src/share/vm/memory/genCollectedHeap.hpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6978
30c99d8e0f02
child 7070
439f0d76cff3
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "memory/collectorPolicy.hpp"
    30 #include "memory/generation.hpp"
    31 #include "memory/sharedHeap.hpp"
    33 class SubTasksDone;
    35 // A "GenCollectedHeap" is a SharedHeap that uses generational
    36 // collection.  It is represented with a sequence of Generation's.
    37 class GenCollectedHeap : public SharedHeap {
    38   friend class GenCollectorPolicy;
    39   friend class Generation;
    40   friend class DefNewGeneration;
    41   friend class TenuredGeneration;
    42   friend class ConcurrentMarkSweepGeneration;
    43   friend class CMSCollector;
    44   friend class GenMarkSweep;
    45   friend class VM_GenCollectForAllocation;
    46   friend class VM_GenCollectFull;
    47   friend class VM_GenCollectFullConcurrent;
    48   friend class VM_GC_HeapInspection;
    49   friend class VM_HeapDumper;
    50   friend class HeapInspection;
    51   friend class GCCauseSetter;
    52   friend class VMStructs;
    53 public:
    54   enum SomeConstants {
    55     max_gens = 10
    56   };
    58   friend class VM_PopulateDumpSharedSpace;
    60  protected:
    61   // Fields:
    62   static GenCollectedHeap* _gch;
    64  private:
    65   int _n_gens;
    66   Generation* _gens[max_gens];
    67   GenerationSpec** _gen_specs;
    69   // The generational collector policy.
    70   GenCollectorPolicy* _gen_policy;
    72   // Indicates that the most recent previous incremental collection failed.
    73   // The flag is cleared when an action is taken that might clear the
    74   // condition that caused that incremental collection to fail.
    75   bool _incremental_collection_failed;
    77   // In support of ExplicitGCInvokesConcurrent functionality
    78   unsigned int _full_collections_completed;
    80   // Data structure for claiming the (potentially) parallel tasks in
    81   // (gen-specific) roots processing.
    82   SubTasksDone* _gen_process_roots_tasks;
    83   SubTasksDone* gen_process_roots_tasks() { return _gen_process_roots_tasks; }
    85   // In block contents verification, the number of header words to skip
    86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    88 protected:
    89   // Helper functions for allocation
    90   HeapWord* attempt_allocation(size_t size,
    91                                bool   is_tlab,
    92                                bool   first_only);
    94   // Helper function for two callbacks below.
    95   // Considers collection of the first max_level+1 generations.
    96   void do_collection(bool   full,
    97                      bool   clear_all_soft_refs,
    98                      size_t size,
    99                      bool   is_tlab,
   100                      int    max_level);
   102   // Callback from VM_GenCollectForAllocation operation.
   103   // This function does everything necessary/possible to satisfy an
   104   // allocation request that failed in the youngest generation that should
   105   // have handled it (including collection, expansion, etc.)
   106   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   108   // Callback from VM_GenCollectFull operation.
   109   // Perform a full collection of the first max_level+1 generations.
   110   virtual void do_full_collection(bool clear_all_soft_refs);
   111   void do_full_collection(bool clear_all_soft_refs, int max_level);
   113   // Does the "cause" of GC indicate that
   114   // we absolutely __must__ clear soft refs?
   115   bool must_clear_all_soft_refs();
   117 public:
   118   GenCollectedHeap(GenCollectorPolicy *policy);
   120   GCStats* gc_stats(int level) const;
   122   // Returns JNI_OK on success
   123   virtual jint initialize();
   124   char* allocate(size_t alignment,
   125                  size_t* _total_reserved, int* _n_covered_regions,
   126                  ReservedSpace* heap_rs);
   128   // Does operations required after initialization has been done.
   129   void post_initialize();
   131   // Initialize ("weak") refs processing support
   132   virtual void ref_processing_init();
   134   virtual CollectedHeap::Name kind() const {
   135     return CollectedHeap::GenCollectedHeap;
   136   }
   138   // The generational collector policy.
   139   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   140   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
   142   // Adaptive size policy
   143   virtual AdaptiveSizePolicy* size_policy() {
   144     return gen_policy()->size_policy();
   145   }
   147   // Return the (conservative) maximum heap alignment
   148   static size_t conservative_max_heap_alignment() {
   149     return Generation::GenGrain;
   150   }
   152   size_t capacity() const;
   153   size_t used() const;
   155   // Save the "used_region" for generations level and lower.
