src/share/vm/gc_implementation/g1/heapRegion.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6990
1526a938e670
child 7009
3f2894c5052e
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "gc_implementation/shared/liveRange.hpp"
    34 #include "memory/genOopClosures.inline.hpp"
    35 #include "memory/iterator.hpp"
    36 #include "memory/space.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "runtime/orderAccess.inline.hpp"
    40 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    42 int    HeapRegion::LogOfHRGrainBytes = 0;
    43 int    HeapRegion::LogOfHRGrainWords = 0;
    44 size_t HeapRegion::GrainBytes        = 0;
    45 size_t HeapRegion::GrainWords        = 0;
    46 size_t HeapRegion::CardsPerRegion    = 0;
    48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    49                                  HeapRegion* hr, ExtendedOopClosure* cl,
    50                                  CardTableModRefBS::PrecisionStyle precision,
    51                                  FilterKind fk) :
    52   DirtyCardToOopClosure(hr, cl, precision, NULL),
    53   _hr(hr), _fk(fk), _g1(g1) { }
    55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    56                                                    OopClosure* oc) :
    57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    59 template<class ClosureType>
    60 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    61                                HeapRegion* hr,
    62                                HeapWord* cur, HeapWord* top) {
    63   oop cur_oop = oop(cur);
    64   size_t oop_size = hr->block_size(cur);
    65   HeapWord* next_obj = cur + oop_size;
    66   while (next_obj < top) {
    67     // Keep filtering the remembered set.
    68     if (!g1h->is_obj_dead(cur_oop, hr)) {
    69       // Bottom lies entirely below top, so we can call the
    70       // non-memRegion version of oop_iterate below.
    71       cur_oop->oop_iterate(cl);
    72     }
    73     cur = next_obj;
    74     cur_oop = oop(cur);
    75     oop_size = hr->block_size(cur);
    76     next_obj = cur + oop_size;
    77   }
    78   return cur;
    79 }
    81 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    82                                       HeapWord* bottom,
    83                                       HeapWord* top) {
    84   G1CollectedHeap* g1h = _g1;
    85   size_t oop_size;
    86   ExtendedOopClosure* cl2 = NULL;
    88   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
    89   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
    91   switch (_fk) {
    92   case NoFilterKind:          cl2 = _cl; break;
    93   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    94   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    95   default:                    ShouldNotReachHere();
    96   }
    98   // Start filtering what we add to the remembered set. If the object is
    99   // not considered dead, either because it is marked (in the mark bitmap)
   100   // or it was allocated after marking finished, then we add it. Otherwise
   101   // we can safely ignore the object.
   102   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   103     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   104   } else {
   105     oop_size = _hr->block_size(bottom);
   106   }
   108   bottom += oop_size;
   110   if (bottom < top) {
   111     // We replicate the loop below for several kinds of possible filters.
   112     switch (_fk) {
   113     case NoFilterKind:
   114       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
   115       break;
   117     case IntoCSFilterKind: {
   118       FilterIntoCSClosure filt(this, g1h, _cl);
   119       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   120       break;
   121     }
   123     case OutOfRegionFilterKind: {
   124       FilterOutOfRegionClosure filt(_hr, _cl);
   125       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   126       break;
   127     }
   129     default:
   130       ShouldNotReachHere();
   131     }
   133     // Last object. Need to do dead-obj filtering here too.
   134     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   135       oop(bottom)->oop_iterate(cl2, mr);
   136     }
   137   }
   138 }
   140 // Minimum region size; we won't go lower than that.
   141 // We might want to decrease this in the future, to deal with small
   142 // heaps a bit more efficiently.
   143 #define MIN_REGION_SIZE  (      1024 * 1024 )
   145 // Maximum region size; we don't go higher than that. There's a good
   146 // reason for having an upper bound. We don't want regions to get too
   147 // large, otherwise cleanup's effectiveness would decrease as there
   148 // will be fewer opportunities to find totally empty regions after
   149 // marking.
   150 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   152 // The automatic region size calculation will try to have around this
   153 // many regions in the heap (based on the min heap size).
   154 #define TARGET_REGION_NUMBER          2048
   156 size_t HeapRegion::max_region_size() {
   157   return (size_t)MAX_REGION_SIZE;
   158 }
   160 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   161   uintx region_size = G1HeapRegionSize;
   162   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   163     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   164     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   165                        (uintx) MIN_REGION_SIZE);
   166   }
   168   int region_size_log = log2_long((jlong) region_size);
   169   // Recalculate the region size to make sure it's a power of
   170   // 2. This means that region_size is the largest power of 2 that's
   171   // <= what we've calculated so far.
