src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6904
0982ec23da03
child 7535
7ae4e26cb1e0
child 7612
f74dbdd45754
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    31 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
    34 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    35 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    36 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    37 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    38 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
    39 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    40 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    41 #include "gc_implementation/shared/gcHeapSummary.hpp"
    42 #include "gc_implementation/shared/gcTimer.hpp"
    43 #include "gc_implementation/shared/gcTrace.hpp"
    44 #include "gc_implementation/shared/gcTraceTime.hpp"
    45 #include "gc_implementation/shared/isGCActiveMark.hpp"
    46 #include "gc_interface/gcCause.hpp"
    47 #include "memory/gcLocker.inline.hpp"
    48 #include "memory/referencePolicy.hpp"
    49 #include "memory/referenceProcessor.hpp"
    50 #include "oops/methodData.hpp"
    51 #include "oops/oop.inline.hpp"
    52 #include "oops/oop.pcgc.inline.hpp"
    53 #include "runtime/fprofiler.hpp"
    54 #include "runtime/safepoint.hpp"
    55 #include "runtime/vmThread.hpp"
    56 #include "services/management.hpp"
    57 #include "services/memoryService.hpp"
    58 #include "services/memTracker.hpp"
    59 #include "utilities/events.hpp"
    60 #include "utilities/stack.inline.hpp"
    62 #include <math.h>
    64 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    66 // All sizes are in HeapWords.
    67 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
    68 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    69 const size_t ParallelCompactData::RegionSizeBytes =
    70   RegionSize << LogHeapWordSize;
    71 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    72 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    73 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
    75 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
    76 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
    77 const size_t ParallelCompactData::BlockSizeBytes  =
    78   BlockSize << LogHeapWordSize;
    79 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
    80 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
    81 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
    83 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
    84 const size_t ParallelCompactData::Log2BlocksPerRegion =
    85   Log2RegionSize - Log2BlockSize;
    87 const ParallelCompactData::RegionData::region_sz_t
    88 ParallelCompactData::RegionData::dc_shift = 27;
    90 const ParallelCompactData::RegionData::region_sz_t
    91 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    93 const ParallelCompactData::RegionData::region_sz_t
    94 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    96 const ParallelCompactData::RegionData::region_sz_t
    97 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    99 const ParallelCompactData::RegionData::region_sz_t
   100 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
   102 const ParallelCompactData::RegionData::region_sz_t
   103 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
   105 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
   106 bool      PSParallelCompact::_print_phases = false;
   108 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
   109 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
   111 double PSParallelCompact::_dwl_mean;
   112 double PSParallelCompact::_dwl_std_dev;
   113 double PSParallelCompact::_dwl_first_term;
   114 double PSParallelCompact::_dwl_adjustment;
   115 #ifdef  ASSERT
   116 bool   PSParallelCompact::_dwl_initialized = false;
   117 #endif  // #ifdef ASSERT
   119 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
   120                        HeapWord* destination)
   121 {
   122   assert(src_region_idx != 0, "invalid src_region_idx");
   123   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
   124   assert(destination != NULL, "invalid destination argument");
   126   _src_region_idx = src_region_idx;
   127   _partial_obj_size = partial_obj_size;
   128   _destination = destination;
   130   // These fields may not be updated below, so make sure they're clear.
   131   assert(_dest_region_addr == NULL, "should have been cleared");
   132   assert(_first_src_addr == NULL, "should have been cleared");
   134   // Determine the number of destination regions for the partial object.
   135   HeapWord* const last_word = destination + partial_obj_size - 1;
   136   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   137   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   138   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   140   if (beg_region_addr == end_region_addr) {
   141     // One destination region.
   142     _destination_count = 1;
   143     if (end_region_addr == destination) {
   144       // The destination falls on a region boundary, thus the first word of the
   145       // partial object will be the first word copied to the destination region.
   146       _dest_region_addr = end_region_addr;
   147       _first_src_addr = sd.region_to_addr(src_region_idx);
   148     }
   149   } else {
   150     // Two destination regions.  When copied, the partial object will cross a
   151     // destination region boundary, so a word somewhere within the partial
   152     // object will be the first word copied to the second destination region.
   153     _destination_count = 2;
   154     _dest_region_addr = end_region_addr;
   155     const size_t ofs = pointer_delta(end_region_addr, destination);
   156     assert(ofs < _partial_obj_size, "sanity");
   157     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   158   }
   159 }
   161 void SplitInfo::clear()
   162 {
   163   _src_region_idx = 0;
   164   _partial_obj_size = 0;
   165   _destination = NULL;
   166   _destination_count = 0;
   167   _dest_region_addr = NULL;
   168   _first_src_addr = NULL;
   169   assert(!is_valid(), "sanity");
   170 }
   172 #ifdef  ASSERT
   173 void SplitInfo::verify_clear()
   174 {
   175   assert(_src_region_idx == 0, "not clear");
   176   assert(_partial_obj_size == 0, "not clear");
   177   assert(_destination == NULL, "not clear");
   178   assert(_destination_count == 0, "not clear");
   179   assert(_dest_region_addr == NULL, "not clear");
   180   assert(_first_src_addr == NULL, "not clear");
   181 }
   182 #endif  // #ifdef ASSERT
   185 void PSParallelCompact::print_on_error(outputStream* st) {
   186   _mark_bitmap.print_on_error(st);
   187 }
   189 #ifndef PRODUCT
   190 const char* PSParallelCompact::space_names[] = {
   191   "old ", "eden", "from", "to  "
   192 };
   194 void PSParallelCompact::print_region_ranges()
   195 {
   196   tty->print_cr("space  bottom     top        end        new_top");
   197   tty->print_cr("------ ---------- ---------- ---------- ----------");
   199   for (unsigned int id = 0; id < last_space_id; ++id) {
   200     const MutableSpace* space = _space_info[id].space();
   201     tty->print_cr("%u %s "
   202                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   203                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   204                   id, space_names[id],
   205                   summary_data().addr_to_region_idx(space->bottom()),
   206                   summary_data().addr_to_region_idx(space->top()),
   207                   summary_data().addr_to_region_idx(space->end()),
   208                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   209   }
   210 }
   212 void
   213 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   214 {
   215 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   216 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   218   ParallelCompactData& sd = PSParallelCompact::summary_data();
   219   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   220   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   221                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   222                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   223                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   224                 i, c->data_location(), dci, c->destination(),
   225                 c->partial_obj_size(), c->live_obj_size(),
   226                 c->data_size(), c->source_region(), c->destination_count());
   228 #undef  REGION_IDX_FORMAT
   229 #undef  REGION_DATA_FORMAT
   230 }
   232 void
   233 print_generic_summary_data(ParallelCompactData& summary_data,
   234                            HeapWord* const beg_addr,
   235                            HeapWord* const end_addr)
   236 {
   237   size_t total_words = 0;
   238   size_t i = summary_data.addr_to_region_idx(beg_addr);
   239   const size_t last = summary_data.addr_to_region_idx(end_addr);
   240   HeapWord* pdest = 0;
   242   while (i <= last) {
   243     ParallelCompactData::RegionData* c = summary_data.region(i);
   244     if (c->data_size() != 0 || c->destination() != pdest) {
   245       print_generic_summary_region(i, c);
   246       total_words += c->data_size();
   247       pdest = c->destination();
   248     }
   249     ++i;
   250   }
   252   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   253 }
   255 void
   256 print_generic_summary_data(ParallelCompactData& summary_data,
   257                            SpaceInfo* space_info)
   258 {
   259   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   260     const MutableSpace* space = space_info[id].space();
   261     print_generic_summary_data(summary_data, space->bottom(),
   262                                MAX2(space->top(), space_info[id].new_top()));
   263   }
   264 }
   266 void
   267 print_initial_summary_region(size_t i,
   268                              const ParallelCompactData::RegionData* c,
   269                              bool newline = true)
   270 {
   271   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   272              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   273              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   274              i, c->destination(),
   275              c->partial_obj_size(), c->live_obj_size(),
   276              c->data_size(), c->source_region(), c->destination_count());
   277   if (newline) tty->cr();
   278 }
   280 void
   281 print_initial_summary_data(ParallelCompactData& summary_data,
   282                            const MutableSpace* space) {
   283   if (space->top() == space->bottom()) {
   284     return;
   285   }
   287   const size_t region_size = ParallelCompactData::RegionSize;
   288   typedef ParallelCompactData::RegionData RegionData;
   289   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   290   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   291   const RegionData* c = summary_data.region(end_region - 1);
   292   HeapWord* end_addr = c->destination() + c->data_size();
   293   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   295   // Print (and count) the full regions at the beginning of the space.
   296   size_t full_region_count = 0;
   297   size_t i = summary_data.addr_to_region_idx(space->bottom());
   298   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   299     print_initial_summary_region(i, summary_data.region(i));
   300     ++full_region_count;
   301     ++i;
   302   }
   304   size_t live_to_right = live_in_space - full_region_count * region_size;
   306   double max_reclaimed_ratio = 0.0;
   307   size_t max_reclaimed_ratio_region = 0;
   308   size_t max_dead_to_right = 0;
   309   size_t max_live_to_right = 0;
   311   // Print the 'reclaimed ratio' for regions while there is something live in
   312   // the region or to the right of it.  The remaining regions are empty (and
   313   // uninteresting), and computing the ratio will result in division by 0.
   314   while (i < end_region && live_to_right > 0) {
   315     c = summary_data.region(i);
   316     HeapWord* const region_addr = summary_data.region_to_addr(i);
   317     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   318     const size_t dead_to_right = used_to_right - live_to_right;
   319     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   321     if (reclaimed_ratio > max_reclaimed_ratio) {
   322             max_reclaimed_ratio = reclaimed_ratio;
   323             max_reclaimed_ratio_region = i;
   324             max_dead_to_right = dead_to_right;
   325             max_live_to_right = live_to_right;
   326     }
   328     print_initial_summary_region(i, c, false);
   329     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   330                   reclaimed_ratio, dead_to_right, live_to_right);
   332     live_to_right -= c->data_size();
   333     ++i;
   334   }
   336   // Any remaining regions are empty.  Print one more if there is one.
   337   if (i < end_region) {
   338     print_initial_summary_region(i, summary_data.region(i));
   339   }
   341   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   342                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   343                 max_reclaimed_ratio_region, max_dead_to_right,
   344                 max_live_to_right, max_reclaimed_ratio);
   345 }
   347 void
   348 print_initial_summary_data(ParallelCompactData& summary_data,
   349                            SpaceInfo* space_info) {
   350   unsigned int id = PSParallelCompact::old_space_id;
   351   const MutableSpace* space;
   352   do {
   353     space = space_info[id].space();
   354     print_initial_summary_data(summary_data, space);
   355   } while (++id < PSParallelCompact::eden_space_id);
   357   do {
   358     space = space_info[id].space();
   359     print_generic_summary_data(summary_data, space->bottom(), space->top());
   360   } while (++id < PSParallelCompact::last_space_id);
   361 }
   362 #endif  // #ifndef PRODUCT
   364 #ifdef  ASSERT
   365 size_t add_obj_count;
   366 size_t add_obj_size;
   367 size_t mark_bitmap_count;
   368 size_t mark_bitmap_size;
   369 #endif  // #ifdef ASSERT
   371 ParallelCompactData::ParallelCompactData()
   372 {
   373   _region_start = 0;
   375   _region_vspace = 0;
   376   _reserved_byte_size = 0;
   377   _region_data = 0;
   378   _region_count = 0;
   380   _block_vspace = 0;
   381   _block_data = 0;
   382   _block_count = 0;
   383 }
   385 bool ParallelCompactData::initialize(MemRegion covered_region)
   386 {
   387   _region_start = covered_region.start();
   388   const size_t region_size = covered_region.word_size();
   389   DEBUG_ONLY(_region_end = _region_start + region_size;)
   391   assert(region_align_down(_region_start) == _region_start,
   392          "region start not aligned");
   393   assert((region_size & RegionSizeOffsetMask) == 0,
   394          "region size not a multiple of RegionSize");
   396   bool result = initialize_region_data(region_size) && initialize_block_data();
   397   return result;
   398 }
   400 PSVirtualSpace*
   401 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   402 {
   403   const size_t raw_bytes = count * element_size;
   404   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   405   const size_t granularity = os::vm_allocation_granularity();
   406   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   408   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   409     MAX2(page_sz, granularity);
   410   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
   411   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   412                        rs.size());
   414   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   416   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   417   if (vspace != 0) {
   418     if (vspace->expand_by(_reserved_byte_size)) {
   419       return vspace;
   420     }
   421     delete vspace;
   422     // Release memory reserved in the space.
