src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6988
a8137787acfe
child 6993
870c03421152
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    40 #include "gc_implementation/g1/g1EvacFailure.hpp"
    41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    42 #include "gc_implementation/g1/g1Log.hpp"
    43 #include "gc_implementation/g1/g1MarkSweep.hpp"
    44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    46 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    47 #include "gc_implementation/g1/g1StringDedup.hpp"
    48 #include "gc_implementation/g1/g1YCTypes.hpp"
    49 #include "gc_implementation/g1/heapRegion.inline.hpp"
    50 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    51 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    52 #include "gc_implementation/g1/vm_operations_g1.hpp"
    53 #include "gc_implementation/shared/gcHeapSummary.hpp"
    54 #include "gc_implementation/shared/gcTimer.hpp"
    55 #include "gc_implementation/shared/gcTrace.hpp"
    56 #include "gc_implementation/shared/gcTraceTime.hpp"
    57 #include "gc_implementation/shared/isGCActiveMark.hpp"
    58 #include "memory/allocation.hpp"
    59 #include "memory/gcLocker.inline.hpp"
    60 #include "memory/generationSpec.hpp"
    61 #include "memory/iterator.hpp"
    62 #include "memory/referenceProcessor.hpp"
    63 #include "oops/oop.inline.hpp"
    64 #include "oops/oop.pcgc.inline.hpp"
    65 #include "runtime/orderAccess.inline.hpp"
    66 #include "runtime/vmThread.hpp"
    68 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    70 // turn it on so that the contents of the young list (scan-only /
    71 // to-be-collected) are printed at "strategic" points before / during
    72 // / after the collection --- this is useful for debugging
    73 #define YOUNG_LIST_VERBOSE 0
    74 // CURRENT STATUS
    75 // This file is under construction.  Search for "FIXME".
    77 // INVARIANTS/NOTES
    78 //
    79 // All allocation activity covered by the G1CollectedHeap interface is
    80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    81 // and allocate_new_tlab, which are the "entry" points to the
    82 // allocation code from the rest of the JVM.  (Note that this does not
    83 // apply to TLAB allocation, which is not part of this interface: it
    84 // is done by clients of this interface.)
    86 // Notes on implementation of parallelism in different tasks.
    87 //
    88 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    89 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    90 // It does use run_task() which sets _n_workers in the task.
    91 // G1ParTask executes g1_process_roots() ->
    92 // SharedHeap::process_roots() which calls eventually to
    93 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    94 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    95 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    96 //
    98 // Local to this file.
   100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   101   bool _concurrent;
   102 public:
   103   RefineCardTableEntryClosure() : _concurrent(true) { }
   105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   106     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   107     // This path is executed by the concurrent refine or mutator threads,
   108     // concurrently, and so we do not care if card_ptr contains references
   109     // that point into the collection set.
   110     assert(!oops_into_cset, "should be");
   112     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   113       // Caller will actually yield.
   114       return false;
   115     }
   116     // Otherwise, we finished successfully; return true.
