src/share/vm/memory/genCollectedHeap.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6978
30c99d8e0f02
child 7009
3f2894c5052e
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/gcTrace.hpp"
    32 #include "gc_implementation/shared/gcTraceTime.hpp"
    33 #include "gc_implementation/shared/vmGCOperations.hpp"
    34 #include "gc_interface/collectedHeap.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/genCollectedHeap.hpp"
    38 #include "memory/genOopClosures.inline.hpp"
    39 #include "memory/generation.inline.hpp"
    40 #include "memory/generationSpec.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "memory/space.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.inline2.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/fprofiler.hpp"
    48 #include "runtime/handles.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/vmThread.hpp"
    52 #include "services/memoryService.hpp"
    53 #include "utilities/vmError.hpp"
    54 #include "utilities/workgroup.hpp"
    55 #include "utilities/macros.hpp"
    56 #if INCLUDE_ALL_GCS
    57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    59 #endif // INCLUDE_ALL_GCS
    61 GenCollectedHeap* GenCollectedHeap::_gch;
    62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    64 // The set of potentially parallel tasks in root scanning.
    65 enum GCH_strong_roots_tasks {
    66   // We probably want to parallelize both of these internally, but for now...
    67   GCH_PS_younger_gens,
    68   // Leave this one last.
    69   GCH_PS_NumElements
    70 };
    72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    73   SharedHeap(policy),
    74   _gen_policy(policy),
    75   _gen_process_roots_tasks(new SubTasksDone(GCH_PS_NumElements)),
    76   _full_collections_completed(0)
    77 {
    78   if (_gen_process_roots_tasks == NULL ||
    79       !_gen_process_roots_tasks->valid()) {
    80     vm_exit_during_initialization("Failed necessary allocation.");
    81   }
    82   assert(policy != NULL, "Sanity check");
    83 }
    85 jint GenCollectedHeap::initialize() {
    86   CollectedHeap::pre_initialize();
    88   int i;
    89   _n_gens = gen_policy()->number_of_generations();
    91   // While there are no constraints in the GC code that HeapWordSize
    92   // be any particular value, there are multiple other areas in the
    93   // system which believe this to be true (e.g. oop->object_size in some
    94   // cases incorrectly returns the size in wordSize units rather than
    95   // HeapWordSize).
    96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    98   // The heap must be at least as aligned as generations.
    99   size_t gen_alignment = Generation::GenGrain;
   101   _gen_specs = gen_policy()->generations();
   103   // Make sure the sizes are all aligned.
   104   for (i = 0; i < _n_gens; i++) {
   105     _gen_specs[i]->align(gen_alignment);
   106   }
   108   // Allocate space for the heap.
   110   char* heap_address;
   111   size_t total_reserved = 0;
   112   int n_covered_regions = 0;
   113   ReservedSpace heap_rs;
   115   size_t heap_alignment = collector_policy()->heap_alignment();
   117   heap_address = allocate(heap_alignment, &total_reserved,
   118                           &n_covered_regions, &heap_rs);
   120   if (!heap_rs.is_reserved()) {
   121     vm_shutdown_during_initialization(
   122       "Could not reserve enough space for object heap");
   123     return JNI_ENOMEM;
   124   }
   126   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   127                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   129   // It is important to do this in a way such that concurrent readers can't
   130   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   131   _reserved.set_word_size(0);
   132   _reserved.set_start((HeapWord*)heap_rs.base());
   133   size_t actual_heap_size = heap_rs.size();
   134   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   136   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   137   set_barrier_set(rem_set()->bs());
   139   _gch = this;
   141   for (i = 0; i < _n_gens; i++) {
   142     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
   143     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   144     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   145   }
   146   clear_incremental_collection_failed();
   148 #if INCLUDE_ALL_GCS
   149   // If we are running CMS, create the collector responsible
   150   // for collecting the CMS generations.
   151   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   152     bool success = create_cms_collector();
   153     if (!success) return JNI_ENOMEM;
   154   }
   155 #endif // INCLUDE_ALL_GCS
   157   return JNI_OK;
   158 }
   161 char* GenCollectedHeap::allocate(size_t alignment,
   162                                  size_t* _total_reserved,
   163                                  int* _n_covered_regions,
   164                                  ReservedSpace* heap_rs){
   165   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   166     "the maximum representable size";
   168   // Now figure out the total size.
   169   size_t total_reserved = 0;
   170   int n_covered_regions = 0;
   171   const size_t pageSize = UseLargePages ?
   172       os::large_page_size() : os::vm_page_size();
   174   assert(alignment % pageSize == 0, "Must be");
   176   for (int i = 0; i < _n_gens; i++) {
   177     total_reserved += _gen_specs[i]->max_size();
   178     if (total_reserved < _gen_specs[i]->max_size()) {
   179       vm_exit_during_initialization(overflow_msg);
   180     }
   181     n_covered_regions += _gen_specs[i]->n_covered_regions();
   182   }
   183   assert(total_reserved % alignment == 0,
   184          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
   185                  SIZE_FORMAT, total_reserved, alignment));
   187   // Needed until the cardtable is fixed to have the right number
   188   // of covered regions.
