src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6904
0982ec23da03
child 7535
7ae4e26cb1e0
child 7612
f74dbdd45754
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    30 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    31 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    32 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    33 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    34 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    35 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    36 #include "gc_implementation/shared/gcHeapSummary.hpp"
    37 #include "gc_implementation/shared/gcTimer.hpp"
    38 #include "gc_implementation/shared/gcTrace.hpp"
    39 #include "gc_implementation/shared/gcTraceTime.hpp"
    40 #include "gc_implementation/shared/isGCActiveMark.hpp"
    41 #include "gc_implementation/shared/markSweep.hpp"
    42 #include "gc_implementation/shared/spaceDecorator.hpp"
    43 #include "gc_interface/gcCause.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/referenceProcessor.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "runtime/biasedLocking.hpp"
    49 #include "runtime/fprofiler.hpp"
    50 #include "runtime/safepoint.hpp"
    51 #include "runtime/vmThread.hpp"
    52 #include "services/management.hpp"
    53 #include "services/memoryService.hpp"
    54 #include "utilities/events.hpp"
    55 #include "utilities/stack.inline.hpp"
    57 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    59 elapsedTimer        PSMarkSweep::_accumulated_time;
    60 jlong               PSMarkSweep::_time_of_last_gc   = 0;
    61 CollectorCounters*  PSMarkSweep::_counters = NULL;
    63 void PSMarkSweep::initialize() {
    64   MemRegion mr = Universe::heap()->reserved_region();
    65   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
    66   _counters = new CollectorCounters("PSMarkSweep", 1);
    67 }
    69 // This method contains all heap specific policy for invoking mark sweep.
    70 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
    71 // the heap. It will do nothing further. If we need to bail out for policy
    72 // reasons, scavenge before full gc, or any other specialized behavior, it
    73 // needs to be added here.
    74 //
    75 // Note that this method should only be called from the vm_thread while
    76 // at a safepoint!
    77 //
    78 // Note that the all_soft_refs_clear flag in the collector policy
    79 // may be true because this method can be called without intervening
    80 // activity.  For example when the heap space is tight and full measure
    81 // are being taken to free space.
    83 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
    84   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    85   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
    86   assert(!Universe::heap()->is_gc_active(), "not reentrant");
    88   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    89   GCCause::Cause gc_cause = heap->gc_cause();
    90   PSAdaptiveSizePolicy* policy = heap->size_policy();
    91   IsGCActiveMark mark;
    93   if (ScavengeBeforeFullGC) {
    94     PSScavenge::invoke_no_policy();
    95   }
    97   const bool clear_all_soft_refs =
    98     heap->collector_policy()->should_clear_all_soft_refs();
   100   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
   101   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
   102   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
   103 }
   105 // This method contains no policy. You should probably
   106 // be calling invoke() instead.
   107 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
   108   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
   109   assert(ref_processor() != NULL, "Sanity");
   111   if (GC_locker::check_active_before_gc()) {
   112     return false;
   113   }
   115   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   116   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   117   GCCause::Cause gc_cause = heap->gc_cause();
   119   _gc_timer->register_gc_start();
   120   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
   122   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   124   // The scope of casr should end after code that can change
   125   // CollectorPolicy::_should_clear_all_soft_refs.
   126   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
   128   PSYoungGen* young_gen = heap->young_gen();
   129   PSOldGen* old_gen = heap->old_gen();
   131   // Increment the invocation count
   132   heap->increment_total_collections(true /* full */);
   134   // Save information needed to minimize mangling
   135   heap->record_gen_tops_before_GC();
   137   // We need to track unique mark sweep invocations as well.
   138   _total_invocations++;
   140   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   142   heap->print_heap_before_gc();
   143   heap->trace_heap_before_gc(_gc_tracer);
   145   // Fill in TLABs
   146   heap->accumulate_statistics_all_tlabs();
   147   heap->ensure_parsability(true);  // retire TLABs
   149   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   150     HandleMark hm;  // Discard invalid handles created during verification
   151     Universe::verify(" VerifyBeforeGC:");
   152   }
   154   // Verify object start arrays
   155   if (VerifyObjectStartArray &&
   156       VerifyBeforeGC) {
   157     old_gen->verify_object_start_array();
   158   }
   160   heap->pre_full_gc_dump(_gc_timer);
   162   // Filled in below to track the state of the young gen after the collection.