   423     rs.release();
   424   }
   426   return 0;
   427 }
   429 bool ParallelCompactData::initialize_region_data(size_t region_size)
   430 {
   431   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   432   _region_vspace = create_vspace(count, sizeof(RegionData));
   433   if (_region_vspace != 0) {
   434     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   435     _region_count = count;
   436     return true;
   437   }
   438   return false;
   439 }
   441 bool ParallelCompactData::initialize_block_data()
   442 {
   443   assert(_region_count != 0, "region data must be initialized first");
   444   const size_t count = _region_count << Log2BlocksPerRegion;
   445   _block_vspace = create_vspace(count, sizeof(BlockData));
   446   if (_block_vspace != 0) {
   447     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
   448     _block_count = count;
   449     return true;
   450   }
   451   return false;
   452 }
   454 void ParallelCompactData::clear()
   455 {
   456   memset(_region_data, 0, _region_vspace->committed_size());
   457   memset(_block_data, 0, _block_vspace->committed_size());
   458 }
   460 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   461   assert(beg_region <= _region_count, "beg_region out of range");
   462   assert(end_region <= _region_count, "end_region out of range");
   463   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
   465   const size_t region_cnt = end_region - beg_region;
   466   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   468   const size_t beg_block = beg_region * BlocksPerRegion;
   469   const size_t block_cnt = region_cnt * BlocksPerRegion;
   470   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
   471 }
   473 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   474 {
   475   const RegionData* cur_cp = region(region_idx);
   476   const RegionData* const end_cp = region(region_count() - 1);
   478   HeapWord* result = region_to_addr(region_idx);
   479   if (cur_cp < end_cp) {
   480     do {
   481       result += cur_cp->partial_obj_size();
   482     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   483   }
   484   return result;
   485 }
   487 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   488 {
   489   const size_t obj_ofs = pointer_delta(addr, _region_start);
   490   const size_t beg_region = obj_ofs >> Log2RegionSize;
   491   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   493   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   494   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   496   if (beg_region == end_region) {
   497     // All in one region.
   498     _region_data[beg_region].add_live_obj(len);
   499     return;
   500   }
   502   // First region.
   503   const size_t beg_ofs = region_offset(addr);
   504   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   506   Klass* klass = ((oop)addr)->klass();
   507   // Middle regions--completely spanned by this object.
   508   for (size_t region = beg_region + 1; region < end_region; ++region) {
   509     _region_data[region].set_partial_obj_size(RegionSize);
   510     _region_data[region].set_partial_obj_addr(addr);
   511   }
   513   // Last region.
   514   const size_t end_ofs = region_offset(addr + len - 1);
   515   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   516   _region_data[end_region].set_partial_obj_addr(addr);
   517 }
   519 void
   520 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   521 {
   522   assert(region_offset(beg) == 0, "not RegionSize aligned");
   523   assert(region_offset(end) == 0, "not RegionSize aligned");
   525   size_t cur_region = addr_to_region_idx(beg);
   526   const size_t end_region = addr_to_region_idx(end);
   527   HeapWord* addr = beg;
   528   while (cur_region < end_region) {
   529     _region_data[cur_region].set_destination(addr);
   530     _region_data[cur_region].set_destination_count(0);
   531     _region_data[cur_region].set_source_region(cur_region);
   532     _region_data[cur_region].set_data_location(addr);
   534     // Update live_obj_size so the region appears completely full.
   535     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   536     _region_data[cur_region].set_live_obj_size(live_size);
   538     ++cur_region;
   539     addr += RegionSize;
   540   }
   541 }
   543 // Find the point at which a space can be split and, if necessary, record the
   544 // split point.
   545 //
   546 // If the current src region (which overflowed the destination space) doesn't
   547 // have a partial object, the split point is at the beginning of the current src
   548 // region (an "easy" split, no extra bookkeeping required).
   549 //
   550 // If the current src region has a partial object, the split point is in the
   551 // region where that partial object starts (call it the split_region).  If
   552 // split_region has a partial object, then the split point is just after that
   553 // partial object (a "hard" split where we have to record the split data and
   554 // zero the partial_obj_size field).  With a "hard" split, we know that the
   555 // partial_obj ends within split_region because the partial object that caused
   556 // the overflow starts in split_region.  If split_region doesn't have a partial
   557 // obj, then the split is at the beginning of split_region (another "easy"
   558 // split).
   559 HeapWord*
   560 ParallelCompactData::summarize_split_space(size_t src_region,
   561                                            SplitInfo& split_info,
   562                                            HeapWord* destination,
   563                                            HeapWord* target_end,
   564                                            HeapWord** target_next)
   565 {
   566   assert(destination <= target_end, "sanity");
   567   assert(destination + _region_data[src_region].data_size() > target_end,
   568     "region should not fit into target space");
   569   assert(is_region_aligned(target_end), "sanity");
   571   size_t split_region = src_region;
   572   HeapWord* split_destination = destination;
   573   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   575   if (destination + partial_obj_size > target_end) {
   576     // The split point is just after the partial object (if any) in the
   577     // src_region that contains the start of the object that overflowed the
   578     // destination space.
   579     //
   580     // Find the start of the "overflow" object and set split_region to the
   581     // region containing it.
   582     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   583     split_region = addr_to_region_idx(overflow_obj);
   585     // Clear the source_region field of all destination regions whose first word
   586     // came from data after the split point (a non-null source_region field
   587     // implies a region must be filled).
   588     //
   589     // An alternative to the simple loop below:  clear during post_compact(),
   590     // which uses memcpy instead of individual stores, and is easy to
   591     // parallelize.  (The downside is that it clears the entire RegionData
   592     // object as opposed to just one field.)
   593     //
   594     // post_compact() would have to clear the summary data up to the highest
   595     // address that was written during the summary phase, which would be
   596     //
   597     //         max(top, max(new_top, clear_top))
   598     //
   599     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   600     // to target_end.
   601     const RegionData* const sr = region(split_region);
   602     const size_t beg_idx =
   603       addr_to_region_idx(region_align_up(sr->destination() +
   604                                          sr->partial_obj_size()));
   605     const size_t end_idx = addr_to_region_idx(target_end);
   607     if (TraceParallelOldGCSummaryPhase) {
   608         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   609                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   610                                beg_idx, end_idx);
   611     }
   612     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   613       _region_data[idx].set_source_region(0);
   614     }
   616     // Set split_destination and partial_obj_size to reflect the split region.
   617     split_destination = sr->destination();
   618     partial_obj_size = sr->partial_obj_size();
   619   }
   621   // The split is recorded only if a partial object extends onto the region.
   622   if (partial_obj_size != 0) {
   623     _region_data[split_region].set_partial_obj_size(0);
   624     split_info.record(split_region, partial_obj_size, split_destination);
   625   }
   627   // Setup the continuation addresses.
   628   *target_next = split_destination + partial_obj_size;
   629   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   631   if (TraceParallelOldGCSummaryPhase) {
   632     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   633     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   634                            " pos=" SIZE_FORMAT,
   635                            split_type, source_next, split_region,
   636                            partial_obj_size);
   637     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   638                            " tn=" PTR_FORMAT,
   639                            split_type, split_destination,
   640                            addr_to_region_idx(split_destination),
   641                            *target_next);
   643     if (partial_obj_size != 0) {
   644       HeapWord* const po_beg = split_info.destination();
   645       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   646       gclog_or_tty->print_cr("%s split:  "
   647                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   648                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   649                              split_type,
   650                              po_beg, addr_to_region_idx(po_beg),
   651                              po_end, addr_to_region_idx(po_end));
   652     }
   653   }
   655   return source_next;
   656 }
   658 bool ParallelCompactData::summarize(SplitInfo& split_info,
   659                                     HeapWord* source_beg, HeapWord* source_end,
   660                                     HeapWord** source_next,
   661                                     HeapWord* target_beg, HeapWord* target_end,
   662                                     HeapWord** target_next)
   663 {
   664   if (TraceParallelOldGCSummaryPhase) {
   665     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   666     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   667                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   668                   source_beg, source_end, source_next_val,
   669                   target_beg, target_end, *target_next);
   670   }
   672   size_t cur_region = addr_to_region_idx(source_beg);
   673   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   675   HeapWord *dest_addr = target_beg;
   676   while (cur_region < end_region) {
   677     // The destination must be set even if the region has no data.
   678     _region_data[cur_region].set_destination(dest_addr);
   680     size_t words = _region_data[cur_region].data_size();
   681     if (words > 0) {
   682       // If cur_region does not fit entirely into the target space, find a point
   683       // at which the source space can be 'split' so that part is copied to the
   684       // target space and the rest is copied elsewhere.
   685       if (dest_addr + words > target_end) {
   686         assert(source_next != NULL, "source_next is NULL when splitting");
   687         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   688                                              target_end, target_next);
   689         return false;
   690       }
   692       // Compute the destination_count for cur_region, and if necessary, update
   693       // source_region for a destination region.  The source_region field is
   694       // updated if cur_region is the first (left-most) region to be copied to a
   695       // destination region.
   696       //
   697       // The destination_count calculation is a bit subtle.  A region that has
   698       // data that compacts into itself does not count itself as a destination.
   699       // This maintains the invariant that a zero count means the region is
   700       // available and can be claimed and then filled.
   701       uint destination_count = 0;
   702       if (split_info.is_split(cur_region)) {
   703         // The current region has been split:  the partial object will be copied
   704         // to one destination space and the remaining data will be copied to
   705         // another destination space.  Adjust the initial destination_count and,
   706         // if necessary, set the source_region field if the partial object will
   707         // cross a destination region boundary.
   708         destination_count = split_info.destination_count();
   709         if (destination_count == 2) {
   710           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   711           _region_data[dest_idx].set_source_region(cur_region);
   712         }
   713       }
   715       HeapWord* const last_addr = dest_addr + words - 1;
   716       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   717       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   719       // Initially assume that the destination regions will be the same and
   720       // adjust the value below if necessary.  Under this assumption, if
   721       // cur_region == dest_region_2, then cur_region will be compacted
   722       // completely into itself.
   723       destination_count += cur_region == dest_region_2 ? 0 : 1;
   724       if (dest_region_1 != dest_region_2) {
   725         // Destination regions differ; adjust destination_count.
   726         destination_count += 1;
   727         // Data from cur_region will be copied to the start of dest_region_2.
   728         _region_data[dest_region_2].set_source_region(cur_region);
   729       } else if (region_offset(dest_addr) == 0) {
   730         // Data from cur_region will be copied to the start of the destination
   731         // region.
   732         _region_data[dest_region_1].set_source_region(cur_region);
   733       }
   735       _region_data[cur_region].set_destination_count(destination_count);
   736       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   737       dest_addr += words;
   738     }
   740     ++cur_region;
   741   }
   743   *target_next = dest_addr;
   744   return true;
   745 }
   747 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   748   assert(addr != NULL, "Should detect NULL oop earlier");
   749   assert(PSParallelCompact::gc_heap()->is_in(addr), "not in heap");
   750   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
   752   // Region covering the object.
   753   RegionData* const region_ptr = addr_to_region_ptr(addr);
   754   HeapWord* result = region_ptr->destination();
   756   // If the entire Region is live, the new location is region->destination + the
   757   // offset of the object within in the Region.
   759   // Run some performance tests to determine if this special case pays off.  It
   760   // is worth it for pointers into the dense prefix.  If the optimization to
   761   // avoid pointer updates in regions that only point to the dense prefix is
   762   // ever implemented, this should be revisited.
   763   if (region_ptr->data_size() == RegionSize) {
   764     result += region_offset(addr);
   765     return result;
   766   }
   768   // Otherwise, the new location is region->destination + block offset + the
   769   // number of live words in the Block that are (a) to the left of addr and (b)
   770   // due to objects that start in the Block.
   772   // Fill in the block table if necessary.  This is unsynchronized, so multiple
   773   // threads may fill the block table for a region (harmless, since it is
   774   // idempotent).
   775   if (!region_ptr->blocks_filled()) {
   776     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
   777     region_ptr->set_blocks_filled();
   778   }
   780   HeapWord* const search_start = block_align_down(addr);
   781   const size_t block_offset = addr_to_block_ptr(addr)->offset();
   783   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   784   const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
   785   result += block_offset + live;
   786   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
   787   return result;
   788 }
   790 #ifdef ASSERT
   791 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   792 {
   793   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   794   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   795   for (const size_t* p = beg; p < end; ++p) {
   796     assert(*p == 0, "not zero");
   797   }
   798 }
   800 void ParallelCompactData::verify_clear()
   801 {
   802   verify_clear(_region_vspace);
   803   verify_clear(_block_vspace);
   804 }
   805 #endif  // #ifdef ASSERT
   807 STWGCTimer          PSParallelCompact::_gc_timer;
   808 ParallelOldTracer   PSParallelCompact::_gc_tracer;
   809 elapsedTimer        PSParallelCompact::_accumulated_time;
   810 unsigned int        PSParallelCompact::_total_invocations = 0;
   811 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   812 jlong               PSParallelCompact::_time_of_last_gc = 0;
   813 CollectorCounters*  PSParallelCompact::_counters = NULL;
   814 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   815 ParallelCompactData PSParallelCompact::_summary_data;
   817 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   819 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   821 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   822 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   824 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
   825 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
   827 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
   828 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
   830 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
   832 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
   833   mark_and_push(_compaction_manager, p);
   834 }
   835 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   837 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
   838   klass->oops_do(_mark_and_push_closure);
   839 }
   840 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
   841   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
   842 }
   844 void PSParallelCompact::post_initialize() {
   845   ParallelScavengeHeap* heap = gc_heap();
   846   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   848   MemRegion mr = heap->reserved_region();
   849   _ref_processor =
   850     new ReferenceProcessor(mr,            // span
   851                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   852                            (int) ParallelGCThreads, // mt processing degree
   853                            true,          // mt discovery
   854                            (int) ParallelGCThreads, // mt discovery degree
   855                            true,          // atomic_discovery
   856                            &_is_alive_closure); // non-header is alive closure
   857   _counters = new CollectorCounters("PSParallelCompact", 1);
   859   // Initialize static fields in ParCompactionManager.
   860   ParCompactionManager::initialize(mark_bitmap());
   861 }
   863 bool PSParallelCompact::initialize() {
   864   ParallelScavengeHeap* heap = gc_heap();
   865   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   866   MemRegion mr = heap->reserved_region();
   868   // Was the old gen get allocated successfully?
   869   if (!heap->old_gen()->is_allocated()) {
   870     return false;
   871   }
   873   initialize_space_info();
   874   initialize_dead_wood_limiter();
   876   if (!_mark_bitmap.initialize(mr)) {
   877     vm_shutdown_during_initialization(
   878       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
   879       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
   880       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
   881     return false;
   882   }
   884   if (!_summary_data.initialize(mr)) {
   885     vm_shutdown_during_initialization(
   886       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
   887       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
   888       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
   889     return false;
   890   }
   892   return true;
   893 }
   895 void PSParallelCompact::initialize_space_info()
   896 {
   897   memset(&_space_info, 0, sizeof(_space_info));
   899   ParallelScavengeHeap* heap = gc_heap();
   900   PSYoungGen* young_gen = heap->young_gen();
   902   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   903   _space_info[eden_space_id].set_space(young_gen->eden_space());
   904   _space_info[from_space_id].set_space(young_gen->from_space());
   905   _space_info[to_space_id].set_space(young_gen->to_space());
   907   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   908 }
   910 void PSParallelCompact::initialize_dead_wood_limiter()
   911 {
   912   const size_t max = 100;
   913   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   914   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   915   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   916   DEBUG_ONLY(_dwl_initialized = true;)
   917   _dwl_adjustment = normal_distribution(1.0);
   918 }
   920 // Simple class for storing info about the heap at the start of GC, to be used
   921 // after GC for comparison/printing.
   922 class PreGCValues {
   923 public:
   924   PreGCValues() { }
   925   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   927   void fill(ParallelScavengeHeap* heap) {
   928     _heap_used      = heap->used();
   929     _young_gen_used = heap->young_gen()->used_in_bytes();
   930     _old_gen_used   = heap->old_gen()->used_in_bytes();
   931     _metadata_used  = MetaspaceAux::used_bytes();
   932   };
   934   size_t heap_used() const      { return _heap_used; }
   935   size_t young_gen_used() const { return _young_gen_used; }
   936   size_t old_gen_used() const   { return _old_gen_used; }
   937   size_t metadata_used() const  { return _metadata_used; }
   939 private:
   940   size_t _heap_used;
   941   size_t _young_gen_used;
   942   size_t _old_gen_used;
   943   size_t _metadata_used;
   944 };
   946 void
   947 PSParallelCompact::clear_data_covering_space(SpaceId id)
   948 {
   949   // At this point, top is the value before GC, new_top() is the value that will
   950   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   951   // should be marked above top.  The summary data is cleared to the larger of
   952   // top & new_top.
   953   MutableSpace* const space = _space_info[id].space();
   954   HeapWord* const bot = space->bottom();
   955   HeapWord* const top = space->top();
   956   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   958   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   959   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   960   _mark_bitmap.clear_range(beg_bit, end_bit);
   962   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   963   const size_t end_region =
   964     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   965   _summary_data.clear_range(beg_region, end_region);
   967   // Clear the data used to 'split' regions.
   968   SplitInfo& split_info = _space_info[id].split_info();
   969   if (split_info.is_valid()) {
   970     split_info.clear();
   971   }
   972   DEBUG_ONLY(split_info.verify_clear();)
   973 }
   975 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   976 {
   977   // Update the from & to space pointers in space_info, since they are swapped
   978   // at each young gen gc.  Do the update unconditionally (even though a
   979   // promotion failure does not swap spaces) because an unknown number of minor
   980   // collections will have swapped the spaces an unknown number of times.
   981   GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
   982   ParallelScavengeHeap* heap = gc_heap();
   983   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   984   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   986   pre_gc_values->fill(heap);
   988   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   989   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   991   // Increment the invocation count
   992   heap->increment_total_collections(true);
   994   // We need to track unique mark sweep invocations as well.
   995   _total_invocations++;
   997   heap->print_heap_before_gc();
   998   heap->trace_heap_before_gc(&_gc_tracer);
  1000   // Fill in TLABs
  1001   heap->accumulate_statistics_all_tlabs();
  1002   heap->ensure_parsability(true);  // retire TLABs
  1004   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
  1005     HandleMark hm;  // Discard invalid handles created during verification
  1006     Universe::verify(" VerifyBeforeGC:");
  1009   // Verify object start arrays
  1010   if (VerifyObjectStartArray &&
  1011       VerifyBeforeGC) {
  1012     heap->old_gen()->verify_object_start_array();
  1015   DEBUG_ONLY(mark_bitmap()->verify_clear();)
  1016   DEBUG_ONLY(summary_data().verify_clear();)
  1018   // Have worker threads release resources the next time they run a task.
  1019   gc_task_manager()->release_all_resources();
  1022 void PSParallelCompact::post_compact()
  1024   GCTraceTime tm("post compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  1026   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1027     // Clear the marking bitmap, summary data and split info.
  1028     clear_data_covering_space(SpaceId(id));
  1029     // Update top().  Must be done after clearing the bitmap and summary data.
  1030     _space_info[id].publish_new_top();
  1033   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1034   MutableSpace* const from_space = _space_info[from_space_id].space();
  1035   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1037   ParallelScavengeHeap* heap = gc_heap();
  1038   bool eden_empty = eden_space->is_empty();
  1039   if (!eden_empty) {
  1040     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1041                                             heap->young_gen(), heap->old_gen());
  1044   // Update heap occupancy information which is used as input to the soft ref
  1045   // clearing policy at the next gc.
  1046   Universe::update_heap_info_at_gc();
  1048   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1049     to_space->is_empty();
  1051   BarrierSet* bs = heap->barrier_set();
  1052   if (bs->is_a(BarrierSet::ModRef)) {
  1053     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1054     MemRegion old_mr = heap->old_gen()->reserved();
  1056     if (young_gen_empty) {
  1057       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
  1058     } else {
  1059       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
  1063   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1064   ClassLoaderDataGraph::purge();
  1065   MetaspaceAux::verify_metrics();
  1067   Threads::gc_epilogue();
  1068   CodeCache::gc_epilogue();
  1069   JvmtiExport::gc_epilogue();
  1071   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1073   ref_processor()->enqueue_discovered_references(NULL);
  1075   if (ZapUnusedHeapArea) {
  1076     heap->gen_mangle_unused_area();
  1079   // Update time of last GC
  1080   reset_millis_since_last_gc();
  1083 HeapWord*
  1084 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1085                                                     bool maximum_compaction)
  1087   const size_t region_size = ParallelCompactData::RegionSize;
  1088   const ParallelCompactData& sd = summary_data();
  1090   const MutableSpace* const space = _space_info[id].space();
  1091   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1092   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1093   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1095   // Skip full regions at the beginning of the space--they are necessarily part
  1096   // of the dense prefix.
  1097   size_t full_count = 0;
  1098   const RegionData* cp;
  1099   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1100     ++full_count;
  1103   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1104   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1105   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1106   if (maximum_compaction || cp == end_cp || interval_ended) {
  1107     _maximum_compaction_gc_num = total_invocations();
  1108     return sd.region_to_addr(cp);
  1111   HeapWord* const new_top = _space_info[id].new_top();
  1112   const size_t space_live = pointer_delta(new_top, space->bottom());
  1113   const size_t space_used = space->used_in_words();
  1114   const size_t space_capacity = space->capacity_in_words();
  1116   const double cur_density = double(space_live) / space_capacity;
  1117   const double deadwood_density =
  1118     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1119   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1121   if (TraceParallelOldGCDensePrefix) {
  1122     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1123                   cur_density, deadwood_density, deadwood_goal);
  1124     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1125                   "space_cap=" SIZE_FORMAT,
  1126                   space_live, space_used,
  1127                   space_capacity);
  1130   // XXX - Use binary search?
  1131   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1132   const RegionData* full_cp = cp;
  1133   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1134   while (cp < end_cp) {
  1135     HeapWord* region_destination = cp->destination();
  1136     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1137     if (TraceParallelOldGCDensePrefix && Verbose) {
  1138       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1139                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1140                     sd.region(cp), region_destination,
  1141                     dense_prefix, cur_deadwood);
  1144     if (cur_deadwood >= deadwood_goal) {
  1145       // Found the region that has the correct amount of deadwood to the left.
  1146       // This typically occurs after crossing a fairly sparse set of regions, so
  1147       // iterate backwards over those sparse regions, looking for the region
  1148       // that has the lowest density of live objects 'to the right.'
  1149       size_t space_to_left = sd.region(cp) * region_size;
  1150       size_t live_to_left = space_to_left - cur_deadwood;
  1151       size_t space_to_right = space_capacity - space_to_left;
  1152       size_t live_to_right = space_live - live_to_left;
  1153       double density_to_right = double(live_to_right) / space_to_right;
  1154       while (cp > full_cp) {
  1155         --cp;
  1156         const size_t prev_region_live_to_right = live_to_right -
  1157           cp->data_size();
  1158         const size_t prev_region_space_to_right = space_to_right + region_size;
  1159         double prev_region_density_to_right =
  1160           double(prev_region_live_to_right) / prev_region_space_to_right;
  1161         if (density_to_right <= prev_region_density_to_right) {
  1162           return dense_prefix;
  1164         if (TraceParallelOldGCDensePrefix && Verbose) {
  1165           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1166                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1167                         prev_region_density_to_right);
  1169         dense_prefix -= region_size;
  1170         live_to_right = prev_region_live_to_right;
  1171         space_to_right = prev_region_space_to_right;
  1172         density_to_right = prev_region_density_to_right;
  1174       return dense_prefix;
  1177     dense_prefix += region_size;
  1178     ++cp;
  1181   return dense_prefix;
  1184 #ifndef PRODUCT
  1185 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1186                                                  const SpaceId id,
  1187                                                  const bool maximum_compaction,
  1188                                                  HeapWord* const addr)
  1190   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1191   RegionData* const cp = summary_data().region(region_idx);
  1192   const MutableSpace* const space = _space_info[id].space();
  1193   HeapWord* const new_top = _space_info[id].new_top();
  1195   const size_t space_live = pointer_delta(new_top, space->bottom());
  1196   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1197   const size_t space_cap = space->capacity_in_words();
  1198   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1199   const size_t live_to_right = new_top - cp->destination();
  1200   const size_t dead_to_right = space->top() - addr - live_to_right;
  1202   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1203                 "spl=" SIZE_FORMAT " "
  1204                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1205                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1206                 " ratio=%10.8f",
  1207                 algorithm, addr, region_idx,
  1208                 space_live,
  1209                 dead_to_left, dead_to_left_pct,
  1210                 dead_to_right, live_to_right,
  1211                 double(dead_to_right) / live_to_right);
  1213 #endif  // #ifndef PRODUCT
  1215 // Return a fraction indicating how much of the generation can be treated as
  1216 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1217 // based on the density of live objects in the generation to determine a limit,
  1218 // which is then adjusted so the return value is min_percent when the density is
  1219 // 1.
  1220 //
  1221 // The following table shows some return values for a different values of the
  1222 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1223 // min_percent is 1.
  1224 //
  1225 //                          fraction allowed as dead wood
  1226 //         -----------------------------------------------------------------
  1227 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1228 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1229 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1230 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1231 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1232 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1233 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1234 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1235 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1236 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1237 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1238 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1239 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1240 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1241 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1242 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1243 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1244 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1245 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1246 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1247 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1248 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1249 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1251 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1253   assert(_dwl_initialized, "uninitialized");
  1255   // The raw limit is the value of the normal distribution at x = density.
  1256   const double raw_limit = normal_distribution(density);
  1258   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1259   //
  1260   // First subtract the adjustment value (which is simply the precomputed value
  1261   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1262   // Then add the minimum value, so the minimum is returned when the density is
  1263   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1264   const double min = double(min_percent) / 100.0;
  1265   const double limit = raw_limit - _dwl_adjustment + min;
  1266   return MAX2(limit, 0.0);
  1269 ParallelCompactData::RegionData*
  1270 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1271                                            const RegionData* end)
  1273   const size_t region_size = ParallelCompactData::RegionSize;
  1274   ParallelCompactData& sd = summary_data();
  1275   size_t left = sd.region(beg);
  1276   size_t right = end > beg ? sd.region(end) - 1 : left;
  1278   // Binary search.
  1279   while (left < right) {
  1280     // Equivalent to (left + right) / 2, but does not overflow.
  1281     const size_t middle = left + (right - left) / 2;
  1282     RegionData* const middle_ptr = sd.region(middle);
  1283     HeapWord* const dest = middle_ptr->destination();
  1284     HeapWord* const addr = sd.region_to_addr(middle);
  1285     assert(dest != NULL, "sanity");
  1286     assert(dest <= addr, "must move left");
  1288     if (middle > left && dest < addr) {
  1289       right = middle - 1;
  1290     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1291       left = middle + 1;
  1292     } else {
  1293       return middle_ptr;
  1296   return sd.region(left);
  1299 ParallelCompactData::RegionData*
  1300 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1301                                           const RegionData* end,
  1302                                           size_t dead_words)
  1304   ParallelCompactData& sd = summary_data();
  1305   size_t left = sd.region(beg);
  1306   size_t right = end > beg ? sd.region(end) - 1 : left;
  1308   // Binary search.
  1309   while (left < right) {
  1310     // Equivalent to (left + right) / 2, but does not overflow.
  1311     const size_t middle = left + (right - left) / 2;
  1312     RegionData* const middle_ptr = sd.region(middle);
  1313     HeapWord* const dest = middle_ptr->destination();
  1314     HeapWord* const addr = sd.region_to_addr(middle);
  1315     assert(dest != NULL, "sanity");
  1316     assert(dest <= addr, "must move left");
  1318     const size_t dead_to_left = pointer_delta(addr, dest);
  1319     if (middle > left && dead_to_left > dead_words) {
  1320       right = middle - 1;
  1321     } else if (middle < right && dead_to_left < dead_words) {
  1322       left = middle + 1;
  1323     } else {
  1324       return middle_ptr;
  1327   return sd.region(left);
  1330 // The result is valid during the summary phase, after the initial summarization
  1331 // of each space into itself, and before final summarization.
  1332 inline double
  1333 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1334                                    HeapWord* const bottom,
  1335                                    HeapWord* const top,
  1336                                    HeapWord* const new_top)
  1338   ParallelCompactData& sd = summary_data();
  1340   assert(cp != NULL, "sanity");
  1341   assert(bottom != NULL, "sanity");
  1342   assert(top != NULL, "sanity");
  1343   assert(new_top != NULL, "sanity");
  1344   assert(top >= new_top, "summary data problem?");
  1345   assert(new_top > bottom, "space is empty; should not be here");
  1346   assert(new_top >= cp->destination(), "sanity");
  1347   assert(top >= sd.region_to_addr(cp), "sanity");
  1349   HeapWord* const destination = cp->destination();
  1350   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1351   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1352   const size_t compacted_region_used = pointer_delta(top,
  1353                                                      sd.region_to_addr(cp));
  1354   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1356   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1357   return double(reclaimable) / divisor;
  1360 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1361 // compacted region.  The address is always on a region boundary.
  1362 //
  1363 // Completely full regions at the left are skipped, since no compaction can
  1364 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1365 // computed, based on the density (amount live / capacity) of the generation;
  1366 // the region with approximately that amount of dead space to the left is
  1367 // identified as the limit region.  Regions between the last completely full
  1368 // region and the limit region are scanned and the one that has the best
  1369 // (maximum) reclaimed_ratio() is selected.
  1370 HeapWord*
  1371 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1372                                         bool maximum_compaction)
  1374   if (ParallelOldGCSplitALot) {
  1375     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
  1376       // The value was chosen to provoke splitting a young gen space; use it.
  1377       return _space_info[id].dense_prefix();
  1381   const size_t region_size = ParallelCompactData::RegionSize;
  1382   const ParallelCompactData& sd = summary_data();
  1384   const MutableSpace* const space = _space_info[id].space();
  1385   HeapWord* const top = space->top();
  1386   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1387   HeapWord* const new_top = _space_info[id].new_top();
  1388   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1389   HeapWord* const bottom = space->bottom();
  1390   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1391   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1392   const RegionData* const new_top_cp =
  1393     sd.addr_to_region_ptr(new_top_aligned_up);
  1395   // Skip full regions at the beginning of the space--they are necessarily part
  1396   // of the dense prefix.
  1397   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1398   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1399          space->is_empty(), "no dead space allowed to the left");
  1400   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1401          "region must have dead space");
  1403   // The gc number is saved whenever a maximum compaction is done, and used to
  1404   // determine when the maximum compaction interval has expired.  This avoids
  1405   // successive max compactions for different reasons.
  1406   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1407   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1408   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1409     total_invocations() == HeapFirstMaximumCompactionCount;
  1410   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1411     _maximum_compaction_gc_num = total_invocations();
  1412     return sd.region_to_addr(full_cp);
  1415   const size_t space_live = pointer_delta(new_top, bottom);
  1416   const size_t space_used = space->used_in_words();
  1417   const size_t space_capacity = space->capacity_in_words();
  1419   const double density = double(space_live) / double(space_capacity);
  1420   const size_t min_percent_free = MarkSweepDeadRatio;
  1421   const double limiter = dead_wood_limiter(density, min_percent_free);
  1422   const size_t dead_wood_max = space_used - space_live;
  1423   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1424                                       dead_wood_max);
  1426   if (TraceParallelOldGCDensePrefix) {
  1427     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1428                   "space_cap=" SIZE_FORMAT,
  1429                   space_live, space_used,
  1430                   space_capacity);
  1431     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1432                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1433                   density, min_percent_free, limiter,
  1434                   dead_wood_max, dead_wood_limit);
  1437   // Locate the region with the desired amount of dead space to the left.
  1438   const RegionData* const limit_cp =
  1439     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1441   // Scan from the first region with dead space to the limit region and find the
  1442   // one with the best (largest) reclaimed ratio.
  1443   double best_ratio = 0.0;
  1444   const RegionData* best_cp = full_cp;
  1445   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1446     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1447     if (tmp_ratio > best_ratio) {
  1448       best_cp = cp;
  1449       best_ratio = tmp_ratio;
  1453 #if     0
  1454   // Something to consider:  if the region with the best ratio is 'close to' the
  1455   // first region w/free space, choose the first region with free space
  1456   // ("first-free").  The first-free region is usually near the start of the
  1457   // heap, which means we are copying most of the heap already, so copy a bit
  1458   // more to get complete compaction.
  1459   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1460     _maximum_compaction_gc_num = total_invocations();
  1461     best_cp = full_cp;
  1463 #endif  // #if 0
  1465   return sd.region_to_addr(best_cp);
  1468 #ifndef PRODUCT
  1469 void
  1470 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
  1471                                           size_t words)
  1473   if (TraceParallelOldGCSummaryPhase) {
  1474     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
  1475                   SIZE_FORMAT, start, start + words, words);
  1478   ObjectStartArray* const start_array = _space_info[id].start_array();
  1479   CollectedHeap::fill_with_objects(start, words);
  1480   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
  1481     _mark_bitmap.mark_obj(p, words);
  1482     _summary_data.add_obj(p, words);
  1483     start_array->allocate_block(p);
  1487 void
  1488 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
  1490   ParallelCompactData& sd = summary_data();
  1491   MutableSpace* space = _space_info[id].space();
  1493   // Find the source and destination start addresses.
  1494   HeapWord* const src_addr = sd.region_align_down(start);
  1495   HeapWord* dst_addr;
  1496   if (src_addr < start) {
  1497     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  1498   } else if (src_addr > space->bottom()) {
  1499     // The start (the original top() value) is aligned to a region boundary so
  1500     // the associated region does not have a destination.  Compute the
  1501     // destination from the previous region.
  1502     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
  1503     dst_addr = cp->destination() + cp->data_size();
  1504   } else {
  1505     // Filling the entire space.
  1506     dst_addr = space->bottom();
  1508   assert(dst_addr != NULL, "sanity");
  1510   // Update the summary data.
  1511   bool result = _summary_data.summarize(_space_info[id].split_info(),
  1512                                         src_addr, space->top(), NULL,
  1513                                         dst_addr, space->end(),
  1514                                         _space_info[id].new_top_addr());
  1515   assert(result, "should not fail:  bad filler object size");
  1518 void
  1519 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
  1521   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
  1522     return;
  1525   MutableSpace* const space = _space_info[id].space();
  1526   if (space->is_empty()) {
  1527     HeapWord* b = space->bottom();
  1528     HeapWord* t = b + space->capacity_in_words() / 2;
  1529     space->set_top(t);
  1530     if (ZapUnusedHeapArea) {
  1531       space->set_top_for_allocations();
  1534     size_t min_size = CollectedHeap::min_fill_size();
  1535     size_t obj_len = min_size;
  1536     while (b + obj_len <= t) {
  1537       CollectedHeap::fill_with_object(b, obj_len);
  1538       mark_bitmap()->mark_obj(b, obj_len);
  1539       summary_data().add_obj(b, obj_len);
  1540       b += obj_len;
  1541       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
  1543     if (b < t) {
  1544       // The loop didn't completely fill to t (top); adjust top downward.
  1545       space->set_top(b);
  1546       if (ZapUnusedHeapArea) {
  1547         space->set_top_for_allocations();
  1551     HeapWord** nta = _space_info[id].new_top_addr();
  1552     bool result = summary_data().summarize(_space_info[id].split_info(),
  1553                                            space->bottom(), space->top(), NULL,
  1554                                            space->bottom(), space->end(), nta);
  1555     assert(result, "space must fit into itself");
  1559 void
  1560 PSParallelCompact::provoke_split(bool & max_compaction)
  1562   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
  1563     return;
  1566   const size_t region_size = ParallelCompactData::RegionSize;
  1567   ParallelCompactData& sd = summary_data();
  1569   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1570   MutableSpace* const from_space = _space_info[from_space_id].space();
  1571   const size_t eden_live = pointer_delta(eden_space->top(),
  1572                                          _space_info[eden_space_id].new_top());
  1573   const size_t from_live = pointer_delta(from_space->top(),
  1574                                          _space_info[from_space_id].new_top());
  1576   const size_t min_fill_size = CollectedHeap::min_fill_size();
  1577   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  1578   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  1579   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  1580   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
  1582   // Choose the space to split; need at least 2 regions live (or fillable).
  1583   SpaceId id;
  1584   MutableSpace* space;
  1585   size_t live_words;
  1586   size_t fill_words;
  1587   if (eden_live + eden_fillable >= region_size * 2) {
  1588     id = eden_space_id;
  1589     space = eden_space;
  1590     live_words = eden_live;
  1591     fill_words = eden_fillable;
  1592   } else if (from_live + from_fillable >= region_size * 2) {
  1593     id = from_space_id;
  1594     space = from_space;
  1595     live_words = from_live;
  1596     fill_words = from_fillable;
  1597   } else {
  1598     return; // Give up.
  1600   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
  1602   if (live_words < region_size * 2) {
  1603     // Fill from top() to end() w/live objects of mixed sizes.
  1604     HeapWord* const fill_start = space->top();
  1605     live_words += fill_words;
  1607     space->set_top(fill_start + fill_words);
  1608     if (ZapUnusedHeapArea) {
  1609       space->set_top_for_allocations();
  1612     HeapWord* cur_addr = fill_start;
  1613     while (fill_words > 0) {
  1614       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
  1615       size_t cur_size = MIN2(align_object_size_(r), fill_words);
  1616       if (fill_words - cur_size < min_fill_size) {
  1617         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
  1620       CollectedHeap::fill_with_object(cur_addr, cur_size);
  1621       mark_bitmap()->mark_obj(cur_addr, cur_size);
  1622       sd.add_obj(cur_addr, cur_size);
  1624       cur_addr += cur_size;
  1625       fill_words -= cur_size;
  1628     summarize_new_objects(id, fill_start);
  1631   max_compaction = false;
  1633   // Manipulate the old gen so that it has room for about half of the live data
  1634   // in the target young gen space (live_words / 2).
  1635   id = old_space_id;
  1636   space = _space_info[id].space();
  1637   const size_t free_at_end = space->free_in_words();
  1638   const size_t free_target = align_object_size(live_words / 2);
  1639   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
  1641   if (free_at_end >= free_target + min_fill_size) {
  1642     // Fill space above top() and set the dense prefix so everything survives.
  1643     HeapWord* const fill_start = space->top();
  1644     const size_t fill_size = free_at_end - free_target;
  1645     space->set_top(space->top() + fill_size);
  1646     if (ZapUnusedHeapArea) {
  1647       space->set_top_for_allocations();
  1649     fill_with_live_objects(id, fill_start, fill_size);
  1650     summarize_new_objects(id, fill_start);
  1651     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  1652   } else if (dead + free_at_end > free_target) {
  1653     // Find a dense prefix that makes the right amount of space available.
  1654     HeapWord* cur = sd.region_align_down(space->top());
  1655     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1656     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
  1657     while (dead_to_right < free_target) {
  1658       cur -= region_size;
  1659       cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1660       dead_to_right = pointer_delta(space->end(), cur_destination);
  1662     _space_info[id].set_dense_prefix(cur);
  1665 #endif // #ifndef PRODUCT
  1667 void PSParallelCompact::summarize_spaces_quick()
  1669   for (unsigned int i = 0; i < last_space_id; ++i) {
  1670     const MutableSpace* space = _space_info[i].space();
  1671     HeapWord** nta = _space_info[i].new_top_addr();
  1672     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1673                                           space->bottom(), space->top(), NULL,
  1674                                           space->bottom(), space->end(), nta);
  1675     assert(result, "space must fit into itself");
  1676     _space_info[i].set_dense_prefix(space->bottom());
  1679 #ifndef PRODUCT
  1680   if (ParallelOldGCSplitALot) {
  1681     provoke_split_fill_survivor(to_space_id);
  1683 #endif // #ifndef PRODUCT
  1686 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1688   HeapWord* const dense_prefix_end = dense_prefix(id);
  1689   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1690   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1691   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1692     // Only enough dead space is filled so that any remaining dead space to the
  1693     // left is larger than the minimum filler object.  (The remainder is filled
  1694     // during the copy/update phase.)
  1695     //
  1696     // The size of the dead space to the right of the boundary is not a
  1697     // concern, since compaction will be able to use whatever space is
  1698     // available.
  1699     //
  1700     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1701     // surrounds the space to be filled with an object.
  1702     //
  1703     // In the 32-bit VM, each bit represents two 32-bit words:
  1704     //                              +---+
  1705     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1706     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1707     //                              +---+
  1708     //
  1709     // In the 64-bit VM, each bit represents one 64-bit word:
  1710     //                              +------------+
  1711     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1712     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1713     //                              +------------+
  1714     //                          +-------+
  1715     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1716     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1717     //                          +-------+
  1718     //                      +-----------+
  1719     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1720     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1721     //                      +-----------+
  1722     //                          +-------+
  1723     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1724     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1725     //                          +-------+
  1727     // Initially assume case a, c or e will apply.
  1728     size_t obj_len = CollectedHeap::min_fill_size();
  1729     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1731 #ifdef  _LP64
  1732     if (MinObjAlignment > 1) { // object alignment > heap word size
  1733       // Cases a, c or e.
  1734     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1735       // Case b above.
  1736       obj_beg = dense_prefix_end - 1;
  1737     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1738                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1739       // Case d above.
  1740       obj_beg = dense_prefix_end - 3;
  1741       obj_len = 3;
  1743 #endif  // #ifdef _LP64
  1745     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1746     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1747     _summary_data.add_obj(obj_beg, obj_len);
  1748     assert(start_array(id) != NULL, "sanity");
  1749     start_array(id)->allocate_block(obj_beg);
  1753 void
  1754 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1756   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1757   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1758   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1759   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1760     cur->set_source_region(0);
  1764 void
  1765 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1767   assert(id < last_space_id, "id out of range");
  1768   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
  1769          ParallelOldGCSplitALot && id == old_space_id,
  1770          "should have been reset in summarize_spaces_quick()");
  1772   const MutableSpace* space = _space_info[id].space();
  1773   if (_space_info[id].new_top() != space->bottom()) {
  1774     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1775     _space_info[id].set_dense_prefix(dense_prefix_end);
  1777 #ifndef PRODUCT
  1778     if (TraceParallelOldGCDensePrefix) {
  1779       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1780                                dense_prefix_end);
  1781       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1782       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1784 #endif  // #ifndef PRODUCT
  1786     // Recompute the summary data, taking into account the dense prefix.  If
  1787     // every last byte will be reclaimed, then the existing summary data which
  1788     // compacts everything can be left in place.
  1789     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1790       // If dead space crosses the dense prefix boundary, it is (at least
  1791       // partially) filled with a dummy object, marked live and added to the
  1792       // summary data.  This simplifies the copy/update phase and must be done
  1793       // before the final locations of objects are determined, to prevent
  1794       // leaving a fragment of dead space that is too small to fill.
  1795       fill_dense_prefix_end(id);
  1797       // Compute the destination of each Region, and thus each object.
  1798       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1799       _summary_data.summarize(_space_info[id].split_info(),
  1800                               dense_prefix_end, space->top(), NULL,
  1801                               dense_prefix_end, space->end(),
  1802                               _space_info[id].new_top_addr());
  1806   if (TraceParallelOldGCSummaryPhase) {
  1807     const size_t region_size = ParallelCompactData::RegionSize;
  1808     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1809     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1810     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1811     HeapWord* const new_top = _space_info[id].new_top();
  1812     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1813     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1814     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1815                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1816                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1817                   id, space->capacity_in_words(), dense_prefix_end,
  1818                   dp_region, dp_words / region_size,
  1819                   cr_words / region_size, new_top);
  1823 #ifndef PRODUCT
  1824 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1825                                           HeapWord* dst_beg, HeapWord* dst_end,
  1826                                           SpaceId src_space_id,
  1827                                           HeapWord* src_beg, HeapWord* src_end)
  1829   if (TraceParallelOldGCSummaryPhase) {
  1830     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1831                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1832                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1833                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1834                   SIZE_FORMAT "-" SIZE_FORMAT,
  1835                   src_space_id, space_names[src_space_id],
  1836                   dst_space_id, space_names[dst_space_id],
  1837                   src_beg, src_end,
  1838                   _summary_data.addr_to_region_idx(src_beg),
  1839                   _summary_data.addr_to_region_idx(src_end),
  1840                   dst_beg, dst_end,
  1841                   _summary_data.addr_to_region_idx(dst_beg),
  1842                   _summary_data.addr_to_region_idx(dst_end));
  1845 #endif  // #ifndef PRODUCT
  1847 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1848                                       bool maximum_compaction)
  1850   GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  1851   // trace("2");
  1853 #ifdef  ASSERT
  1854   if (TraceParallelOldGCMarkingPhase) {
  1855     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1856                   "add_obj_bytes=" SIZE_FORMAT,
  1857                   add_obj_count, add_obj_size * HeapWordSize);
  1858     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1859                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1860                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1862 #endif  // #ifdef ASSERT
  1864   // Quick summarization of each space into itself, to see how much is live.
  1865   summarize_spaces_quick();
  1867   if (TraceParallelOldGCSummaryPhase) {
  1868     tty->print_cr("summary_phase:  after summarizing each space to self");
  1869     Universe::print();
  1870     NOT_PRODUCT(print_region_ranges());
  1871     if (Verbose) {
  1872       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1876   // The amount of live data that will end up in old space (assuming it fits).
  1877   size_t old_space_total_live = 0;
  1878   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1879     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1880                                           _space_info[id].space()->bottom());
  1883   MutableSpace* const old_space = _space_info[old_space_id].space();
  1884   const size_t old_capacity = old_space->capacity_in_words();
  1885   if (old_space_total_live > old_capacity) {
  1886     // XXX - should also try to expand
  1887     maximum_compaction = true;
  1889 #ifndef PRODUCT
  1890   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
  1891     provoke_split(maximum_compaction);
  1893 #endif // #ifndef PRODUCT
  1895   // Old generations.
  1896   summarize_space(old_space_id, maximum_compaction);
  1898   // Summarize the remaining spaces in the young gen.  The initial target space
  1899   // is the old gen.  If a space does not fit entirely into the target, then the
  1900   // remainder is compacted into the space itself and that space becomes the new
  1901   // target.
  1902   SpaceId dst_space_id = old_space_id;
  1903   HeapWord* dst_space_end = old_space->end();
  1904   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1905   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1906     const MutableSpace* space = _space_info[id].space();
  1907     const size_t live = pointer_delta(_space_info[id].new_top(),
  1908                                       space->bottom());
  1909     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1911     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1912                                   SpaceId(id), space->bottom(), space->top());)
  1913     if (live > 0 && live <= available) {
  1914       // All the live data will fit.
  1915       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1916                                           space->bottom(), space->top(),
  1917                                           NULL,
  1918                                           *new_top_addr, dst_space_end,
  1919                                           new_top_addr);
  1920       assert(done, "space must fit into old gen");
  1922       // Reset the new_top value for the space.
  1923       _space_info[id].set_new_top(space->bottom());
  1924     } else if (live > 0) {
  1925       // Attempt to fit part of the source space into the target space.
  1926       HeapWord* next_src_addr = NULL;
  1927       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1928                                           space->bottom(), space->top(),
  1929                                           &next_src_addr,
  1930                                           *new_top_addr, dst_space_end,
  1931                                           new_top_addr);
  1932       assert(!done, "space should not fit into old gen");
  1933       assert(next_src_addr != NULL, "sanity");
  1935       // The source space becomes the new target, so the remainder is compacted
  1936       // within the space itself.
  1937       dst_space_id = SpaceId(id);
  1938       dst_space_end = space->end();
  1939       new_top_addr = _space_info[id].new_top_addr();
  1940       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1941                                     space->bottom(), dst_space_end,
  1942                                     SpaceId(id), next_src_addr, space->top());)
  1943       done = _summary_data.summarize(_space_info[id].split_info(),
  1944                                      next_src_addr, space->top(),
  1945                                      NULL,
  1946                                      space->bottom(), dst_space_end,
  1947                                      new_top_addr);
  1948       assert(done, "space must fit when compacted into itself");
  1949       assert(*new_top_addr <= space->top(), "usage should not grow");
  1953   if (TraceParallelOldGCSummaryPhase) {
  1954     tty->print_cr("summary_phase:  after final summarization");
  1955     Universe::print();
  1956     NOT_PRODUCT(print_region_ranges());
  1957     if (Verbose) {
  1958       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1963 // This method should contain all heap-specific policy for invoking a full
  1964 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1965 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1966 // before full gc, or any other specialized behavior, it needs to be added here.
  1967 //
  1968 // Note that this method should only be called from the vm_thread while at a
  1969 // safepoint.
  1970 //
  1971 // Note that the all_soft_refs_clear flag in the collector policy
  1972 // may be true because this method can be called without intervening
  1973 // activity.  For example when the heap space is tight and full measure
  1974 // are being taken to free space.
  1975 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1976   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1977   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1978          "should be in vm thread");
  1980   ParallelScavengeHeap* heap = gc_heap();
  1981   GCCause::Cause gc_cause = heap->gc_cause();
  1982   assert(!heap->is_gc_active(), "not reentrant");
  1984   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1985   IsGCActiveMark mark;
  1987   if (ScavengeBeforeFullGC) {
  1988     PSScavenge::invoke_no_policy();
  1991   const bool clear_all_soft_refs =
  1992     heap->collector_policy()->should_clear_all_soft_refs();
  1994   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
  1995                                       maximum_heap_compaction);
  1998 // This method contains no policy. You should probably
  1999 // be calling invoke() instead.
  2000 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  2001   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  2002   assert(ref_processor() != NULL, "Sanity");
  2004   if (GC_locker::check_active_before_gc()) {
  2005     return false;
  2008   ParallelScavengeHeap* heap = gc_heap();
  2010   _gc_timer.register_gc_start();
  2011   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
  2013   TimeStamp marking_start;
  2014   TimeStamp compaction_start;
  2015   TimeStamp collection_exit;
  2017   GCCause::Cause gc_cause = heap->gc_cause();
  2018   PSYoungGen* young_gen = heap->young_gen();
  2019   PSOldGen* old_gen = heap->old_gen();
  2020   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  2022   // The scope of casr should end after code that can change
  2023   // CollectorPolicy::_should_clear_all_soft_refs.
  2024   ClearedAllSoftRefs casr(maximum_heap_compaction,
  2025                           heap->collector_policy());
  2027   if (ZapUnusedHeapArea) {
  2028     // Save information needed to minimize mangling
  2029     heap->record_gen_tops_before_GC();
  2032   heap->pre_full_gc_dump(&_gc_timer);
  2034   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  2036   // Make sure data structures are sane, make the heap parsable, and do other
  2037   // miscellaneous bookkeeping.
  2038   PreGCValues pre_gc_values;
  2039   pre_compact(&pre_gc_values);
  2041   // Get the compaction manager reserved for the VM thread.
  2042   ParCompactionManager* const vmthread_cm =
  2043     ParCompactionManager::manager_array(gc_task_manager()->workers());
  2045   // Place after pre_compact() where the number of invocations is incremented.
  2046   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  2049     ResourceMark rm;
  2050     HandleMark hm;
  2052     // Set the number of GC threads to be used in this collection
  2053     gc_task_manager()->set_active_gang();
  2054     gc_task_manager()->task_idle_workers();
  2055     heap->set_par_threads(gc_task_manager()->active_workers());
  2057     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2058     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2059     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
  2060     TraceCollectorStats tcs(counters());
  2061     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
  2063     if (TraceGen1Time) accumulated_time()->start();
  2065     // Let the size policy know we're starting
  2066     size_policy->major_collection_begin();
  2068     CodeCache::gc_prologue();
  2069     Threads::gc_prologue();
  2071     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2073     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  2074     ref_processor()->setup_policy(maximum_heap_compaction);
  2076     bool marked_for_unloading = false;
  2078     marking_start.update();
  2079     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
  2081     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
  2082       && gc_cause == GCCause::_java_lang_system_gc;
  2083     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2085     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2086     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2088     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2089     // needed by the compaction for filling holes in the dense prefix.
  2090     adjust_roots();
  2092     compaction_start.update();
  2093     compact();
  2095     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2096     // done before resizing.
  2097     post_compact();
  2099     // Let the size policy know we're done
  2100     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2102     if (UseAdaptiveSizePolicy) {
  2103       if (PrintAdaptiveSizePolicy) {
  2104         gclog_or_tty->print("AdaptiveSizeStart: ");
  2105         gclog_or_tty->stamp();
  2106         gclog_or_tty->print_cr(" collection: %d ",
  2107                        heap->total_collections());
  2108         if (Verbose) {
  2109           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
  2110             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
  2114       // Don't check if the size_policy is ready here.  Let
  2115       // the size_policy check that internally.
  2116       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2117           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2118             UseAdaptiveSizePolicyWithSystemGC)) {
  2119         // Calculate optimal free space amounts
  2120         assert(young_gen->max_size() >
  2121           young_gen->from_space()->capacity_in_bytes() +
  2122           young_gen->to_space()->capacity_in_bytes(),
  2123           "Sizes of space in young gen are out-of-bounds");
  2125         size_t young_live = young_gen->used_in_bytes();
  2126         size_t eden_live = young_gen->eden_space()->used_in_bytes();
  2127         size_t old_live = old_gen->used_in_bytes();
  2128         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
  2129         size_t max_old_gen_size = old_gen->max_gen_size();
  2130         size_t max_eden_size = young_gen->max_size() -
  2131           young_gen->from_space()->capacity_in_bytes() -
  2132           young_gen->to_space()->capacity_in_bytes();
  2134         // Used for diagnostics
  2135         size_policy->clear_generation_free_space_flags();
  2137         size_policy->compute_generations_free_space(young_live,
  2138                                                     eden_live,
  2139                                                     old_live,
  2140                                                     cur_eden,
  2141                                                     max_old_gen_size,
  2142                                                     max_eden_size,
  2143                                                     true /* full gc*/);
  2145         size_policy->check_gc_overhead_limit(young_live,
  2146                                              eden_live,
  2147                                              max_old_gen_size,
  2148                                              max_eden_size,
  2149                                              true /* full gc*/,
  2150                                              gc_cause,
  2151                                              heap->collector_policy());
  2153         size_policy->decay_supplemental_growth(true /* full gc*/);
  2155         heap->resize_old_gen(
  2156           size_policy->calculated_old_free_size_in_bytes());
  2158         // Don't resize the young generation at an major collection.  A
  2159         // desired young generation size may have been calculated but
  2160         // resizing the young generation complicates the code because the
  2161         // resizing of the old generation may have moved the boundary
  2162         // between the young generation and the old generation.  Let the
  2163         // young generation resizing happen at the minor collections.
  2165       if (PrintAdaptiveSizePolicy) {
  2166         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2167                        heap->total_collections());
  2171     if (UsePerfData) {
  2172       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2173       counters->update_counters();
  2174       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2175       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2178     heap->resize_all_tlabs();
  2180     // Resize the metaspace capactiy after a collection
  2181     MetaspaceGC::compute_new_size();
  2183     if (TraceGen1Time) accumulated_time()->stop();
  2185     if (PrintGC) {
  2186       if (PrintGCDetails) {
  2187         // No GC timestamp here.  This is after GC so it would be confusing.
  2188         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2189         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2190         heap->print_heap_change(pre_gc_values.heap_used());
  2191         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
  2192       } else {
  2193         heap->print_heap_change(pre_gc_values.heap_used());
  2197     // Track memory usage and detect low memory
  2198     MemoryService::track_memory_usage();
  2199     heap->update_counters();
  2200     gc_task_manager()->release_idle_workers();
  2203 #ifdef ASSERT
  2204   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
  2205     ParCompactionManager* const cm =
  2206       ParCompactionManager::manager_array(int(i));
  2207     assert(cm->marking_stack()->is_empty(),       "should be empty");
  2208     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
  2210 #endif // ASSERT
  2212   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2213     HandleMark hm;  // Discard invalid handles created during verification
  2214     Universe::verify(" VerifyAfterGC:");
  2217   // Re-verify object start arrays
  2218   if (VerifyObjectStartArray &&
  2219       VerifyAfterGC) {
  2220     old_gen->verify_object_start_array();
  2223   if (ZapUnusedHeapArea) {
  2224     old_gen->object_space()->check_mangled_unused_area_complete();
  2227   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2229   collection_exit.update();
  2231   heap->print_heap_after_gc();
  2232   heap->trace_heap_after_gc(&_gc_tracer);
  2234   if (PrintGCTaskTimeStamps) {
  2235     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2236                            INT64_FORMAT,
  2237                            marking_start.ticks(), compaction_start.ticks(),
  2238                            collection_exit.ticks());
  2239     gc_task_manager()->print_task_time_stamps();
  2242   heap->post_full_gc_dump(&_gc_timer);
  2244 #ifdef TRACESPINNING
  2245   ParallelTaskTerminator::print_termination_counts();
  2246 #endif
  2248   _gc_timer.register_gc_end();
  2250   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
  2251   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
  2253   return true;
  2256 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2257                                              PSYoungGen* young_gen,
  2258                                              PSOldGen* old_gen) {
  2259   MutableSpace* const eden_space = young_gen->eden_space();
  2260   assert(!eden_space->is_empty(), "eden must be non-empty");
  2261   assert(young_gen->virtual_space()->alignment() ==
  2262          old_gen->virtual_space()->alignment(), "alignments do not match");
  2264   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2265     return false;
  2268   // Both generations must be completely committed.
  2269   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2270     return false;
  2272   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2273     return false;
  2276   // Figure out how much to take from eden.  Include the average amount promoted
  2277   // in the total; otherwise the next young gen GC will simply bail out to a
  2278   // full GC.
  2279   const size_t alignment = old_gen->virtual_space()->alignment();
  2280   const size_t eden_used = eden_space->used_in_bytes();
  2281   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2282   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2283   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2285   if (absorb_size >= eden_capacity) {
  2286     return false; // Must leave some space in eden.
  2289   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2290   if (new_young_size < young_gen->min_gen_size()) {
  2291     return false; // Respect young gen minimum size.
  2294   if (TraceAdaptiveGCBoundary && Verbose) {
  2295     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2296                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2297                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2298                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2299                         absorb_size / K,
  2300                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2301                         young_gen->from_space()->used_in_bytes() / K,
  2302                         young_gen->to_space()->used_in_bytes() / K,
  2303                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2306   // Fill the unused part of the old gen.
  2307   MutableSpace* const old_space = old_gen->object_space();
  2308   HeapWord* const unused_start = old_space->top();
  2309   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2311   if (unused_words > 0) {
  2312     if (unused_words < CollectedHeap::min_fill_size()) {
  2313       return false;  // If the old gen cannot be filled, must give up.
  2315     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2318   // Take the live data from eden and set both top and end in the old gen to
  2319   // eden top.  (Need to set end because reset_after_change() mangles the region
  2320   // from end to virtual_space->high() in debug builds).
  2321   HeapWord* const new_top = eden_space->top();
  2322   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2323                                         absorb_size);
  2324   young_gen->reset_after_change();
  2325   old_space->set_top(new_top);
  2326   old_space->set_end(new_top);
  2327   old_gen->reset_after_change();
  2329   // Update the object start array for the filler object and the data from eden.
  2330   ObjectStartArray* const start_array = old_gen->start_array();
  2331   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2332     start_array->allocate_block(p);
  2335   // Could update the promoted average here, but it is not typically updated at
  2336   // full GCs and the value to use is unclear.  Something like
  2337   //
  2338   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2340   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2341   return true;
  2344 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2345   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2346     "shouldn't return NULL");
  2347   return ParallelScavengeHeap::gc_task_manager();
  2350 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2351                                       bool maximum_heap_compaction,
  2352                                       ParallelOldTracer *gc_tracer) {
  2353   // Recursively traverse all live objects and mark them
  2354   GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2356   ParallelScavengeHeap* heap = gc_heap();
  2357   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2358   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2359   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2360   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2362   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2363   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2365   // Need new claim bits before marking starts.
  2366   ClassLoaderDataGraph::clear_claimed_marks();
  2369     GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2371     ParallelScavengeHeap::ParStrongRootsScope psrs;
  2373     GCTaskQueue* q = GCTaskQueue::create();
  2375     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2376     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2377     // We scan the thread roots in parallel
  2378     Threads::create_thread_roots_marking_tasks(q);
  2379     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2380     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2381     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2382     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2383     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
  2384     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2385     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
  2387     if (active_gc_threads > 1) {
  2388       for (uint j = 0; j < active_gc_threads; j++) {
  2389         q->enqueue(new StealMarkingTask(&terminator));
  2393     gc_task_manager()->execute_and_wait(q);
  2396   // Process reference objects found during marking
  2398     GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2400     ReferenceProcessorStats stats;
  2401     if (ref_processor()->processing_is_mt()) {
  2402       RefProcTaskExecutor task_executor;
  2403       stats = ref_processor()->process_discovered_references(
  2404         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2405         &task_executor, &_gc_timer, _gc_tracer.gc_id());
  2406     } else {
  2407       stats = ref_processor()->process_discovered_references(
  2408         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
  2409         &_gc_timer, _gc_tracer.gc_id());
  2412     gc_tracer->report_gc_reference_stats(stats);
  2415   GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2417   // This is the point where the entire marking should have completed.
  2418   assert(cm->marking_stacks_empty(), "Marking should have completed");
  2420   // Follow system dictionary roots and unload classes.
  2421   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2423   // Unload nmethods.
  2424   CodeCache::do_unloading(is_alive_closure(), purged_class);
  2426   // Prune dead klasses from subklass/sibling/implementor lists.
  2427   Klass::clean_weak_klass_links(is_alive_closure());
  2429   // Delete entries for dead interned strings.
  2430   StringTable::unlink(is_alive_closure());
  2432   // Clean up unreferenced symbols in symbol table.
  2433   SymbolTable::unlink();
  2434   _gc_tracer.report_object_count_after_gc(is_alive_closure());
  2437 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
  2438                                             ClassLoaderData* cld) {
  2439   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2440   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
  2442   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
  2445 // This should be moved to the shared markSweep code!
  2446 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2447 public:
  2448   bool do_object_b(oop p) { return true; }
  2449 };
  2450 static PSAlwaysTrueClosure always_true;
  2452 void PSParallelCompact::adjust_roots() {
  2453   // Adjust the pointers to reflect the new locations
  2454   GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2456   // Need new claim bits when tracing through and adjusting pointers.
  2457   ClassLoaderDataGraph::clear_claimed_marks();
  2459   // General strong roots.
  2460   Universe::oops_do(adjust_pointer_closure());
  2461   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
  2462   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
  2463   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
  2464   ObjectSynchronizer::oops_do(adjust_pointer_closure());
  2465   FlatProfiler::oops_do(adjust_pointer_closure());
  2466   Management::oops_do(adjust_pointer_closure());
  2467   JvmtiExport::oops_do(adjust_pointer_closure());
  2468   SystemDictionary::oops_do(adjust_pointer_closure());
  2469   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
  2471   // Now adjust pointers in remaining weak roots.  (All of which should
  2472   // have been cleared if they pointed to non-surviving objects.)
  2473   // Global (weak) JNI handles
  2474   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
  2476   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
  2477   CodeCache::blobs_do(&adjust_from_blobs);
  2478   StringTable::oops_do(adjust_pointer_closure());
  2479   ref_processor()->weak_oops_do(adjust_pointer_closure());
  2480   // Roots were visited so references into the young gen in roots
  2481   // may have been scanned.  Process them also.
  2482   // Should the reference processor have a span that excludes
  2483   // young gen objects?
  2484   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
  2487 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2488                                                       uint parallel_gc_threads)
  2490   GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2492   // Find the threads that are active
  2493   unsigned int which = 0;
  2495   const uint task_count = MAX2(parallel_gc_threads, 1U);
  2496   for (uint j = 0; j < task_count; j++) {
  2497     q->enqueue(new DrainStacksCompactionTask(j));
  2498     ParCompactionManager::verify_region_list_empty(j);
  2499     // Set the region stacks variables to "no" region stack values
  2500     // so that they will be recognized and needing a region stack
  2501     // in the stealing tasks if they do not get one by executing
  2502     // a draining stack.
  2503     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
  2504     cm->set_region_stack(NULL);
  2505     cm->set_region_stack_index((uint)max_uintx);
  2507   ParCompactionManager::reset_recycled_stack_index();
  2509   // Find all regions that are available (can be filled immediately) and
  2510   // distribute them to the thread stacks.  The iteration is done in reverse
  2511   // order (high to low) so the regions will be removed in ascending order.
  2513   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2515   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2516   // A region index which corresponds to the tasks created above.
  2517   // "which" must be 0 <= which < task_count
  2519   which = 0;
  2520   // id + 1 is used to test termination so unsigned  can
  2521   // be used with an old_space_id == 0.
  2522   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
  2523     SpaceInfo* const space_info = _space_info + id;
  2524     MutableSpace* const space = space_info->space();
  2525     HeapWord* const new_top = space_info->new_top();
  2527     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2528     const size_t end_region =
  2529       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2531     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
  2532       if (sd.region(cur)->claim_unsafe()) {
  2533         ParCompactionManager::region_list_push(which, cur);
  2535         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2536           const size_t count_mod_8 = fillable_regions & 7;
  2537           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2538           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2539           if (count_mod_8 == 7) gclog_or_tty->cr();
  2542         NOT_PRODUCT(++fillable_regions;)
  2544         // Assign regions to tasks in round-robin fashion.
  2545         if (++which == task_count) {
  2546           assert(which <= parallel_gc_threads,
  2547             "Inconsistent number of workers");
  2548           which = 0;
  2554   if (TraceParallelOldGCCompactionPhase) {
  2555     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2556     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2560 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2562 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2563                                                     uint parallel_gc_threads) {
  2564   GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2566   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2568   // Iterate over all the spaces adding tasks for updating
  2569   // regions in the dense prefix.  Assume that 1 gc thread
  2570   // will work on opening the gaps and the remaining gc threads
  2571   // will work on the dense prefix.
  2572   unsigned int space_id;
  2573   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2574     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2575     const MutableSpace* const space = _space_info[space_id].space();
  2577     if (dense_prefix_end == space->bottom()) {
  2578       // There is no dense prefix for this space.
  2579       continue;
  2582     // The dense prefix is before this region.
  2583     size_t region_index_end_dense_prefix =
  2584         sd.addr_to_region_idx(dense_prefix_end);
  2585     RegionData* const dense_prefix_cp =
  2586       sd.region(region_index_end_dense_prefix);
  2587     assert(dense_prefix_end == space->end() ||
  2588            dense_prefix_cp->available() ||
  2589            dense_prefix_cp->claimed(),
  2590            "The region after the dense prefix should always be ready to fill");
  2592     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2594     // Is there dense prefix work?
  2595     size_t total_dense_prefix_regions =
  2596       region_index_end_dense_prefix - region_index_start;
  2597     // How many regions of the dense prefix should be given to
  2598     // each thread?
  2599     if (total_dense_prefix_regions > 0) {
  2600       uint tasks_for_dense_prefix = 1;
  2601       if (total_dense_prefix_regions <=
  2602           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2603         // Don't over partition.  This assumes that
  2604         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2605         // so there are not many regions to process.
  2606         tasks_for_dense_prefix = parallel_gc_threads;
  2607       } else {
  2608         // Over partition
  2609         tasks_for_dense_prefix = parallel_gc_threads *
  2610           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2612       size_t regions_per_thread = total_dense_prefix_regions /
  2613         tasks_for_dense_prefix;
  2614       // Give each thread at least 1 region.
  2615       if (regions_per_thread == 0) {
  2616         regions_per_thread = 1;
  2619       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2620         if (region_index_start >= region_index_end_dense_prefix) {
  2621           break;
  2623         // region_index_end is not processed
  2624         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2625                                        region_index_end_dense_prefix);
  2626         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2627                                              region_index_start,
  2628                                              region_index_end));
  2629         region_index_start = region_index_end;
  2632     // This gets any part of the dense prefix that did not
  2633     // fit evenly.
  2634     if (region_index_start < region_index_end_dense_prefix) {
  2635       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2636                                            region_index_start,
  2637                                            region_index_end_dense_prefix));
  2642 void PSParallelCompact::enqueue_region_stealing_tasks(
  2643                                      GCTaskQueue* q,
  2644                                      ParallelTaskTerminator* terminator_ptr,
  2645                                      uint parallel_gc_threads) {
  2646   GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2648   // Once a thread has drained it's stack, it should try to steal regions from
  2649   // other threads.
  2650   if (parallel_gc_threads > 1) {
  2651     for (uint j = 0; j < parallel_gc_threads; j++) {
  2652       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2657 #ifdef ASSERT
  2658 // Write a histogram of the number of times the block table was filled for a
  2659 // region.
  2660 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
  2662   if (!TraceParallelOldGCCompactionPhase) return;
  2664   typedef ParallelCompactData::RegionData rd_t;
  2665   ParallelCompactData& sd = summary_data();
  2667   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2668     MutableSpace* const spc = _space_info[id].space();
  2669     if (spc->bottom() != spc->top()) {
  2670       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
  2671       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
  2672       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
  2674       size_t histo[5] = { 0, 0, 0, 0, 0 };
  2675       const size_t histo_len = sizeof(histo) / sizeof(size_t);
  2676       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
  2678       for (const rd_t* cur = beg; cur < end; ++cur) {
  2679         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
  2681       out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
  2682       for (size_t i = 0; i < histo_len; ++i) {
  2683         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
  2684                    histo[i], 100.0 * histo[i] / region_cnt);
  2686       out->cr();
  2690 #endif // #ifdef ASSERT
  2692 void PSParallelCompact::compact() {
  2693   // trace("5");
  2694   GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2696   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2697   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2698   PSOldGen* old_gen = heap->old_gen();
  2699   old_gen->start_array()->reset();
  2700   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2701   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2702   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2703   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2705   GCTaskQueue* q = GCTaskQueue::create();
  2706   enqueue_region_draining_tasks(q, active_gc_threads);
  2707   enqueue_dense_prefix_tasks(q, active_gc_threads);
  2708   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
  2711     GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2713     gc_task_manager()->execute_and_wait(q);
  2715 #ifdef  ASSERT
  2716     // Verify that all regions have been processed before the deferred updates.
  2717     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2718       verify_complete(SpaceId(id));
  2720 #endif
  2724     // Update the deferred objects, if any.  Any compaction manager can be used.
  2725     GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
  2726     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2727     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2728       update_deferred_objects(cm, SpaceId(id));
  2732   DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
  2735 #ifdef  ASSERT
  2736 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2737   // All Regions between space bottom() to new_top() should be marked as filled
  2738   // and all Regions between new_top() and top() should be available (i.e.,
  2739   // should have been emptied).
  2740   ParallelCompactData& sd = summary_data();
  2741   SpaceInfo si = _space_info[space_id];
  2742   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2743   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2744   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2745   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2746   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2748   bool issued_a_warning = false;
  2750   size_t cur_region;
  2751   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2752     const RegionData* const c = sd.region(cur_region);
  2753     if (!c->completed()) {
  2754       warning("region " SIZE_FORMAT " not filled:  "
  2755               "destination_count=" SIZE_FORMAT,
  2756               cur_region, c->destination_count());
  2757       issued_a_warning = true;
  2761   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2762     const RegionData* const c = sd.region(cur_region);
  2763     if (!c->available()) {
  2764       warning("region " SIZE_FORMAT " not empty:   "
  2765               "destination_count=" SIZE_FORMAT,
  2766               cur_region, c->destination_count());
  2767       issued_a_warning = true;
  2771   if (issued_a_warning) {
  2772     print_region_ranges();
  2775 #endif  // #ifdef ASSERT
  2777 // Update interior oops in the ranges of regions [beg_region, end_region).
  2778 void
  2779 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2780                                                        SpaceId space_id,
  2781                                                        size_t beg_region,
  2782                                                        size_t end_region) {
  2783   ParallelCompactData& sd = summary_data();
  2784   ParMarkBitMap* const mbm = mark_bitmap();
  2786   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2787   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2788   assert(beg_region <= end_region, "bad region range");
  2789   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2791 #ifdef  ASSERT
  2792   // Claim the regions to avoid triggering an assert when they are marked as
  2793   // filled.
  2794   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2795     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2797 #endif  // #ifdef ASSERT
  2799   if (beg_addr != space(space_id)->bottom()) {
  2800     // Find the first live object or block of dead space that *starts* in this
  2801     // range of regions.  If a partial object crosses onto the region, skip it;
  2802     // it will be marked for 'deferred update' when the object head is
  2803     // processed.  If dead space crosses onto the region, it is also skipped; it
  2804     // will be filled when the prior region is processed.  If neither of those
  2805     // apply, the first word in the region is the start of a live object or dead
  2806     // space.
  2807     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2808     const RegionData* const cp = sd.region(beg_region);
  2809     if (cp->partial_obj_size() != 0) {
  2810       beg_addr = sd.partial_obj_end(beg_region);
  2811     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2812       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2816   if (beg_addr < end_addr) {
  2817     // A live object or block of dead space starts in this range of Regions.
  2818      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2820     // Create closures and iterate.
  2821     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2822     FillClosure fill_closure(cm, space_id);
  2823     ParMarkBitMap::IterationStatus status;
  2824     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2825                           dense_prefix_end);
  2826     if (status == ParMarkBitMap::incomplete) {
  2827       update_closure.do_addr(update_closure.source());
  2831   // Mark the regions as filled.
  2832   RegionData* const beg_cp = sd.region(beg_region);
  2833   RegionData* const end_cp = sd.region(end_region);
  2834   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2835     cp->set_completed();
  2839 // Return the SpaceId for the space containing addr.  If addr is not in the
  2840 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2841 // in the heap and asserts such.
  2842 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2843   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2845   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2846     if (_space_info[id].space()->contains(addr)) {
  2847       return SpaceId(id);
  2851   assert(false, "no space contains the addr");
  2852   return last_space_id;
  2855 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2856                                                 SpaceId id) {
  2857   assert(id < last_space_id, "bad space id");
  2859   ParallelCompactData& sd = summary_data();
  2860   const SpaceInfo* const space_info = _space_info + id;
  2861   ObjectStartArray* const start_array = space_info->start_array();
  2863   const MutableSpace* const space = space_info->space();
  2864   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2865   HeapWord* const beg_addr = space_info->dense_prefix();
  2866   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2868   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2869   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2870   const RegionData* cur_region;
  2871   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2872     HeapWord* const addr = cur_region->deferred_obj_addr();
  2873     if (addr != NULL) {
  2874       if (start_array != NULL) {
  2875         start_array->allocate_block(addr);
  2877       oop(addr)->update_contents(cm);
  2878       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2883 // Skip over count live words starting from beg, and return the address of the
  2884 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2885 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2886 // an object, or account for those live words in some other way.  Callers must
  2887 // also ensure that there are enough live words in the range [beg, end) to skip.
  2888 HeapWord*
  2889 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2891   assert(count > 0, "sanity");
  2893   ParMarkBitMap* m = mark_bitmap();
  2894   idx_t bits_to_skip = m->words_to_bits(count);
  2895   idx_t cur_beg = m->addr_to_bit(beg);
  2896   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2898   do {
  2899     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2900     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2901     const size_t obj_bits = cur_end - cur_beg + 1;
  2902     if (obj_bits > bits_to_skip) {
  2903       return m->bit_to_addr(cur_beg + bits_to_skip);
  2905     bits_to_skip -= obj_bits;
  2906     cur_beg = cur_end + 1;
  2907   } while (bits_to_skip > 0);
  2909   // Skipping the desired number of words landed just past the end of an object.
  2910   // Find the start of the next object.
  2911   cur_beg = m->find_obj_beg(cur_beg, search_end);
  2912   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  2913   return m->bit_to_addr(cur_beg);
  2916 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  2917                                             SpaceId src_space_id,
  2918                                             size_t src_region_idx)
  2920   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  2922   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  2923   if (split_info.dest_region_addr() == dest_addr) {
  2924     // The partial object ending at the split point contains the first word to
  2925     // be copied to dest_addr.
  2926     return split_info.first_src_addr();
  2929   const ParallelCompactData& sd = summary_data();
  2930   ParMarkBitMap* const bitmap = mark_bitmap();
  2931   const size_t RegionSize = ParallelCompactData::RegionSize;
  2933   assert(sd.is_region_aligned(dest_addr), "not aligned");
  2934   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  2935   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  2936   HeapWord* const src_region_destination = src_region_ptr->destination();
  2938   assert(dest_addr >= src_region_destination, "wrong src region");
  2939   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  2941   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  2942   HeapWord* const src_region_end = src_region_beg + RegionSize;
  2944   HeapWord* addr = src_region_beg;
  2945   if (dest_addr == src_region_destination) {
  2946     // Return the first live word in the source region.
  2947     if (partial_obj_size == 0) {
  2948       addr = bitmap->find_obj_beg(addr, src_region_end);
  2949       assert(addr < src_region_end, "no objects start in src region");
  2951     return addr;
  2954   // Must skip some live data.
  2955   size_t words_to_skip = dest_addr - src_region_destination;
  2956   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  2958   if (partial_obj_size >= words_to_skip) {
  2959     // All the live words to skip are part of the partial object.
  2960     addr += words_to_skip;
  2961     if (partial_obj_size == words_to_skip) {
  2962       // Find the first live word past the partial object.
  2963       addr = bitmap->find_obj_beg(addr, src_region_end);
  2964       assert(addr < src_region_end, "wrong src region");
  2966     return addr;
  2969   // Skip over the partial object (if any).
  2970   if (partial_obj_size != 0) {
  2971     words_to_skip -= partial_obj_size;
  2972     addr += partial_obj_size;
  2975   // Skip over live words due to objects that start in the region.
  2976   addr = skip_live_words(addr, src_region_end, words_to_skip);
  2977   assert(addr < src_region_end, "wrong src region");
  2978   return addr;
  2981 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  2982                                                      SpaceId src_space_id,
  2983                                                      size_t beg_region,
  2984                                                      HeapWord* end_addr)
  2986   ParallelCompactData& sd = summary_data();
  2988 #ifdef ASSERT
  2989   MutableSpace* const src_space = _space_info[src_space_id].space();
  2990   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  2991   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
  2992          "src_space_id does not match beg_addr");
  2993   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
  2994          "src_space_id does not match end_addr");
  2995 #endif // #ifdef ASSERT
  2997   RegionData* const beg = sd.region(beg_region);
  2998   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
  3000   // Regions up to new_top() are enqueued if they become available.
  3001   HeapWord* const new_top = _space_info[src_space_id].new_top();
  3002   RegionData* const enqueue_end =
  3003     sd.addr_to_region_ptr(sd.region_align_up(new_top));
  3005   for (RegionData* cur = beg; cur < end; ++cur) {
  3006     assert(cur->data_size() > 0, "region must have live data");
  3007     cur->decrement_destination_count();
  3008     if (cur < enqueue_end && cur->available() && cur->claim()) {
  3009       cm->push_region(sd.region(cur));
  3014 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  3015                                           SpaceId& src_space_id,
  3016                                           HeapWord*& src_space_top,
  3017                                           HeapWord* end_addr)
  3019   typedef ParallelCompactData::RegionData RegionData;
  3021   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3022   const size_t region_size = ParallelCompactData::RegionSize;
  3024   size_t src_region_idx = 0;
  3026   // Skip empty regions (if any) up to the top of the space.
  3027   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  3028   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  3029   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  3030   const RegionData* const top_region_ptr =
  3031     sd.addr_to_region_ptr(top_aligned_up);
  3032   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  3033     ++src_region_ptr;
  3036   if (src_region_ptr < top_region_ptr) {
  3037     // The next source region is in the current space.  Update src_region_idx
  3038     // and the source address to match src_region_ptr.
  3039     src_region_idx = sd.region(src_region_ptr);
  3040     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  3041     if (src_region_addr > closure.source()) {
  3042       closure.set_source(src_region_addr);
  3044     return src_region_idx;
  3047   // Switch to a new source space and find the first non-empty region.
  3048   unsigned int space_id = src_space_id + 1;
  3049   assert(space_id < last_space_id, "not enough spaces");
  3051   HeapWord* const destination = closure.destination();
  3053   do {
  3054     MutableSpace* space = _space_info[space_id].space();
  3055     HeapWord* const bottom = space->bottom();
  3056     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  3058     // Iterate over the spaces that do not compact into themselves.
  3059     if (bottom_cp->destination() != bottom) {
  3060       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  3061       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  3063       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3064         if (src_cp->live_obj_size() > 0) {
  3065           // Found it.
  3066           assert(src_cp->destination() == destination,
  3067                  "first live obj in the space must match the destination");
  3068           assert(src_cp->partial_obj_size() == 0,
  3069                  "a space cannot begin with a partial obj");
  3071           src_space_id = SpaceId(space_id);
  3072           src_space_top = space->top();
  3073           const size_t src_region_idx = sd.region(src_cp);
  3074           closure.set_source(sd.region_to_addr(src_region_idx));
  3075           return src_region_idx;
  3076         } else {
  3077           assert(src_cp->data_size() == 0, "sanity");
  3081   } while (++space_id < last_space_id);
  3083   assert(false, "no source region was found");
  3084   return 0;
  3087 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  3089   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3090   const size_t RegionSize = ParallelCompactData::RegionSize;
  3091   ParMarkBitMap* const bitmap = mark_bitmap();
  3092   ParallelCompactData& sd = summary_data();
  3093   RegionData* const region_ptr = sd.region(region_idx);
  3095   // Get the items needed to construct the closure.
  3096   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  3097   SpaceId dest_space_id = space_id(dest_addr);
  3098   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3099   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3100   assert(dest_addr < new_top, "sanity");
  3101   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  3103   // Get the source region and related info.
  3104   size_t src_region_idx = region_ptr->source_region();
  3105   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  3106   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3108   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3109   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  3111   // Adjust src_region_idx to prepare for decrementing destination counts (the
  3112   // destination count is not decremented when a region is copied to itself).
  3113   if (src_region_idx == region_idx) {
  3114     src_region_idx += 1;
  3117   if (bitmap->is_unmarked(closure.source())) {
  3118     // The first source word is in the middle of an object; copy the remainder
  3119     // of the object or as much as will fit.  The fact that pointer updates were
  3120     // deferred will be noted when the object header is processed.
  3121     HeapWord* const old_src_addr = closure.source();
  3122     closure.copy_partial_obj();
  3123     if (closure.is_full()) {
  3124       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3125                                    closure.source());
  3126       region_ptr->set_deferred_obj_addr(NULL);
  3127       region_ptr->set_completed();
  3128       return;
  3131     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3132     if (sd.region_align_down(old_src_addr) != end_addr) {
  3133       // The partial object was copied from more than one source region.
  3134       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3136       // Move to the next source region, possibly switching spaces as well.  All
  3137       // args except end_addr may be modified.
  3138       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3139                                        end_addr);
  3143   do {
  3144     HeapWord* const cur_addr = closure.source();
  3145     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3146                                     src_space_top);
  3147     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3149     if (status == ParMarkBitMap::incomplete) {
  3150       // The last obj that starts in the source region does not end in the
  3151       // region.
  3152       assert(closure.source() < end_addr, "sanity");
  3153       HeapWord* const obj_beg = closure.source();
  3154       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3155                                        src_space_top);
  3156       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3157       if (obj_end < range_end) {
  3158         // The end was found; the entire object will fit.
  3159         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3160         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3161       } else {
  3162         // The end was not found; the object will not fit.
  3163         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3164         status = ParMarkBitMap::would_overflow;
  3168     if (status == ParMarkBitMap::would_overflow) {
  3169       // The last object did not fit.  Note that interior oop updates were
  3170       // deferred, then copy enough of the object to fill the region.
  3171       region_ptr->set_deferred_obj_addr(closure.destination());
  3172       status = closure.copy_until_full(); // copies from closure.source()
  3174       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3175                                    closure.source());
  3176       region_ptr->set_completed();
  3177       return;
  3180     if (status == ParMarkBitMap::full) {
  3181       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3182                                    closure.source());
  3183       region_ptr->set_deferred_obj_addr(NULL);
  3184       region_ptr->set_completed();
  3185       return;
  3188     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3190     // Move to the next source region, possibly switching spaces as well.  All
  3191     // args except end_addr may be modified.
  3192     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3193                                      end_addr);
  3194   } while (true);
  3197 void PSParallelCompact::fill_blocks(size_t region_idx)
  3199   // Fill in the block table elements for the specified region.  Each block
  3200   // table element holds the number of live words in the region that are to the
  3201   // left of the first object that starts in the block.  Thus only blocks in
  3202   // which an object starts need to be filled.
  3203   //
  3204   // The algorithm scans the section of the bitmap that corresponds to the
  3205   // region, keeping a running total of the live words.  When an object start is
  3206   // found, if it's the first to start in the block that contains it, the
  3207   // current total is written to the block table element.
  3208   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
  3209   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
  3210   const size_t RegionSize = ParallelCompactData::RegionSize;
  3212   ParallelCompactData& sd = summary_data();
  3213   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
  3214   if (partial_obj_size >= RegionSize) {
  3215     return; // No objects start in this region.
  3218   // Ensure the first loop iteration decides that the block has changed.
  3219   size_t cur_block = sd.block_count();
  3221   const ParMarkBitMap* const bitmap = mark_bitmap();
  3223   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
  3224   assert((size_t)1 << Log2BitsPerBlock ==
  3225          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
  3227   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
  3228   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
  3229   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
  3230   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
  3231   while (beg_bit < range_end) {
  3232     const size_t new_block = beg_bit >> Log2BitsPerBlock;
  3233     if (new_block != cur_block) {
  3234       cur_block = new_block;
  3235       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
  3238     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
  3239     if (end_bit < range_end - 1) {
  3240       live_bits += end_bit - beg_bit + 1;
  3241       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
  3242     } else {
  3243       return;
  3248 void
  3249 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3250   const MutableSpace* sp = space(space_id);
  3251   if (sp->is_empty()) {
  3252     return;
  3255   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3256   ParMarkBitMap* const bitmap = mark_bitmap();
  3257   HeapWord* const dp_addr = dense_prefix(space_id);
  3258   HeapWord* beg_addr = sp->bottom();
  3259   HeapWord* end_addr = sp->top();
  3261   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3263   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3264   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3265   if (beg_region < dp_region) {
  3266     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3269   // The destination of the first live object that starts in the region is one
  3270   // past the end of the partial object entering the region (if any).
  3271   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3272   HeapWord* const new_top = _space_info[space_id].new_top();
  3273   assert(new_top >= dest_addr, "bad new_top value");
  3274   const size_t words = pointer_delta(new_top, dest_addr);
  3276   if (words > 0) {
  3277     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3278     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3280     ParMarkBitMap::IterationStatus status;
  3281     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3282     assert(status == ParMarkBitMap::full, "iteration not complete");
  3283     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3284            "live objects skipped because closure is full");
  3288 jlong PSParallelCompact::millis_since_last_gc() {
  3289   // We need a monotonically non-deccreasing time in ms but
  3290   // os::javaTimeMillis() does not guarantee monotonicity.
  3291   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3292   jlong ret_val = now - _time_of_last_gc;
  3293   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3294   if (ret_val < 0) {
  3295     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
  3296     return 0;
  3298   return ret_val;
  3301 void PSParallelCompact::reset_millis_since_last_gc() {
  3302   // We need a monotonically non-deccreasing time in ms but
  3303   // os::javaTimeMillis() does not guarantee monotonicity.
  3304   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3307 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3309   if (source() != destination()) {
  3310     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3311     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3313   update_state(words_remaining());
  3314   assert(is_full(), "sanity");
  3315   return ParMarkBitMap::full;
  3318 void MoveAndUpdateClosure::copy_partial_obj()
  3320   size_t words = words_remaining();
  3322   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3323   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3324   if (end_addr < range_end) {
  3325     words = bitmap()->obj_size(source(), end_addr);
  3328   // This test is necessary; if omitted, the pointer updates to a partial object
  3329   // that crosses the dense prefix boundary could be overwritten.
  3330   if (source() != destination()) {
  3331     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3332     Copy::aligned_conjoint_words(source(), destination(), words);
  3334   update_state(words);
  3337 ParMarkBitMapClosure::IterationStatus
  3338 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3339   assert(destination() != NULL, "sanity");
  3340   assert(bitmap()->obj_size(addr) == words, "bad size");
  3342   _source = addr;
  3343   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3344          destination(), "wrong destination");
  3346   if (words > words_remaining()) {
  3347     return ParMarkBitMap::would_overflow;
  3350   // The start_array must be updated even if the object is not moving.
  3351   if (_start_array != NULL) {
  3352     _start_array->allocate_block(destination());
  3355   if (destination() != source()) {
  3356     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3357     Copy::aligned_conjoint_words(source(), destination(), words);
  3360   oop moved_oop = (oop) destination();
  3361   moved_oop->update_contents(compaction_manager());
  3362   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3364   update_state(words);
  3365   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3366   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3369 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3370                                      ParCompactionManager* cm,
  3371                                      PSParallelCompact::SpaceId space_id) :
  3372   ParMarkBitMapClosure(mbm, cm),
  3373   _space_id(space_id),
  3374   _start_array(PSParallelCompact::start_array(space_id))
  3378 // Updates the references in the object to their new values.
  3379 ParMarkBitMapClosure::IterationStatus
  3380 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3381   do_addr(addr);
  3382   return ParMarkBitMap::incomplete;

mercurial