   172   region_size = ((uintx)1 << region_size_log);
   174   // Now make sure that we don't go over or under our limits.
   175   if (region_size < MIN_REGION_SIZE) {
   176     region_size = MIN_REGION_SIZE;
   177   } else if (region_size > MAX_REGION_SIZE) {
   178     region_size = MAX_REGION_SIZE;
   179   }
   181   // And recalculate the log.
   182   region_size_log = log2_long((jlong) region_size);
   184   // Now, set up the globals.
   185   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   186   LogOfHRGrainBytes = region_size_log;
   188   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   189   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   191   guarantee(GrainBytes == 0, "we should only set it once");
   192   // The cast to int is safe, given that we've bounded region_size by
   193   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   194   GrainBytes = (size_t)region_size;
   196   guarantee(GrainWords == 0, "we should only set it once");
   197   GrainWords = GrainBytes >> LogHeapWordSize;
   198   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   200   guarantee(CardsPerRegion == 0, "we should only set it once");
   201   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   202 }
   204 void HeapRegion::reset_after_compaction() {
   205   G1OffsetTableContigSpace::reset_after_compaction();
   206   // After a compaction the mark bitmap is invalid, so we must
   207   // treat all objects as being inside the unmarked area.
   208   zero_marked_bytes();
   209   init_top_at_mark_start();
   210 }
   212 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   213   assert(_humongous_type == NotHumongous,
   214          "we should have already filtered out humongous regions");
   215   assert(_humongous_start_region == NULL,
   216          "we should have already filtered out humongous regions");
   217   assert(_end == _orig_end,
   218          "we should have already filtered out humongous regions");
   220   _in_collection_set = false;
   222   set_young_index_in_cset(-1);
   223   uninstall_surv_rate_group();
   224   set_young_type(NotYoung);
   225   reset_pre_dummy_top();
   227   if (!par) {
   228     // If this is parallel, this will be done later.
   229     HeapRegionRemSet* hrrs = rem_set();
   230     if (locked) {
   231       hrrs->clear_locked();
   232     } else {
   233       hrrs->clear();
   234     }
   235     _claimed = InitialClaimValue;
   236   }
   237   zero_marked_bytes();
   239   _offsets.resize(HeapRegion::GrainWords);
   240   init_top_at_mark_start();
   241   if (clear_space) clear(SpaceDecorator::Mangle);
   242 }
   244 void HeapRegion::par_clear() {
   245   assert(used() == 0, "the region should have been already cleared");
   246   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   247   HeapRegionRemSet* hrrs = rem_set();
   248   hrrs->clear();
   249   CardTableModRefBS* ct_bs =
   250                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   251   ct_bs->clear(MemRegion(bottom(), end()));
   252 }
   254 void HeapRegion::calc_gc_efficiency() {
   255   // GC efficiency is the ratio of how much space would be
   256   // reclaimed over how long we predict it would take to reclaim it.
   257   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   258   G1CollectorPolicy* g1p = g1h->g1_policy();
   260   // Retrieve a prediction of the elapsed time for this region for
   261   // a mixed gc because the region will only be evacuated during a
   262   // mixed gc.
   263   double region_elapsed_time_ms =
   264     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   265   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   266 }
   268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   269   assert(!isHumongous(), "sanity / pre-condition");
   270   assert(end() == _orig_end,
   271          "Should be normal before the humongous object allocation");
   272   assert(top() == bottom(), "should be empty");
   273   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   275   _humongous_type = StartsHumongous;
   276   _humongous_start_region = this;
   278   set_end(new_end);
   279   _offsets.set_for_starts_humongous(new_top);
   280 }
   282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   283   assert(!isHumongous(), "sanity / pre-condition");
   284   assert(end() == _orig_end,
   285          "Should be normal before the humongous object allocation");
   286   assert(top() == bottom(), "should be empty");
   287   assert(first_hr->startsHumongous(), "pre-condition");
   289   _humongous_type = ContinuesHumongous;
   290   _humongous_start_region = first_hr;
   291 }
   293 void HeapRegion::set_notHumongous() {
   294   assert(isHumongous(), "pre-condition");
   296   if (startsHumongous()) {
   297     assert(top() <= end(), "pre-condition");
   298     set_end(_orig_end);
   299     if (top() > end()) {
   300       // at least one "continues humongous" region after it
   301       set_top(end());
   302     }
   303   } else {
   304     // continues humongous
   305     assert(end() == _orig_end, "sanity");
   306   }
   308   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   309   _humongous_type = NotHumongous;
   310   _humongous_start_region = NULL;
   311 }
   313 bool HeapRegion::claimHeapRegion(jint claimValue) {
   314   jint current = _claimed;
   315   if (current != claimValue) {
   316     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   317     if (res == current) {
   318       return true;
   319     }
   320   }
   321   return false;
   322 }
   324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   325   HeapWord* low = addr;
   326   HeapWord* high = end();
   327   while (low < high) {
   328     size_t diff = pointer_delta(high, low);
   329     // Must add one below to bias toward the high amount.  Otherwise, if
   330   // "high" were at the desired value, and "low" were one less, we
   331     // would not converge on "high".  This is not symmetric, because
   332     // we set "high" to a block start, which might be the right one,
   333     // which we don't do for "low".