   189   n_covered_regions += 2;
   191   *_total_reserved = total_reserved;
   192   *_n_covered_regions = n_covered_regions;
   194   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
   195   return heap_rs->base();
   196 }
   199 void GenCollectedHeap::post_initialize() {
   200   SharedHeap::post_initialize();
   201   TwoGenerationCollectorPolicy *policy =
   202     (TwoGenerationCollectorPolicy *)collector_policy();
   203   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   204   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   205   assert(def_new_gen->kind() == Generation::DefNew ||
   206          def_new_gen->kind() == Generation::ParNew ||
   207          def_new_gen->kind() == Generation::ASParNew,
   208          "Wrong generation kind");
   210   Generation* old_gen = get_gen(1);
   211   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   212          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   213          old_gen->kind() == Generation::MarkSweepCompact,
   214     "Wrong generation kind");
   216   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   217                                  old_gen->capacity(),
   218                                  def_new_gen->from()->capacity());
   219   policy->initialize_gc_policy_counters();
   220 }
   222 void GenCollectedHeap::ref_processing_init() {
   223   SharedHeap::ref_processing_init();
   224   for (int i = 0; i < _n_gens; i++) {
   225     _gens[i]->ref_processor_init();
   226   }
   227 }
   229 size_t GenCollectedHeap::capacity() const {
   230   size_t res = 0;
   231   for (int i = 0; i < _n_gens; i++) {
   232     res += _gens[i]->capacity();
   233   }
   234   return res;
   235 }
   237 size_t GenCollectedHeap::used() const {
   238   size_t res = 0;
   239   for (int i = 0; i < _n_gens; i++) {
   240     res += _gens[i]->used();
   241   }
   242   return res;
   243 }
   245 // Save the "used_region" for generations level and lower.
   246 void GenCollectedHeap::save_used_regions(int level) {
   247   assert(level < _n_gens, "Illegal level parameter");
   248   for (int i = level; i >= 0; i--) {
   249     _gens[i]->save_used_region();
   250   }
   251 }
   253 size_t GenCollectedHeap::max_capacity() const {
   254   size_t res = 0;
   255   for (int i = 0; i < _n_gens; i++) {
   256     res += _gens[i]->max_capacity();
   257   }
   258   return res;
   259 }
   261 // Update the _full_collections_completed counter
   262 // at the end of a stop-world full GC.
   263 unsigned int GenCollectedHeap::update_full_collections_completed() {
   264   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   265   assert(_full_collections_completed <= _total_full_collections,
   266          "Can't complete more collections than were started");
   267   _full_collections_completed = _total_full_collections;
   268   ml.notify_all();
   269   return _full_collections_completed;
   270 }
   272 // Update the _full_collections_completed counter, as appropriate,
   273 // at the end of a concurrent GC cycle. Note the conditional update
   274 // below to allow this method to be called by a concurrent collector
   275 // without synchronizing in any manner with the VM thread (which
   276 // may already have initiated a STW full collection "concurrently").
   277 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   278   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   279   assert((_full_collections_completed <= _total_full_collections) &&
   280          (count <= _total_full_collections),
   281          "Can't complete more collections than were started");
   282   if (count > _full_collections_completed) {
   283     _full_collections_completed = count;
   284     ml.notify_all();
   285   }
   286   return _full_collections_completed;
   287 }
   290 #ifndef PRODUCT
   291 // Override of memory state checking method in CollectedHeap:
   292 // Some collectors (CMS for example) can't have badHeapWordVal written
   293 // in the first two words of an object. (For instance , in the case of
   294 // CMS these words hold state used to synchronize between certain
   295 // (concurrent) GC steps and direct allocating mutators.)
   296 // The skip_header_HeapWords() method below, allows us to skip
   297 // over the requisite number of HeapWord's. Note that (for
   298 // generational collectors) this means that those many words are
   299 // skipped in each object, irrespective of the generation in which
   300 // that object lives. The resultant loss of precision seems to be
   301 // harmless and the pain of avoiding that imprecision appears somewhat
   302 // higher than we are prepared to pay for such rudimentary debugging
   303 // support.
   304 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   305                                                          size_t size) {
   306   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   307     // We are asked to check a size in HeapWords,
   308     // but the memory is mangled in juint words.
   309     juint* start = (juint*) (addr + skip_header_HeapWords());
   310     juint* end   = (juint*) (addr + size);
   311     for (juint* slot = start; slot < end; slot += 1) {
   312       assert(*slot == badHeapWordVal,
   313              "Found non badHeapWordValue in pre-allocation check");
   314     }
   315   }
   316 }
   317 #endif
   319 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   320                                                bool is_tlab,
   321                                                bool first_only) {
   322   HeapWord* res;
   323   for (int i = 0; i < _n_gens; i++) {
   324     if (_gens[i]->should_allocate(size, is_tlab)) {
   325       res = _gens[i]->allocate(size, is_tlab);
   326       if (res != NULL) return res;
   327       else if (first_only) break;
   328     }
   329   }
   330   // Otherwise...