   117     return true;
   118   }
   120   void set_concurrent(bool b) { _concurrent = b; }
   121 };
   124 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   125   size_t _num_processed;
   126   CardTableModRefBS* _ctbs;
   127   int _histo[256];
   129  public:
   130   ClearLoggedCardTableEntryClosure() :
   131     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   132   {
   133     for (int i = 0; i < 256; i++) _histo[i] = 0;
   134   }
   136   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   137     unsigned char* ujb = (unsigned char*)card_ptr;
   138     int ind = (int)(*ujb);
   139     _histo[ind]++;
   141     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   142     _num_processed++;
   144     return true;
   145   }
   147   size_t num_processed() { return _num_processed; }
   149   void print_histo() {
   150     gclog_or_tty->print_cr("Card table value histogram:");
   151     for (int i = 0; i < 256; i++) {
   152       if (_histo[i] != 0) {
   153         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   154       }
   155     }
   156   }
   157 };
   159 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   160  private:
   161   size_t _num_processed;
   163  public:
   164   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   166   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   167     *card_ptr = CardTableModRefBS::dirty_card_val();
   168     _num_processed++;
   169     return true;
   170   }
   172   size_t num_processed() const { return _num_processed; }
   173 };
   175 YoungList::YoungList(G1CollectedHeap* g1h) :
   176     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   177     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   178   guarantee(check_list_empty(false), "just making sure...");
   179 }
   181 void YoungList::push_region(HeapRegion *hr) {
   182   assert(!hr->is_young(), "should not already be young");
   183   assert(hr->get_next_young_region() == NULL, "cause it should!");
   185   hr->set_next_young_region(_head);
   186   _head = hr;
   188   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   189   ++_length;
   190 }
   192 void YoungList::add_survivor_region(HeapRegion* hr) {
   193   assert(hr->is_survivor(), "should be flagged as survivor region");
   194   assert(hr->get_next_young_region() == NULL, "cause it should!");
   196   hr->set_next_young_region(_survivor_head);
   197   if (_survivor_head == NULL) {
   198     _survivor_tail = hr;
   199   }
   200   _survivor_head = hr;
   201   ++_survivor_length;
   202 }
   204 void YoungList::empty_list(HeapRegion* list) {
   205   while (list != NULL) {
   206     HeapRegion* next = list->get_next_young_region();
   207     list->set_next_young_region(NULL);
   208     list->uninstall_surv_rate_group();
   209     list->set_not_young();
   210     list = next;
   211   }
   212 }
   214 void YoungList::empty_list() {
   215   assert(check_list_well_formed(), "young list should be well formed");
   217   empty_list(_head);
   218   _head = NULL;
   219   _length = 0;
   221   empty_list(_survivor_head);
   222   _survivor_head = NULL;
   223   _survivor_tail = NULL;
   224   _survivor_length = 0;
   226   _last_sampled_rs_lengths = 0;
   228   assert(check_list_empty(false), "just making sure...");
   229 }
   231 bool YoungList::check_list_well_formed() {
   232   bool ret = true;
   234   uint length = 0;
   235   HeapRegion* curr = _head;
   236   HeapRegion* last = NULL;
   237   while (curr != NULL) {
   238     if (!curr->is_young()) {
   239       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   240                              "incorrectly tagged (y: %d, surv: %d)",
   241                              curr->bottom(), curr->end(),
   242                              curr->is_young(), curr->is_survivor());
   243       ret = false;
   244     }
   245     ++length;
   246     last = curr;
   247     curr = curr->get_next_young_region();
   248   }
   249   ret = ret && (length == _length);
   251   if (!ret) {
   252     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   253     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   254                            length, _length);
   255   }
   257   return ret;
   258 }
   260 bool YoungList::check_list_empty(bool check_sample) {
   261   bool ret = true;
   263   if (_length != 0) {
   264     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   265                   _length);
   266     ret = false;
   267   }
   268   if (check_sample && _last_sampled_rs_lengths != 0) {
   269     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   270     ret = false;
   271   }
   272   if (_head != NULL) {
   273     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   274     ret = false;
   275   }
   276   if (!ret) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   278   }
   280   return ret;
   281 }
   283 void
   284 YoungList::rs_length_sampling_init() {
   285   _sampled_rs_lengths = 0;
   286   _curr               = _head;
   287 }
   289 bool
   290 YoungList::rs_length_sampling_more() {
   291   return _curr != NULL;
   292 }
   294 void
   295 YoungList::rs_length_sampling_next() {
   296   assert( _curr != NULL, "invariant" );
   297   size_t rs_length = _curr->rem_set()->occupied();
   299   _sampled_rs_lengths += rs_length;
   301   // The current region may not yet have been added to the
   302   // incremental collection set (it gets added when it is
   303   // retired as the current allocation region).
   304   if (_curr->in_collection_set()) {
   305     // Update the collection set policy information for this region
   306     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   307   }
   309   _curr = _curr->get_next_young_region();
   310   if (_curr == NULL) {
   311     _last_sampled_rs_lengths = _sampled_rs_lengths;
   312     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   313   }
   314 }
   316 void
   317 YoungList::reset_auxilary_lists() {
   318   guarantee( is_empty(), "young list should be empty" );
   319   assert(check_list_well_formed(), "young list should be well formed");
   321   // Add survivor regions to SurvRateGroup.
   322   _g1h->g1_policy()->note_start_adding_survivor_regions();
   323   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   325   int young_index_in_cset = 0;
   326   for (HeapRegion* curr = _survivor_head;
   327        curr != NULL;
   328        curr = curr->get_next_young_region()) {
   329     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   331     // The region is a non-empty survivor so let's add it to
   332     // the incremental collection set for the next evacuation
   333     // pause.
   334     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   335     young_index_in_cset += 1;
   336   }
   337   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   338   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   340   _head   = _survivor_head;
   341   _length = _survivor_length;
   342   if (_survivor_head != NULL) {
   343     assert(_survivor_tail != NULL, "cause it shouldn't be");
   344     assert(_survivor_length > 0, "invariant");
   345     _survivor_tail->set_next_young_region(NULL);
   346   }
   348   // Don't clear the survivor list handles until the start of
   349   // the next evacuation pause - we need it in order to re-tag
   350   // the survivor regions from this evacuation pause as 'young'
   351   // at the start of the next.
   353   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   355   assert(check_list_well_formed(), "young list should be well formed");
   356 }
   358 void YoungList::print() {
   359   HeapRegion* lists[] = {_head,   _survivor_head};
   360   const char* names[] = {"YOUNG", "SURVIVOR"};
   362   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   363     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   364     HeapRegion *curr = lists[list];
   365     if (curr == NULL)
   366       gclog_or_tty->print_cr("  empty");
   367     while (curr != NULL) {
   368       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   369                              HR_FORMAT_PARAMS(curr),
   370                              curr->prev_top_at_mark_start(),
   371                              curr->next_top_at_mark_start(),
   372                              curr->age_in_surv_rate_group_cond());
   373       curr = curr->get_next_young_region();
   374     }
   375   }
   377   gclog_or_tty->cr();
   378 }
   380 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   381 {
   382   // Claim the right to put the region on the dirty cards region list
   383   // by installing a self pointer.
   384   HeapRegion* next = hr->get_next_dirty_cards_region();
   385   if (next == NULL) {
   386     HeapRegion* res = (HeapRegion*)
   387       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   388                           NULL);
   389     if (res == NULL) {
   390       HeapRegion* head;
   391       do {
   392         // Put the region to the dirty cards region list.
   393         head = _dirty_cards_region_list;
   394         next = (HeapRegion*)
   395           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   396         if (next == head) {
   397           assert(hr->get_next_dirty_cards_region() == hr,
   398                  "hr->get_next_dirty_cards_region() != hr");
   399           if (next == NULL) {
   400             // The last region in the list points to itself.
   401             hr->set_next_dirty_cards_region(hr);
   402           } else {
   403             hr->set_next_dirty_cards_region(next);
   404           }
   405         }
   406       } while (next != head);
   407     }
   408   }
   409 }
   411 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   412 {
   413   HeapRegion* head;
   414   HeapRegion* hr;
   415   do {
   416     head = _dirty_cards_region_list;
   417     if (head == NULL) {
   418       return NULL;
   419     }
   420     HeapRegion* new_head = head->get_next_dirty_cards_region();
   421     if (head == new_head) {
   422       // The last region.
   423       new_head = NULL;
   424     }
   425     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   426                                           head);
   427   } while (hr != head);
   428   assert(hr != NULL, "invariant");
   429   hr->set_next_dirty_cards_region(NULL);
   430   return hr;
   431 }
   433 #ifdef ASSERT
   434 // A region is added to the collection set as it is retired
   435 // so an address p can point to a region which will be in the
   436 // collection set but has not yet been retired.  This method
   437 // therefore is only accurate during a GC pause after all
   438 // regions have been retired.  It is used for debugging
   439 // to check if an nmethod has references to objects that can
   440 // be move during a partial collection.  Though it can be
   441 // inaccurate, it is sufficient for G1 because the conservative
   442 // implementation of is_scavengable() for G1 will indicate that
   443 // all nmethods must be scanned during a partial collection.