   334     HeapWord* middle = low + (diff+1)/2;
   335     if (middle == high) return high;
   336     HeapWord* mid_bs = block_start_careful(middle);
   337     if (mid_bs < addr) {
   338       low = middle;
   339     } else {
   340       high = mid_bs;
   341     }
   342   }
   343   assert(low == high && low >= addr, "Didn't work.");
   344   return low;
   345 }
   347 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   348 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   349 #endif // _MSC_VER
   352 HeapRegion::HeapRegion(uint hrs_index,
   353                        G1BlockOffsetSharedArray* sharedOffsetArray,
   354                        MemRegion mr) :
   355     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   356     _hrs_index(hrs_index),
   357     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   358     _in_collection_set(false),
   359     _next_in_special_set(NULL), _orig_end(NULL),
   360     _claimed(InitialClaimValue), _evacuation_failed(false),
   361     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   362     _young_type(NotYoung), _next_young_region(NULL),
   363     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
   364 #ifdef ASSERT
   365     _containing_set(NULL),
   366 #endif // ASSERT
   367      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   368     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   369     _predicted_bytes_to_copy(0)
   370 {
   371   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   372   _orig_end = mr.end();
   373   // Note that initialize() will set the start of the unmarked area of the
   374   // region.
   375   hr_clear(false /*par*/, false /*clear_space*/);
   376   set_top(bottom());
   377   record_top_and_timestamp();
   379   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   380 }
   382 CompactibleSpace* HeapRegion::next_compaction_space() const {
   383   // We're not using an iterator given that it will wrap around when
   384   // it reaches the last region and this is not what we want here.
   385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   386   uint index = hrs_index() + 1;
   387   while (index < g1h->n_regions()) {
   388     HeapRegion* hr = g1h->region_at(index);
   389     if (!hr->isHumongous()) {
   390       return hr;
   391     }
   392     index += 1;
   393   }
   394   return NULL;
   395 }
   397 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   398                                                     bool during_conc_mark) {
   399   // We always recreate the prev marking info and we'll explicitly
   400   // mark all objects we find to be self-forwarded on the prev
   401   // bitmap. So all objects need to be below PTAMS.
   402   _prev_marked_bytes = 0;
   404   if (during_initial_mark) {
   405     // During initial-mark, we'll also explicitly mark all objects
   406     // we find to be self-forwarded on the next bitmap. So all
   407     // objects need to be below NTAMS.
   408     _next_top_at_mark_start = top();
   409     _next_marked_bytes = 0;
   410   } else if (during_conc_mark) {
   411     // During concurrent mark, all objects in the CSet (including
   412     // the ones we find to be self-forwarded) are implicitly live.
   413     // So all objects need to be above NTAMS.
   414     _next_top_at_mark_start = bottom();
   415     _next_marked_bytes = 0;
   416   }
   417 }
   419 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   420                                                   bool during_conc_mark,
   421                                                   size_t marked_bytes) {
   422   assert(0 <= marked_bytes && marked_bytes <= used(),
   423          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   424                  marked_bytes, used()));
   425   _prev_top_at_mark_start = top();
   426   _prev_marked_bytes = marked_bytes;
   427 }
   429 HeapWord*
   430 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   431                                                  ObjectClosure* cl) {
   432   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   433   // We used to use "block_start_careful" here.  But we're actually happy
   434   // to update the BOT while we do this...
   435   HeapWord* cur = block_start(mr.start());
   436   mr = mr.intersection(used_region());
   437   if (mr.is_empty()) return NULL;
   438   // Otherwise, find the obj that extends onto mr.start().