   156   void save_used_regions(int level);
   158   size_t max_capacity() const;
   160   HeapWord* mem_allocate(size_t size,
   161                          bool*  gc_overhead_limit_was_exceeded);
   163   // We may support a shared contiguous allocation area, if the youngest
   164   // generation does.
   165   bool supports_inline_contig_alloc() const;
   166   HeapWord** top_addr() const;
   167   HeapWord** end_addr() const;
   169   // Return an estimate of the maximum allocation that could be performed
   170   // without triggering any collection activity.  In a generational
   171   // collector, for example, this is probably the largest allocation that
   172   // could be supported in the youngest generation.  It is "unsafe" because
   173   // no locks are taken; the result should be treated as an approximation,
   174   // not a guarantee.
   175   size_t unsafe_max_alloc();
   177   // Does this heap support heap inspection? (+PrintClassHistogram)
   178   virtual bool supports_heap_inspection() const { return true; }
   180   // Perform a full collection of the heap; intended for use in implementing
   181   // "System.gc". This implies as full a collection as the CollectedHeap
   182   // supports. Caller does not hold the Heap_lock on entry.
   183   void collect(GCCause::Cause cause);
   185   // The same as above but assume that the caller holds the Heap_lock.
   186   void collect_locked(GCCause::Cause cause);
   188   // Perform a full collection of the first max_level+1 generations.
   189   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   190   void collect(GCCause::Cause cause, int max_level);
   192   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   193   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   194   // be expensive to compute in general, so, to prevent
   195   // their inadvertent use in product jvm's, we restrict their use to
   196   // assertion checking or verification only.
   197   bool is_in(const void* p) const;
   199   // override
   200   bool is_in_closed_subset(const void* p) const {
   201     if (UseConcMarkSweepGC) {
   202       return is_in_reserved(p);
   203     } else {
   204       return is_in(p);
   205     }
   206   }
   208   // Returns true if the reference is to an object in the reserved space
   209   // for the young generation.
   210   // Assumes the the young gen address range is less than that of the old gen.
   211   bool is_in_young(oop p);
   213 #ifdef ASSERT
   214   virtual bool is_in_partial_collection(const void* p);
   215 #endif
   217   virtual bool is_scavengable(const void* addr) {
   218     return is_in_young((oop)addr);
   219   }
   221   // Iteration functions.
   222   void oop_iterate(ExtendedOopClosure* cl);
   223   void object_iterate(ObjectClosure* cl);
   224   void safe_object_iterate(ObjectClosure* cl);
   225   Space* space_containing(const void* addr) const;
   227   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   228   // each address in the (reserved) heap is a member of exactly
   229   // one block.  The defining characteristic of a block is that it is
   230   // possible to find its size, and thus to progress forward to the next
   231   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   232   // represent Java objects, or they might be free blocks in a
   233   // free-list-based heap (or subheap), as long as the two kinds are
   234   // distinguishable and the size of each is determinable.
   236   // Returns the address of the start of the "block" that contains the
   237   // address "addr".  We say "blocks" instead of "object" since some heaps
   238   // may not pack objects densely; a chunk may either be an object or a
   239   // non-object.
   240   virtual HeapWord* block_start(const void* addr) const;
   242   // Requires "addr" to be the start of a chunk, and returns its size.
   243   // "addr + size" is required to be the start of a new chunk, or the end
   244   // of the active area of the heap. Assumes (and verifies in non-product
   245   // builds) that addr is in the allocated part of the heap and is
   246   // the start of a chunk.
   247   virtual size_t block_size(const HeapWord* addr) const;
   249   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   250   // the block is an object. Assumes (and verifies in non-product
   251   // builds) that addr is in the allocated part of the heap and is
   252   // the start of a chunk.
   253   virtual bool block_is_obj(const HeapWord* addr) const;
   255   // Section on TLAB's.
   256   virtual bool supports_tlab_allocation() const;
   257   virtual size_t tlab_capacity(Thread* thr) const;
   258   virtual size_t tlab_used(Thread* thr) const;
   259   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   260   virtual HeapWord* allocate_new_tlab(size_t size);
   262   // Can a compiler initialize a new object without store barriers?
   263   // This permission only extends from the creation of a new object
   264   // via a TLAB up to the first subsequent safepoint.
   265   virtual bool can_elide_tlab_store_barriers() const {
   266     return true;
   267   }
   269   virtual bool card_mark_must_follow_store() const {
   270     return UseConcMarkSweepGC;
   271   }
   273   // We don't need barriers for stores to objects in the
   274   // young gen and, a fortiori, for initializing stores to
   275   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   276   // only and may need to be re-examined in case other
   277   // kinds of collectors are implemented in the future.