   163   bool eden_empty;
   164   bool survivors_empty;
   165   bool young_gen_empty;
   167   {
   168     HandleMark hm;
   170     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   171     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   172     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id());
   173     TraceCollectorStats tcs(counters());
   174     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
   176     if (TraceGen1Time) accumulated_time()->start();
   178     // Let the size policy know we're starting
   179     size_policy->major_collection_begin();
   181     CodeCache::gc_prologue();
   182     Threads::gc_prologue();
   183     BiasedLocking::preserve_marks();
   185     // Capture heap size before collection for printing.
   186     size_t prev_used = heap->used();
   188     // Capture metadata size before collection for sizing.
   189     size_t metadata_prev_used = MetaspaceAux::used_bytes();
   191     // For PrintGCDetails
   192     size_t old_gen_prev_used = old_gen->used_in_bytes();
   193     size_t young_gen_prev_used = young_gen->used_in_bytes();
   195     allocate_stacks();
   197     COMPILER2_PRESENT(DerivedPointerTable::clear());
   199     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   200     ref_processor()->setup_policy(clear_all_softrefs);
   202     mark_sweep_phase1(clear_all_softrefs);
   204     mark_sweep_phase2();
   206     // Don't add any more derived pointers during phase3
   207     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
   208     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
   210     mark_sweep_phase3();
   212     mark_sweep_phase4();
   214     restore_marks();
   216     deallocate_stacks();
   218     if (ZapUnusedHeapArea) {
   219       // Do a complete mangle (top to end) because the usage for
   220       // scratch does not maintain a top pointer.
   221       young_gen->to_space()->mangle_unused_area_complete();
   222     }
   224     eden_empty = young_gen->eden_space()->is_empty();
   225     if (!eden_empty) {
   226       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
   227     }
   229     // Update heap occupancy information which is used as
   230     // input to soft ref clearing policy at the next gc.
   231     Universe::update_heap_info_at_gc();
   233     survivors_empty = young_gen->from_space()->is_empty() &&
   234                       young_gen->to_space()->is_empty();
   235     young_gen_empty = eden_empty && survivors_empty;
   237     BarrierSet* bs = heap->barrier_set();
   238     if (bs->is_a(BarrierSet::ModRef)) {
   239       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   240       MemRegion old_mr = heap->old_gen()->reserved();
   241       if (young_gen_empty) {
   242         modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
   243       } else {
   244         modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
   245       }
   246     }
   248     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   249     ClassLoaderDataGraph::purge();
   250     MetaspaceAux::verify_metrics();
   252     BiasedLocking::restore_marks();
   253     Threads::gc_epilogue();
   254     CodeCache::gc_epilogue();
   255     JvmtiExport::gc_epilogue();
   257     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   259     ref_processor()->enqueue_discovered_references(NULL);
   261     // Update time of last GC
   262     reset_millis_since_last_gc();
   264     // Let the size policy know we're done
   265     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
   267     if (UseAdaptiveSizePolicy) {
   269       if (PrintAdaptiveSizePolicy) {
   270         gclog_or_tty->print("AdaptiveSizeStart: ");
   271         gclog_or_tty->stamp();
   272         gclog_or_tty->print_cr(" collection: %d ",
   273                        heap->total_collections());
   274         if (Verbose) {
   275           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
   276             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
   277         }
   278       }
   280       // Don't check if the size_policy is ready here.  Let
   281       // the size_policy check that internally.
   282       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
   283           ((gc_cause != GCCause::_java_lang_system_gc) ||
   284             UseAdaptiveSizePolicyWithSystemGC)) {
   285         // Calculate optimal free space amounts
   286         assert(young_gen->max_size() >
   287           young_gen->from_space()->capacity_in_bytes() +
   288           young_gen->to_space()->capacity_in_bytes(),
   289           "Sizes of space in young gen are out-of-bounds");
   291         size_t young_live = young_gen->used_in_bytes();
   292         size_t eden_live = young_gen->eden_space()->used_in_bytes();
   293         size_t old_live = old_gen->used_in_bytes();
   294         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
   295         size_t max_old_gen_size = old_gen->max_gen_size();
   296         size_t max_eden_size = young_gen->max_size() -
   297           young_gen->from_space()->capacity_in_bytes() -
   298           young_gen->to_space()->capacity_in_bytes();
   300         // Used for diagnostics
   301         size_policy->clear_generation_free_space_flags();
   303         size_policy->compute_generations_free_space(young_live,
   304                                                     eden_live,
   305                                                     old_live,
   306                                                     cur_eden,
   307                                                     max_old_gen_size,
   308                                                     max_eden_size,
   309                                                     true /* full gc*/);
   311         size_policy->check_gc_overhead_limit(young_live,
   312                                              eden_live,
   313                                              max_old_gen_size,
   314                                              max_eden_size,
   315                                              true /* full gc*/,
   316                                              gc_cause,
   317                                              heap->collector_policy());
   319         size_policy->decay_supplemental_growth(true /* full gc*/);
   321         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
   323         // Don't resize the young generation at an major collection.  A
   324         // desired young generation size may have been calculated but
   325         // resizing the young generation complicates the code because the
   326         // resizing of the old generation may have moved the boundary
   327         // between the young generation and the old generation.  Let the
   328         // young generation resizing happen at the minor collections.
   329       }
   330       if (PrintAdaptiveSizePolicy) {
   331         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   332                        heap->total_collections());
   333       }
   334     }
   336     if (UsePerfData) {
   337       heap->gc_policy_counters()->update_counters();
   338       heap->gc_policy_counters()->update_old_capacity(
   339         old_gen->capacity_in_bytes());
   340       heap->gc_policy_counters()->update_young_capacity(
   341         young_gen->capacity_in_bytes());
   342     }
   344     heap->resize_all_tlabs();
   346     // We collected the heap, recalculate the metaspace capacity
   347     MetaspaceGC::compute_new_size();
   349     if (TraceGen1Time) accumulated_time()->stop();
   351     if (PrintGC) {
   352       if (PrintGCDetails) {
   353         // Don't print a GC timestamp here.  This is after the GC so
   354         // would be confusing.
   355         young_gen->print_used_change(young_gen_prev_used);
   356         old_gen->print_used_change(old_gen_prev_used);
   357       }
   358       heap->print_heap_change(prev_used);
   359       if (PrintGCDetails) {
   360         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   361       }
   362     }
   364     // Track memory usage and detect low memory
   365     MemoryService::track_memory_usage();
   366     heap->update_counters();
   367   }
   369   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   370     HandleMark hm;  // Discard invalid handles created during verification
   371     Universe::verify(" VerifyAfterGC:");
   372   }
   374   // Re-verify object start arrays
   375   if (VerifyObjectStartArray &&
   376       VerifyAfterGC) {
   377     old_gen->verify_object_start_array();
   378   }
   380   if (ZapUnusedHeapArea) {
   381     old_gen->object_space()->check_mangled_unused_area_complete();
   382   }
   384   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   386   heap->print_heap_after_gc();
   387   heap->trace_heap_after_gc(_gc_tracer);
   389   heap->post_full_gc_dump(_gc_timer);
   391 #ifdef TRACESPINNING
   392   ParallelTaskTerminator::print_termination_counts();
   393 #endif
   395   _gc_timer->register_gc_end();
   397   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
   399   return true;
   400 }
   402 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   403                                              PSYoungGen* young_gen,
   404                                              PSOldGen* old_gen) {
   405   MutableSpace* const eden_space = young_gen->eden_space();
   406   assert(!eden_space->is_empty(), "eden must be non-empty");
   407   assert(young_gen->virtual_space()->alignment() ==
   408          old_gen->virtual_space()->alignment(), "alignments do not match");
   410   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
   411     return false;
   412   }
   414   // Both generations must be completely committed.
   415   if (young_gen->virtual_space()->uncommitted_size() != 0) {
   416     return false;
   417   }
   418   if (old_gen->virtual_space()->uncommitted_size() != 0) {
   419     return false;
   420   }
   422   // Figure out how much to take from eden.  Include the average amount promoted
   423   // in the total; otherwise the next young gen GC will simply bail out to a
   424   // full GC.
   425   const size_t alignment = old_gen->virtual_space()->alignment();
   426   const size_t eden_used = eden_space->used_in_bytes();
   427   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
   428   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
   429   const size_t eden_capacity = eden_space->capacity_in_bytes();
   431   if (absorb_size >= eden_capacity) {
   432     return false; // Must leave some space in eden.
   433   }
   435   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
   436   if (new_young_size < young_gen->min_gen_size()) {
   437     return false; // Respect young gen minimum size.
   438   }
   440   if (TraceAdaptiveGCBoundary && Verbose) {
   441     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
   442                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
   443                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
   444                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
   445                         absorb_size / K,
   446                         eden_capacity / K, (eden_capacity - absorb_size) / K,
   447                         young_gen->from_space()->used_in_bytes() / K,
   448                         young_gen->to_space()->used_in_bytes() / K,
   449                         young_gen->capacity_in_bytes() / K, new_young_size / K);
   450   }
   452   // Fill the unused part of the old gen.
   453   MutableSpace* const old_space = old_gen->object_space();
   454   HeapWord* const unused_start = old_space->top();
   455   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
   457   if (unused_words > 0) {
   458     if (unused_words < CollectedHeap::min_fill_size()) {
   459       return false;  // If the old gen cannot be filled, must give up.
   460     }
   461     CollectedHeap::fill_with_objects(unused_start, unused_words);
   462   }
   464   // Take the live data from eden and set both top and end in the old gen to
   465   // eden top.  (Need to set end because reset_after_change() mangles the region
   466   // from end to virtual_space->high() in debug builds).
   467   HeapWord* const new_top = eden_space->top();
   468   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
   469                                         absorb_size);
   470   young_gen->reset_after_change();
   471   old_space->set_top(new_top);
   472   old_space->set_end(new_top);
   473   old_gen->reset_after_change();
   475   // Update the object start array for the filler object and the data from eden.
   476   ObjectStartArray* const start_array = old_gen->start_array();
   477   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
   478     start_array->allocate_block(p);
   479   }
   481   // Could update the promoted average here, but it is not typically updated at
   482   // full GCs and the value to use is unclear.  Something like
   483   //
   484   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
   486   size_policy->set_bytes_absorbed_from_eden(absorb_size);
   487   return true;
   488 }
   490 void PSMarkSweep::allocate_stacks() {
   491   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   492   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   494   PSYoungGen* young_gen = heap->young_gen();
   496   MutableSpace* to_space = young_gen->to_space();
   497   _preserved_marks = (PreservedMark*)to_space->top();
   498   _preserved_count = 0;
   500   // We want to calculate the size in bytes first.
   501   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
   502   // Now divide by the size of a PreservedMark
   503   _preserved_count_max /= sizeof(PreservedMark);
   504 }
   507 void PSMarkSweep::deallocate_stacks() {
   508   _preserved_mark_stack.clear(true);
   509   _preserved_oop_stack.clear(true);
   510   _marking_stack.clear();
   511   _objarray_stack.clear(true);
   512 }
   514 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
   515   // Recursively traverse all live objects and mark them
   516   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
   517   trace(" 1");
   519   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   520   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   522   // Need to clear claim bits before the tracing starts.
   523   ClassLoaderDataGraph::clear_claimed_marks();
   525   // General strong roots.
   526   {
   527     ParallelScavengeHeap::ParStrongRootsScope psrs;
   528     Universe::oops_do(mark_and_push_closure());
   529     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
   530     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
   531     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
   532     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
   533     ObjectSynchronizer::oops_do(mark_and_push_closure());
   534     FlatProfiler::oops_do(mark_and_push_closure());
   535     Management::oops_do(mark_and_push_closure());
   536     JvmtiExport::oops_do(mark_and_push_closure());
   537     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
   538     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
   539     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
   540     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
   541   }
   543   // Flush marking stack.
   544   follow_stack();
   546   // Process reference objects found during marking
   547   {
   548     ref_processor()->setup_policy(clear_all_softrefs);
   549     const ReferenceProcessorStats& stats =
   550       ref_processor()->process_discovered_references(
   551         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
   552     gc_tracer()->report_gc_reference_stats(stats);
   553   }
   555   // This is the point where the entire marking should have completed.
   556   assert(_marking_stack.is_empty(), "Marking should have completed");
   558   // Unload classes and purge the SystemDictionary.
   559   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
   561   // Unload nmethods.
   562   CodeCache::do_unloading(is_alive_closure(), purged_class);
   564   // Prune dead klasses from subklass/sibling/implementor lists.
   565   Klass::clean_weak_klass_links(is_alive_closure());
   567   // Delete entries for dead interned strings.
   568   StringTable::unlink(is_alive_closure());
   570   // Clean up unreferenced symbols in symbol table.
   571   SymbolTable::unlink();
   572   _gc_tracer->report_object_count_after_gc(is_alive_closure());
   573 }
   576 void PSMarkSweep::mark_sweep_phase2() {
   577   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
   578   trace("2");
   580   // Now all live objects are marked, compute the new object addresses.
   582   // It is not required that we traverse spaces in the same order in
   583   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
   584   // tracking expects us to do so. See comment under phase4.
   586   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   587   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   589   PSOldGen* old_gen = heap->old_gen();
   591   // Begin compacting into the old gen
   592   PSMarkSweepDecorator::set_destination_decorator_tenured();
   594   // This will also compact the young gen spaces.
   595   old_gen->precompact();
   596 }
   598 // This should be moved to the shared markSweep code!
   599 class PSAlwaysTrueClosure: public BoolObjectClosure {
   600 public:
   601   bool do_object_b(oop p) { return true; }
   602 };
   603 static PSAlwaysTrueClosure always_true;
   605 void PSMarkSweep::mark_sweep_phase3() {
   606   // Adjust the pointers to reflect the new locations
   607   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
   608   trace("3");
   610   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   611   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   613   PSYoungGen* young_gen = heap->young_gen();
   614   PSOldGen* old_gen = heap->old_gen();
   616   // Need to clear claim bits before the tracing starts.
   617   ClassLoaderDataGraph::clear_claimed_marks();
   619   // General strong roots.
   620   Universe::oops_do(adjust_pointer_closure());
   621   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
   622   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
   623   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
   624   ObjectSynchronizer::oops_do(adjust_pointer_closure());
   625   FlatProfiler::oops_do(adjust_pointer_closure());
   626   Management::oops_do(adjust_pointer_closure());
   627   JvmtiExport::oops_do(adjust_pointer_closure());
   628   SystemDictionary::oops_do(adjust_pointer_closure());
   629   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
   631   // Now adjust pointers in remaining weak roots.  (All of which should
   632   // have been cleared if they pointed to non-surviving objects.)
   633   // Global (weak) JNI handles
   634   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
   636   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
   637   CodeCache::blobs_do(&adjust_from_blobs);
   638   StringTable::oops_do(adjust_pointer_closure());
   639   ref_processor()->weak_oops_do(adjust_pointer_closure());
   640   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
   642   adjust_marks();
   644   young_gen->adjust_pointers();
   645   old_gen->adjust_pointers();
   646 }
   648 void PSMarkSweep::mark_sweep_phase4() {
   649   EventMark m("4 compact heap");
   650   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
   651   trace("4");
   653   // All pointers are now adjusted, move objects accordingly
   655   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   656   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   658   PSYoungGen* young_gen = heap->young_gen();
   659   PSOldGen* old_gen = heap->old_gen();
   661   old_gen->compact();
   662   young_gen->compact();
   663 }
   665 jlong PSMarkSweep::millis_since_last_gc() {
   666   // We need a monotonically non-deccreasing time in ms but
   667   // os::javaTimeMillis() does not guarantee monotonicity.
   668   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   669   jlong ret_val = now - _time_of_last_gc;
   670   // XXX See note in genCollectedHeap::millis_since_last_gc().
   671   if (ret_val < 0) {
   672     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
   673     return 0;
   674   }
   675   return ret_val;
   676 }
   678 void PSMarkSweep::reset_millis_since_last_gc() {
   679   // We need a monotonically non-deccreasing time in ms but
   680   // os::javaTimeMillis() does not guarantee monotonicity.
   681   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   682 }

mercurial