src/share/vm/memory/defNewGeneration.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6971
7426d8d76305
child 7031
ee019285a52c
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/gcHeapSummary.hpp"
    29 #include "gc_implementation/shared/gcTimer.hpp"
    30 #include "gc_implementation/shared/gcTraceTime.hpp"
    31 #include "gc_implementation/shared/gcTrace.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/defNewGeneration.inline.hpp"
    34 #include "memory/gcLocker.inline.hpp"
    35 #include "memory/genCollectedHeap.hpp"
    36 #include "memory/genOopClosures.inline.hpp"
    37 #include "memory/genRemSet.hpp"
    38 #include "memory/generationSpec.hpp"
    39 #include "memory/iterator.hpp"
    40 #include "memory/referencePolicy.hpp"
    41 #include "memory/space.inline.hpp"
    42 #include "oops/instanceRefKlass.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/prefetch.inline.hpp"
    46 #include "runtime/thread.inline.hpp"
    47 #include "utilities/copy.hpp"
    48 #include "utilities/stack.inline.hpp"
    50 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    52 //
    53 // DefNewGeneration functions.
    55 // Methods of protected closure types.
    57 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    58   assert(g->level() == 0, "Optimized for youngest gen.");
    59 }
    60 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    61   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    62 }
    64 DefNewGeneration::KeepAliveClosure::
    65 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    66   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    67   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    68   _rs = (CardTableRS*)rs;
    69 }
    71 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    72 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    75 DefNewGeneration::FastKeepAliveClosure::
    76 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    77   DefNewGeneration::KeepAliveClosure(cl) {
    78   _boundary = g->reserved().end();
    79 }
    81 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    82 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    84 DefNewGeneration::EvacuateFollowersClosure::
    85 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    86                          ScanClosure* cur, ScanClosure* older) :
    87   _gch(gch), _level(level),
    88   _scan_cur_or_nonheap(cur), _scan_older(older)
    89 {}
    91 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    92   do {
    93     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    94                                        _scan_older);
    95   } while (!_gch->no_allocs_since_save_marks(_level));
    96 }
    98 DefNewGeneration::FastEvacuateFollowersClosure::
    99 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
   100                              DefNewGeneration* gen,
   101                              FastScanClosure* cur, FastScanClosure* older) :
   102   _gch(gch), _level(level), _gen(gen),
   103   _scan_cur_or_nonheap(cur), _scan_older(older)
   104 {}
   106 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   107   do {
   108     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   109                                        _scan_older);
   110   } while (!_gch->no_allocs_since_save_marks(_level));
   111   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   112 }
   114 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   115     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   116 {
   117   assert(_g->level() == 0, "Optimized for youngest generation");
   118   _boundary = _g->reserved().end();
   119 }
   121 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   122 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   124 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   125     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   126 {
   127   assert(_g->level() == 0, "Optimized for youngest generation");
   128   _boundary = _g->reserved().end();
   129 }
   131 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   132 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   134 void KlassScanClosure::do_klass(Klass* klass) {
   135 #ifndef PRODUCT
   136   if (TraceScavenge) {
   137     ResourceMark rm;
   138     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   139                            klass,
   140                            klass->external_name(),
   141                            klass->has_modified_oops() ? "true" : "false");
   142   }
   143 #endif
   145   // If the klass has not been dirtied we know that there's
   146   // no references into  the young gen and we can skip it.
   147   if (klass->has_modified_oops()) {
   148     if (_accumulate_modified_oops) {
   149       klass->accumulate_modified_oops();
   150     }
   152     // Clear this state since we're going to scavenge all the metadata.
   153     klass->clear_modified_oops();
   155     // Tell the closure which Klass is being scanned so that it can be dirtied
   156     // if oops are left pointing into the young gen.
   157     _scavenge_closure->set_scanned_klass(klass);
   159     klass->oops_do(_scavenge_closure);
   161     _scavenge_closure->set_scanned_klass(NULL);
   162   }
   163 }
   165 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   166   _g(g)
   167 {
   168   assert(_g->level() == 0, "Optimized for youngest generation");
   169   _boundary = _g->reserved().end();
   170 }
   172 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   173 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   175 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   176 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   178 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   179                                    KlassRemSet* klass_rem_set)
   180     : _scavenge_closure(scavenge_closure),
   181       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   184 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   185                                    size_t initial_size,
   186                                    int level,
   187                                    const char* policy)
   188   : Generation(rs, initial_size, level),
   189     _promo_failure_drain_in_progress(false),
   190     _should_allocate_from_space(false)
   191 {
   192   MemRegion cmr((HeapWord*)_virtual_space.low(),
   193                 (HeapWord*)_virtual_space.high());
   194   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   196   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   197     _eden_space = new ConcEdenSpace(this);
   198   } else {
   199     _eden_space = new EdenSpace(this);
   200   }
   201   _from_space = new ContiguousSpace();
   202   _to_space   = new ContiguousSpace();
   204   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   205     vm_exit_during_initialization("Could not allocate a new gen space");
   207   // Compute the maximum eden and survivor space sizes. These sizes
   208   // are computed assuming the entire reserved space is committed.
   209   // These values are exported as performance counters.
   210   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
   211   uintx size = _virtual_space.reserved_size();
   212   _max_survivor_size = compute_survivor_size(size, alignment);
   213   _max_eden_size = size - (2*_max_survivor_size);
   215   // allocate the performance counters
   217   // Generation counters -- generation 0, 3 subspaces
   218   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   219   _gc_counters = new CollectorCounters(policy, 0);
   221   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   222                                       _gen_counters);
   223   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   224                                       _gen_counters);
   225   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   226                                     _gen_counters);
   228   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   229   update_counters();
   230   _next_gen = NULL;
   231   _tenuring_threshold = MaxTenuringThreshold;
   232   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   234   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
   235 }
   237 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   238                                                 bool clear_space,
   239                                                 bool mangle_space) {
   240   uintx alignment =
   241     GenCollectedHeap::heap()->collector_policy()->space_alignment();
   243   // If the spaces are being cleared (only done at heap initialization
   244   // currently), the survivor spaces need not be empty.
   245   // Otherwise, no care is taken for used areas in the survivor spaces
   246   // so check.
   247   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   248     "Initialization of the survivor spaces assumes these are empty");
   250   // Compute sizes
   251   uintx size = _virtual_space.committed_size();
   252   uintx survivor_size = compute_survivor_size(size, alignment);
   253   uintx eden_size = size - (2*survivor_size);
   254   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   256   if (eden_size < minimum_eden_size) {
   257     // May happen due to 64Kb rounding, if so adjust eden size back up
   258     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   259     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   260     uintx unaligned_survivor_size =
   261       align_size_down(maximum_survivor_size, alignment);
   262     survivor_size = MAX2(unaligned_survivor_size, alignment);
   263     eden_size = size - (2*survivor_size);
   264     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   265     assert(eden_size >= minimum_eden_size, "just checking");
   266   }
   268   char *eden_start = _virtual_space.low();
   269   char *from_start = eden_start + eden_size;
   270   char *to_start   = from_start + survivor_size;
   271   char *to_end     = to_start   + survivor_size;
   273   assert(to_end == _virtual_space.high(), "just checking");
   274   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   275   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   276   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   278   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   279   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   280   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   282   // A minimum eden size implies that there is a part of eden that
   283   // is being used and that affects the initialization of any
   284   // newly formed eden.
   285   bool live_in_eden = minimum_eden_size > 0;
   287   // If not clearing the spaces, do some checking to verify that
   288   // the space are already mangled.
   289   if (!clear_space) {
   290     // Must check mangling before the spaces are reshaped.  Otherwise,
   291     // the bottom or end of one space may have moved into another
   292     // a failure of the check may not correctly indicate which space
   293     // is not properly mangled.
   294     if (ZapUnusedHeapArea) {
   295       HeapWord* limit = (HeapWord*) _virtual_space.high();
   296       eden()->check_mangled_unused_area(limit);
   297       from()->check_mangled_unused_area(limit);
   298         to()->check_mangled_unused_area(limit);
   299     }
   300   }
   302   // Reset the spaces for their new regions.
   303   eden()->initialize(edenMR,
   304                      clear_space && !live_in_eden,
   305                      SpaceDecorator::Mangle);
   306   // If clear_space and live_in_eden, we will not have cleared any
   307   // portion of eden above its top. This can cause newly
   308   // expanded space not to be mangled if using ZapUnusedHeapArea.
   309   // We explicitly do such mangling here.
   310   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   311     eden()->mangle_unused_area();
   312   }
   313   from()->initialize(fromMR, clear_space, mangle_space);
   314   to()->initialize(toMR, clear_space, mangle_space);
   316   // Set next compaction spaces.
   317   eden()->set_next_compaction_space(from());
   318   // The to-space is normally empty before a compaction so need
   319   // not be considered.  The exception is during promotion
   320   // failure handling when to-space can contain live objects.
   321   from()->set_next_compaction_space(NULL);
   322 }
   324 void DefNewGeneration::swap_spaces() {
   325   ContiguousSpace* s = from();
   326   _from_space        = to();
   327   _to_space          = s;
   328   eden()->set_next_compaction_space(from());
   329   // The to-space is normally empty before a compaction so need
   330   // not be considered.  The exception is during promotion
   331   // failure handling when to-space can contain live objects.
   332   from()->set_next_compaction_space(NULL);
   334   if (UsePerfData) {
   335     CSpaceCounters* c = _from_counters;
   336     _from_counters = _to_counters;
   337     _to_counters = c;
   338   }
   339 }
   341 bool DefNewGeneration::expand(size_t bytes) {
   342   MutexLocker x(ExpandHeap_lock);
   343   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   344   bool success = _virtual_space.expand_by(bytes);
   345   if (success && ZapUnusedHeapArea) {
   346     // Mangle newly committed space immediately because it
   347     // can be done here more simply that after the new
   348     // spaces have been computed.
   349     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   350     MemRegion mangle_region(prev_high, new_high);
   351     SpaceMangler::mangle_region(mangle_region);
   352   }
   354   // Do not attempt an expand-to-the reserve size.  The
   355   // request should properly observe the maximum size of
   356   // the generation so an expand-to-reserve should be
   357   // unnecessary.  Also a second call to expand-to-reserve
   358   // value potentially can cause an undue expansion.
   359   // For example if the first expand fail for unknown reasons,
   360   // but the second succeeds and expands the heap to its maximum
   361   // value.
   362   if (GC_locker::is_active()) {
   363     if (PrintGC && Verbose) {
   364       gclog_or_tty->print_cr("Garbage collection disabled, "
   365         "expanded heap instead");
   366     }
   367   }
   369   return success;
   370 }
   373 void DefNewGeneration::compute_new_size() {
   374   // This is called after a gc that includes the following generation
   375   // (which is required to exist.)  So from-space will normally be empty.
   376   // Note that we check both spaces, since if scavenge failed they revert roles.
   377   // If not we bail out (otherwise we would have to relocate the objects)
   378   if (!from()->is_empty() || !to()->is_empty()) {
   379     return;
   380   }
   382   int next_level = level() + 1;
   383   GenCollectedHeap* gch = GenCollectedHeap::heap();
   384   assert(next_level < gch->_n_gens,
   385          "DefNewGeneration cannot be an oldest gen");
   387   Generation* next_gen = gch->_gens[next_level];
   388   size_t old_size = next_gen->capacity();
   389   size_t new_size_before = _virtual_space.committed_size();
   390   size_t min_new_size = spec()->init_size();
   391   size_t max_new_size = reserved().byte_size();
   392   assert(min_new_size <= new_size_before &&
   393          new_size_before <= max_new_size,
   394          "just checking");
   395   // All space sizes must be multiples of Generation::GenGrain.
   396   size_t alignment = Generation::GenGrain;
   398   // Compute desired new generation size based on NewRatio and
   399   // NewSizeThreadIncrease
   400   size_t desired_new_size = old_size/NewRatio;
   401   int threads_count = Threads::number_of_non_daemon_threads();
   402   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   403   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   405   // Adjust new generation size
   406   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   407   assert(desired_new_size <= max_new_size, "just checking");
   409   bool changed = false;
   410   if (desired_new_size > new_size_before) {
   411     size_t change = desired_new_size - new_size_before;
   412     assert(change % alignment == 0, "just checking");
   413     if (expand(change)) {
   414        changed = true;
   415     }
   416     // If the heap failed to expand to the desired size,
   417     // "changed" will be false.  If the expansion failed
   418     // (and at this point it was expected to succeed),
   419     // ignore the failure (leaving "changed" as false).
   420   }
   421   if (desired_new_size < new_size_before && eden()->is_empty()) {
   422     // bail out of shrinking if objects in eden
   423     size_t change = new_size_before - desired_new_size;
   424     assert(change % alignment == 0, "just checking");
   425     _virtual_space.shrink_by(change);
   426     changed = true;
   427   }
   428   if (changed) {
   429     // The spaces have already been mangled at this point but
   430     // may not have been cleared (set top = bottom) and should be.
   431     // Mangling was done when the heap was being expanded.
   432     compute_space_boundaries(eden()->used(),
   433                              SpaceDecorator::Clear,
   434                              SpaceDecorator::DontMangle);
   435     MemRegion cmr((HeapWord*)_virtual_space.low(),
   436                   (HeapWord*)_virtual_space.high());
   437     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   438     if (Verbose && PrintGC) {
   439       size_t new_size_after  = _virtual_space.committed_size();
   440       size_t eden_size_after = eden()->capacity();
   441       size_t survivor_size_after = from()->capacity();
   442       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   443         SIZE_FORMAT "K [eden="
   444         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   445         new_size_before/K, new_size_after/K,
   446         eden_size_after/K, survivor_size_after/K);
   447       if (WizardMode) {
   448         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   449           thread_increase_size/K, threads_count);
   450       }
   451       gclog_or_tty->cr();
   452     }
   453   }
   454 }
   456 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   457   assert(false, "NYI -- are you sure you want to call this?");
   458 }
   461 size_t DefNewGeneration::capacity() const {
   462   return eden()->capacity()
   463        + from()->capacity();  // to() is only used during scavenge
   464 }
   467 size_t DefNewGeneration::used() const {
   468   return eden()->used()
   469        + from()->used();      // to() is only used during scavenge
   470 }
   473 size_t DefNewGeneration::free() const {
   474   return eden()->free()
   475        + from()->free();      // to() is only used during scavenge
   476 }
   478 size_t DefNewGeneration::max_capacity() const {
   479   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
   480   const size_t reserved_bytes = reserved().byte_size();
   481   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   482 }
   484 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   485   return eden()->free();
   486 }
   488 size_t DefNewGeneration::capacity_before_gc() const {
   489   return eden()->capacity();
   490 }
   492 size_t DefNewGeneration::contiguous_available() const {
   493   return eden()->free();
   494 }
   497 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   498 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   500 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   501   eden()->object_iterate(blk);
   502   from()->object_iterate(blk);
   503 }
   506 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   507                                      bool usedOnly) {
   508   blk->do_space(eden());
   509   blk->do_space(from());
   510   blk->do_space(to());
   511 }
   513 // The last collection bailed out, we are running out of heap space,
   514 // so we try to allocate the from-space, too.
   515 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   516   HeapWord* result = NULL;
   517   if (Verbose && PrintGCDetails) {
   518     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   519                         "  will_fail: %s"
   520                         "  heap_lock: %s"
   521                         "  free: " SIZE_FORMAT,
   522                         size,
   523                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   524                           "true" : "false",
   525                         Heap_lock->is_locked() ? "locked" : "unlocked",
   526                         from()->free());
   527   }
   528   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   529     if (Heap_lock->owned_by_self() ||
   530         (SafepointSynchronize::is_at_safepoint() &&
   531          Thread::current()->is_VM_thread())) {
   532       // If the Heap_lock is not locked by this thread, this will be called
   533       // again later with the Heap_lock held.
   534       result = from()->allocate(size);
   535     } else if (PrintGC && Verbose) {
   536       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   537     }
   538   } else if (PrintGC && Verbose) {
   539     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   540   }
   541   if (PrintGC && Verbose) {
   542     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   543   }
   544   return result;
   545 }
   547 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   548                                                 bool   is_tlab,
   549                                                 bool   parallel) {
   550   // We don't attempt to expand the young generation (but perhaps we should.)
   551   return allocate(size, is_tlab);
   552 }
   554 void DefNewGeneration::adjust_desired_tenuring_threshold() {
   555   // Set the desired survivor size to half the real survivor space
   556   _tenuring_threshold =
   557     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   558 }
   560 void DefNewGeneration::collect(bool   full,
   561                                bool   clear_all_soft_refs,
   562                                size_t size,
   563                                bool   is_tlab) {
   564   assert(full || size > 0, "otherwise we don't want to collect");
   566   GenCollectedHeap* gch = GenCollectedHeap::heap();
   568   _gc_timer->register_gc_start();
   569   DefNewTracer gc_tracer;
   570   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
   572   _next_gen = gch->next_gen(this);
   574   // If the next generation is too full to accommodate promotion
   575   // from this generation, pass on collection; let the next generation
   576   // do it.
   577   if (!collection_attempt_is_safe()) {
   578     if (Verbose && PrintGCDetails) {
   579       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   580     }
   581     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   582     return;
   583   }
   584   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   586   init_assuming_no_promotion_failure();
   588   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
   589   // Capture heap used before collection (for printing).
   590   size_t gch_prev_used = gch->used();
   592   gch->trace_heap_before_gc(&gc_tracer);
   594   SpecializationStats::clear();
   596   // These can be shared for all code paths
   597   IsAliveClosure is_alive(this);
   598   ScanWeakRefClosure scan_weak_ref(this);
   600   age_table()->clear();
   601   to()->clear(SpaceDecorator::Mangle);
   603   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   605   assert(gch->no_allocs_since_save_marks(0),
   606          "save marks have not been newly set.");
   608   // Not very pretty.
   609   CollectorPolicy* cp = gch->collector_policy();
   611   FastScanClosure fsc_with_no_gc_barrier(this, false);
   612   FastScanClosure fsc_with_gc_barrier(this, true);
   614   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   615                                       gch->rem_set()->klass_rem_set());
   616   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
   617                                            &fsc_with_no_gc_barrier,
   618                                            false);
   620   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   621   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   622                                                   &fsc_with_no_gc_barrier,
   623                                                   &fsc_with_gc_barrier);
   625   assert(gch->no_allocs_since_save_marks(0),
   626          "save marks have not been newly set.");
   628   gch->gen_process_roots(_level,
   629                          true,  // Process younger gens, if any,
   630                                 // as strong roots.
   631                          true,  // activate StrongRootsScope
   632                          SharedHeap::SO_ScavengeCodeCache,
   633                          GenCollectedHeap::StrongAndWeakRoots,
   634                          &fsc_with_no_gc_barrier,
   635                          &fsc_with_gc_barrier,
   636                          &cld_scan_closure);
   638   // "evacuate followers".
   639   evacuate_followers.do_void();
   641   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   642   ReferenceProcessor* rp = ref_processor();
   643   rp->setup_policy(clear_all_soft_refs);
   644   const ReferenceProcessorStats& stats =
   645   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   646                                     NULL, _gc_timer, gc_tracer.gc_id());
   647   gc_tracer.report_gc_reference_stats(stats);
   649   if (!_promotion_failed) {
   650     // Swap the survivor spaces.
   651     eden()->clear(SpaceDecorator::Mangle);
   652     from()->clear(SpaceDecorator::Mangle);
   653     if (ZapUnusedHeapArea) {
   654       // This is now done here because of the piece-meal mangling which
   655       // can check for valid mangling at intermediate points in the
   656       // collection(s).  When a minor collection fails to collect
   657       // sufficient space resizing of the young generation can occur
   658       // an redistribute the spaces in the young generation.  Mangle
   659       // here so that unzapped regions don't get distributed to
   660       // other spaces.
   661       to()->mangle_unused_area();
   662     }
   663     swap_spaces();
   665     assert(to()->is_empty(), "to space should be empty now");
   667     adjust_desired_tenuring_threshold();
   669     // A successful scavenge should restart the GC time limit count which is
   670     // for full GC's.
   671     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   672     size_policy->reset_gc_overhead_limit_count();
   673     if (PrintGC && !PrintGCDetails) {
   674       gch->print_heap_change(gch_prev_used);
   675     }
   676     assert(!gch->incremental_collection_failed(), "Should be clear");
   677   } else {
   678     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   679     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   681     remove_forwarding_pointers();
   682     if (PrintGCDetails) {
   683       gclog_or_tty->print(" (promotion failed) ");
   684     }
   685     // Add to-space to the list of space to compact
   686     // when a promotion failure has occurred.  In that
   687     // case there can be live objects in to-space
   688     // as a result of a partial evacuation of eden
   689     // and from-space.
   690     swap_spaces();   // For uniformity wrt ParNewGeneration.
   691     from()->set_next_compaction_space(to());
   692     gch->set_incremental_collection_failed();
   694     // Inform the next generation that a promotion failure occurred.
   695     _next_gen->promotion_failure_occurred();
   696     gc_tracer.report_promotion_failed(_promotion_failed_info);
   698     // Reset the PromotionFailureALot counters.
   699     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   700   }
   701   // set new iteration safe limit for the survivor spaces
   702   from()->set_concurrent_iteration_safe_limit(from()->top());
   703   to()->set_concurrent_iteration_safe_limit(to()->top());
   704   SpecializationStats::print();
   706   // We need to use a monotonically non-decreasing time in ms
   707   // or we will see time-warp warnings and os::javaTimeMillis()
   708   // does not guarantee monotonicity.
   709   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   710   update_time_of_last_gc(now);
   712   gch->trace_heap_after_gc(&gc_tracer);
   713   gc_tracer.report_tenuring_threshold(tenuring_threshold());
   715   _gc_timer->register_gc_end();
   717   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
   718 }
   720 class RemoveForwardPointerClosure: public ObjectClosure {
   721 public:
   722   void do_object(oop obj) {
   723     obj->init_mark();
   724   }
   725 };
   727 void DefNewGeneration::init_assuming_no_promotion_failure() {
   728   _promotion_failed = false;
   729   _promotion_failed_info.reset();
   730   from()->set_next_compaction_space(NULL);
   731 }
   733 void DefNewGeneration::remove_forwarding_pointers() {
   734   RemoveForwardPointerClosure rspc;
   735   eden()->object_iterate(&rspc);
   736   from()->object_iterate(&rspc);
   738   // Now restore saved marks, if any.
   739   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   740          "should be the same");
   741   while (!_objs_with_preserved_marks.is_empty()) {
   742     oop obj   = _objs_with_preserved_marks.pop();
   743     markOop m = _preserved_marks_of_objs.pop();
   744     obj->set_mark(m);
   745   }
   746   _objs_with_preserved_marks.clear(true);
   747   _preserved_marks_of_objs.clear(true);
   748 }
   750 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   751   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
   752          "Oversaving!");
   753   _objs_with_preserved_marks.push(obj);
   754   _preserved_marks_of_objs.push(m);
   755 }
   757 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   758   if (m->must_be_preserved_for_promotion_failure(obj)) {
   759     preserve_mark(obj, m);
   760   }
   761 }
   763 void DefNewGeneration::handle_promotion_failure(oop old) {
   764   if (PrintPromotionFailure && !_promotion_failed) {
   765     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   766                         old->size());
   767   }
   768   _promotion_failed = true;
   769   _promotion_failed_info.register_copy_failure(old->size());
   770   preserve_mark_if_necessary(old, old->mark());
   771   // forward to self
   772   old->forward_to(old);
   774   _promo_failure_scan_stack.push(old);
   776   if (!_promo_failure_drain_in_progress) {
   777     // prevent recursion in copy_to_survivor_space()
   778     _promo_failure_drain_in_progress = true;
   779     drain_promo_failure_scan_stack();
   780     _promo_failure_drain_in_progress = false;
   781   }
   782 }
   784 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   785   assert(is_in_reserved(old) && !old->is_forwarded(),
   786          "shouldn't be scavenging this oop");
   787   size_t s = old->size();
   788   oop obj = NULL;
   790   // Try allocating obj in to-space (unless too old)
   791   if (old->age() < tenuring_threshold()) {
   792     obj = (oop) to()->allocate(s);
   793   }
   795   // Otherwise try allocating obj tenured
   796   if (obj == NULL) {
   797     obj = _next_gen->promote(old, s);
   798     if (obj == NULL) {
   799       handle_promotion_failure(old);
   800       return old;
   801     }
   802   } else {
   803     // Prefetch beyond obj
   804     const intx interval = PrefetchCopyIntervalInBytes;
   805     Prefetch::write(obj, interval);
   807     // Copy obj
   808     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   810     // Increment age if obj still in new generation
   811     obj->incr_age();
   812     age_table()->add(obj, s);
   813   }
   815   // Done, insert forward pointer to obj in this header
   816   old->forward_to(obj);
   818   return obj;
   819 }
   821 void DefNewGeneration::drain_promo_failure_scan_stack() {
   822   while (!_promo_failure_scan_stack.is_empty()) {
   823      oop obj = _promo_failure_scan_stack.pop();
   824      obj->oop_iterate(_promo_failure_scan_stack_closure);
   825   }
   826 }
   828 void DefNewGeneration::save_marks() {
   829   eden()->set_saved_mark();
   830   to()->set_saved_mark();
   831   from()->set_saved_mark();
   832 }
   835 void DefNewGeneration::reset_saved_marks() {
   836   eden()->reset_saved_mark();
   837   to()->reset_saved_mark();
   838   from()->reset_saved_mark();
   839 }
   842 bool DefNewGeneration::no_allocs_since_save_marks() {
   843   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   844   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   845   return to()->saved_mark_at_top();
   846 }
   848 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   849                                                                 \
   850 void DefNewGeneration::                                         \
   851 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   852   cl->set_generation(this);                                     \
   853   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   854   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   855   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   856   cl->reset_generation();                                       \
   857   save_marks();                                                 \
   858 }
   860 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   862 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   864 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   865                                          size_t max_alloc_words) {
   866   if (requestor == this || _promotion_failed) return;
   867   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   869   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   870   if (to_space->top() > to_space->bottom()) {
   871     trace("to_space not empty when contribute_scratch called");
   872   }
   873   */
   875   ContiguousSpace* to_space = to();
   876   assert(to_space->end() >= to_space->top(), "pointers out of order");
   877   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   878   if (free_words >= MinFreeScratchWords) {
   879     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   880     sb->num_words = free_words;
   881     sb->next = list;
   882     list = sb;
   883   }
   884 }
   886 void DefNewGeneration::reset_scratch() {
   887   // If contributing scratch in to_space, mangle all of
   888   // to_space if ZapUnusedHeapArea.  This is needed because
   889   // top is not maintained while using to-space as scratch.
   890   if (ZapUnusedHeapArea) {
   891     to()->mangle_unused_area_complete();
   892   }
   893 }
   895 bool DefNewGeneration::collection_attempt_is_safe() {
   896   if (!to()->is_empty()) {
   897     if (Verbose && PrintGCDetails) {
   898       gclog_or_tty->print(" :: to is not empty :: ");
   899     }
   900     return false;
   901   }
   902   if (_next_gen == NULL) {
   903     GenCollectedHeap* gch = GenCollectedHeap::heap();
   904     _next_gen = gch->next_gen(this);
   905   }
   906   return _next_gen->promotion_attempt_is_safe(used());
   907 }
   909 void DefNewGeneration::gc_epilogue(bool full) {
   910   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   912   assert(!GC_locker::is_active(), "We should not be executing here");
   913   // Check if the heap is approaching full after a collection has
   914   // been done.  Generally the young generation is empty at
   915   // a minimum at the end of a collection.  If it is not, then
   916   // the heap is approaching full.
   917   GenCollectedHeap* gch = GenCollectedHeap::heap();
   918   if (full) {
   919     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   920     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   921       if (Verbose && PrintGCDetails) {
   922         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   923                             GCCause::to_string(gch->gc_cause()));
   924       }
   925       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   926       set_should_allocate_from_space(); // we seem to be running out of space
   927     } else {
   928       if (Verbose && PrintGCDetails) {
   929         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   930                             GCCause::to_string(gch->gc_cause()));
   931       }
   932       gch->clear_incremental_collection_failed(); // We just did a full collection
   933       clear_should_allocate_from_space(); // if set
   934     }
   935   } else {
   936 #ifdef ASSERT
   937     // It is possible that incremental_collection_failed() == true
   938     // here, because an attempted scavenge did not succeed. The policy
   939     // is normally expected to cause a full collection which should
   940     // clear that condition, so we should not be here twice in a row
   941     // with incremental_collection_failed() == true without having done
   942     // a full collection in between.
   943     if (!seen_incremental_collection_failed &&
   944         gch->incremental_collection_failed()) {
   945       if (Verbose && PrintGCDetails) {
   946         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   947                             GCCause::to_string(gch->gc_cause()));
   948       }
   949       seen_incremental_collection_failed = true;
   950     } else if (seen_incremental_collection_failed) {
   951       if (Verbose && PrintGCDetails) {
   952         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   953                             GCCause::to_string(gch->gc_cause()));
   954       }
   955       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   956              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   957              !gch->incremental_collection_failed(),
   958              "Twice in a row");
   959       seen_incremental_collection_failed = false;
   960     }
   961 #endif // ASSERT
   962   }
   964   if (ZapUnusedHeapArea) {
   965     eden()->check_mangled_unused_area_complete();
   966     from()->check_mangled_unused_area_complete();
   967     to()->check_mangled_unused_area_complete();
   968   }
   970   if (!CleanChunkPoolAsync) {
   971     Chunk::clean_chunk_pool();
   972   }
   974   // update the generation and space performance counters
   975   update_counters();
   976   gch->collector_policy()->counters()->update_counters();
   977 }
   979 void DefNewGeneration::record_spaces_top() {
   980   assert(ZapUnusedHeapArea, "Not mangling unused space");
   981   eden()->set_top_for_allocations();
   982   to()->set_top_for_allocations();
   983   from()->set_top_for_allocations();
   984 }
   986 void DefNewGeneration::ref_processor_init() {
   987   Generation::ref_processor_init();
   988 }
   991 void DefNewGeneration::update_counters() {
   992   if (UsePerfData) {
   993     _eden_counters->update_all();
   994     _from_counters->update_all();
   995     _to_counters->update_all();
   996     _gen_counters->update_all();
   997   }
   998 }
  1000 void DefNewGeneration::verify() {
  1001   eden()->verify();
  1002   from()->verify();
  1003     to()->verify();
  1006 void DefNewGeneration::print_on(outputStream* st) const {
  1007   Generation::print_on(st);
  1008   st->print("  eden");
  1009   eden()->print_on(st);
  1010   st->print("  from");
  1011   from()->print_on(st);
  1012   st->print("  to  ");
  1013   to()->print_on(st);
  1017 const char* DefNewGeneration::name() const {
  1018   return "def new generation";
  1021 // Moved from inline file as they are not called inline
  1022 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
  1023   return eden();
  1026 HeapWord* DefNewGeneration::allocate(size_t word_size,
  1027                                      bool is_tlab) {
  1028   // This is the slow-path allocation for the DefNewGeneration.
  1029   // Most allocations are fast-path in compiled code.
  1030   // We try to allocate from the eden.  If that works, we are happy.
  1031   // Note that since DefNewGeneration supports lock-free allocation, we
  1032   // have to use it here, as well.
  1033   HeapWord* result = eden()->par_allocate(word_size);
  1034   if (result != NULL) {
  1035     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1036       _next_gen->sample_eden_chunk();
  1038     return result;
  1040   do {
  1041     HeapWord* old_limit = eden()->soft_end();
  1042     if (old_limit < eden()->end()) {
  1043       // Tell the next generation we reached a limit.
  1044       HeapWord* new_limit =
  1045         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1046       if (new_limit != NULL) {
  1047         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1048       } else {
  1049         assert(eden()->soft_end() == eden()->end(),
  1050                "invalid state after allocation_limit_reached returned null");
  1052     } else {
  1053       // The allocation failed and the soft limit is equal to the hard limit,
  1054       // there are no reasons to do an attempt to allocate
  1055       assert(old_limit == eden()->end(), "sanity check");
  1056       break;
  1058     // Try to allocate until succeeded or the soft limit can't be adjusted
  1059     result = eden()->par_allocate(word_size);
  1060   } while (result == NULL);
  1062   // If the eden is full and the last collection bailed out, we are running
  1063   // out of heap space, and we try to allocate the from-space, too.
  1064   // allocate_from_space can't be inlined because that would introduce a
  1065   // circular dependency at compile time.
  1066   if (result == NULL) {
  1067     result = allocate_from_space(word_size);
  1068   } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1069     _next_gen->sample_eden_chunk();
  1071   return result;
  1074 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1075                                          bool is_tlab) {
  1076   HeapWord* res = eden()->par_allocate(word_size);
  1077   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1078     _next_gen->sample_eden_chunk();
  1080   return res;
  1083 void DefNewGeneration::gc_prologue(bool full) {
  1084   // Ensure that _end and _soft_end are the same in eden space.
  1085   eden()->set_soft_end(eden()->end());
  1088 size_t DefNewGeneration::tlab_capacity() const {
  1089   return eden()->capacity();
  1092 size_t DefNewGeneration::tlab_used() const {
  1093   return eden()->used();
  1096 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1097   return unsafe_max_alloc_nogc();

mercurial