   278   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   279     // We wanted to assert that:-
   280     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   281     //       "Check can_elide_initializing_store_barrier() for this collector");
   282     // but unfortunately the flag UseSerialGC need not necessarily always
   283     // be set when DefNew+Tenured are being used.
   284     return is_in_young(new_obj);
   285   }
   287   // The "requestor" generation is performing some garbage collection
   288   // action for which it would be useful to have scratch space.  The
   289   // requestor promises to allocate no more than "max_alloc_words" in any
   290   // older generation (via promotion say.)   Any blocks of space that can
   291   // be provided are returned as a list of ScratchBlocks, sorted by
   292   // decreasing size.
   293   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   294   // Allow each generation to reset any scratch space that it has
   295   // contributed as it needs.
   296   void release_scratch();
   298   // Ensure parsability: override
   299   virtual void ensure_parsability(bool retire_tlabs);
   301   // Time in ms since the longest time a collector ran in
   302   // in any generation.
   303   virtual jlong millis_since_last_gc();
   305   // Total number of full collections completed.
   306   unsigned int total_full_collections_completed() {
   307     assert(_full_collections_completed <= _total_full_collections,
   308            "Can't complete more collections than were started");
   309     return _full_collections_completed;
   310   }
   312   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   313   unsigned int update_full_collections_completed();
   314   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   315   unsigned int update_full_collections_completed(unsigned int count);
   317   // Update "time of last gc" for all constituent generations
   318   // to "now".
   319   void update_time_of_last_gc(jlong now) {
   320     for (int i = 0; i < _n_gens; i++) {
   321       _gens[i]->update_time_of_last_gc(now);
   322     }
   323   }
   325   // Update the gc statistics for each generation.
   326   // "level" is the level of the lastest collection
   327   void update_gc_stats(int current_level, bool full) {
   328     for (int i = 0; i < _n_gens; i++) {
   329       _gens[i]->update_gc_stats(current_level, full);
   330     }
   331   }
   333   // Override.
   334   bool no_gc_in_progress() { return !is_gc_active(); }
   336   // Override.
   337   void prepare_for_verify();
   339   // Override.
   340   void verify(bool silent, VerifyOption option);
   342   // Override.
   343   virtual void print_on(outputStream* st) const;
   344   virtual void print_gc_threads_on(outputStream* st) const;
   345   virtual void gc_threads_do(ThreadClosure* tc) const;
   346   virtual void print_tracing_info() const;
   347   virtual void print_on_error(outputStream* st) const;
   349   // PrintGC, PrintGCDetails support
   350   void print_heap_change(size_t prev_used) const;
   352   // The functions below are helper functions that a subclass of
   353   // "CollectedHeap" can use in the implementation of its virtual
   354   // functions.
   356   class GenClosure : public StackObj {
   357    public:
   358     virtual void do_generation(Generation* gen) = 0;
   359   };
   361   // Apply "cl.do_generation" to all generations in the heap
   362   // If "old_to_young" determines the order.
   363   void generation_iterate(GenClosure* cl, bool old_to_young);
   365   void space_iterate(SpaceClosure* cl);
   367   // Return "true" if all generations have reached the
   368   // maximal committed limit that they can reach, without a garbage
   369   // collection.
   370   virtual bool is_maximal_no_gc() const;
   372   // Return the generation before "gen".
   373   Generation* prev_gen(Generation* gen) const {
   374     int l = gen->level();
   375     guarantee(l > 0, "Out of bounds");
   376     return _gens[l-1];
   377   }
   379   // Return the generation after "gen".
   380   Generation* next_gen(Generation* gen) const {
   381     int l = gen->level() + 1;
   382     guarantee(l < _n_gens, "Out of bounds");
   383     return _gens[l];
   384   }
   386   Generation* get_gen(int i) const {
   387     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
   388     return _gens[i];
   389   }
   391   int n_gens() const {
   392     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   393     return _n_gens;
   394   }
   396   // Convenience function to be used in situations where the heap type can be
   397   // asserted to be this type.
   398   static GenCollectedHeap* heap();
   400   void set_par_threads(uint t);
   402   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   403   // or "older_gens" on root locations for the generation at
   404   // "level".  (The "older_gens" closure is used for scanning references
   405   // from older generations; "not_older_gens" is used everywhere else.)
   406   // If "younger_gens_as_roots" is false, younger generations are
   407   // not scanned as roots; in this case, the caller must be arranging to
   408   // scan the younger generations itself.  (For example, a generation might
   409   // explicitly mark reachable objects in younger generations, to avoid
   410   // excess storage retention.)