   440   assert(cur <= mr.start()
   441          && (oop(cur)->klass_or_null() == NULL ||
   442              cur + oop(cur)->size() > mr.start()),
   443          "postcondition of block_start");
   444   oop obj;
   445   while (cur < mr.end()) {
   446     obj = oop(cur);
   447     if (obj->klass_or_null() == NULL) {
   448       // Ran into an unparseable point.
   449       return cur;
   450     } else if (!g1h->is_obj_dead(obj)) {
   451       cl->do_object(obj);
   452     }
   453     if (cl->abort()) return cur;
   454     // The check above must occur before the operation below, since an
   455     // abort might invalidate the "size" operation.
   456     cur += block_size(cur);
   457   }
   458   return NULL;
   459 }
   461 HeapWord*
   462 HeapRegion::
   463 oops_on_card_seq_iterate_careful(MemRegion mr,
   464                                  FilterOutOfRegionClosure* cl,
   465                                  bool filter_young,
   466                                  jbyte* card_ptr) {
   467   // Currently, we should only have to clean the card if filter_young
   468   // is true and vice versa.
   469   if (filter_young) {
   470     assert(card_ptr != NULL, "pre-condition");
   471   } else {
   472     assert(card_ptr == NULL, "pre-condition");
   473   }
   474   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   476   // If we're within a stop-world GC, then we might look at a card in a
   477   // GC alloc region that extends onto a GC LAB, which may not be
   478   // parseable.  Stop such at the "saved_mark" of the region.
   479   if (g1h->is_gc_active()) {
   480     mr = mr.intersection(used_region_at_save_marks());
   481   } else {
   482     mr = mr.intersection(used_region());
   483   }
   484   if (mr.is_empty()) return NULL;
   485   // Otherwise, find the obj that extends onto mr.start().
   487   // The intersection of the incoming mr (for the card) and the
   488   // allocated part of the region is non-empty. This implies that
   489   // we have actually allocated into this region. The code in
   490   // G1CollectedHeap.cpp that allocates a new region sets the
   491   // is_young tag on the region before allocating. Thus we
   492   // safely know if this region is young.
   493   if (is_young() && filter_young) {
   494     return NULL;
   495   }
   497   assert(!is_young(), "check value of filter_young");
   499   // We can only clean the card here, after we make the decision that
   500   // the card is not young. And we only clean the card if we have been
   501   // asked to (i.e., card_ptr != NULL).
   502   if (card_ptr != NULL) {
   503     *card_ptr = CardTableModRefBS::clean_card_val();
   504     // We must complete this write before we do any of the reads below.
   505     OrderAccess::storeload();
   506   }
   508   // Cache the boundaries of the memory region in some const locals
   509   HeapWord* const start = mr.start();
   510   HeapWord* const end = mr.end();
   512   // We used to use "block_start_careful" here.  But we're actually happy
   513   // to update the BOT while we do this...
   514   HeapWord* cur = block_start(start);
   515   assert(cur <= start, "Postcondition");
   517   oop obj;
   519   HeapWord* next = cur;
   520   while (next <= start) {
   521     cur = next;
   522     obj = oop(cur);
   523     if (obj->klass_or_null() == NULL) {
   524       // Ran into an unparseable point.
   525       return cur;
   526     }
   527     // Otherwise...
   528     next = cur + block_size(cur);
   529   }
   531   // If we finish the above loop...We have a parseable object that
   532   // begins on or before the start of the memory region, and ends
   533   // inside or spans the entire region.
   535   assert(obj == oop(cur), "sanity");
   536   assert(cur <= start, "Loop postcondition");
   537   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   538   assert((cur + block_size(cur)) > start, "Loop postcondition");
   540   if (!g1h->is_obj_dead(obj)) {
   541     obj->oop_iterate(cl, mr);
   542   }
   544   while (cur < end) {
   545     obj = oop(cur);
   546     if (obj->klass_or_null() == NULL) {
   547       // Ran into an unparseable point.
   548       return cur;
   549     };
   551     // Otherwise:
   552     next = cur + block_size(cur);
   554     if (!g1h->is_obj_dead(obj)) {
   555       if (next < end || !obj->is_objArray()) {
   556         // This object either does not span the MemRegion
   557         // boundary, or if it does it's not an array.
   558         // Apply closure to whole object.
   559         obj->oop_iterate(cl);
   560       } else {
   561         // This obj is an array that spans the boundary.
   562         // Stop at the boundary.
   563         obj->oop_iterate(cl, mr);
   564       }
   565     }
   566     cur = next;
   567   }
   568   return NULL;
   569 }
   571 // Code roots support
   573 void HeapRegion::add_strong_code_root(nmethod* nm) {
   574   HeapRegionRemSet* hrrs = rem_set();
   575   hrrs->add_strong_code_root(nm);
   576 }
   578 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   579   HeapRegionRemSet* hrrs = rem_set();
   580   hrrs->remove_strong_code_root(nm);
   581 }
   583 void HeapRegion::migrate_strong_code_roots() {
   584   assert(in_collection_set(), "only collection set regions");
   585   assert(!isHumongous(),
   586           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   587                   HR_FORMAT_PARAMS(this)));
   589   HeapRegionRemSet* hrrs = rem_set();
   590   hrrs->migrate_strong_code_roots();
   591 }
   593 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   594   HeapRegionRemSet* hrrs = rem_set();
   595   hrrs->strong_code_roots_do(blk);
   596 }
   598 class VerifyStrongCodeRootOopClosure: public OopClosure {
   599   const HeapRegion* _hr;
   600   nmethod* _nm;
   601   bool _failures;
   602   bool _has_oops_in_region;
   604   template <class T> void do_oop_work(T* p) {
   605     T heap_oop = oopDesc::load_heap_oop(p);
   606     if (!oopDesc::is_null(heap_oop)) {
   607       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   609       // Note: not all the oops embedded in the nmethod are in the
   610       // current region. We only look at those which are.
   611       if (_hr->is_in(obj)) {
   612         // Object is in the region. Check that its less than top
   613         if (_hr->top() <= (HeapWord*)obj) {
   614           // Object is above top
   615           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   616                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   617                                  "top "PTR_FORMAT,
   618                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   619           _failures = true;
   620           return;
   621         }
   622         // Nmethod has at least one oop in the current region
   623         _has_oops_in_region = true;
   624       }
   625     }
   626   }
   628 public:
   629   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   630     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   632   void do_oop(narrowOop* p) { do_oop_work(p); }
   633   void do_oop(oop* p)       { do_oop_work(p); }
   635   bool failures()           { return _failures; }
   636   bool has_oops_in_region() { return _has_oops_in_region; }
   637 };
   639 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   640   const HeapRegion* _hr;
   641   bool _failures;
   642 public:
   643   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   644     _hr(hr), _failures(false) {}
   646   void do_code_blob(CodeBlob* cb) {
   647     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   648     if (nm != NULL) {
   649       // Verify that the nemthod is live
   650       if (!nm->is_alive()) {
   651         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   652                                PTR_FORMAT" in its strong code roots",
   653                                _hr->bottom(), _hr->end(), nm);
   654         _failures = true;
   655       } else {
   656         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   657         nm->oops_do(&oop_cl);
   658         if (!oop_cl.has_oops_in_region()) {
   659           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   660                                  PTR_FORMAT" in its strong code roots "
   661                                  "with no pointers into region",
   662                                  _hr->bottom(), _hr->end(), nm);
   663           _failures = true;
   664         } else if (oop_cl.failures()) {
   665           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   666                                  "failures for nmethod "PTR_FORMAT,
   667                                  _hr->bottom(), _hr->end(), nm);
   668           _failures = true;
   669         }
   670       }
   671     }
   672   }
   674   bool failures()       { return _failures; }
   675 };
   677 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   678   if (!G1VerifyHeapRegionCodeRoots) {
   679     // We're not verifying code roots.
   680     return;
   681   }
   682   if (vo == VerifyOption_G1UseMarkWord) {
   683     // Marking verification during a full GC is performed after class
   684     // unloading, code cache unloading, etc so the strong code roots
   685     // attached to each heap region are in an inconsistent state. They won't
   686     // be consistent until the strong code roots are rebuilt after the
   687     // actual GC. Skip verifying the strong code roots in this particular
   688     // time.
   689     assert(VerifyDuringGC, "only way to get here");
   690     return;
   691   }
   693   HeapRegionRemSet* hrrs = rem_set();
   694   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   696   // if this region is empty then there should be no entries
   697   // on its strong code root list
   698   if (is_empty()) {
   699     if (strong_code_roots_length > 0) {
   700       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   701                              "but has "SIZE_FORMAT" code root entries",
   702                              bottom(), end(), strong_code_roots_length);
   703       *failures = true;
   704     }
   705     return;
   706   }
   708   if (continuesHumongous()) {
   709     if (strong_code_roots_length > 0) {
   710       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   711                              "region but has "SIZE_FORMAT" code root entries",
   712                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   713       *failures = true;
   714     }
   715     return;
   716   }
   718   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   719   strong_code_roots_do(&cb_cl);
   721   if (cb_cl.failures()) {
   722     *failures = true;
   723   }
   724 }
   726 void HeapRegion::print() const { print_on(gclog_or_tty); }
   727 void HeapRegion::print_on(outputStream* st) const {
   728   if (isHumongous()) {
   729     if (startsHumongous())
   730       st->print(" HS");
   731     else
   732       st->print(" HC");
   733   } else {
   734     st->print("   ");
   735   }
   736   if (in_collection_set())
   737     st->print(" CS");
   738   else
   739     st->print("   ");
   740   if (is_young())
   741     st->print(is_survivor() ? " SU" : " Y ");
   742   else
   743     st->print("   ");
   744   if (is_empty())
   745     st->print(" F");
   746   else
   747     st->print("  ");
   748   st->print(" TS %5d", _gc_time_stamp);
   749   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   750             prev_top_at_mark_start(), next_top_at_mark_start());
   751   G1OffsetTableContigSpace::print_on(st);
   752 }
   754 class VerifyLiveClosure: public OopClosure {
   755 private:
   756   G1CollectedHeap* _g1h;
   757   CardTableModRefBS* _bs;
   758   oop _containing_obj;
   759   bool _failures;
   760   int _n_failures;
   761   VerifyOption _vo;
   762 public:
   763   // _vo == UsePrevMarking -> use "prev" marking information,
   764   // _vo == UseNextMarking -> use "next" marking information,
   765   // _vo == UseMarkWord    -> use mark word from object header.
   766   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   767     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   768     _failures(false), _n_failures(0), _vo(vo)
   769   {
   770     BarrierSet* bs = _g1h->barrier_set();
   771     if (bs->is_a(BarrierSet::CardTableModRef))
   772       _bs = (CardTableModRefBS*)bs;
   773   }
   775   void set_containing_obj(oop obj) {
   776     _containing_obj = obj;
   777   }
   779   bool failures() { return _failures; }
   780   int n_failures() { return _n_failures; }
   782   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   783   virtual void do_oop(      oop* p) { do_oop_work(p); }
   785   void print_object(outputStream* out, oop obj) {
   786 #ifdef PRODUCT
   787     Klass* k = obj->klass();
   788     const char* class_name = InstanceKlass::cast(k)->external_name();
   789     out->print_cr("class name %s", class_name);
   790 #else // PRODUCT
   791     obj->print_on(out);
   792 #endif // PRODUCT
   793   }
   795   template <class T>
   796   void do_oop_work(T* p) {
   797     assert(_containing_obj != NULL, "Precondition");
   798     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   799            "Precondition");
   800     T heap_oop = oopDesc::load_heap_oop(p);
   801     if (!oopDesc::is_null(heap_oop)) {
   802       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   803       bool failed = false;
   804       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   805         MutexLockerEx x(ParGCRareEvent_lock,
   806                         Mutex::_no_safepoint_check_flag);
   808         if (!_failures) {
   809           gclog_or_tty->cr();
   810           gclog_or_tty->print_cr("----------");
   811         }
   812         if (!_g1h->is_in_closed_subset(obj)) {
   813           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   814           gclog_or_tty->print_cr("Field "PTR_FORMAT
   815                                  " of live obj "PTR_FORMAT" in region "
   816                                  "["PTR_FORMAT", "PTR_FORMAT")",
   817                                  p, (void*) _containing_obj,
   818                                  from->bottom(), from->end());
   819           print_object(gclog_or_tty, _containing_obj);
   820           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   821                                  (void*) obj);
   822         } else {
   823           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   824           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   825           gclog_or_tty->print_cr("Field "PTR_FORMAT
   826                                  " of live obj "PTR_FORMAT" in region "
   827                                  "["PTR_FORMAT", "PTR_FORMAT")",
   828                                  p, (void*) _containing_obj,
   829                                  from->bottom(), from->end());
   830           print_object(gclog_or_tty, _containing_obj);
   831           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   832                                  "["PTR_FORMAT", "PTR_FORMAT")",
   833                                  (void*) obj, to->bottom(), to->end());
   834           print_object(gclog_or_tty, obj);
   835         }
   836         gclog_or_tty->print_cr("----------");
   837         gclog_or_tty->flush();
   838         _failures = true;
   839         failed = true;
   840         _n_failures++;
   841       }
   843       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   844         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   845         HeapRegion* to   = _g1h->heap_region_containing(obj);
   846         if (from != NULL && to != NULL &&
   847             from != to &&
   848             !to->isHumongous()) {
   849           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   850           jbyte cv_field = *_bs->byte_for_const(p);
   851           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   853           bool is_bad = !(from->is_young()
   854                           || to->rem_set()->contains_reference(p)
   855                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   856                               (_containing_obj->is_objArray() ?
   857                                   cv_field == dirty
   858                                : cv_obj == dirty || cv_field == dirty));
   859           if (is_bad) {
   860             MutexLockerEx x(ParGCRareEvent_lock,
   861                             Mutex::_no_safepoint_check_flag);
   863             if (!_failures) {
   864               gclog_or_tty->cr();
   865               gclog_or_tty->print_cr("----------");
   866             }
   867             gclog_or_tty->print_cr("Missing rem set entry:");
   868             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   869                                    "of obj "PTR_FORMAT", "
   870                                    "in region "HR_FORMAT,
   871                                    p, (void*) _containing_obj,
   872                                    HR_FORMAT_PARAMS(from));
   873             _containing_obj->print_on(gclog_or_tty);
   874             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   875                                    "in region "HR_FORMAT,
   876                                    (void*) obj,
   877                                    HR_FORMAT_PARAMS(to));
   878             obj->print_on(gclog_or_tty);
   879             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   880                           cv_obj, cv_field);
   881             gclog_or_tty->print_cr("----------");
   882             gclog_or_tty->flush();
   883             _failures = true;
   884             if (!failed) _n_failures++;
   885           }
   886         }
   887       }
   888     }
   889   }
   890 };
   892 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   893 // We would need a mechanism to make that code skip dead objects.
   895 void HeapRegion::verify(VerifyOption vo,
   896                         bool* failures) const {
   897   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   898   *failures = false;
   899   HeapWord* p = bottom();
   900   HeapWord* prev_p = NULL;
   901   VerifyLiveClosure vl_cl(g1, vo);
   902   bool is_humongous = isHumongous();
   903   bool do_bot_verify = !is_young();
   904   size_t object_num = 0;
   905   while (p < top()) {
   906     oop obj = oop(p);
   907     size_t obj_size = block_size(p);
   908     object_num += 1;
   910     if (is_humongous != g1->isHumongous(obj_size) &&
   911         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   912       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   913                              SIZE_FORMAT" words) in a %shumongous region",
   914                              p, g1->isHumongous(obj_size) ? "" : "non-",
   915                              obj_size, is_humongous ? "" : "non-");
   916        *failures = true;
   917        return;
   918     }
   920     // If it returns false, verify_for_object() will output the
   921     // appropriate messasge.
   922     if (do_bot_verify &&
   923         !g1->is_obj_dead(obj, this) &&
   924         !_offsets.verify_for_object(p, obj_size)) {
   925       *failures = true;
   926       return;
   927     }
   929     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   930       if (obj->is_oop()) {
   931         Klass* klass = obj->klass();
   932         bool is_metaspace_object = Metaspace::contains(klass) ||
   933                                    (vo == VerifyOption_G1UsePrevMarking &&
   934                                    ClassLoaderDataGraph::unload_list_contains(klass));
   935         if (!is_metaspace_object) {
   936           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   937                                  "not metadata", klass, (void *)obj);
   938           *failures = true;
   939           return;
   940         } else if (!klass->is_klass()) {
   941           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   942                                  "not a klass", klass, (void *)obj);
   943           *failures = true;
   944           return;
   945         } else {
   946           vl_cl.set_containing_obj(obj);
   947           obj->oop_iterate_no_header(&vl_cl);
   948           if (vl_cl.failures()) {
   949             *failures = true;
   950           }
   951           if (G1MaxVerifyFailures >= 0 &&
   952               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   953             return;
   954           }
   955         }
   956       } else {
   957         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   958         *failures = true;
   959         return;
   960       }
   961     }
   962     prev_p = p;
   963     p += obj_size;
   964   }
   966   if (p != top()) {
   967     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   968                            "does not match top "PTR_FORMAT, p, top());
   969     *failures = true;
   970     return;
   971   }
   973   HeapWord* the_end = end();
   974   assert(p == top(), "it should still hold");
   975   // Do some extra BOT consistency checking for addresses in the
   976   // range [top, end). BOT look-ups in this range should yield
   977   // top. No point in doing that if top == end (there's nothing there).
   978   if (p < the_end) {
   979     // Look up top
   980     HeapWord* addr_1 = p;
   981     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   982     if (b_start_1 != p) {
   983       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   984                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   985                              addr_1, b_start_1, p);
   986       *failures = true;
   987       return;
   988     }
   990     // Look up top + 1
   991     HeapWord* addr_2 = p + 1;
   992     if (addr_2 < the_end) {
   993       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   994       if (b_start_2 != p) {
   995         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   996                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   997                                addr_2, b_start_2, p);
   998         *failures = true;
   999         return;
  1003     // Look up an address between top and end
  1004     size_t diff = pointer_delta(the_end, p) / 2;
  1005     HeapWord* addr_3 = p + diff;
  1006     if (addr_3 < the_end) {
  1007       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1008       if (b_start_3 != p) {
  1009         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1010                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1011                                addr_3, b_start_3, p);
  1012         *failures = true;
  1013         return;
  1017     // Loook up end - 1
  1018     HeapWord* addr_4 = the_end - 1;
  1019     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1020     if (b_start_4 != p) {
  1021       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1022                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1023                              addr_4, b_start_4, p);
  1024       *failures = true;
  1025       return;
  1029   if (is_humongous && object_num > 1) {
  1030     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1031                            "but has "SIZE_FORMAT", objects",
  1032                            bottom(), end(), object_num);
  1033     *failures = true;
  1034     return;
  1037   verify_strong_code_roots(vo, failures);
  1040 void HeapRegion::verify() const {
  1041   bool dummy = false;
  1042   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1045 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1046 // away eventually.
  1048 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1049   set_top(bottom());
  1050   set_saved_mark_word(bottom());
  1051   CompactibleSpace::clear(mangle_space);
  1052   _offsets.zero_bottom_entry();
  1053   _offsets.initialize_threshold();
  1056 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1057   Space::set_bottom(new_bottom);
  1058   _offsets.set_bottom(new_bottom);
  1061 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1062   Space::set_end(new_end);
  1063   _offsets.resize(new_end - bottom());
  1066 void G1OffsetTableContigSpace::print() const {
  1067   print_short();
  1068   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1069                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1070                 bottom(), top(), _offsets.threshold(), end());
  1073 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1074   return _offsets.initialize_threshold();
  1077 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1078                                                     HeapWord* end) {
  1079   _offsets.alloc_block(start, end);
  1080   return _offsets.threshold();
  1083 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1084   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1085   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1086   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1087     return top();
  1088   else
  1089     return Space::saved_mark_word();
  1092 void G1OffsetTableContigSpace::record_top_and_timestamp() {
  1093   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1094   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1096   if (_gc_time_stamp < curr_gc_time_stamp) {
  1097     // The order of these is important, as another thread might be
  1098     // about to start scanning this region. If it does so after
  1099     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1100     // will be false, and it will pick up top() as the high water mark
  1101     // of region. If it does so after _gc_time_stamp = ..., then it
  1102     // will pick up the right saved_mark_word() as the high water mark
  1103     // of the region. Either way, the behaviour will be correct.
  1104     Space::set_saved_mark_word(top());
  1105     OrderAccess::storestore();
  1106     _gc_time_stamp = curr_gc_time_stamp;
  1107     // No need to do another barrier to flush the writes above. If
  1108     // this is called in parallel with other threads trying to
  1109     // allocate into the region, the caller should call this while
  1110     // holding a lock and when the lock is released the writes will be
  1111     // flushed.
  1115 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1116   object_iterate(blk);
  1119 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1120   HeapWord* p = bottom();
  1121   while (p < top()) {
  1122     if (block_is_obj(p)) {
  1123       blk->do_object(oop(p));
  1125     p += block_size(p);
  1129 #define block_is_always_obj(q) true
  1130 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1131   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1133 #undef block_is_always_obj
  1135 G1OffsetTableContigSpace::
  1136 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1137                          MemRegion mr) :
  1138   _offsets(sharedOffsetArray, mr),
  1139   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1140   _gc_time_stamp(0)
  1142   _offsets.set_space(this);
  1143   // false ==> we'll do the clearing if there's clearing to be done.
  1144   CompactibleSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1145   _top = bottom();
  1146   _offsets.zero_bottom_entry();
  1147   _offsets.initialize_threshold();

mercurial