   331   return NULL;
   332 }
   334 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   335                                          bool* gc_overhead_limit_was_exceeded) {
   336   return collector_policy()->mem_allocate_work(size,
   337                                                false /* is_tlab */,
   338                                                gc_overhead_limit_was_exceeded);
   339 }
   341 bool GenCollectedHeap::must_clear_all_soft_refs() {
   342   return _gc_cause == GCCause::_last_ditch_collection;
   343 }
   345 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   346   return UseConcMarkSweepGC &&
   347          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   348           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   349 }
   351 void GenCollectedHeap::do_collection(bool  full,
   352                                      bool   clear_all_soft_refs,
   353                                      size_t size,
   354                                      bool   is_tlab,
   355                                      int    max_level) {
   356   bool prepared_for_verification = false;
   357   ResourceMark rm;
   358   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   360   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   361   assert(my_thread->is_VM_thread() ||
   362          my_thread->is_ConcurrentGC_thread(),
   363          "incorrect thread type capability");
   364   assert(Heap_lock->is_locked(),
   365          "the requesting thread should have the Heap_lock");
   366   guarantee(!is_gc_active(), "collection is not reentrant");
   367   assert(max_level < n_gens(), "sanity check");
   369   if (GC_locker::check_active_before_gc()) {
   370     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   371   }
   373   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   374                           collector_policy()->should_clear_all_soft_refs();
   376   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   378   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
   380   print_heap_before_gc();
   382   {
   383     FlagSetting fl(_is_gc_active, true);
   385     bool complete = full && (max_level == (n_gens()-1));
   386     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
   387     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   388     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   389     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
   390     // so we can assume here that the next GC id is what we want.
   391     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
   393     gc_prologue(complete);
   394     increment_total_collections(complete);
   396     size_t gch_prev_used = used();
   398     int starting_level = 0;
   399     if (full) {
   400       // Search for the oldest generation which will collect all younger
   401       // generations, and start collection loop there.
   402       for (int i = max_level; i >= 0; i--) {
   403         if (_gens[i]->full_collects_younger_generations()) {
   404           starting_level = i;
   405           break;
   406         }
   407       }
   408     }
   410     bool must_restore_marks_for_biased_locking = false;
   412     int max_level_collected = starting_level;
   413     for (int i = starting_level; i <= max_level; i++) {
   414       if (_gens[i]->should_collect(full, size, is_tlab)) {
   415         if (i == n_gens() - 1) {  // a major collection is to happen
   416           if (!complete) {
   417             // The full_collections increment was missed above.
   418             increment_total_full_collections();
   419           }
   420           pre_full_gc_dump(NULL);    // do any pre full gc dumps
   421         }
   422         // Timer for individual generations. Last argument is false: no CR
   423         // FIXME: We should try to start the timing earlier to cover more of the GC pause
   424         // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
   425         // so we can assume here that the next GC id is what we want.
   426         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
   427         TraceCollectorStats tcs(_gens[i]->counters());
   428         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   430         size_t prev_used = _gens[i]->used();
   431         _gens[i]->stat_record()->invocations++;
   432         _gens[i]->stat_record()->accumulated_time.start();
   434         // Must be done anew before each collection because
   435         // a previous collection will do mangling and will
   436         // change top of some spaces.
   437         record_gen_tops_before_GC();
   439         if (PrintGC && Verbose) {
   440           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   441                      i,
   442                      _gens[i]->stat_record()->invocations,
   443                      size*HeapWordSize);
   444         }
   446         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   447             total_collections() >= VerifyGCStartAt) {
   448           HandleMark hm;  // Discard invalid handles created during verification
   449           if (!prepared_for_verification) {
   450             prepare_for_verify();
   451             prepared_for_verification = true;
   452           }
   453           Universe::verify(" VerifyBeforeGC:");
   454         }
   455         COMPILER2_PRESENT(DerivedPointerTable::clear());
   457         if (!must_restore_marks_for_biased_locking &&
   458             _gens[i]->performs_in_place_marking()) {
   459           // We perform this mark word preservation work lazily
   460           // because it's only at this point that we know whether we
   461           // absolutely have to do it; we want to avoid doing it for
   462           // scavenge-only collections where it's unnecessary
   463           must_restore_marks_for_biased_locking = true;
   464           BiasedLocking::preserve_marks();
   465         }
   467         // Do collection work
   468         {
   469           // Note on ref discovery: For what appear to be historical reasons,
   470           // GCH enables and disabled (by enqueing) refs discovery.
   471           // In the future this should be moved into the generation's
   472           // collect method so that ref discovery and enqueueing concerns
   473           // are local to a generation. The collect method could return
   474           // an appropriate indication in the case that notification on
   475           // the ref lock was needed. This will make the treatment of
   476           // weak refs more uniform (and indeed remove such concerns
   477           // from GCH). XXX
   479           HandleMark hm;  // Discard invalid handles created during gc
   480           save_marks();   // save marks for all gens
   481           // We want to discover references, but not process them yet.
   482           // This mode is disabled in process_discovered_references if the
   483           // generation does some collection work, or in
   484           // enqueue_discovered_references if the generation returns
   485           // without doing any work.
   486           ReferenceProcessor* rp = _gens[i]->ref_processor();
   487           // If the discovery of ("weak") refs in this generation is
   488           // atomic wrt other collectors in this configuration, we
   489           // are guaranteed to have empty discovered ref lists.
   490           if (rp->discovery_is_atomic()) {
   491             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   492             rp->setup_policy(do_clear_all_soft_refs);
   493           } else {
   494             // collect() below will enable discovery as appropriate
   495           }
   496           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   497           if (!rp->enqueuing_is_done()) {
   498             rp->enqueue_discovered_references();
   499           } else {
   500             rp->set_enqueuing_is_done(false);
   501           }
   502           rp->verify_no_references_recorded();
   503         }
   504         max_level_collected = i;
   506         // Determine if allocation request was met.
   507         if (size > 0) {
   508           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   509             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   510               size = 0;
   511             }
   512           }
   513         }
   515         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   517         _gens[i]->stat_record()->accumulated_time.stop();
   519         update_gc_stats(i, full);
   521         if (VerifyAfterGC && i >= VerifyGCLevel &&
   522             total_collections() >= VerifyGCStartAt) {
   523           HandleMark hm;  // Discard invalid handles created during verification
   524           Universe::verify(" VerifyAfterGC:");
   525         }
   527         if (PrintGCDetails) {
   528           gclog_or_tty->print(":");
   529           _gens[i]->print_heap_change(prev_used);
   530         }
   531       }
   532     }
   534     // Update "complete" boolean wrt what actually transpired --
   535     // for instance, a promotion failure could have led to
   536     // a whole heap collection.
   537     complete = complete || (max_level_collected == n_gens() - 1);
   539     if (complete) { // We did a "major" collection
   540       // FIXME: See comment at pre_full_gc_dump call
   541       post_full_gc_dump(NULL);   // do any post full gc dumps
   542     }
   544     if (PrintGCDetails) {
   545       print_heap_change(gch_prev_used);
   547       // Print metaspace info for full GC with PrintGCDetails flag.
   548       if (complete) {
   549         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   550       }
   551     }
   553     for (int j = max_level_collected; j >= 0; j -= 1) {
   554       // Adjust generation sizes.
   555       _gens[j]->compute_new_size();
   556     }
   558     if (complete) {
   559       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   560       ClassLoaderDataGraph::purge();
   561       MetaspaceAux::verify_metrics();
   562       // Resize the metaspace capacity after full collections
   563       MetaspaceGC::compute_new_size();
   564       update_full_collections_completed();
   565     }
   567     // Track memory usage and detect low memory after GC finishes
   568     MemoryService::track_memory_usage();
   570     gc_epilogue(complete);
   572     if (must_restore_marks_for_biased_locking) {
   573       BiasedLocking::restore_marks();
   574     }
   575   }
   577   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   578   AdaptiveSizePolicyOutput(sp, total_collections());
   580   print_heap_after_gc();
   582 #ifdef TRACESPINNING
   583   ParallelTaskTerminator::print_termination_counts();
   584 #endif
   585 }
   587 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   588   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   589 }
   591 void GenCollectedHeap::set_par_threads(uint t) {
   592   SharedHeap::set_par_threads(t);
   593   _gen_process_roots_tasks->set_n_threads(t);
   594 }
   596 void GenCollectedHeap::
   597 gen_process_roots(int level,
   598                   bool younger_gens_as_roots,
   599                   bool activate_scope,
   600                   SharedHeap::ScanningOption so,
   601                   OopsInGenClosure* not_older_gens,
   602                   OopsInGenClosure* weak_roots,
   603                   OopsInGenClosure* older_gens,
   604                   CLDClosure* cld_closure,
   605                   CLDClosure* weak_cld_closure,
   606                   CodeBlobClosure* code_closure) {
   608   // General roots.
   609   SharedHeap::process_roots(activate_scope, so,
   610                             not_older_gens, weak_roots,
   611                             cld_closure, weak_cld_closure,
   612                             code_closure);
   614   if (younger_gens_as_roots) {
   615     if (!_gen_process_roots_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   616       for (int i = 0; i < level; i++) {
   617         not_older_gens->set_generation(_gens[i]);
   618         _gens[i]->oop_iterate(not_older_gens);
   619       }
   620       not_older_gens->reset_generation();
   621     }
   622   }
   623   // When collection is parallel, all threads get to cooperate to do
   624   // older-gen scanning.
   625   for (int i = level+1; i < _n_gens; i++) {
   626     older_gens->set_generation(_gens[i]);
   627     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   628     older_gens->reset_generation();
   629   }
   631   _gen_process_roots_tasks->all_tasks_completed();
   632 }
   634 void GenCollectedHeap::
   635 gen_process_roots(int level,
   636                   bool younger_gens_as_roots,
   637                   bool activate_scope,
   638                   SharedHeap::ScanningOption so,
   639                   bool only_strong_roots,
   640                   OopsInGenClosure* not_older_gens,
   641                   OopsInGenClosure* older_gens,
   642                   CLDClosure* cld_closure) {
   644   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
   646   bool is_moving_collection = false;
   647   if (level == 0 || is_adjust_phase) {
   648     // young collections are always moving
   649     is_moving_collection = true;
   650   }
   652   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
   653   CodeBlobClosure* code_closure = &mark_code_closure;
   655   gen_process_roots(level,
   656                     younger_gens_as_roots,
   657                     activate_scope, so,
   658                     not_older_gens, only_strong_roots ? NULL : not_older_gens,
   659                     older_gens,
   660                     cld_closure, only_strong_roots ? NULL : cld_closure,
   661                     code_closure);
   663 }
   665 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
   666   SharedHeap::process_weak_roots(root_closure);
   667   // "Local" "weak" refs
   668   for (int i = 0; i < _n_gens; i++) {
   669     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   670   }
   671 }
   673 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   674 void GenCollectedHeap::                                                 \
   675 oop_since_save_marks_iterate(int level,                                 \
   676                              OopClosureType* cur,                       \
   677                              OopClosureType* older) {                   \
   678   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   679   for (int i = level+1; i < n_gens(); i++) {                            \
   680     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   681   }                                                                     \
   682 }
   684 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   686 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   688 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   689   for (int i = level; i < _n_gens; i++) {
   690     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   691   }
   692   return true;
   693 }
   695 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   696   return _gens[0]->supports_inline_contig_alloc();
   697 }
   699 HeapWord** GenCollectedHeap::top_addr() const {
   700   return _gens[0]->top_addr();
   701 }
   703 HeapWord** GenCollectedHeap::end_addr() const {
   704   return _gens[0]->end_addr();
   705 }
   707 size_t GenCollectedHeap::unsafe_max_alloc() {
   708   return _gens[0]->unsafe_max_alloc_nogc();
   709 }
   711 // public collection interfaces
   713 void GenCollectedHeap::collect(GCCause::Cause cause) {
   714   if (should_do_concurrent_full_gc(cause)) {
   715 #if INCLUDE_ALL_GCS
   716     // mostly concurrent full collection
   717     collect_mostly_concurrent(cause);
   718 #else  // INCLUDE_ALL_GCS
   719     ShouldNotReachHere();
   720 #endif // INCLUDE_ALL_GCS
   721   } else {
   722 #ifdef ASSERT
   723     if (cause == GCCause::_scavenge_alot) {
   724       // minor collection only
   725       collect(cause, 0);
   726     } else {
   727       // Stop-the-world full collection
   728       collect(cause, n_gens() - 1);
   729     }
   730 #else
   731     // Stop-the-world full collection
   732     collect(cause, n_gens() - 1);
   733 #endif
   734   }
   735 }
   737 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   738   // The caller doesn't have the Heap_lock
   739   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   740   MutexLocker ml(Heap_lock);
   741   collect_locked(cause, max_level);
   742 }
   744 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   745   // The caller has the Heap_lock
   746   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   747   collect_locked(cause, n_gens() - 1);
   748 }
   750 // this is the private collection interface
   751 // The Heap_lock is expected to be held on entry.
   753 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   754   // Read the GC count while holding the Heap_lock
   755   unsigned int gc_count_before      = total_collections();
   756   unsigned int full_gc_count_before = total_full_collections();
   757   {
   758     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   759     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   760                          cause, max_level);
   761     VMThread::execute(&op);
   762   }
   763 }
   765 #if INCLUDE_ALL_GCS
   766 bool GenCollectedHeap::create_cms_collector() {
   768   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   769          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
   770          "Unexpected generation kinds");
   771   // Skip two header words in the block content verification
   772   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   773   CMSCollector* collector = new CMSCollector(
   774     (ConcurrentMarkSweepGeneration*)_gens[1],
   775     _rem_set->as_CardTableRS(),
   776     (ConcurrentMarkSweepPolicy*) collector_policy());
   778   if (collector == NULL || !collector->completed_initialization()) {
   779     if (collector) {
   780       delete collector;  // Be nice in embedded situation
   781     }
   782     vm_shutdown_during_initialization("Could not create CMS collector");
   783     return false;
   784   }
   785   return true;  // success
   786 }
   788 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   789   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   791   MutexLocker ml(Heap_lock);
   792   // Read the GC counts while holding the Heap_lock
   793   unsigned int full_gc_count_before = total_full_collections();
   794   unsigned int gc_count_before      = total_collections();
   795   {
   796     MutexUnlocker mu(Heap_lock);
   797     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   798     VMThread::execute(&op);
   799   }
   800 }
   801 #endif // INCLUDE_ALL_GCS
   803 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   804    do_full_collection(clear_all_soft_refs, _n_gens - 1);
   805 }
   807 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   808                                           int max_level) {
   809   int local_max_level;
   810   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   811       gc_cause() == GCCause::_gc_locker) {
   812     local_max_level = 0;
   813   } else {
   814     local_max_level = max_level;
   815   }
   817   do_collection(true                 /* full */,
   818                 clear_all_soft_refs  /* clear_all_soft_refs */,
   819                 0                    /* size */,
   820                 false                /* is_tlab */,
   821                 local_max_level      /* max_level */);
   822   // Hack XXX FIX ME !!!
   823   // A scavenge may not have been attempted, or may have
   824   // been attempted and failed, because the old gen was too full
   825   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   826       incremental_collection_will_fail(false /* don't consult_young */)) {
   827     if (PrintGCDetails) {
   828       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   829                              "because scavenge failed");
   830     }
   831     // This time allow the old gen to be collected as well
   832     do_collection(true                 /* full */,
   833                   clear_all_soft_refs  /* clear_all_soft_refs */,
   834                   0                    /* size */,
   835                   false                /* is_tlab */,
   836                   n_gens() - 1         /* max_level */);
   837   }
   838 }
   840 bool GenCollectedHeap::is_in_young(oop p) {
   841   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   842   assert(result == _gens[0]->is_in_reserved(p),
   843          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, p2i((void*)p)));
   844   return result;
   845 }
   847 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   848 bool GenCollectedHeap::is_in(const void* p) const {
   849   #ifndef ASSERT
   850   guarantee(VerifyBeforeGC      ||
   851             VerifyDuringGC      ||
   852             VerifyBeforeExit    ||
   853             VerifyDuringStartup ||
   854             PrintAssembly       ||
   855             tty->count() != 0   ||   // already printing
   856             VerifyAfterGC       ||
   857     VMError::fatal_error_in_progress(), "too expensive");
   859   #endif
   860   // This might be sped up with a cache of the last generation that
   861   // answered yes.
   862   for (int i = 0; i < _n_gens; i++) {
   863     if (_gens[i]->is_in(p)) return true;
   864   }
   865   // Otherwise...
   866   return false;
   867 }
   869 #ifdef ASSERT
   870 // Don't implement this by using is_in_young().  This method is used
   871 // in some cases to check that is_in_young() is correct.
   872 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   873   assert(is_in_reserved(p) || p == NULL,
   874     "Does not work if address is non-null and outside of the heap");
   875   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   876 }
   877 #endif
   879 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
   880   for (int i = 0; i < _n_gens; i++) {
   881     _gens[i]->oop_iterate(cl);
   882   }
   883 }
   885 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   886   for (int i = 0; i < _n_gens; i++) {
   887     _gens[i]->object_iterate(cl);
   888   }
   889 }
   891 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   892   for (int i = 0; i < _n_gens; i++) {
   893     _gens[i]->safe_object_iterate(cl);
   894   }
   895 }
   897 Space* GenCollectedHeap::space_containing(const void* addr) const {
   898   for (int i = 0; i < _n_gens; i++) {
   899     Space* res = _gens[i]->space_containing(addr);
   900     if (res != NULL) return res;
   901   }
   902   // Otherwise...
   903   assert(false, "Could not find containing space");
   904   return NULL;
   905 }
   908 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   909   assert(is_in_reserved(addr), "block_start of address outside of heap");
   910   for (int i = 0; i < _n_gens; i++) {
   911     if (_gens[i]->is_in_reserved(addr)) {
   912       assert(_gens[i]->is_in(addr),
   913              "addr should be in allocated part of generation");
   914       return _gens[i]->block_start(addr);
   915     }
   916   }
   917   assert(false, "Some generation should contain the address");
   918   return NULL;
   919 }
   921 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
   922   assert(is_in_reserved(addr), "block_size of address outside of heap");
   923   for (int i = 0; i < _n_gens; i++) {
   924     if (_gens[i]->is_in_reserved(addr)) {
   925       assert(_gens[i]->is_in(addr),
   926              "addr should be in allocated part of generation");
   927       return _gens[i]->block_size(addr);
   928     }
   929   }
   930   assert(false, "Some generation should contain the address");
   931   return 0;
   932 }
   934 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
   935   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
   936   assert(block_start(addr) == addr, "addr must be a block start");
   937   for (int i = 0; i < _n_gens; i++) {
   938     if (_gens[i]->is_in_reserved(addr)) {
   939       return _gens[i]->block_is_obj(addr);
   940     }
   941   }
   942   assert(false, "Some generation should contain the address");
   943   return false;
   944 }
   946 bool GenCollectedHeap::supports_tlab_allocation() const {
   947   for (int i = 0; i < _n_gens; i += 1) {
   948     if (_gens[i]->supports_tlab_allocation()) {
   949       return true;
   950     }
   951   }
   952   return false;
   953 }
   955 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
   956   size_t result = 0;
   957   for (int i = 0; i < _n_gens; i += 1) {
   958     if (_gens[i]->supports_tlab_allocation()) {
   959       result += _gens[i]->tlab_capacity();
   960     }
   961   }
   962   return result;
   963 }
   965 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
   966   size_t result = 0;
   967   for (int i = 0; i < _n_gens; i += 1) {
   968     if (_gens[i]->supports_tlab_allocation()) {
   969       result += _gens[i]->tlab_used();
   970     }
   971   }
   972   return result;
   973 }
   975 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   976   size_t result = 0;
   977   for (int i = 0; i < _n_gens; i += 1) {
   978     if (_gens[i]->supports_tlab_allocation()) {
   979       result += _gens[i]->unsafe_max_tlab_alloc();
   980     }
   981   }
   982   return result;
   983 }
   985 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
   986   bool gc_overhead_limit_was_exceeded;
   987   return collector_policy()->mem_allocate_work(size /* size */,
   988                                                true /* is_tlab */,
   989                                                &gc_overhead_limit_was_exceeded);
   990 }
   992 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
   993 // from the list headed by "*prev_ptr".
   994 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
   995   bool first = true;
   996   size_t min_size = 0;   // "first" makes this conceptually infinite.
   997   ScratchBlock **smallest_ptr, *smallest;
   998   ScratchBlock  *cur = *prev_ptr;
   999   while (cur) {
  1000     assert(*prev_ptr == cur, "just checking");
  1001     if (first || cur->num_words < min_size) {
  1002       smallest_ptr = prev_ptr;
  1003       smallest     = cur;
  1004       min_size     = smallest->num_words;
  1005       first        = false;
  1007     prev_ptr = &cur->next;
  1008     cur     =  cur->next;
  1010   smallest      = *smallest_ptr;
  1011   *smallest_ptr = smallest->next;
  1012   return smallest;
  1015 // Sort the scratch block list headed by res into decreasing size order,
  1016 // and set "res" to the result.
  1017 static void sort_scratch_list(ScratchBlock*& list) {
  1018   ScratchBlock* sorted = NULL;
  1019   ScratchBlock* unsorted = list;
  1020   while (unsorted) {
  1021     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1022     smallest->next  = sorted;
  1023     sorted          = smallest;
  1025   list = sorted;
  1028 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1029                                                size_t max_alloc_words) {
  1030   ScratchBlock* res = NULL;
  1031   for (int i = 0; i < _n_gens; i++) {
  1032     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1034   sort_scratch_list(res);
  1035   return res;
  1038 void GenCollectedHeap::release_scratch() {
  1039   for (int i = 0; i < _n_gens; i++) {
  1040     _gens[i]->reset_scratch();
  1044 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1045   void do_generation(Generation* gen) {
  1046     gen->prepare_for_verify();
  1048 };
  1050 void GenCollectedHeap::prepare_for_verify() {
  1051   ensure_parsability(false);        // no need to retire TLABs
  1052   GenPrepareForVerifyClosure blk;
  1053   generation_iterate(&blk, false);
  1057 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1058                                           bool old_to_young) {
  1059   if (old_to_young) {
  1060     for (int i = _n_gens-1; i >= 0; i--) {
  1061       cl->do_generation(_gens[i]);
  1063   } else {
  1064     for (int i = 0; i < _n_gens; i++) {
  1065       cl->do_generation(_gens[i]);
  1070 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1071   for (int i = 0; i < _n_gens; i++) {
  1072     _gens[i]->space_iterate(cl, true);
  1076 bool GenCollectedHeap::is_maximal_no_gc() const {
  1077   for (int i = 0; i < _n_gens; i++) {
  1078     if (!_gens[i]->is_maximal_no_gc()) {
  1079       return false;
  1082   return true;
  1085 void GenCollectedHeap::save_marks() {
  1086   for (int i = 0; i < _n_gens; i++) {
  1087     _gens[i]->save_marks();
  1091 GenCollectedHeap* GenCollectedHeap::heap() {
  1092   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1093   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1094   return _gch;
  1098 void GenCollectedHeap::prepare_for_compaction() {
  1099   guarantee(_n_gens = 2, "Wrong number of generations");
  1100   Generation* old_gen = _gens[1];
  1101   // Start by compacting into same gen.
  1102   CompactPoint cp(old_gen, NULL, NULL);
  1103   old_gen->prepare_for_compaction(&cp);
  1104   Generation* young_gen = _gens[0];
  1105   young_gen->prepare_for_compaction(&cp);
  1108 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1109   return _gens[level]->gc_stats();
  1112 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  1113   for (int i = _n_gens-1; i >= 0; i--) {
  1114     Generation* g = _gens[i];
  1115     if (!silent) {
  1116       gclog_or_tty->print("%s", g->name());
  1117       gclog_or_tty->print(" ");
  1119     g->verify();
  1121   if (!silent) {
  1122     gclog_or_tty->print("remset ");
  1124   rem_set()->verify();
  1127 void GenCollectedHeap::print_on(outputStream* st) const {
  1128   for (int i = 0; i < _n_gens; i++) {
  1129     _gens[i]->print_on(st);
  1131   MetaspaceAux::print_on(st);
  1134 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1135   if (workers() != NULL) {
  1136     workers()->threads_do(tc);
  1138 #if INCLUDE_ALL_GCS
  1139   if (UseConcMarkSweepGC) {
  1140     ConcurrentMarkSweepThread::threads_do(tc);
  1142 #endif // INCLUDE_ALL_GCS
  1145 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1146 #if INCLUDE_ALL_GCS
  1147   if (UseParNewGC) {
  1148     workers()->print_worker_threads_on(st);
  1150   if (UseConcMarkSweepGC) {
  1151     ConcurrentMarkSweepThread::print_all_on(st);
  1153 #endif // INCLUDE_ALL_GCS
  1156 void GenCollectedHeap::print_on_error(outputStream* st) const {
  1157   this->CollectedHeap::print_on_error(st);
  1159 #if INCLUDE_ALL_GCS
  1160   if (UseConcMarkSweepGC) {
  1161     st->cr();
  1162     CMSCollector::print_on_error(st);
  1164 #endif // INCLUDE_ALL_GCS
  1167 void GenCollectedHeap::print_tracing_info() const {
  1168   if (TraceGen0Time) {
  1169     get_gen(0)->print_summary_info();
  1171   if (TraceGen1Time) {
  1172     get_gen(1)->print_summary_info();
  1176 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1177   if (PrintGCDetails && Verbose) {
  1178     gclog_or_tty->print(" "  SIZE_FORMAT
  1179                         "->" SIZE_FORMAT
  1180                         "("  SIZE_FORMAT ")",
  1181                         prev_used, used(), capacity());
  1182   } else {
  1183     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1184                         "->" SIZE_FORMAT "K"
  1185                         "("  SIZE_FORMAT "K)",
  1186                         prev_used / K, used() / K, capacity() / K);
  1190 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1191  private:
  1192   bool _full;
  1193  public:
  1194   void do_generation(Generation* gen) {
  1195     gen->gc_prologue(_full);
  1197   GenGCPrologueClosure(bool full) : _full(full) {};
  1198 };
  1200 void GenCollectedHeap::gc_prologue(bool full) {
  1201   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1203   always_do_update_barrier = false;
  1204   // Fill TLAB's and such
  1205   CollectedHeap::accumulate_statistics_all_tlabs();
  1206   ensure_parsability(true);   // retire TLABs
  1208   // Walk generations
  1209   GenGCPrologueClosure blk(full);
  1210   generation_iterate(&blk, false);  // not old-to-young.
  1211 };
  1213 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1214  private:
  1215   bool _full;
  1216  public:
  1217   void do_generation(Generation* gen) {
  1218     gen->gc_epilogue(_full);
  1220   GenGCEpilogueClosure(bool full) : _full(full) {};
  1221 };
  1223 void GenCollectedHeap::gc_epilogue(bool full) {
  1224 #ifdef COMPILER2
  1225   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1226   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1227   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1228 #endif /* COMPILER2 */
  1230   resize_all_tlabs();
  1232   GenGCEpilogueClosure blk(full);
  1233   generation_iterate(&blk, false);  // not old-to-young.
  1235   if (!CleanChunkPoolAsync) {
  1236     Chunk::clean_chunk_pool();
  1239   MetaspaceCounters::update_performance_counters();
  1240   CompressedClassSpaceCounters::update_performance_counters();
  1242   always_do_update_barrier = UseConcMarkSweepGC;
  1243 };
  1245 #ifndef PRODUCT
  1246 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1247  private:
  1248  public:
  1249   void do_generation(Generation* gen) {
  1250     gen->record_spaces_top();
  1252 };
  1254 void GenCollectedHeap::record_gen_tops_before_GC() {
  1255   if (ZapUnusedHeapArea) {
  1256     GenGCSaveTopsBeforeGCClosure blk;
  1257     generation_iterate(&blk, false);  // not old-to-young.
  1260 #endif  // not PRODUCT
  1262 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1263  public:
  1264   void do_generation(Generation* gen) {
  1265     gen->ensure_parsability();
  1267 };
  1269 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1270   CollectedHeap::ensure_parsability(retire_tlabs);
  1271   GenEnsureParsabilityClosure ep_cl;
  1272   generation_iterate(&ep_cl, false);
  1275 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
  1276                                               oop obj,
  1277                                               size_t obj_size) {
  1278   guarantee(old_gen->level() == 1, "We only get here with an old generation");
  1279   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1280   HeapWord* result = NULL;
  1282   result = old_gen->expand_and_allocate(obj_size, false);
  1284   if (result != NULL) {
  1285     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1287   return oop(result);
  1290 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1291   jlong _time;   // in ms
  1292   jlong _now;    // in ms
  1294  public:
  1295   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1297   jlong time() { return _time; }
  1299   void do_generation(Generation* gen) {
  1300     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1302 };
  1304 jlong GenCollectedHeap::millis_since_last_gc() {
  1305   // We need a monotonically non-deccreasing time in ms but
  1306   // os::javaTimeMillis() does not guarantee monotonicity.
  1307   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1308   GenTimeOfLastGCClosure tolgc_cl(now);
  1309   // iterate over generations getting the oldest
  1310   // time that a generation was collected
  1311   generation_iterate(&tolgc_cl, false);
  1313   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1314   // provided the underlying platform provides such a time source
  1315   // (and it is bug free). So we still have to guard against getting
  1316   // back a time later than 'now'.
  1317   jlong retVal = now - tolgc_cl.time();
  1318   if (retVal < 0) {
  1319     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
  1320     return 0;
  1322   return retVal;

mercurial