   411   // The "so" argument determines which of the roots
   412   // the closure is applied to:
   413   // "SO_None" does none;
   414  private:
   415   void gen_process_roots(int level,
   416                          bool younger_gens_as_roots,
   417                          bool activate_scope,
   418                          SharedHeap::ScanningOption so,
   419                          OopsInGenClosure* not_older_gens,
   420                          OopsInGenClosure* weak_roots,
   421                          OopsInGenClosure* older_gens,
   422                          CLDClosure* cld_closure,
   423                          CLDClosure* weak_cld_closure,
   424                          CodeBlobClosure* code_closure);
   426  public:
   427   static const bool StrongAndWeakRoots = false;
   428   static const bool StrongRootsOnly    = true;
   430   void gen_process_roots(int level,
   431                          bool younger_gens_as_roots,
   432                          bool activate_scope,
   433                          SharedHeap::ScanningOption so,
   434                          bool only_strong_roots,
   435                          OopsInGenClosure* not_older_gens,
   436                          OopsInGenClosure* older_gens,
   437                          CLDClosure* cld_closure);
   439   // Apply "root_closure" to all the weak roots of the system.
   440   // These include JNI weak roots, string table,
   441   // and referents of reachable weak refs.
   442   void gen_process_weak_roots(OopClosure* root_closure);
   444   // Set the saved marks of generations, if that makes sense.
   445   // In particular, if any generation might iterate over the oops
   446   // in other generations, it should call this method.
   447   void save_marks();
   449   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   450   // allocated since the last call to save_marks in generations at or above
   451   // "level".  The "cur" closure is
   452   // applied to references in the generation at "level", and the "older"
   453   // closure to older generations.
   454 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   455   void oop_since_save_marks_iterate(int level,                          \
   456                                     OopClosureType* cur,                \
   457                                     OopClosureType* older);
   459   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   461 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   463   // Returns "true" iff no allocations have occurred in any generation at
   464   // "level" or above since the last
   465   // call to "save_marks".
   466   bool no_allocs_since_save_marks(int level);
   468   // Returns true if an incremental collection is likely to fail.
   469   // We optionally consult the young gen, if asked to do so;
   470   // otherwise we base our answer on whether the previous incremental
   471   // collection attempt failed with no corrective action as of yet.
   472   bool incremental_collection_will_fail(bool consult_young) {
   473     // Assumes a 2-generation system; the first disjunct remembers if an
   474     // incremental collection failed, even when we thought (second disjunct)
   475     // that it would not.
   476     assert(heap()->collector_policy()->is_two_generation_policy(),
   477            "the following definition may not be suitable for an n(>2)-generation system");
   478     return incremental_collection_failed() ||
   479            (consult_young && !get_gen(0)->collection_attempt_is_safe());
   480   }
   482   // If a generation bails out of an incremental collection,
   483   // it sets this flag.
   484   bool incremental_collection_failed() const {
   485     return _incremental_collection_failed;
   486   }
   487   void set_incremental_collection_failed() {
   488     _incremental_collection_failed = true;
   489   }
   490   void clear_incremental_collection_failed() {
   491     _incremental_collection_failed = false;
   492   }
   494   // Promotion of obj into gen failed.  Try to promote obj to higher
   495   // gens in ascending order; return the new location of obj if successful.
   496   // Otherwise, try expand-and-allocate for obj in both the young and old
   497   // generation; return the new location of obj if successful.  Otherwise, return NULL.
   498   oop handle_failed_promotion(Generation* old_gen,
   499                               oop obj,
   500                               size_t obj_size);
   502 private:
   503   // Accessor for memory state verification support
   504   NOT_PRODUCT(
   505     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   506   )
   508   // Override
   509   void check_for_non_bad_heap_word_value(HeapWord* addr,
   510     size_t size) PRODUCT_RETURN;
   512   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   513   // in an essential way: compaction is performed across generations, by
   514   // iterating over spaces.
   515   void prepare_for_compaction();
   517   // Perform a full collection of the first max_level+1 generations.
   518   // This is the low level interface used by the public versions of
   519   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   520   void collect_locked(GCCause::Cause cause, int max_level);
   522   // Returns success or failure.
   523   bool create_cms_collector();
   525   // In support of ExplicitGCInvokesConcurrent functionality
   526   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   527   void collect_mostly_concurrent(GCCause::Cause cause);
   529   // Save the tops of the spaces in all generations
   530   void record_gen_tops_before_GC() PRODUCT_RETURN;
   532 protected:
   533   virtual void gc_prologue(bool full);
   534   virtual void gc_epilogue(bool full);
   535 };
   537 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial