   967         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
   968 #endif
   969       }
   970     }
   971     // Was the argument really intended to be on the stack, but was loaded
   972     // into F8/F9?
   973     if (regs[i].first()->is_stack()) {
   974       assert(r_1->as_FloatRegister() == F8, "fix this code");
   975       // Convert stack slot to an SP offset
   976       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
   977       // Store down the shuffled stack word.  Target address _is_ aligned.
   978       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
   979       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
   980       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
   981     }
   982   }
   984   // Jump to the compiled code just as if compiled code was doing it.
   985   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
   987   // 6243940 We might end up in handle_wrong_method if
   988   // the callee is deoptimized as we race thru here. If that
   989   // happens we don't want to take a safepoint because the
   990   // caller frame will look interpreted and arguments are now
   991   // "compiled" so it is much better to make this transition
   992   // invisible to the stack walking code. Unfortunately if
   993   // we try and find the callee by normal means a safepoint
   994   // is possible. So we stash the desired callee in the thread
   995   // and the vm will find there should this case occur.
   996   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
   997   __ st_ptr(G5_method, callee_target_addr);
   999   if (StressNonEntrant) {
  1000     // Open a big window for deopt failure
  1001     __ save_frame(0);
  1002     __ mov(G0, L0);
  1003     Label loop;
  1004     __ bind(loop);
  1005     __ sub(L0, 1, L0);
  1006     __ br_null_short(L0, Assembler::pt, loop);
  1007     __ restore();
  1010   __ jmpl(G3, 0, G0);
  1011   __ delayed()->nop();
  1014 // ---------------------------------------------------------------
  1015 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1016                                                             int total_args_passed,
  1017                                                             // VMReg max_arg,
  1018                                                             int comp_args_on_stack, // VMRegStackSlots
  1019                                                             const BasicType *sig_bt,
  1020                                                             const VMRegPair *regs,
  1021                                                             AdapterFingerPrint* fingerprint) {
  1022   address i2c_entry = __ pc();
  1024   AdapterGenerator agen(masm);
  1026   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1029   // -------------------------------------------------------------------------
  1030   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
  1031   // args start out packed in the compiled layout.  They need to be unpacked
  1032   // into the interpreter layout.  This will almost always require some stack
  1033   // space.  We grow the current (compiled) stack, then repack the args.  We
  1034   // finally end in a jump to the generic interpreter entry point.  On exit
  1035   // from the interpreter, the interpreter will restore our SP (lest the
  1036   // compiled code, which relys solely on SP and not FP, get sick).
  1038   address c2i_unverified_entry = __ pc();
  1039   Label L_skip_fixup;
  1041     Register R_temp = G1;  // another scratch register
  1043     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1045     __ verify_oop(O0);
  1046     __ load_klass(O0, G3_scratch);
  1048     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
  1049     __ cmp(G3_scratch, R_temp);
  1051     Label ok, ok2;
  1052     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1053     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
  1054     __ jump_to(ic_miss, G3_scratch);
  1055     __ delayed()->nop();
  1057     __ bind(ok);
  1058     // Method might have been compiled since the call site was patched to
  1059     // interpreted if that is the case treat it as a miss so we can get
  1060     // the call site corrected.
  1061     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
  1062     __ bind(ok2);
  1063     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
  1064     __ delayed()->nop();
  1065     __ jump_to(ic_miss, G3_scratch);
  1066     __ delayed()->nop();
  1070   address c2i_entry = __ pc();
  1072   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
  1074   __ flush();
  1075   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1079 // Helper function for native calling conventions
  1080 static VMReg int_stk_helper( int i ) {
  1081   // Bias any stack based VMReg we get by ignoring the window area
  1082   // but not the register parameter save area.
  1083   //
  1084   // This is strange for the following reasons. We'd normally expect
  1085   // the calling convention to return an VMReg for a stack slot
  1086   // completely ignoring any abi reserved area. C2 thinks of that
  1087   // abi area as only out_preserve_stack_slots. This does not include
  1088   // the area allocated by the C abi to store down integer arguments
  1089   // because the java calling convention does not use it. So
  1090   // since c2 assumes that there are only out_preserve_stack_slots
  1091   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1092   // location the c calling convention must add in this bias amount
  1093   // to make up for the fact that the out_preserve_stack_slots is
  1094   // insufficient for C calls. What a mess. I sure hope those 6
  1095   // stack words were worth it on every java call!
  1097   // Another way of cleaning this up would be for out_preserve_stack_slots
  1098   // to take a parameter to say whether it was C or java calling conventions.
  1099   // Then things might look a little better (but not much).
  1101   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1102   if( mem_parm_offset < 0 ) {
  1103     return as_oRegister(i)->as_VMReg();
  1104   } else {
  1105     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1106     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1107     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1112 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1113                                          VMRegPair *regs,
  1114                                          int total_args_passed) {
  1116     // Return the number of VMReg stack_slots needed for the args.
  1117     // This value does not include an abi space (like register window
  1118     // save area).
  1120     // The native convention is V8 if !LP64
  1121     // The LP64 convention is the V9 convention which is slightly more sane.
  1123     // We return the amount of VMReg stack slots we need to reserve for all
  1124     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1125     // have space for storing at least 6 registers to memory we start with that.
  1126     // See int_stk_helper for a further discussion.
  1127     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1129 #ifdef _LP64
  1130     // V9 convention: All things "as-if" on double-wide stack slots.
  1131     // Hoist any int/ptr/long's in the first 6 to int regs.
  1132     // Hoist any flt/dbl's in the first 16 dbl regs.
  1133     int j = 0;                  // Count of actual args, not HALVES
  1134     for( int i=0; i<total_args_passed; i++, j++ ) {
  1135       switch( sig_bt[i] ) {
  1136       case T_BOOLEAN:
  1137       case T_BYTE:
  1138       case T_CHAR:
  1139       case T_INT:
  1140       case T_SHORT:
  1141         regs[i].set1( int_stk_helper( j ) ); break;
  1142       case T_LONG:
  1143         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1144       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1145       case T_ARRAY:
  1146       case T_OBJECT:
  1147       case T_METADATA:
  1148         regs[i].set2( int_stk_helper( j ) );
  1149         break;
  1150       case T_FLOAT:
  1151         if ( j < 16 ) {
  1152           // V9ism: floats go in ODD registers
  1153           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1154         } else {
  1155           // V9ism: floats go in ODD stack slot
  1156           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1158         break;
  1159       case T_DOUBLE:
  1160         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1161         if ( j < 16 ) {
  1162           // V9ism: doubles go in EVEN/ODD regs
  1163           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1164         } else {
  1165           // V9ism: doubles go in EVEN/ODD stack slots
  1166           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1168         break;
  1169       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1170       default:
  1171         ShouldNotReachHere();
  1173       if (regs[i].first()->is_stack()) {
  1174         int off =  regs[i].first()->reg2stack();
  1175         if (off > max_stack_slots) max_stack_slots = off;
  1177       if (regs[i].second()->is_stack()) {
  1178         int off =  regs[i].second()->reg2stack();
  1179         if (off > max_stack_slots) max_stack_slots = off;
  1183 #else // _LP64
  1184     // V8 convention: first 6 things in O-regs, rest on stack.
  1185     // Alignment is willy-nilly.
  1186     for( int i=0; i<total_args_passed; i++ ) {
  1187       switch( sig_bt[i] ) {
  1188       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1189       case T_ARRAY:
  1190       case T_BOOLEAN:
  1191       case T_BYTE:
  1192       case T_CHAR:
  1193       case T_FLOAT:
  1194       case T_INT:
  1195       case T_OBJECT:
  1196       case T_METADATA:
  1197       case T_SHORT:
  1198         regs[i].set1( int_stk_helper( i ) );
  1199         break;
  1200       case T_DOUBLE:
  1201       case T_LONG:
  1202         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1203         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1204         break;
  1205       case T_VOID: regs[i].set_bad(); break;
  1206       default:
  1207         ShouldNotReachHere();
  1209       if (regs[i].first()->is_stack()) {
  1210         int off =  regs[i].first()->reg2stack();
  1211         if (off > max_stack_slots) max_stack_slots = off;
  1213       if (regs[i].second()->is_stack()) {
  1214         int off =  regs[i].second()->reg2stack();
  1215         if (off > max_stack_slots) max_stack_slots = off;
  1218 #endif // _LP64
  1220   return round_to(max_stack_slots + 1, 2);
  1225 // ---------------------------------------------------------------------------
  1226 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1227   switch (ret_type) {
  1228   case T_FLOAT:
  1229     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1230     break;
  1231   case T_DOUBLE:
  1232     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1233     break;
  1237 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1238   switch (ret_type) {
  1239   case T_FLOAT:
  1240     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1241     break;
  1242   case T_DOUBLE:
  1243     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1244     break;
  1248 // Check and forward and pending exception.  Thread is stored in
  1249 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1250 // is no exception handler.  We merely pop this frame off and throw the
  1251 // exception in the caller's frame.
  1252 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1253   Label L;
  1254   __ br_null(Rex_oop, false, Assembler::pt, L);
  1255   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1256   // Since this is a native call, we *know* the proper exception handler
  1257   // without calling into the VM: it's the empty function.  Just pop this
  1258   // frame and then jump to forward_exception_entry; O7 will contain the
  1259   // native caller's return PC.
  1260  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1261   __ jump_to(exception_entry, G3_scratch);
  1262   __ delayed()->restore();      // Pop this frame off.
  1263   __ bind(L);
  1266 // A simple move of integer like type
  1267 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1268   if (src.first()->is_stack()) {
  1269     if (dst.first()->is_stack()) {
  1270       // stack to stack
  1271       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1272       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1273     } else {
  1274       // stack to reg
  1275       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1277   } else if (dst.first()->is_stack()) {
  1278     // reg to stack
  1279     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1280   } else {
  1281     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1285 // On 64 bit we will store integer like items to the stack as
  1286 // 64 bits items (sparc abi) even though java would only store
  1287 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1288 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1289 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1290   if (src.first()->is_stack()) {
  1291     if (dst.first()->is_stack()) {
  1292       // stack to stack
  1293       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1294       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1295     } else {
  1296       // stack to reg
  1297       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1299   } else if (dst.first()->is_stack()) {
  1300     // reg to stack
  1301     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1302   } else {
  1303     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1308 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1309   if (src.first()->is_stack()) {
  1310     if (dst.first()->is_stack()) {
  1311       // stack to stack
  1312       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1313       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1314     } else {
  1315       // stack to reg
  1316       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1318   } else if (dst.first()->is_stack()) {
  1319     // reg to stack
  1320     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1321   } else {
  1322     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1327 // An oop arg. Must pass a handle not the oop itself
  1328 static void object_move(MacroAssembler* masm,
  1329                         OopMap* map,
  1330                         int oop_handle_offset,
  1331                         int framesize_in_slots,
  1332                         VMRegPair src,
  1333                         VMRegPair dst,
  1334                         bool is_receiver,
  1335                         int* receiver_offset) {
  1337   // must pass a handle. First figure out the location we use as a handle
  1339   if (src.first()->is_stack()) {
  1340     // Oop is already on the stack
  1341     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1342     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1343     __ ld_ptr(rHandle, 0, L4);
  1344 #ifdef _LP64
  1345     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1346 #else
  1347     __ tst( L4 );
  1348     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1349 #endif
  1350     if (dst.first()->is_stack()) {
  1351       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1353     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1354     if (is_receiver) {
  1355       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1357     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1358   } else {
  1359     // Oop is in an input register pass we must flush it to the stack
  1360     const Register rOop = src.first()->as_Register();
  1361     const Register rHandle = L5;
  1362     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1363     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1364     Label skip;
  1365     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1366     if (is_receiver) {
  1367       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1369     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1370     __ add(SP, offset + STACK_BIAS, rHandle);
  1371 #ifdef _LP64
  1372     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1373 #else
  1374     __ tst( rOop );
  1375     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1376 #endif
  1378     if (dst.first()->is_stack()) {
  1379       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1380     } else {
  1381       __ mov(rHandle, dst.first()->as_Register());
  1386 // A float arg may have to do float reg int reg conversion
  1387 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1388   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1390   if (src.first()->is_stack()) {
  1391     if (dst.first()->is_stack()) {
  1392       // stack to stack the easiest of the bunch
  1393       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1394       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1395     } else {
  1396       // stack to reg
  1397       if (dst.first()->is_Register()) {
  1398         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1399       } else {
  1400         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1403   } else if (dst.first()->is_stack()) {
  1404     // reg to stack
  1405     if (src.first()->is_Register()) {
  1406       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1407     } else {
  1408       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1410   } else {
  1411     // reg to reg
  1412     if (src.first()->is_Register()) {
  1413       if (dst.first()->is_Register()) {
  1414         // gpr -> gpr
  1415         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1416       } else {
  1417         // gpr -> fpr
  1418         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1419         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1421     } else if (dst.first()->is_Register()) {
  1422       // fpr -> gpr
  1423       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1424       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1425     } else {
  1426       // fpr -> fpr
  1427       // In theory these overlap but the ordering is such that this is likely a nop
  1428       if ( src.first() != dst.first()) {
  1429         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1435 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1436   VMRegPair src_lo(src.first());
  1437   VMRegPair src_hi(src.second());
  1438   VMRegPair dst_lo(dst.first());
  1439   VMRegPair dst_hi(dst.second());
  1440   simple_move32(masm, src_lo, dst_lo);
  1441   simple_move32(masm, src_hi, dst_hi);
  1444 // A long move
  1445 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1447   // Do the simple ones here else do two int moves
  1448   if (src.is_single_phys_reg() ) {
  1449     if (dst.is_single_phys_reg()) {
  1450       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1451     } else {
  1452       // split src into two separate registers
  1453       // Remember hi means hi address or lsw on sparc
  1454       // Move msw to lsw
  1455       if (dst.second()->is_reg()) {
  1456         // MSW -> MSW
  1457         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1458         // Now LSW -> LSW
  1459         // this will only move lo -> lo and ignore hi
  1460         VMRegPair split(dst.second());
  1461         simple_move32(masm, src, split);
  1462       } else {
  1463         VMRegPair split(src.first(), L4->as_VMReg());
  1464         // MSW -> MSW (lo ie. first word)
  1465         __ srax(src.first()->as_Register(), 32, L4);
  1466         split_long_move(masm, split, dst);
  1469   } else if (dst.is_single_phys_reg()) {
  1470     if (src.is_adjacent_aligned_on_stack(2)) {
  1471       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1472     } else {
  1473       // dst is a single reg.
  1474       // Remember lo is low address not msb for stack slots
  1475       // and lo is the "real" register for registers
  1476       // src is
  1478       VMRegPair split;
  1480       if (src.first()->is_reg()) {
  1481         // src.lo (msw) is a reg, src.hi is stk/reg
  1482         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1483         split.set_pair(dst.first(), src.first());
  1484       } else {
  1485         // msw is stack move to L5
  1486         // lsw is stack move to dst.lo (real reg)
  1487         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1488         split.set_pair(dst.first(), L5->as_VMReg());
  1491       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1492       // msw   -> src.lo/L5,  lsw -> dst.lo
  1493       split_long_move(masm, src, split);
  1495       // So dst now has the low order correct position the
  1496       // msw half
  1497       __ sllx(split.first()->as_Register(), 32, L5);
  1499       const Register d = dst.first()->as_Register();
  1500       __ or3(L5, d, d);
  1502   } else {
  1503     // For LP64 we can probably do better.
  1504     split_long_move(masm, src, dst);
  1508 // A double move
  1509 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1511   // The painful thing here is that like long_move a VMRegPair might be
  1512   // 1: a single physical register
  1513   // 2: two physical registers (v8)
  1514   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1515   // 4: two stack slots
  1517   // Since src is always a java calling convention we know that the src pair
  1518   // is always either all registers or all stack (and aligned?)
  1520   // in a register [lo] and a stack slot [hi]
  1521   if (src.first()->is_stack()) {
  1522     if (dst.first()->is_stack()) {
  1523       // stack to stack the easiest of the bunch
  1524       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1525       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1526       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1527       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1528       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1529     } else {
  1530       // stack to reg
  1531       if (dst.second()->is_stack()) {
  1532         // stack -> reg, stack -> stack
  1533         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1534         if (dst.first()->is_Register()) {
  1535           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1536         } else {
  1537           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1539         // This was missing. (very rare case)
  1540         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1541       } else {
  1542         // stack -> reg
  1543         // Eventually optimize for alignment QQQ
  1544         if (dst.first()->is_Register()) {
  1545           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1546           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1547         } else {
  1548           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1549           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1553   } else if (dst.first()->is_stack()) {
  1554     // reg to stack
  1555     if (src.first()->is_Register()) {
  1556       // Eventually optimize for alignment QQQ
  1557       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1558       if (src.second()->is_stack()) {
  1559         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1560         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1561       } else {
  1562         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1564     } else {
  1565       // fpr to stack
  1566       if (src.second()->is_stack()) {
  1567         ShouldNotReachHere();
  1568       } else {
  1569         // Is the stack aligned?
  1570         if (reg2offset(dst.first()) & 0x7) {
  1571           // No do as pairs
  1572           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1573           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1574         } else {
  1575           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1579   } else {
  1580     // reg to reg
  1581     if (src.first()->is_Register()) {
  1582       if (dst.first()->is_Register()) {
  1583         // gpr -> gpr
  1584         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1585         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1586       } else {
  1587         // gpr -> fpr
  1588         // ought to be able to do a single store
  1589         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1590         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1591         // ought to be able to do a single load
  1592         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1593         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1595     } else if (dst.first()->is_Register()) {
  1596       // fpr -> gpr
  1597       // ought to be able to do a single store
  1598       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1599       // ought to be able to do a single load
  1600       // REMEMBER first() is low address not LSB
  1601       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1602       if (dst.second()->is_Register()) {
  1603         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1604       } else {
  1605         __ ld(FP, -4 + STACK_BIAS, L4);
  1606         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1608     } else {
  1609       // fpr -> fpr
  1610       // In theory these overlap but the ordering is such that this is likely a nop
  1611       if ( src.first() != dst.first()) {
  1612         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1618 // Creates an inner frame if one hasn't already been created, and
  1619 // saves a copy of the thread in L7_thread_cache
  1620 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1621   if (!*already_created) {
  1622     __ save_frame(0);
  1623     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1624     // Don't use save_thread because it smashes G2 and we merely want to save a
  1625     // copy
  1626     __ mov(G2_thread, L7_thread_cache);
  1627     *already_created = true;
  1632 static void save_or_restore_arguments(MacroAssembler* masm,
  1633                                       const int stack_slots,
  1634                                       const int total_in_args,
  1635                                       const int arg_save_area,
  1636                                       OopMap* map,
  1637                                       VMRegPair* in_regs,
  1638                                       BasicType* in_sig_bt) {
  1639   // if map is non-NULL then the code should store the values,
  1640   // otherwise it should load them.
  1641   if (map != NULL) {
  1642     // Fill in the map
  1643     for (int i = 0; i < total_in_args; i++) {
  1644       if (in_sig_bt[i] == T_ARRAY) {
  1645         if (in_regs[i].first()->is_stack()) {
  1646           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1647           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1648         } else if (in_regs[i].first()->is_Register()) {
  1649           map->set_oop(in_regs[i].first());
  1650         } else {
  1651           ShouldNotReachHere();
  1657   // Save or restore double word values
  1658   int handle_index = 0;
  1659   for (int i = 0; i < total_in_args; i++) {
  1660     int slot = handle_index + arg_save_area;
  1661     int offset = slot * VMRegImpl::stack_slot_size;
  1662     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
  1663       const Register reg = in_regs[i].first()->as_Register();
  1664       if (reg->is_global()) {
  1665         handle_index += 2;
  1666         assert(handle_index <= stack_slots, "overflow");
  1667         if (map != NULL) {
  1668           __ stx(reg, SP, offset + STACK_BIAS);
  1669         } else {
  1670           __ ldx(SP, offset + STACK_BIAS, reg);
  1673     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
  1674       handle_index += 2;
  1675       assert(handle_index <= stack_slots, "overflow");
  1676       if (map != NULL) {
  1677         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1678       } else {
  1679         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1683   // Save floats
  1684   for (int i = 0; i < total_in_args; i++) {
  1685     int slot = handle_index + arg_save_area;
  1686     int offset = slot * VMRegImpl::stack_slot_size;
  1687     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
  1688       handle_index++;
  1689       assert(handle_index <= stack_slots, "overflow");
  1690       if (map != NULL) {
  1691         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1692       } else {
  1693         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1701 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1702 // keeps a new JNI critical region from starting until a GC has been
  1703 // forced.  Save down any oops in registers and describe them in an
  1704 // OopMap.
  1705 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1706                                                const int stack_slots,
  1707                                                const int total_in_args,
  1708                                                const int arg_save_area,
  1709                                                OopMapSet* oop_maps,
  1710                                                VMRegPair* in_regs,
  1711                                                BasicType* in_sig_bt) {
  1712   __ block_comment("check GC_locker::needs_gc");
  1713   Label cont;
  1714   AddressLiteral sync_state(GC_locker::needs_gc_address());
  1715   __ load_bool_contents(sync_state, G3_scratch);
  1716   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
  1717   __ delayed()->nop();
  1719   // Save down any values that are live in registers and call into the
  1720   // runtime to halt for a GC
  1721   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1722   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1723                             arg_save_area, map, in_regs, in_sig_bt);
  1725   __ mov(G2_thread, L7_thread_cache);
  1727   __ set_last_Java_frame(SP, noreg);
  1729   __ block_comment("block_for_jni_critical");
  1730   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
  1731   __ delayed()->mov(L7_thread_cache, O0);
  1732   oop_maps->add_gc_map( __ offset(), map);
  1734   __ restore_thread(L7_thread_cache); // restore G2_thread
  1735   __ reset_last_Java_frame();
  1737   // Reload all the register arguments
  1738   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1739                             arg_save_area, NULL, in_regs, in_sig_bt);
  1741   __ bind(cont);
  1742 #ifdef ASSERT
  1743   if (StressCriticalJNINatives) {
  1744     // Stress register saving
  1745     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1746     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1747                               arg_save_area, map, in_regs, in_sig_bt);
  1748     // Destroy argument registers
  1749     for (int i = 0; i < total_in_args; i++) {
  1750       if (in_regs[i].first()->is_Register()) {
  1751         const Register reg = in_regs[i].first()->as_Register();
  1752         if (reg->is_global()) {
  1753           __ mov(G0, reg);
  1755       } else if (in_regs[i].first()->is_FloatRegister()) {
  1756         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1760     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1761                               arg_save_area, NULL, in_regs, in_sig_bt);
  1763 #endif
  1766 // Unpack an array argument into a pointer to the body and the length
  1767 // if the array is non-null, otherwise pass 0 for both.
  1768 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1769   // Pass the length, ptr pair
  1770   Label is_null, done;
  1771   if (reg.first()->is_stack()) {
  1772     VMRegPair tmp  = reg64_to_VMRegPair(L2);
  1773     // Load the arg up from the stack
  1774     move_ptr(masm, reg, tmp);
  1775     reg = tmp;
  1777   __ cmp(reg.first()->as_Register(), G0);
  1778   __ brx(Assembler::equal, false, Assembler::pt, is_null);
  1779   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
  1780   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
  1781   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
  1782   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
  1783   __ ba_short(done);
  1784   __ bind(is_null);
  1785   // Pass zeros
  1786   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
  1787   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
  1788   __ bind(done);
  1791 static void verify_oop_args(MacroAssembler* masm,
  1792                             methodHandle method,
  1793                             const BasicType* sig_bt,
  1794                             const VMRegPair* regs) {
  1795   Register temp_reg = G5_method;  // not part of any compiled calling seq
  1796   if (VerifyOops) {
  1797     for (int i = 0; i < method->size_of_parameters(); i++) {
  1798       if (sig_bt[i] == T_OBJECT ||
  1799           sig_bt[i] == T_ARRAY) {
  1800         VMReg r = regs[i].first();
  1801         assert(r->is_valid(), "bad oop arg");
  1802         if (r->is_stack()) {
  1803           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1804           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
  1805           __ ld_ptr(SP, ld_off, temp_reg);
  1806           __ verify_oop(temp_reg);
  1807         } else {
  1808           __ verify_oop(r->as_Register());
  1815 static void gen_special_dispatch(MacroAssembler* masm,
  1816                                  methodHandle method,
  1817                                  const BasicType* sig_bt,
  1818                                  const VMRegPair* regs) {
  1819   verify_oop_args(masm, method, sig_bt, regs);
  1820   vmIntrinsics::ID iid = method->intrinsic_id();
  1822   // Now write the args into the outgoing interpreter space
  1823   bool     has_receiver   = false;
  1824   Register receiver_reg   = noreg;
  1825   int      member_arg_pos = -1;
  1826   Register member_reg     = noreg;
  1827   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1828   if (ref_kind != 0) {
  1829     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1830     member_reg = G5_method;  // known to be free at this point
  1831     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1832   } else if (iid == vmIntrinsics::_invokeBasic) {
  1833     has_receiver = true;
  1834   } else {
  1835     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1838   if (member_reg != noreg) {
  1839     // Load the member_arg into register, if necessary.
  1840     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1841     VMReg r = regs[member_arg_pos].first();
  1842     if (r->is_stack()) {
  1843       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1844       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1845       __ ld_ptr(SP, ld_off, member_reg);
  1846     } else {
  1847       // no data motion is needed
  1848       member_reg = r->as_Register();
  1852   if (has_receiver) {
  1853     // Make sure the receiver is loaded into a register.
  1854     assert(method->size_of_parameters() > 0, "oob");
  1855     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1856     VMReg r = regs[0].first();
  1857     assert(r->is_valid(), "bad receiver arg");
  1858     if (r->is_stack()) {
  1859       // Porting note:  This assumes that compiled calling conventions always
  1860       // pass the receiver oop in a register.  If this is not true on some
  1861       // platform, pick a temp and load the receiver from stack.
  1862       fatal("receiver always in a register");
  1863       receiver_reg = G3_scratch;  // known to be free at this point
  1864       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1865       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1866       __ ld_ptr(SP, ld_off, receiver_reg);
  1867     } else {
  1868       // no data motion is needed
  1869       receiver_reg = r->as_Register();
  1873   // Figure out which address we are really jumping to:
  1874   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1875                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1878 // ---------------------------------------------------------------------------
  1879 // Generate a native wrapper for a given method.  The method takes arguments
  1880 // in the Java compiled code convention, marshals them to the native
  1881 // convention (handlizes oops, etc), transitions to native, makes the call,
  1882 // returns to java state (possibly blocking), unhandlizes any result and
  1883 // returns.
  1884 //
  1885 // Critical native functions are a shorthand for the use of
  1886 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1887 // functions.  The wrapper is expected to unpack the arguments before
  1888 // passing them to the callee and perform checks before and after the
  1889 // native call to ensure that they GC_locker
  1890 // lock_critical/unlock_critical semantics are followed.  Some other
  1891 // parts of JNI setup are skipped like the tear down of the JNI handle
  1892 // block and the check for pending exceptions it's impossible for them
  1893 // to be thrown.
  1894 //
  1895 // They are roughly structured like this:
  1896 //    if (GC_locker::needs_gc())
  1897 //      SharedRuntime::block_for_jni_critical();
  1898 //    tranistion to thread_in_native
  1899 //    unpack arrray arguments and call native entry point
  1900 //    check for safepoint in progress
  1901 //    check if any thread suspend flags are set
  1902 //      call into JVM and possible unlock the JNI critical
  1903 //      if a GC was suppressed while in the critical native.
  1904 //    transition back to thread_in_Java
  1905 //    return to caller
  1906 //
  1907 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1908                                                 methodHandle method,
  1909                                                 int compile_id,
  1910                                                 BasicType* in_sig_bt,
  1911                                                 VMRegPair* in_regs,
  1912                                                 BasicType ret_type) {
  1913   if (method->is_method_handle_intrinsic()) {
  1914     vmIntrinsics::ID iid = method->intrinsic_id();
  1915     intptr_t start = (intptr_t)__ pc();
  1916     int vep_offset = ((intptr_t)__ pc()) - start;
  1917     gen_special_dispatch(masm,
  1918                          method,
  1919                          in_sig_bt,
  1920                          in_regs);
  1921     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1922     __ flush();
  1923     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1924     return nmethod::new_native_nmethod(method,
  1925                                        compile_id,
  1926                                        masm->code(),
  1927                                        vep_offset,
  1928                                        frame_complete,
  1929                                        stack_slots / VMRegImpl::slots_per_word,
  1930                                        in_ByteSize(-1),
  1931                                        in_ByteSize(-1),
  1932                                        (OopMapSet*)NULL);
  1934   bool is_critical_native = true;
  1935   address native_func = method->critical_native_function();
  1936   if (native_func == NULL) {
  1937     native_func = method->native_function();
  1938     is_critical_native = false;
  1940   assert(native_func != NULL, "must have function");
  1942   // Native nmethod wrappers never take possesion of the oop arguments.
  1943   // So the caller will gc the arguments. The only thing we need an
  1944   // oopMap for is if the call is static
  1945   //
  1946   // An OopMap for lock (and class if static), and one for the VM call itself
  1947   OopMapSet *oop_maps = new OopMapSet();
  1948   intptr_t start = (intptr_t)__ pc();
  1950   // First thing make an ic check to see if we should even be here
  1952     Label L;
  1953     const Register temp_reg = G3_scratch;
  1954     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1955     __ verify_oop(O0);
  1956     __ load_klass(O0, temp_reg);
  1957     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  1959     __ jump_to(ic_miss, temp_reg);
  1960     __ delayed()->nop();
  1961     __ align(CodeEntryAlignment);
  1962     __ bind(L);
  1965   int vep_offset = ((intptr_t)__ pc()) - start;
  1967 #ifdef COMPILER1
  1968   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1969     // Object.hashCode can pull the hashCode from the header word
  1970     // instead of doing a full VM transition once it's been computed.
  1971     // Since hashCode is usually polymorphic at call sites we can't do
  1972     // this optimization at the call site without a lot of work.
  1973     Label slowCase;
  1974     Register receiver             = O0;
  1975     Register result               = O0;
  1976     Register header               = G3_scratch;
  1977     Register hash                 = G3_scratch; // overwrite header value with hash value
  1978     Register mask                 = G1;         // to get hash field from header
  1980     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  1981     // We depend on hash_mask being at most 32 bits and avoid the use of
  1982     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1983     // vm: see markOop.hpp.
  1984     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  1985     __ sethi(markOopDesc::hash_mask, mask);
  1986     __ btst(markOopDesc::unlocked_value, header);
  1987     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  1988     if (UseBiasedLocking) {
  1989       // Check if biased and fall through to runtime if so
  1990       __ delayed()->nop();
  1991       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  1992       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  1994     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  1996     // Check for a valid (non-zero) hash code and get its value.
  1997 #ifdef _LP64
  1998     __ srlx(header, markOopDesc::hash_shift, hash);
  1999 #else
  2000     __ srl(header, markOopDesc::hash_shift, hash);
  2001 #endif
  2002     __ andcc(hash, mask, hash);
  2003     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  2004     __ delayed()->nop();
  2006     // leaf return.
  2007     __ retl();
  2008     __ delayed()->mov(hash, result);
  2009     __ bind(slowCase);
  2011 #endif // COMPILER1
  2014   // We have received a description of where all the java arg are located
  2015   // on entry to the wrapper. We need to convert these args to where
  2016   // the jni function will expect them. To figure out where they go
  2017   // we convert the java signature to a C signature by inserting
  2018   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  2020   const int total_in_args = method->size_of_parameters();
  2021   int total_c_args = total_in_args;
  2022   int total_save_slots = 6 * VMRegImpl::slots_per_word;
  2023   if (!is_critical_native) {
  2024     total_c_args += 1;
  2025     if (method->is_static()) {
  2026       total_c_args++;
  2028   } else {
  2029     for (int i = 0; i < total_in_args; i++) {
  2030       if (in_sig_bt[i] == T_ARRAY) {
  2031         // These have to be saved and restored across the safepoint
  2032         total_c_args++;
  2037   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  2038   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  2039   BasicType* in_elem_bt = NULL;
  2041   int argc = 0;
  2042   if (!is_critical_native) {
  2043     out_sig_bt[argc++] = T_ADDRESS;
  2044     if (method->is_static()) {
  2045       out_sig_bt[argc++] = T_OBJECT;
  2048     for (int i = 0; i < total_in_args ; i++ ) {
  2049       out_sig_bt[argc++] = in_sig_bt[i];
  2051   } else {
  2052     Thread* THREAD = Thread::current();
  2053     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  2054     SignatureStream ss(method->signature());
  2055     for (int i = 0; i < total_in_args ; i++ ) {
  2056       if (in_sig_bt[i] == T_ARRAY) {
  2057         // Arrays are passed as int, elem* pair
  2058         out_sig_bt[argc++] = T_INT;
  2059         out_sig_bt[argc++] = T_ADDRESS;
  2060         Symbol* atype = ss.as_symbol(CHECK_NULL);
  2061         const char* at = atype->as_C_string();
  2062         if (strlen(at) == 2) {
  2063           assert(at[0] == '[', "must be");
  2064           switch (at[1]) {
  2065             case 'B': in_elem_bt[i]  = T_BYTE; break;
  2066             case 'C': in_elem_bt[i]  = T_CHAR; break;
  2067             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  2068             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  2069             case 'I': in_elem_bt[i]  = T_INT; break;
  2070             case 'J': in_elem_bt[i]  = T_LONG; break;
  2071             case 'S': in_elem_bt[i]  = T_SHORT; break;
  2072             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  2073             default: ShouldNotReachHere();
  2076       } else {
  2077         out_sig_bt[argc++] = in_sig_bt[i];
  2078         in_elem_bt[i] = T_VOID;
  2080       if (in_sig_bt[i] != T_VOID) {
  2081         assert(in_sig_bt[i] == ss.type(), "must match");
  2082         ss.next();
  2087   // Now figure out where the args must be stored and how much stack space
  2088   // they require (neglecting out_preserve_stack_slots but space for storing
  2089   // the 1st six register arguments). It's weird see int_stk_helper.
  2090   //
  2091   int out_arg_slots;
  2092   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2094   if (is_critical_native) {
  2095     // Critical natives may have to call out so they need a save area
  2096     // for register arguments.
  2097     int double_slots = 0;
  2098     int single_slots = 0;
  2099     for ( int i = 0; i < total_in_args; i++) {
  2100       if (in_regs[i].first()->is_Register()) {
  2101         const Register reg = in_regs[i].first()->as_Register();
  2102         switch (in_sig_bt[i]) {
  2103           case T_ARRAY:
  2104           case T_BOOLEAN:
  2105           case T_BYTE:
  2106           case T_SHORT:
  2107           case T_CHAR:
  2108           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
  2109           case T_LONG: if (reg->is_global()) double_slots++; break;
  2110           default:  ShouldNotReachHere();
  2112       } else if (in_regs[i].first()->is_FloatRegister()) {
  2113         switch (in_sig_bt[i]) {
  2114           case T_FLOAT:  single_slots++; break;
  2115           case T_DOUBLE: double_slots++; break;
  2116           default:  ShouldNotReachHere();
  2120     total_save_slots = double_slots * 2 + single_slots;
  2123   // Compute framesize for the wrapper.  We need to handlize all oops in
  2124   // registers. We must create space for them here that is disjoint from
  2125   // the windowed save area because we have no control over when we might
  2126   // flush the window again and overwrite values that gc has since modified.
  2127   // (The live window race)
  2128   //
  2129   // We always just allocate 6 word for storing down these object. This allow
  2130   // us to simply record the base and use the Ireg number to decide which
  2131   // slot to use. (Note that the reg number is the inbound number not the
  2132   // outbound number).
  2133   // We must shuffle args to match the native convention, and include var-args space.
  2135   // Calculate the total number of stack slots we will need.
  2137   // First count the abi requirement plus all of the outgoing args
  2138   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2140   // Now the space for the inbound oop handle area
  2142   int oop_handle_offset = round_to(stack_slots, 2);
  2143   stack_slots += total_save_slots;
  2145   // Now any space we need for handlizing a klass if static method
  2147   int klass_slot_offset = 0;
  2148   int klass_offset = -1;
  2149   int lock_slot_offset = 0;
  2150   bool is_static = false;
  2152   if (method->is_static()) {
  2153     klass_slot_offset = stack_slots;
  2154     stack_slots += VMRegImpl::slots_per_word;
  2155     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  2156     is_static = true;
  2159   // Plus a lock if needed
  2161   if (method->is_synchronized()) {
  2162     lock_slot_offset = stack_slots;
  2163     stack_slots += VMRegImpl::slots_per_word;
  2166   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  2167   stack_slots += 2;
  2169   // Ok The space we have allocated will look like:
  2170   //
  2171   //
  2172   // FP-> |                     |
  2173   //      |---------------------|
  2174   //      | 2 slots for moves   |
  2175   //      |---------------------|
  2176   //      | lock box (if sync)  |
  2177   //      |---------------------| <- lock_slot_offset
  2178   //      | klass (if static)   |
  2179   //      |---------------------| <- klass_slot_offset
  2180   //      | oopHandle area      |
  2181   //      |---------------------| <- oop_handle_offset
  2182   //      | outbound memory     |
  2183   //      | based arguments     |
  2184   //      |                     |
  2185   //      |---------------------|
  2186   //      | vararg area         |
  2187   //      |---------------------|
  2188   //      |                     |
  2189   // SP-> | out_preserved_slots |
  2190   //
  2191   //
  2194   // Now compute actual number of stack words we need rounding to make
  2195   // stack properly aligned.
  2196   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2198   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2200   // Generate stack overflow check before creating frame
  2201   __ generate_stack_overflow_check(stack_size);
  2203   // Generate a new frame for the wrapper.
  2204   __ save(SP, -stack_size, SP);
  2206   int frame_complete = ((intptr_t)__ pc()) - start;
  2208   __ verify_thread();
  2210   if (is_critical_native) {
  2211     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
  2212                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2215   //
  2216   // We immediately shuffle the arguments so that any vm call we have to
  2217   // make from here on out (sync slow path, jvmti, etc.) we will have
  2218   // captured the oops from our caller and have a valid oopMap for
  2219   // them.
  2221   // -----------------
  2222   // The Grand Shuffle
  2223   //
  2224   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2225   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2226   // the class mirror instead of a receiver.  This pretty much guarantees that
  2227   // register layout will not match.  We ignore these extra arguments during
  2228   // the shuffle. The shuffle is described by the two calling convention
  2229   // vectors we have in our possession. We simply walk the java vector to
  2230   // get the source locations and the c vector to get the destinations.
  2231   // Because we have a new window and the argument registers are completely
  2232   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2233   // here.
  2235   // This is a trick. We double the stack slots so we can claim
  2236   // the oops in the caller's frame. Since we are sure to have
  2237   // more args than the caller doubling is enough to make
  2238   // sure we can capture all the incoming oop args from the
  2239   // caller.
  2240   //
  2241   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2242   // Record sp-based slot for receiver on stack for non-static methods
  2243   int receiver_offset = -1;
  2245   // We move the arguments backward because the floating point registers
  2246   // destination will always be to a register with a greater or equal register
  2247   // number or the stack.
  2249 #ifdef ASSERT
  2250   bool reg_destroyed[RegisterImpl::number_of_registers];
  2251   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2252   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2253     reg_destroyed[r] = false;
  2255   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2256     freg_destroyed[f] = false;
  2259 #endif /* ASSERT */
  2261   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
  2263 #ifdef ASSERT
  2264     if (in_regs[i].first()->is_Register()) {
  2265       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2266     } else if (in_regs[i].first()->is_FloatRegister()) {
  2267       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2269     if (out_regs[c_arg].first()->is_Register()) {
  2270       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2271     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2272       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2274 #endif /* ASSERT */
  2276     switch (in_sig_bt[i]) {
  2277       case T_ARRAY:
  2278         if (is_critical_native) {
  2279           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
  2280           c_arg--;
  2281           break;
  2283       case T_OBJECT:
  2284         assert(!is_critical_native, "no oop arguments");
  2285         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2286                     ((i == 0) && (!is_static)),
  2287                     &receiver_offset);
  2288         break;
  2289       case T_VOID:
  2290         break;
  2292       case T_FLOAT:
  2293         float_move(masm, in_regs[i], out_regs[c_arg]);
  2294         break;
  2296       case T_DOUBLE:
  2297         assert( i + 1 < total_in_args &&
  2298                 in_sig_bt[i + 1] == T_VOID &&
  2299                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2300         double_move(masm, in_regs[i], out_regs[c_arg]);
  2301         break;
  2303       case T_LONG :
  2304         long_move(masm, in_regs[i], out_regs[c_arg]);
  2305         break;
  2307       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2309       default:
  2310         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2314   // Pre-load a static method's oop into O1.  Used both by locking code and
  2315   // the normal JNI call code.
  2316   if (method->is_static() && !is_critical_native) {
  2317     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2319     // Now handlize the static class mirror in O1.  It's known not-null.
  2320     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2321     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2322     __ add(SP, klass_offset + STACK_BIAS, O1);
  2326   const Register L6_handle = L6;
  2328   if (method->is_synchronized()) {
  2329     assert(!is_critical_native, "unhandled");
  2330     __ mov(O1, L6_handle);
  2333   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2334   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2335   // push a new frame and flush the windows.
  2336 #ifdef _LP64
  2337   intptr_t thepc = (intptr_t) __ pc();
  2339     address here = __ pc();
  2340     // Call the next instruction
  2341     __ call(here + 8, relocInfo::none);
  2342     __ delayed()->nop();
  2344 #else
  2345   intptr_t thepc = __ load_pc_address(O7, 0);
  2346 #endif /* _LP64 */
  2348   // We use the same pc/oopMap repeatedly when we call out
  2349   oop_maps->add_gc_map(thepc - start, map);
  2351   // O7 now has the pc loaded that we will use when we finally call to native.
  2353   // Save thread in L7; it crosses a bunch of VM calls below
  2354   // Don't use save_thread because it smashes G2 and we merely
  2355   // want to save a copy
  2356   __ mov(G2_thread, L7_thread_cache);
  2359   // If we create an inner frame once is plenty
  2360   // when we create it we must also save G2_thread
  2361   bool inner_frame_created = false;
  2363   // dtrace method entry support
  2365     SkipIfEqual skip_if(
  2366       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2367     // create inner frame
  2368     __ save_frame(0);
  2369     __ mov(G2_thread, L7_thread_cache);
  2370     __ set_metadata_constant(method(), O1);
  2371     __ call_VM_leaf(L7_thread_cache,
  2372          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2373          G2_thread, O1);
  2374     __ restore();
  2377   // RedefineClasses() tracing support for obsolete method entry
  2378   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2379     // create inner frame
  2380     __ save_frame(0);
  2381     __ mov(G2_thread, L7_thread_cache);
  2382     __ set_metadata_constant(method(), O1);
  2383     __ call_VM_leaf(L7_thread_cache,
  2384          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2385          G2_thread, O1);
  2386     __ restore();
  2389   // We are in the jni frame unless saved_frame is true in which case
  2390   // we are in one frame deeper (the "inner" frame). If we are in the
  2391   // "inner" frames the args are in the Iregs and if the jni frame then
  2392   // they are in the Oregs.
  2393   // If we ever need to go to the VM (for locking, jvmti) then
  2394   // we will always be in the "inner" frame.
  2396   // Lock a synchronized method
  2397   int lock_offset = -1;         // Set if locked
  2398   if (method->is_synchronized()) {
  2399     Register Roop = O1;
  2400     const Register L3_box = L3;
  2402     create_inner_frame(masm, &inner_frame_created);
  2404     __ ld_ptr(I1, 0, O1);
  2405     Label done;
  2407     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2408     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2409 #ifdef ASSERT
  2410     if (UseBiasedLocking) {
  2411       // making the box point to itself will make it clear it went unused
  2412       // but also be obviously invalid
  2413       __ st_ptr(L3_box, L3_box, 0);
  2415 #endif // ASSERT
  2416     //
  2417     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2418     //
  2419     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2420     __ br(Assembler::equal, false, Assembler::pt, done);
  2421     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2424     // None of the above fast optimizations worked so we have to get into the
  2425     // slow case of monitor enter.  Inline a special case of call_VM that
  2426     // disallows any pending_exception.
  2427     __ mov(Roop, O0);            // Need oop in O0
  2428     __ mov(L3_box, O1);
  2430     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2432     __ set_last_Java_frame(FP, I7);
  2434     // do the call
  2435     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2436     __ delayed()->mov(L7_thread_cache, O2);
  2438     __ restore_thread(L7_thread_cache); // restore G2_thread
  2439     __ reset_last_Java_frame();
  2441 #ifdef ASSERT
  2442     { Label L;
  2443     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2444     __ br_null_short(O0, Assembler::pt, L);
  2445     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2446     __ bind(L);
  2448 #endif
  2449     __ bind(done);
  2453   // Finally just about ready to make the JNI call
  2455   __ flush_windows();
  2456   if (inner_frame_created) {
  2457     __ restore();
  2458   } else {
  2459     // Store only what we need from this frame
  2460     // QQQ I think that non-v9 (like we care) we don't need these saves
  2461     // either as the flush traps and the current window goes too.
  2462     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2463     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2466   // get JNIEnv* which is first argument to native
  2467   if (!is_critical_native) {
  2468     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2471   // Use that pc we placed in O7 a while back as the current frame anchor
  2472   __ set_last_Java_frame(SP, O7);
  2474   // We flushed the windows ages ago now mark them as flushed before transitioning.
  2475   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2476   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2478   // Transition from _thread_in_Java to _thread_in_native.
  2479   __ set(_thread_in_native, G3_scratch);
  2481 #ifdef _LP64
  2482   AddressLiteral dest(native_func);
  2483   __ relocate(relocInfo::runtime_call_type);
  2484   __ jumpl_to(dest, O7, O7);
  2485 #else
  2486   __ call(native_func, relocInfo::runtime_call_type);
  2487 #endif
  2488   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2490   __ restore_thread(L7_thread_cache); // restore G2_thread
  2492   // Unpack native results.  For int-types, we do any needed sign-extension
  2493   // and move things into I0.  The return value there will survive any VM
  2494   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2495   // specially in the slow-path code.
  2496   switch (ret_type) {
  2497   case T_VOID:    break;        // Nothing to do!
  2498   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2499   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2500   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2501   case T_LONG:
  2502 #ifndef _LP64
  2503                   __ mov(O1, I1);
  2504 #endif
  2505                   // Fall thru
  2506   case T_OBJECT:                // Really a handle
  2507   case T_ARRAY:
  2508   case T_INT:
  2509                   __ mov(O0, I0);
  2510                   break;
  2511   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2512   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2513   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2514   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2515     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2516   default:
  2517     ShouldNotReachHere();
  2520   Label after_transition;
  2521   // must we block?
  2523   // Block, if necessary, before resuming in _thread_in_Java state.
  2524   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2525   { Label no_block;
  2526     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2528     // Switch thread to "native transition" state before reading the synchronization state.
  2529     // This additional state is necessary because reading and testing the synchronization
  2530     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2531     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2532     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2533     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2534     //     didn't see any synchronization is progress, and escapes.
  2535     __ set(_thread_in_native_trans, G3_scratch);
  2536     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2537     if(os::is_MP()) {
  2538       if (UseMembar) {
  2539         // Force this write out before the read below
  2540         __ membar(Assembler::StoreLoad);
  2541       } else {
  2542         // Write serialization page so VM thread can do a pseudo remote membar.
  2543         // We use the current thread pointer to calculate a thread specific
  2544         // offset to write to within the page. This minimizes bus traffic
  2545         // due to cache line collision.
  2546         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2549     __ load_contents(sync_state, G3_scratch);
  2550     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2552     Label L;
  2553     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2554     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2555     __ delayed()->ld(suspend_state, G3_scratch);
  2556     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  2557     __ bind(L);
  2559     // Block.  Save any potential method result value before the operation and
  2560     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2561     // lets us share the oopMap we used when we went native rather the create
  2562     // a distinct one for this pc
  2563     //
  2564     save_native_result(masm, ret_type, stack_slots);
  2565     if (!is_critical_native) {
  2566       __ call_VM_leaf(L7_thread_cache,
  2567                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2568                       G2_thread);
  2569     } else {
  2570       __ call_VM_leaf(L7_thread_cache,
  2571                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
  2572                       G2_thread);
  2575     // Restore any method result value
  2576     restore_native_result(masm, ret_type, stack_slots);
  2578     if (is_critical_native) {
  2579       // The call above performed the transition to thread_in_Java so
  2580       // skip the transition logic below.
  2581       __ ba(after_transition);
  2582       __ delayed()->nop();
  2585     __ bind(no_block);
  2588   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2589   // happened so we can now change state to _thread_in_Java.
  2590   __ set(_thread_in_Java, G3_scratch);
  2591   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2592   __ bind(after_transition);
  2594   Label no_reguard;
  2595   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2596   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
  2598     save_native_result(masm, ret_type, stack_slots);
  2599   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2600   __ delayed()->nop();
  2602   __ restore_thread(L7_thread_cache); // restore G2_thread
  2603     restore_native_result(masm, ret_type, stack_slots);
  2605   __ bind(no_reguard);
  2607   // Handle possible exception (will unlock if necessary)
  2609   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2611   // Unlock
  2612   if (method->is_synchronized()) {
  2613     Label done;
  2614     Register I2_ex_oop = I2;
  2615     const Register L3_box = L3;
  2616     // Get locked oop from the handle we passed to jni
  2617     __ ld_ptr(L6_handle, 0, L4);
  2618     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2619     // Must save pending exception around the slow-path VM call.  Since it's a
  2620     // leaf call, the pending exception (if any) can be kept in a register.
  2621     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2622     // Now unlock
  2623     //                       (Roop, Rmark, Rbox,   Rscratch)
  2624     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2625     __ br(Assembler::equal, false, Assembler::pt, done);
  2626     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2628     // save and restore any potential method result value around the unlocking
  2629     // operation.  Will save in I0 (or stack for FP returns).
  2630     save_native_result(masm, ret_type, stack_slots);
  2632     // Must clear pending-exception before re-entering the VM.  Since this is
  2633     // a leaf call, pending-exception-oop can be safely kept in a register.
  2634     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2636     // slow case of monitor enter.  Inline a special case of call_VM that
  2637     // disallows any pending_exception.
  2638     __ mov(L3_box, O1);
  2640     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2641     __ delayed()->mov(L4, O0);              // Need oop in O0
  2643     __ restore_thread(L7_thread_cache); // restore G2_thread
  2645 #ifdef ASSERT
  2646     { Label L;
  2647     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2648     __ br_null_short(O0, Assembler::pt, L);
  2649     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2650     __ bind(L);
  2652 #endif
  2653     restore_native_result(masm, ret_type, stack_slots);
  2654     // check_forward_pending_exception jump to forward_exception if any pending
  2655     // exception is set.  The forward_exception routine expects to see the
  2656     // exception in pending_exception and not in a register.  Kind of clumsy,
  2657     // since all folks who branch to forward_exception must have tested
  2658     // pending_exception first and hence have it in a register already.
  2659     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2660     __ bind(done);
  2663   // Tell dtrace about this method exit
  2665     SkipIfEqual skip_if(
  2666       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2667     save_native_result(masm, ret_type, stack_slots);
  2668     __ set_metadata_constant(method(), O1);
  2669     __ call_VM_leaf(L7_thread_cache,
  2670        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2671        G2_thread, O1);
  2672     restore_native_result(masm, ret_type, stack_slots);
  2675   // Clear "last Java frame" SP and PC.
  2676   __ verify_thread(); // G2_thread must be correct
  2677   __ reset_last_Java_frame();
  2679   // Unpack oop result
  2680   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2681       Label L;
  2682       __ addcc(G0, I0, G0);
  2683       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2684       __ delayed()->ld_ptr(I0, 0, I0);
  2685       __ mov(G0, I0);
  2686       __ bind(L);
  2687       __ verify_oop(I0);
  2690   if (!is_critical_native) {
  2691     // reset handle block
  2692     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2693     __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2695     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2696     check_forward_pending_exception(masm, G3_scratch);
  2700   // Return
  2702 #ifndef _LP64
  2703   if (ret_type == T_LONG) {
  2705     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2706     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2707     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2708     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2710 #endif
  2712   __ ret();
  2713   __ delayed()->restore();
  2715   __ flush();
  2717   nmethod *nm = nmethod::new_native_nmethod(method,
  2718                                             compile_id,
  2719                                             masm->code(),
  2720                                             vep_offset,
  2721                                             frame_complete,
  2722                                             stack_slots / VMRegImpl::slots_per_word,
  2723                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2724                                             in_ByteSize(lock_offset),
  2725                                             oop_maps);
  2727   if (is_critical_native) {
  2728     nm->set_lazy_critical_native(true);
  2730   return nm;
  2734 #ifdef HAVE_DTRACE_H
  2735 // ---------------------------------------------------------------------------
  2736 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2737 // in the Java compiled code convention, marshals them to the native
  2738 // abi and then leaves nops at the position you would expect to call a native
  2739 // function. When the probe is enabled the nops are replaced with a trap
  2740 // instruction that dtrace inserts and the trace will cause a notification
  2741 // to dtrace.
  2742 //
  2743 // The probes are only able to take primitive types and java/lang/String as
  2744 // arguments.  No other java types are allowed. Strings are converted to utf8
  2745 // strings so that from dtrace point of view java strings are converted to C
  2746 // strings. There is an arbitrary fixed limit on the total space that a method
  2747 // can use for converting the strings. (256 chars per string in the signature).
  2748 // So any java string larger then this is truncated.
  2750 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2751 static bool offsets_initialized = false;
  2753 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2754     MacroAssembler *masm, methodHandle method) {
  2757   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2758   // be single threaded in this method.
  2759   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2761   // Fill in the signature array, for the calling-convention call.
  2762   int total_args_passed = method->size_of_parameters();
  2764   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2765   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2767   // The signature we are going to use for the trap that dtrace will see
  2768   // java/lang/String is converted. We drop "this" and any other object
  2769   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2770   // is converted to a two-slot long, which is why we double the allocation).
  2771   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2772   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2774   int i=0;
  2775   int total_strings = 0;
  2776   int first_arg_to_pass = 0;
  2777   int total_c_args = 0;
  2779   // Skip the receiver as dtrace doesn't want to see it
  2780   if( !method->is_static() ) {
  2781     in_sig_bt[i++] = T_OBJECT;
  2782     first_arg_to_pass = 1;
  2785   SignatureStream ss(method->signature());
  2786   for ( ; !ss.at_return_type(); ss.next()) {
  2787     BasicType bt = ss.type();
  2788     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2789     out_sig_bt[total_c_args++] = bt;
  2790     if( bt == T_OBJECT) {
  2791       Symbol* s = ss.as_symbol_or_null();
  2792       if (s == vmSymbols::java_lang_String()) {
  2793         total_strings++;
  2794         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2795       } else if (s == vmSymbols::java_lang_Boolean() ||
  2796                  s == vmSymbols::java_lang_Byte()) {
  2797         out_sig_bt[total_c_args-1] = T_BYTE;
  2798       } else if (s == vmSymbols::java_lang_Character() ||
  2799                  s == vmSymbols::java_lang_Short()) {
  2800         out_sig_bt[total_c_args-1] = T_SHORT;
  2801       } else if (s == vmSymbols::java_lang_Integer() ||
  2802                  s == vmSymbols::java_lang_Float()) {
  2803         out_sig_bt[total_c_args-1] = T_INT;
  2804       } else if (s == vmSymbols::java_lang_Long() ||
  2805                  s == vmSymbols::java_lang_Double()) {
  2806         out_sig_bt[total_c_args-1] = T_LONG;
  2807         out_sig_bt[total_c_args++] = T_VOID;
  2809     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2810       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2811       // We convert double to long
  2812       out_sig_bt[total_c_args-1] = T_LONG;
  2813       out_sig_bt[total_c_args++] = T_VOID;
  2814     } else if ( bt == T_FLOAT) {
  2815       // We convert float to int
  2816       out_sig_bt[total_c_args-1] = T_INT;
  2820   assert(i==total_args_passed, "validly parsed signature");
  2822   // Now get the compiled-Java layout as input arguments
  2823   int comp_args_on_stack;
  2824   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2825       in_sig_bt, in_regs, total_args_passed, false);
  2827   // We have received a description of where all the java arg are located
  2828   // on entry to the wrapper. We need to convert these args to where
  2829   // the a  native (non-jni) function would expect them. To figure out
  2830   // where they go we convert the java signature to a C signature and remove
  2831   // T_VOID for any long/double we might have received.
  2834   // Now figure out where the args must be stored and how much stack space
  2835   // they require (neglecting out_preserve_stack_slots but space for storing
  2836   // the 1st six register arguments). It's weird see int_stk_helper.
  2837   //
  2838   int out_arg_slots;
  2839   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2841   // Calculate the total number of stack slots we will need.
  2843   // First count the abi requirement plus all of the outgoing args
  2844   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2846   // Plus a temp for possible converion of float/double/long register args
  2848   int conversion_temp = stack_slots;
  2849   stack_slots += 2;
  2852   // Now space for the string(s) we must convert
  2854   int string_locs = stack_slots;
  2855   stack_slots += total_strings *
  2856                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2858   // Ok The space we have allocated will look like:
  2859   //
  2860   //
  2861   // FP-> |                     |
  2862   //      |---------------------|
  2863   //      | string[n]           |
  2864   //      |---------------------| <- string_locs[n]
  2865   //      | string[n-1]         |
  2866   //      |---------------------| <- string_locs[n-1]
  2867   //      | ...                 |
  2868   //      | ...                 |
  2869   //      |---------------------| <- string_locs[1]
  2870   //      | string[0]           |
  2871   //      |---------------------| <- string_locs[0]
  2872   //      | temp                |
  2873   //      |---------------------| <- conversion_temp
  2874   //      | outbound memory     |
  2875   //      | based arguments     |
  2876   //      |                     |
  2877   //      |---------------------|
  2878   //      |                     |
  2879   // SP-> | out_preserved_slots |
  2880   //
  2881   //
  2883   // Now compute actual number of stack words we need rounding to make
  2884   // stack properly aligned.
  2885   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2887   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2889   intptr_t start = (intptr_t)__ pc();
  2891   // First thing make an ic check to see if we should even be here
  2894     Label L;
  2895     const Register temp_reg = G3_scratch;
  2896     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2897     __ verify_oop(O0);
  2898     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2899     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  2901     __ jump_to(ic_miss, temp_reg);
  2902     __ delayed()->nop();
  2903     __ align(CodeEntryAlignment);
  2904     __ bind(L);
  2907   int vep_offset = ((intptr_t)__ pc()) - start;
  2910   // The instruction at the verified entry point must be 5 bytes or longer
  2911   // because it can be patched on the fly by make_non_entrant. The stack bang
  2912   // instruction fits that requirement.
  2914   // Generate stack overflow check before creating frame
  2915   __ generate_stack_overflow_check(stack_size);
  2917   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2918          "valid size for make_non_entrant");
  2920   // Generate a new frame for the wrapper.
  2921   __ save(SP, -stack_size, SP);
  2923   // Frame is now completed as far a size and linkage.
  2925   int frame_complete = ((intptr_t)__ pc()) - start;
  2927 #ifdef ASSERT
  2928   bool reg_destroyed[RegisterImpl::number_of_registers];
  2929   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2930   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2931     reg_destroyed[r] = false;
  2933   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2934     freg_destroyed[f] = false;
  2937 #endif /* ASSERT */
  2939   VMRegPair zero;
  2940   const Register g0 = G0; // without this we get a compiler warning (why??)
  2941   zero.set2(g0->as_VMReg());
  2943   int c_arg, j_arg;
  2945   Register conversion_off = noreg;
  2947   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2948        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2950     VMRegPair src = in_regs[j_arg];
  2951     VMRegPair dst = out_regs[c_arg];
  2953 #ifdef ASSERT
  2954     if (src.first()->is_Register()) {
  2955       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2956     } else if (src.first()->is_FloatRegister()) {
  2957       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2958                                                FloatRegisterImpl::S)], "ack!");
  2960     if (dst.first()->is_Register()) {
  2961       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2962     } else if (dst.first()->is_FloatRegister()) {
  2963       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2964                                                  FloatRegisterImpl::S)] = true;
  2966 #endif /* ASSERT */
  2968     switch (in_sig_bt[j_arg]) {
  2969       case T_ARRAY:
  2970       case T_OBJECT:
  2972           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2973               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2974             // need to unbox a one-slot value
  2975             Register in_reg = L0;
  2976             Register tmp = L2;
  2977             if ( src.first()->is_reg() ) {
  2978               in_reg = src.first()->as_Register();
  2979             } else {
  2980               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  2981                      "must be");
  2982               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  2984             // If the final destination is an acceptable register
  2985             if ( dst.first()->is_reg() ) {
  2986               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  2987                 tmp = dst.first()->as_Register();
  2991             Label skipUnbox;
  2992             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  2993               __ mov(G0, tmp->successor());
  2995             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  2996             __ delayed()->mov(G0, tmp);
  2998             BasicType bt = out_sig_bt[c_arg];
  2999             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3000             switch (bt) {
  3001                 case T_BYTE:
  3002                   __ ldub(in_reg, box_offset, tmp); break;
  3003                 case T_SHORT:
  3004                   __ lduh(in_reg, box_offset, tmp); break;
  3005                 case T_INT:
  3006                   __ ld(in_reg, box_offset, tmp); break;
  3007                 case T_LONG:
  3008                   __ ld_long(in_reg, box_offset, tmp); break;
  3009                 default: ShouldNotReachHere();
  3012             __ bind(skipUnbox);
  3013             // If tmp wasn't final destination copy to final destination
  3014             if (tmp == L2) {
  3015               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  3016               if (out_sig_bt[c_arg] == T_LONG) {
  3017                 long_move(masm, tmp_as_VM, dst);
  3018               } else {
  3019                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  3022             if (out_sig_bt[c_arg] == T_LONG) {
  3023               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3024               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  3026           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  3027             Register s =
  3028                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  3029             Register d =
  3030                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3032             // We store the oop now so that the conversion pass can reach
  3033             // while in the inner frame. This will be the only store if
  3034             // the oop is NULL.
  3035             if (s != L2) {
  3036               // src is register
  3037               if (d != L2) {
  3038                 // dst is register
  3039                 __ mov(s, d);
  3040               } else {
  3041                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3042                           STACK_BIAS), "must be");
  3043                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  3045             } else {
  3046                 // src not a register
  3047                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  3048                            STACK_BIAS), "must be");
  3049                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  3050                 if (d == L2) {
  3051                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3052                              STACK_BIAS), "must be");
  3053                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  3056           } else if (out_sig_bt[c_arg] != T_VOID) {
  3057             // Convert the arg to NULL
  3058             if (dst.first()->is_reg()) {
  3059               __ mov(G0, dst.first()->as_Register());
  3060             } else {
  3061               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3062                          STACK_BIAS), "must be");
  3063               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  3067         break;
  3068       case T_VOID:
  3069         break;
  3071       case T_FLOAT:
  3072         if (src.first()->is_stack()) {
  3073           // Stack to stack/reg is simple
  3074           move32_64(masm, src, dst);
  3075         } else {
  3076           if (dst.first()->is_reg()) {
  3077             // freg -> reg
  3078             int off =
  3079               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3080             Register d = dst.first()->as_Register();
  3081             if (Assembler::is_simm13(off)) {
  3082               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3083                      SP, off);
  3084               __ ld(SP, off, d);
  3085             } else {
  3086               if (conversion_off == noreg) {
  3087                 __ set(off, L6);
  3088                 conversion_off = L6;
  3090               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3091                      SP, conversion_off);
  3092               __ ld(SP, conversion_off , d);
  3094           } else {
  3095             // freg -> mem
  3096             int off = STACK_BIAS + reg2offset(dst.first());
  3097             if (Assembler::is_simm13(off)) {
  3098               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3099                      SP, off);
  3100             } else {
  3101               if (conversion_off == noreg) {
  3102                 __ set(off, L6);
  3103                 conversion_off = L6;
  3105               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3106                      SP, conversion_off);
  3110         break;
  3112       case T_DOUBLE:
  3113         assert( j_arg + 1 < total_args_passed &&
  3114                 in_sig_bt[j_arg + 1] == T_VOID &&
  3115                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  3116         if (src.first()->is_stack()) {
  3117           // Stack to stack/reg is simple
  3118           long_move(masm, src, dst);
  3119         } else {
  3120           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3122           // Destination could be an odd reg on 32bit in which case
  3123           // we can't load direct to the destination.
  3125           if (!d->is_even() && wordSize == 4) {
  3126             d = L2;
  3128           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3129           if (Assembler::is_simm13(off)) {
  3130             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3131                    SP, off);
  3132             __ ld_long(SP, off, d);
  3133           } else {
  3134             if (conversion_off == noreg) {
  3135               __ set(off, L6);
  3136               conversion_off = L6;
  3138             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3139                    SP, conversion_off);
  3140             __ ld_long(SP, conversion_off, d);
  3142           if (d == L2) {
  3143             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3146         break;
  3148       case T_LONG :
  3149         // 32bit can't do a split move of something like g1 -> O0, O1
  3150         // so use a memory temp
  3151         if (src.is_single_phys_reg() && wordSize == 4) {
  3152           Register tmp = L2;
  3153           if (dst.first()->is_reg() &&
  3154               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  3155             tmp = dst.first()->as_Register();
  3158           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3159           if (Assembler::is_simm13(off)) {
  3160             __ stx(src.first()->as_Register(), SP, off);
  3161             __ ld_long(SP, off, tmp);
  3162           } else {
  3163             if (conversion_off == noreg) {
  3164               __ set(off, L6);
  3165               conversion_off = L6;
  3167             __ stx(src.first()->as_Register(), SP, conversion_off);
  3168             __ ld_long(SP, conversion_off, tmp);
  3171           if (tmp == L2) {
  3172             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3174         } else {
  3175           long_move(masm, src, dst);
  3177         break;
  3179       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3181       default:
  3182         move32_64(masm, src, dst);
  3187   // If we have any strings we must store any register based arg to the stack
  3188   // This includes any still live xmm registers too.
  3190   if (total_strings > 0 ) {
  3192     // protect all the arg registers
  3193     __ save_frame(0);
  3194     __ mov(G2_thread, L7_thread_cache);
  3195     const Register L2_string_off = L2;
  3197     // Get first string offset
  3198     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  3200     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  3201       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3203         VMRegPair dst = out_regs[c_arg];
  3204         const Register d = dst.first()->is_reg() ?
  3205             dst.first()->as_Register()->after_save() : noreg;
  3207         // It's a string the oop and it was already copied to the out arg
  3208         // position
  3209         if (d != noreg) {
  3210           __ mov(d, O0);
  3211         } else {
  3212           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3213                  "must be");
  3214           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3216         Label skip;
  3218         __ br_null(O0, false, Assembler::pn, skip);
  3219         __ delayed()->add(FP, L2_string_off, O1);
  3221         if (d != noreg) {
  3222           __ mov(O1, d);
  3223         } else {
  3224           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3225                  "must be");
  3226           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3229         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3230                 relocInfo::runtime_call_type);
  3231         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3233         __ bind(skip);
  3238     __ mov(L7_thread_cache, G2_thread);
  3239     __ restore();
  3244   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3245   // patch in the trap
  3247   int patch_offset = ((intptr_t)__ pc()) - start;
  3249   __ nop();
  3252   // Return
  3254   __ ret();
  3255   __ delayed()->restore();
  3257   __ flush();
  3259   nmethod *nm = nmethod::new_dtrace_nmethod(
  3260       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3261       stack_slots / VMRegImpl::slots_per_word);
  3262   return nm;
  3266 #endif // HAVE_DTRACE_H
  3268 // this function returns the adjust size (in number of words) to a c2i adapter
  3269 // activation for use during deoptimization
  3270 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3271   assert(callee_locals >= callee_parameters,
  3272           "test and remove; got more parms than locals");
  3273   if (callee_locals < callee_parameters)
  3274     return 0;                   // No adjustment for negative locals
  3275   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3276   return round_to(diff, WordsPerLong);
  3279 // "Top of Stack" slots that may be unused by the calling convention but must
  3280 // otherwise be preserved.
  3281 // On Intel these are not necessary and the value can be zero.
  3282 // On Sparc this describes the words reserved for storing a register window
  3283 // when an interrupt occurs.
  3284 uint SharedRuntime::out_preserve_stack_slots() {
  3285   return frame::register_save_words * VMRegImpl::slots_per_word;
  3288 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3289 //
  3290 // Common out the new frame generation for deopt and uncommon trap
  3291 //
  3292   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3293   Register        Oreturn0           = O0;
  3294   Register        Oreturn1           = O1;
  3295   Register        O2UnrollBlock      = O2;
  3296   Register        O3array            = O3;         // Array of frame sizes (input)
  3297   Register        O4array_size       = O4;         // number of frames (input)
  3298   Register        O7frame_size       = O7;         // number of frames (input)
  3300   __ ld_ptr(O3array, 0, O7frame_size);
  3301   __ sub(G0, O7frame_size, O7frame_size);
  3302   __ save(SP, O7frame_size, SP);
  3303   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3305   #ifdef ASSERT
  3306   // make sure that the frames are aligned properly
  3307 #ifndef _LP64
  3308   __ btst(wordSize*2-1, SP);
  3309   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
  3310 #endif
  3311   #endif
  3313   // Deopt needs to pass some extra live values from frame to frame
  3315   if (deopt) {
  3316     __ mov(Oreturn0->after_save(), Oreturn0);
  3317     __ mov(Oreturn1->after_save(), Oreturn1);
  3320   __ mov(O4array_size->after_save(), O4array_size);
  3321   __ sub(O4array_size, 1, O4array_size);
  3322   __ mov(O3array->after_save(), O3array);
  3323   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3324   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3326   #ifdef ASSERT
  3327   // trash registers to show a clear pattern in backtraces
  3328   __ set(0xDEAD0000, I0);
  3329   __ add(I0,  2, I1);
  3330   __ add(I0,  4, I2);
  3331   __ add(I0,  6, I3);
  3332   __ add(I0,  8, I4);
  3333   // Don't touch I5 could have valuable savedSP
  3334   __ set(0xDEADBEEF, L0);
  3335   __ mov(L0, L1);
  3336   __ mov(L0, L2);
  3337   __ mov(L0, L3);
  3338   __ mov(L0, L4);
  3339   __ mov(L0, L5);
  3341   // trash the return value as there is nothing to return yet
  3342   __ set(0xDEAD0001, O7);
  3343   #endif
  3345   __ mov(SP, O5_savedSP);
  3349 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3350   //
  3351   // loop through the UnrollBlock info and create new frames
  3352   //
  3353   Register        G3pcs              = G3_scratch;
  3354   Register        Oreturn0           = O0;
  3355   Register        Oreturn1           = O1;
  3356   Register        O2UnrollBlock      = O2;
  3357   Register        O3array            = O3;
  3358   Register        O4array_size       = O4;
  3359   Label           loop;
  3361   // Before we make new frames, check to see if stack is available.
  3362   // Do this after the caller's return address is on top of stack
  3363   if (UseStackBanging) {
  3364     // Get total frame size for interpreted frames
  3365     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3366     __ bang_stack_size(O4, O3, G3_scratch);
  3369   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3370   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3371   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3373   // Adjust old interpreter frame to make space for new frame's extra java locals
  3374   //
  3375   // We capture the original sp for the transition frame only because it is needed in
  3376   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3377   // every interpreter frame captures a savedSP it is only needed at the transition
  3378   // (fortunately). If we had to have it correct everywhere then we would need to
  3379   // be told the sp_adjustment for each frame we create. If the frame size array
  3380   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3381   // for each frame we create and keep up the illusion every where.
  3382   //
  3384   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3385   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3386   __ sub(SP, O7, SP);
  3388 #ifdef ASSERT
  3389   // make sure that there is at least one entry in the array
  3390   __ tst(O4array_size);
  3391   __ breakpoint_trap(Assembler::zero, Assembler::icc);
  3392 #endif
  3394   // Now push the new interpreter frames
  3395   __ bind(loop);
  3397   // allocate a new frame, filling the registers
  3399   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3401   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
  3402   __ delayed()->add(O3array, wordSize, O3array);
  3403   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3407 //------------------------------generate_deopt_blob----------------------------
  3408 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3409 // instead.
  3410 void SharedRuntime::generate_deopt_blob() {
  3411   // allocate space for the code
  3412   ResourceMark rm;
  3413   // setup code generation tools
  3414   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3415   if (UseStackBanging) {
  3416     pad += StackShadowPages*16 + 32;
  3418 #ifdef _LP64
  3419   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3420 #else
  3421   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3422   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3423   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3424 #endif /* _LP64 */
  3425   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3426   FloatRegister   Freturn0           = F0;
  3427   Register        Greturn1           = G1;
  3428   Register        Oreturn0           = O0;
  3429   Register        Oreturn1           = O1;
  3430   Register        O2UnrollBlock      = O2;
  3431   Register        L0deopt_mode       = L0;
  3432   Register        G4deopt_mode       = G4_scratch;
  3433   int             frame_size_words;
  3434   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3435 #if !defined(_LP64) && defined(COMPILER2)
  3436   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3437 #endif
  3438   Label           cont;
  3440   OopMapSet *oop_maps = new OopMapSet();
  3442   //
  3443   // This is the entry point for code which is returning to a de-optimized
  3444   // frame.
  3445   // The steps taken by this frame are as follows:
  3446   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3447   //     and all potentially live registers (at a pollpoint many registers can be live).
  3448   //
  3449   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3450   //     returns information about the number and size of interpreter frames
  3451   //     which are equivalent to the frame which is being deoptimized)
  3452   //   - deallocate the unpack frame, restoring only results values. Other
  3453   //     volatile registers will now be captured in the vframeArray as needed.
  3454   //   - deallocate the deoptimization frame
  3455   //   - in a loop using the information returned in the previous step
  3456   //     push new interpreter frames (take care to propagate the return
  3457   //     values through each new frame pushed)
  3458   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3459   //   - call the C routine: Deoptimization::unpack_frames (this function
  3460   //     lays out values on the interpreter frame which was just created)
  3461   //   - deallocate the dummy unpack_frame
  3462   //   - ensure that all the return values are correctly set and then do
  3463   //     a return to the interpreter entry point
  3464   //
  3465   // Refer to the following methods for more information:
  3466   //   - Deoptimization::fetch_unroll_info
  3467   //   - Deoptimization::unpack_frames
  3469   OopMap* map = NULL;
  3471   int start = __ offset();
  3473   // restore G2, the trampoline destroyed it
  3474   __ get_thread();
  3476   // On entry we have been called by the deoptimized nmethod with a call that
  3477   // replaced the original call (or safepoint polling location) so the deoptimizing
  3478   // pc is now in O7. Return values are still in the expected places
  3480   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3481   __ ba(cont);
  3482   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3484   int exception_offset = __ offset() - start;
  3486   // restore G2, the trampoline destroyed it
  3487   __ get_thread();
  3489   // On entry we have been jumped to by the exception handler (or exception_blob
  3490   // for server).  O0 contains the exception oop and O7 contains the original
  3491   // exception pc.  So if we push a frame here it will look to the
  3492   // stack walking code (fetch_unroll_info) just like a normal call so
  3493   // state will be extracted normally.
  3495   // save exception oop in JavaThread and fall through into the
  3496   // exception_in_tls case since they are handled in same way except
  3497   // for where the pending exception is kept.
  3498   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3500   //
  3501   // Vanilla deoptimization with an exception pending in exception_oop
  3502   //
  3503   int exception_in_tls_offset = __ offset() - start;
  3505   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3506   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3508   // Restore G2_thread
  3509   __ get_thread();
  3511 #ifdef ASSERT
  3513     // verify that there is really an exception oop in exception_oop
  3514     Label has_exception;
  3515     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3516     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
  3517     __ stop("no exception in thread");
  3518     __ bind(has_exception);
  3520     // verify that there is no pending exception
  3521     Label no_pending_exception;
  3522     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3523     __ ld_ptr(exception_addr, Oexception);
  3524     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
  3525     __ stop("must not have pending exception here");
  3526     __ bind(no_pending_exception);
  3528 #endif
  3530   __ ba(cont);
  3531   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3533   //
  3534   // Reexecute entry, similar to c2 uncommon trap
  3535   //
  3536   int reexecute_offset = __ offset() - start;
  3538   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3539   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3541   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3543   __ bind(cont);
  3545   __ set_last_Java_frame(SP, noreg);
  3547   // do the call by hand so we can get the oopmap
  3549   __ mov(G2_thread, L7_thread_cache);
  3550   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3551   __ delayed()->mov(G2_thread, O0);
  3553   // Set an oopmap for the call site this describes all our saved volatile registers
  3555   oop_maps->add_gc_map( __ offset()-start, map);
  3557   __ mov(L7_thread_cache, G2_thread);
  3559   __ reset_last_Java_frame();
  3561   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3562   // so this move will survive
  3564   __ mov(L0deopt_mode, G4deopt_mode);
  3566   __ mov(O0, O2UnrollBlock->after_save());
  3568   RegisterSaver::restore_result_registers(masm);
  3570   Label noException;
  3571   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
  3573   // Move the pending exception from exception_oop to Oexception so
  3574   // the pending exception will be picked up the interpreter.
  3575   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3576   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3577   __ bind(noException);
  3579   // deallocate the deoptimization frame taking care to preserve the return values
  3580   __ mov(Oreturn0,     Oreturn0->after_save());
  3581   __ mov(Oreturn1,     Oreturn1->after_save());
  3582   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3583   __ restore();
  3585   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3587   make_new_frames(masm, true);
  3589   // push a dummy "unpack_frame" taking care of float return values and
  3590   // call Deoptimization::unpack_frames to have the unpacker layout
  3591   // information in the interpreter frames just created and then return
  3592   // to the interpreter entry point
  3593   __ save(SP, -frame_size_words*wordSize, SP);
  3594   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3595 #if !defined(_LP64)
  3596 #if defined(COMPILER2)
  3597   // 32-bit 1-register longs return longs in G1
  3598   __ stx(Greturn1, saved_Greturn1_addr);
  3599 #endif
  3600   __ set_last_Java_frame(SP, noreg);
  3601   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3602 #else
  3603   // LP64 uses g4 in set_last_Java_frame
  3604   __ mov(G4deopt_mode, O1);
  3605   __ set_last_Java_frame(SP, G0);
  3606   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3607 #endif
  3608   __ reset_last_Java_frame();
  3609   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3611 #if !defined(_LP64) && defined(COMPILER2)
  3612   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3613   // I0/I1 if the return value is long.
  3614   Label not_long;
  3615   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
  3616   __ ldd(saved_Greturn1_addr,I0);
  3617   __ bind(not_long);
  3618 #endif
  3619   __ ret();
  3620   __ delayed()->restore();
  3622   masm->flush();
  3623   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3624   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3627 #ifdef COMPILER2
  3629 //------------------------------generate_uncommon_trap_blob--------------------
  3630 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3631 // instead.
  3632 void SharedRuntime::generate_uncommon_trap_blob() {
  3633   // allocate space for the code
  3634   ResourceMark rm;
  3635   // setup code generation tools
  3636   int pad = VerifyThread ? 512 : 0;
  3637   if (UseStackBanging) {
  3638     pad += StackShadowPages*16 + 32;
  3640 #ifdef _LP64
  3641   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3642 #else
  3643   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3644   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3645   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3646 #endif
  3647   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3648   Register        O2UnrollBlock      = O2;
  3649   Register        O2klass_index      = O2;
  3651   //
  3652   // This is the entry point for all traps the compiler takes when it thinks
  3653   // it cannot handle further execution of compilation code. The frame is
  3654   // deoptimized in these cases and converted into interpreter frames for
  3655   // execution
  3656   // The steps taken by this frame are as follows:
  3657   //   - push a fake "unpack_frame"
  3658   //   - call the C routine Deoptimization::uncommon_trap (this function
  3659   //     packs the current compiled frame into vframe arrays and returns
  3660   //     information about the number and size of interpreter frames which
  3661   //     are equivalent to the frame which is being deoptimized)
  3662   //   - deallocate the "unpack_frame"
  3663   //   - deallocate the deoptimization frame
  3664   //   - in a loop using the information returned in the previous step
  3665   //     push interpreter frames;
  3666   //   - create a dummy "unpack_frame"
  3667   //   - call the C routine: Deoptimization::unpack_frames (this function
  3668   //     lays out values on the interpreter frame which was just created)
  3669   //   - deallocate the dummy unpack_frame
  3670   //   - return to the interpreter entry point
  3671   //
  3672   //  Refer to the following methods for more information:
  3673   //   - Deoptimization::uncommon_trap
  3674   //   - Deoptimization::unpack_frame
  3676   // the unloaded class index is in O0 (first parameter to this blob)
  3678   // push a dummy "unpack_frame"
  3679   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3680   // vframe array and return the UnrollBlock information
  3681   __ save_frame(0);
  3682   __ set_last_Java_frame(SP, noreg);
  3683   __ mov(I0, O2klass_index);
  3684   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3685   __ reset_last_Java_frame();
  3686   __ mov(O0, O2UnrollBlock->after_save());
  3687   __ restore();
  3689   // deallocate the deoptimized frame taking care to preserve the return values
  3690   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3691   __ restore();
  3693   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3695   make_new_frames(masm, false);
  3697   // push a dummy "unpack_frame" taking care of float return values and
  3698   // call Deoptimization::unpack_frames to have the unpacker layout
  3699   // information in the interpreter frames just created and then return
  3700   // to the interpreter entry point
  3701   __ save_frame(0);
  3702   __ set_last_Java_frame(SP, noreg);
  3703   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3704   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3705   __ reset_last_Java_frame();
  3706   __ ret();
  3707   __ delayed()->restore();
  3709   masm->flush();
  3710   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3713 #endif // COMPILER2
  3715 //------------------------------generate_handler_blob-------------------
  3716 //
  3717 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3718 // up an OopMap.
  3719 //
  3720 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3721 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3722 // address in the original nmethod at which we should resume normal execution.
  3723 // Thus, this blob looks like a subroutine which must preserve lots of
  3724 // registers and return normally.  Note that O7 is never register-allocated,
  3725 // so it is guaranteed to be free here.
  3726 //
  3728 // The hardest part of what this blob must do is to save the 64-bit %o
  3729 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3730 // an interrupt will chop off their heads.  Making space in the caller's frame
  3731 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3732 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3733 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3734 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3735 // Tricky, tricky, tricky...
  3737 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3738   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3740   // allocate space for the code
  3741   ResourceMark rm;
  3742   // setup code generation tools
  3743   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3744   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3745   // even larger with TraceJumps
  3746   int pad = TraceJumps ? 512 : 0;
  3747   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3748   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3749   int             frame_size_words;
  3750   OopMapSet *oop_maps = new OopMapSet();
  3751   OopMap* map = NULL;
  3753   int start = __ offset();
  3755   // If this causes a return before the processing, then do a "restore"
  3756   if (cause_return) {
  3757     __ restore();
  3758   } else {
  3759     // Make it look like we were called via the poll
  3760     // so that frame constructor always sees a valid return address
  3761     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3762     __ sub(O7, frame::pc_return_offset, O7);
  3765   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3767   // setup last_Java_sp (blows G4)
  3768   __ set_last_Java_frame(SP, noreg);
  3770   // call into the runtime to handle illegal instructions exception
  3771   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3772   __ mov(G2_thread, O0);
  3773   __ save_thread(L7_thread_cache);
  3774   __ call(call_ptr);
  3775   __ delayed()->nop();
  3777   // Set an oopmap for the call site.
  3778   // We need this not only for callee-saved registers, but also for volatile
  3779   // registers that the compiler might be keeping live across a safepoint.
  3781   oop_maps->add_gc_map( __ offset() - start, map);
  3783   __ restore_thread(L7_thread_cache);
  3784   // clear last_Java_sp
  3785   __ reset_last_Java_frame();
  3787   // Check for exceptions
  3788   Label pending;
  3790   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3791   __ br_notnull_short(O1, Assembler::pn, pending);
  3793   RegisterSaver::restore_live_registers(masm);
  3795   // We are back the the original state on entry and ready to go.
  3797   __ retl();
  3798   __ delayed()->nop();
  3800   // Pending exception after the safepoint
  3802   __ bind(pending);
  3804   RegisterSaver::restore_live_registers(masm);
  3806   // We are back the the original state on entry.
  3808   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3809   // so it looks like the original nmethod called forward_exception_entry.
  3810   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3811   __ JMP(O0, 0);
  3812   __ delayed()->nop();
  3814   // -------------
  3815   // make sure all code is generated
  3816   masm->flush();
  3818   // return exception blob
  3819   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3822 //
  3823 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3824 //
  3825 // Generate a stub that calls into vm to find out the proper destination
  3826 // of a java call. All the argument registers are live at this point
  3827 // but since this is generic code we don't know what they are and the caller
  3828 // must do any gc of the args.
  3829 //
  3830 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3831   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3833   // allocate space for the code
  3834   ResourceMark rm;
  3835   // setup code generation tools
  3836   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3837   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3838   // even larger with TraceJumps
  3839   int pad = TraceJumps ? 512 : 0;
  3840   CodeBuffer buffer(name, 1600 + pad, 512);
  3841   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3842   int             frame_size_words;
  3843   OopMapSet *oop_maps = new OopMapSet();
  3844   OopMap* map = NULL;
  3846   int start = __ offset();
  3848   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3850   int frame_complete = __ offset();
  3852   // setup last_Java_sp (blows G4)
  3853   __ set_last_Java_frame(SP, noreg);
  3855   // call into the runtime to handle illegal instructions exception
  3856   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3857   __ mov(G2_thread, O0);
  3858   __ save_thread(L7_thread_cache);
  3859   __ call(destination, relocInfo::runtime_call_type);
  3860   __ delayed()->nop();
  3862   // O0 contains the address we are going to jump to assuming no exception got installed
  3864   // Set an oopmap for the call site.
  3865   // We need this not only for callee-saved registers, but also for volatile
  3866   // registers that the compiler might be keeping live across a safepoint.
  3868   oop_maps->add_gc_map( __ offset() - start, map);
  3870   __ restore_thread(L7_thread_cache);
  3871   // clear last_Java_sp
  3872   __ reset_last_Java_frame();
  3874   // Check for exceptions
  3875   Label pending;
  3877   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3878   __ br_notnull_short(O1, Assembler::pn, pending);
  3880   // get the returned Method*
  3882   __ get_vm_result_2(G5_method);
  3883   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3885   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3887   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3889   RegisterSaver::restore_live_registers(masm);
  3891   // We are back the the original state on entry and ready to go.
  3893   __ JMP(G3, 0);
  3894   __ delayed()->nop();
  3896   // Pending exception after the safepoint
  3898   __ bind(pending);
  3900   RegisterSaver::restore_live_registers(masm);
  3902   // We are back the the original state on entry.
  3904   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3905   // so it looks like the original nmethod called forward_exception_entry.
  3906   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3907   __ JMP(O0, 0);
  3908   __ delayed()->nop();
  3910   // -------------
  3911   // make sure all code is generated
  3912   masm->flush();
  3914   // return the  blob
  3915   // frame_size_words or bytes??
  3916   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial