src/share/vm/interpreter/templateInterpreter.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 8316
626f594dffa6
child 8368
32b682649973
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterGenerator.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    31 #ifndef CC_INTERP
    33 # define __ _masm->
    35 void TemplateInterpreter::initialize() {
    36   if (_code != NULL) return;
    37   // assertions
    38   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
    39          "dispatch table too small");
    41   AbstractInterpreter::initialize();
    43   TemplateTable::initialize();
    45   // generate interpreter
    46   { ResourceMark rm;
    47     TraceTime timer("Interpreter generation", TraceStartupTime);
    48     int code_size = InterpreterCodeSize;
    49     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
    50     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
    51                           "Interpreter");
    52     InterpreterGenerator g(_code);
    53     if (PrintInterpreter) print();
    54   }
    56   // initialize dispatch table
    57   _active_table = _normal_table;
    58 }
    60 //------------------------------------------------------------------------------------------------------------------------
    61 // Implementation of EntryPoint
    63 EntryPoint::EntryPoint() {
    64   assert(number_of_states == 9, "check the code below");
    65   _entry[btos] = NULL;
    66   _entry[ctos] = NULL;
    67   _entry[stos] = NULL;
    68   _entry[atos] = NULL;
    69   _entry[itos] = NULL;
    70   _entry[ltos] = NULL;
    71   _entry[ftos] = NULL;
    72   _entry[dtos] = NULL;
    73   _entry[vtos] = NULL;
    74 }
    77 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
    78   assert(number_of_states == 9, "check the code below");
    79   _entry[btos] = bentry;
    80   _entry[ctos] = centry;
    81   _entry[stos] = sentry;
    82   _entry[atos] = aentry;
    83   _entry[itos] = ientry;
    84   _entry[ltos] = lentry;
    85   _entry[ftos] = fentry;
    86   _entry[dtos] = dentry;
    87   _entry[vtos] = ventry;
    88 }
    91 void EntryPoint::set_entry(TosState state, address entry) {
    92   assert(0 <= state && state < number_of_states, "state out of bounds");
    93   _entry[state] = entry;
    94 }
    97 address EntryPoint::entry(TosState state) const {
    98   assert(0 <= state && state < number_of_states, "state out of bounds");
    99   return _entry[state];
   100 }
   103 void EntryPoint::print() {
   104   tty->print("[");
   105   for (int i = 0; i < number_of_states; i++) {
   106     if (i > 0) tty->print(", ");
   107     tty->print(INTPTR_FORMAT, p2i(_entry[i]));
   108   }
   109   tty->print("]");
   110 }
   113 bool EntryPoint::operator == (const EntryPoint& y) {
   114   int i = number_of_states;
   115   while (i-- > 0) {
   116     if (_entry[i] != y._entry[i]) return false;
   117   }
   118   return true;
   119 }
   122 //------------------------------------------------------------------------------------------------------------------------
   123 // Implementation of DispatchTable
   125 EntryPoint DispatchTable::entry(int i) const {
   126   assert(0 <= i && i < length, "index out of bounds");
   127   return
   128     EntryPoint(
   129       _table[btos][i],
   130       _table[ctos][i],
   131       _table[stos][i],
   132       _table[atos][i],
   133       _table[itos][i],
   134       _table[ltos][i],
   135       _table[ftos][i],
   136       _table[dtos][i],
   137       _table[vtos][i]
   138     );
   139 }
   142 void DispatchTable::set_entry(int i, EntryPoint& entry) {
   143   assert(0 <= i && i < length, "index out of bounds");
   144   assert(number_of_states == 9, "check the code below");
   145   _table[btos][i] = entry.entry(btos);
   146   _table[ctos][i] = entry.entry(ctos);
   147   _table[stos][i] = entry.entry(stos);
   148   _table[atos][i] = entry.entry(atos);
   149   _table[itos][i] = entry.entry(itos);
   150   _table[ltos][i] = entry.entry(ltos);
   151   _table[ftos][i] = entry.entry(ftos);
   152   _table[dtos][i] = entry.entry(dtos);
   153   _table[vtos][i] = entry.entry(vtos);
   154 }
   157 bool DispatchTable::operator == (DispatchTable& y) {
   158   int i = length;
   159   while (i-- > 0) {
   160     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
   161     if (!(entry(i) == t)) return false;
   162   }
   163   return true;
   164 }
   166 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
   167 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
   170 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
   171 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
   172 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
   173 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
   174 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
   175 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
   176 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
   178 #ifndef PRODUCT
   179 EntryPoint TemplateInterpreter::_trace_code;
   180 #endif // !PRODUCT
   181 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
   182 EntryPoint TemplateInterpreter::_earlyret_entry;
   183 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
   184 EntryPoint TemplateInterpreter::_continuation_entry;
   185 EntryPoint TemplateInterpreter::_safept_entry;
   187 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
   188 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
   189 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
   191 DispatchTable TemplateInterpreter::_active_table;
   192 DispatchTable TemplateInterpreter::_normal_table;
   193 DispatchTable TemplateInterpreter::_safept_table;
   194 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
   196 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
   197   _unimplemented_bytecode    = NULL;
   198   _illegal_bytecode_sequence = NULL;
   199 }
   201 static const BasicType types[Interpreter::number_of_result_handlers] = {
   202   T_BOOLEAN,
   203   T_CHAR   ,
   204   T_BYTE   ,
   205   T_SHORT  ,
   206   T_INT    ,
   207   T_LONG   ,
   208   T_VOID   ,
   209   T_FLOAT  ,
   210   T_DOUBLE ,
   211   T_OBJECT
   212 };
   214 void TemplateInterpreterGenerator::generate_all() {
   215   AbstractInterpreterGenerator::generate_all();
   217   { CodeletMark cm(_masm, "error exits");
   218     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
   219     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
   220   }
   222 #ifndef PRODUCT
   223   if (TraceBytecodes) {
   224     CodeletMark cm(_masm, "bytecode tracing support");
   225     Interpreter::_trace_code =
   226       EntryPoint(
   227         generate_trace_code(btos),
   228         generate_trace_code(ctos),
   229         generate_trace_code(stos),
   230         generate_trace_code(atos),
   231         generate_trace_code(itos),
   232         generate_trace_code(ltos),
   233         generate_trace_code(ftos),
   234         generate_trace_code(dtos),
   235         generate_trace_code(vtos)
   236       );
   237   }
   238 #endif // !PRODUCT
   240   { CodeletMark cm(_masm, "return entry points");
   241     const int index_size = sizeof(u2);
   242     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
   243       Interpreter::_return_entry[i] =
   244         EntryPoint(
   245           generate_return_entry_for(itos, i, index_size),
   246           generate_return_entry_for(itos, i, index_size),
   247           generate_return_entry_for(itos, i, index_size),
   248           generate_return_entry_for(atos, i, index_size),
   249           generate_return_entry_for(itos, i, index_size),
   250           generate_return_entry_for(ltos, i, index_size),
   251           generate_return_entry_for(ftos, i, index_size),
   252           generate_return_entry_for(dtos, i, index_size),
   253           generate_return_entry_for(vtos, i, index_size)
   254         );
   255     }
   256   }
   258   { CodeletMark cm(_masm, "invoke return entry points");
   259     const TosState states[] = {itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos};
   260     const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
   261     const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
   262     const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
   264     for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
   265       TosState state = states[i];
   266       Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
   267       Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
   268       Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
   269     }
   270   }
   272   { CodeletMark cm(_masm, "earlyret entry points");
   273     Interpreter::_earlyret_entry =
   274       EntryPoint(
   275         generate_earlyret_entry_for(btos),
   276         generate_earlyret_entry_for(ctos),
   277         generate_earlyret_entry_for(stos),
   278         generate_earlyret_entry_for(atos),
   279         generate_earlyret_entry_for(itos),
   280         generate_earlyret_entry_for(ltos),
   281         generate_earlyret_entry_for(ftos),
   282         generate_earlyret_entry_for(dtos),
   283         generate_earlyret_entry_for(vtos)
   284       );
   285   }
   287   { CodeletMark cm(_masm, "deoptimization entry points");
   288     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
   289       Interpreter::_deopt_entry[i] =
   290         EntryPoint(
   291           generate_deopt_entry_for(itos, i),
   292           generate_deopt_entry_for(itos, i),
   293           generate_deopt_entry_for(itos, i),
   294           generate_deopt_entry_for(atos, i),
   295           generate_deopt_entry_for(itos, i),
   296           generate_deopt_entry_for(ltos, i),
   297           generate_deopt_entry_for(ftos, i),
   298           generate_deopt_entry_for(dtos, i),
   299           generate_deopt_entry_for(vtos, i)
   300         );
   301     }
   302   }
   304   { CodeletMark cm(_masm, "result handlers for native calls");
   305     // The various result converter stublets.
   306     int is_generated[Interpreter::number_of_result_handlers];
   307     memset(is_generated, 0, sizeof(is_generated));
   309     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
   310       BasicType type = types[i];
   311       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
   312         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
   313       }
   314     }
   315   }
   317   { CodeletMark cm(_masm, "continuation entry points");
   318     Interpreter::_continuation_entry =
   319       EntryPoint(
   320         generate_continuation_for(btos),
   321         generate_continuation_for(ctos),
   322         generate_continuation_for(stos),
   323         generate_continuation_for(atos),
   324         generate_continuation_for(itos),
   325         generate_continuation_for(ltos),
   326         generate_continuation_for(ftos),
   327         generate_continuation_for(dtos),
   328         generate_continuation_for(vtos)
   329       );
   330   }
   332   { CodeletMark cm(_masm, "safepoint entry points");
   333     Interpreter::_safept_entry =
   334       EntryPoint(
   335         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   336         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   337         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   338         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   339         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   340         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   341         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   342         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   343         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
   344       );
   345   }
   347   { CodeletMark cm(_masm, "exception handling");
   348     // (Note: this is not safepoint safe because thread may return to compiled code)
   349     generate_throw_exception();
   350   }
   352   { CodeletMark cm(_masm, "throw exception entrypoints");
   353     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
   354     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
   355     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
   356     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
   357     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
   358     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
   359   }
   363 #define method_entry(kind)                                                                    \
   364   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
   365     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
   366   }
   368   // all non-native method kinds
   369   method_entry(zerolocals)
   370   method_entry(zerolocals_synchronized)
   371   method_entry(empty)
   372   method_entry(accessor)
   373   method_entry(abstract)
   374   method_entry(java_lang_math_sin  )
   375   method_entry(java_lang_math_cos  )
   376   method_entry(java_lang_math_tan  )
   377   method_entry(java_lang_math_abs  )
   378   method_entry(java_lang_math_sqrt )
   379   method_entry(java_lang_math_log  )
   380   method_entry(java_lang_math_log10)
   381   method_entry(java_lang_math_exp  )
   382   method_entry(java_lang_math_pow  )
   383   method_entry(java_lang_ref_reference_get)
   385   if (UseCRC32Intrinsics) {
   386     method_entry(java_util_zip_CRC32_update)
   387     method_entry(java_util_zip_CRC32_updateBytes)
   388     method_entry(java_util_zip_CRC32_updateByteBuffer)
   389   }
   391   initialize_method_handle_entries();
   393   // all native method kinds (must be one contiguous block)
   394   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
   395   method_entry(native)
   396   method_entry(native_synchronized)
   397   Interpreter::_native_entry_end = Interpreter::code()->code_end();
   399 #undef method_entry
   401   // Bytecodes
   402   set_entry_points_for_all_bytes();
   403   set_safepoints_for_all_bytes();
   404 }
   406 //------------------------------------------------------------------------------------------------------------------------
   408 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
   409   address entry = __ pc();
   410   __ stop(msg);
   411   return entry;
   412 }
   415 //------------------------------------------------------------------------------------------------------------------------
   417 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
   418   for (int i = 0; i < DispatchTable::length; i++) {
   419     Bytecodes::Code code = (Bytecodes::Code)i;
   420     if (Bytecodes::is_defined(code)) {
   421       set_entry_points(code);
   422     } else {
   423       set_unimplemented(i);
   424     }
   425   }
   426 }
   429 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
   430   for (int i = 0; i < DispatchTable::length; i++) {
   431     Bytecodes::Code code = (Bytecodes::Code)i;
   432     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
   433   }
   434 }
   437 void TemplateInterpreterGenerator::set_unimplemented(int i) {
   438   address e = _unimplemented_bytecode;
   439   EntryPoint entry(e, e, e, e, e, e, e, e, e);
   440   Interpreter::_normal_table.set_entry(i, entry);
   441   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
   442 }
   445 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
   446   CodeletMark cm(_masm, Bytecodes::name(code), code);
   447   // initialize entry points
   448   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
   449   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
   450   address bep = _illegal_bytecode_sequence;
   451   address cep = _illegal_bytecode_sequence;
   452   address sep = _illegal_bytecode_sequence;
   453   address aep = _illegal_bytecode_sequence;
   454   address iep = _illegal_bytecode_sequence;
   455   address lep = _illegal_bytecode_sequence;
   456   address fep = _illegal_bytecode_sequence;
   457   address dep = _illegal_bytecode_sequence;
   458   address vep = _unimplemented_bytecode;
   459   address wep = _unimplemented_bytecode;
   460   // code for short & wide version of bytecode
   461   if (Bytecodes::is_defined(code)) {
   462     Template* t = TemplateTable::template_for(code);
   463     assert(t->is_valid(), "just checking");
   464     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
   465   }
   466   if (Bytecodes::wide_is_defined(code)) {
   467     Template* t = TemplateTable::template_for_wide(code);
   468     assert(t->is_valid(), "just checking");
   469     set_wide_entry_point(t, wep);
   470   }
   471   // set entry points
   472   EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
   473   Interpreter::_normal_table.set_entry(code, entry);
   474   Interpreter::_wentry_point[code] = wep;
   475 }
   478 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
   479   assert(t->is_valid(), "template must exist");
   480   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
   481   wep = __ pc(); generate_and_dispatch(t);
   482 }
   485 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
   486   assert(t->is_valid(), "template must exist");
   487   switch (t->tos_in()) {
   488     case btos:
   489     case ctos:
   490     case stos:
   491       ShouldNotReachHere();  // btos/ctos/stos should use itos.
   492       break;
   493     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
   494     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
   495     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
   496     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
   497     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
   498     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
   499     default  : ShouldNotReachHere();                                                 break;
   500   }
   501 }
   504 //------------------------------------------------------------------------------------------------------------------------
   506 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
   507   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
   508 #ifndef PRODUCT
   509   // debugging code
   510   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
   511   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
   512   if (TraceBytecodes)                                            trace_bytecode(t);
   513   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
   514   __ verify_FPU(1, t->tos_in());
   515 #endif // !PRODUCT
   516   int step;
   517   if (!t->does_dispatch()) {
   518     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
   519     if (tos_out == ilgl) tos_out = t->tos_out();
   520     // compute bytecode size
   521     assert(step > 0, "just checkin'");
   522     // setup stuff for dispatching next bytecode
   523     if (ProfileInterpreter && VerifyDataPointer
   524         && MethodData::bytecode_has_profile(t->bytecode())) {
   525       __ verify_method_data_pointer();
   526     }
   527     __ dispatch_prolog(tos_out, step);
   528   }
   529   // generate template
   530   t->generate(_masm);
   531   // advance
   532   if (t->does_dispatch()) {
   533 #ifdef ASSERT
   534     // make sure execution doesn't go beyond this point if code is broken
   535     __ should_not_reach_here();
   536 #endif // ASSERT
   537   } else {
   538     // dispatch to next bytecode
   539     __ dispatch_epilog(tos_out, step);
   540   }
   541 }
   543 //------------------------------------------------------------------------------------------------------------------------
   544 // Entry points
   546 /**
   547  * Returns the return entry table for the given invoke bytecode.
   548  */
   549 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
   550   switch (code) {
   551   case Bytecodes::_invokestatic:
   552   case Bytecodes::_invokespecial:
   553   case Bytecodes::_invokevirtual:
   554   case Bytecodes::_invokehandle:
   555     return Interpreter::invoke_return_entry_table();
   556   case Bytecodes::_invokeinterface:
   557     return Interpreter::invokeinterface_return_entry_table();
   558   case Bytecodes::_invokedynamic:
   559     return Interpreter::invokedynamic_return_entry_table();
   560   default:
   561     fatal(err_msg("invalid bytecode: %s", Bytecodes::name(code)));
   562     return NULL;
   563   }
   564 }
   566 /**
   567  * Returns the return entry address for the given top-of-stack state and bytecode.
   568  */
   569 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
   570   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
   571   const int index = TosState_as_index(state);
   572   switch (code) {
   573   case Bytecodes::_invokestatic:
   574   case Bytecodes::_invokespecial:
   575   case Bytecodes::_invokevirtual:
   576   case Bytecodes::_invokehandle:
   577     return _invoke_return_entry[index];
   578   case Bytecodes::_invokeinterface:
   579     return _invokeinterface_return_entry[index];
   580   case Bytecodes::_invokedynamic:
   581     return _invokedynamic_return_entry[index];
   582   default:
   583     assert(!Bytecodes::is_invoke(code), err_msg("invoke instructions should be handled separately: %s", Bytecodes::name(code)));
   584     return _return_entry[length].entry(state);
   585   }
   586 }
   589 address TemplateInterpreter::deopt_entry(TosState state, int length) {
   590   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
   591   return _deopt_entry[length].entry(state);
   592 }
   594 //------------------------------------------------------------------------------------------------------------------------
   595 // Suport for invokes
   597 int TemplateInterpreter::TosState_as_index(TosState state) {
   598   assert( state < number_of_states , "Invalid state in TosState_as_index");
   599   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
   600   return (int)state;
   601 }
   604 //------------------------------------------------------------------------------------------------------------------------
   605 // Safepoint suppport
   607 static inline void copy_table(address* from, address* to, int size) {
   608   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
   609   while (size-- > 0) *to++ = *from++;
   610 }
   612 void TemplateInterpreter::notice_safepoints() {
   613   if (!_notice_safepoints) {
   614     // switch to safepoint dispatch table
   615     _notice_safepoints = true;
   616     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
   617   }
   618 }
   620 // switch from the dispatch table which notices safepoints back to the
   621 // normal dispatch table.  So that we can notice single stepping points,
   622 // keep the safepoint dispatch table if we are single stepping in JVMTI.
   623 // Note that the should_post_single_step test is exactly as fast as the
   624 // JvmtiExport::_enabled test and covers both cases.
   625 void TemplateInterpreter::ignore_safepoints() {
   626   if (_notice_safepoints) {
   627     if (!JvmtiExport::should_post_single_step()) {
   628       // switch to normal dispatch table
   629       _notice_safepoints = false;
   630       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
   631     }
   632   }
   633 }
   635 //------------------------------------------------------------------------------------------------------------------------
   636 // Deoptimization support
   638 // If deoptimization happens, this function returns the point of next bytecode to continue execution
   639 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
   640   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
   641 }
   643 // If deoptimization happens, this function returns the point where the interpreter reexecutes
   644 // the bytecode.
   645 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
   646 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
   647 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
   648   assert(method->contains(bcp), "just checkin'");
   649   Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
   650   if (code == Bytecodes::_return) {
   651     // This is used for deopt during registration of finalizers
   652     // during Object.<init>.  We simply need to resume execution at
   653     // the standard return vtos bytecode to pop the frame normally.
   654     // reexecuting the real bytecode would cause double registration
   655     // of the finalizable object.
   656     return _normal_table.entry(Bytecodes::_return).entry(vtos);
   657   } else {
   658     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
   659   }
   660 }
   662 // If deoptimization happens, the interpreter should reexecute this bytecode.
   663 // This function mainly helps the compilers to set up the reexecute bit.
   664 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
   665   if (code == Bytecodes::_return) {
   666     //Yes, we consider Bytecodes::_return as a special case of reexecution
   667     return true;
   668   } else {
   669     return AbstractInterpreter::bytecode_should_reexecute(code);
   670   }
   671 }
   673 #endif // !CC_INTERP

mercurial