   444 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   445   HeapRegion* hr = heap_region_containing(p);
   446   return hr != NULL && hr->in_collection_set();
   447 }
   448 #endif
   450 // Returns true if the reference points to an object that
   451 // can move in an incremental collection.
   452 bool G1CollectedHeap::is_scavengable(const void* p) {
   453   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   454   G1CollectorPolicy* g1p = g1h->g1_policy();
   455   HeapRegion* hr = heap_region_containing(p);
   456   if (hr == NULL) {
   457      // null
   458      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   459      return false;
   460   } else {
   461     return !hr->isHumongous();
   462   }
   463 }
   465 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   466   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   467   CardTableModRefBS* ct_bs = g1_barrier_set();
   469   // Count the dirty cards at the start.
   470   CountNonCleanMemRegionClosure count1(this);
   471   ct_bs->mod_card_iterate(&count1);
   472   int orig_count = count1.n();
   474   // First clear the logged cards.
   475   ClearLoggedCardTableEntryClosure clear;
   476   dcqs.apply_closure_to_all_completed_buffers(&clear);
   477   dcqs.iterate_closure_all_threads(&clear, false);
   478   clear.print_histo();
   480   // Now ensure that there's no dirty cards.
   481   CountNonCleanMemRegionClosure count2(this);
   482   ct_bs->mod_card_iterate(&count2);
   483   if (count2.n() != 0) {
   484     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   485                            count2.n(), orig_count);
   486   }
   487   guarantee(count2.n() == 0, "Card table should be clean.");
   489   RedirtyLoggedCardTableEntryClosure redirty;
   490   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   491   dcqs.iterate_closure_all_threads(&redirty, false);
   492   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   493                          clear.num_processed(), orig_count);
   494   guarantee(redirty.num_processed() == clear.num_processed(),
   495             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   496                     redirty.num_processed(), clear.num_processed()));
   498   CountNonCleanMemRegionClosure count3(this);
   499   ct_bs->mod_card_iterate(&count3);
   500   if (count3.n() != orig_count) {
   501     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   502                            orig_count, count3.n());
   503     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   504   }
   505 }
   507 // Private class members.
   509 G1CollectedHeap* G1CollectedHeap::_g1h;
   511 // Private methods.
   513 HeapRegion*
   514 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   517     if (!_secondary_free_list.is_empty()) {
   518       if (G1ConcRegionFreeingVerbose) {
   519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   520                                "secondary_free_list has %u entries",
   521                                _secondary_free_list.length());
   522       }
   523       // It looks as if there are free regions available on the
   524       // secondary_free_list. Let's move them to the free_list and try
   525       // again to allocate from it.
   526       append_secondary_free_list();
   528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   529              "empty we should have moved at least one entry to the free_list");
   530       HeapRegion* res = _free_list.remove_region(is_old);
   531       if (G1ConcRegionFreeingVerbose) {
   532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   533                                "allocated "HR_FORMAT" from secondary_free_list",
   534                                HR_FORMAT_PARAMS(res));
   535       }
   536       return res;
   537     }
   539     // Wait here until we get notified either when (a) there are no
   540     // more free regions coming or (b) some regions have been moved on
   541     // the secondary_free_list.
   542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   543   }
   545   if (G1ConcRegionFreeingVerbose) {
   546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   547                            "could not allocate from secondary_free_list");
   548   }
   549   return NULL;
   550 }
   552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   553   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   554          "the only time we use this to allocate a humongous region is "
   555          "when we are allocating a single humongous region");
   557   HeapRegion* res;
   558   if (G1StressConcRegionFreeing) {
   559     if (!_secondary_free_list.is_empty()) {
   560       if (G1ConcRegionFreeingVerbose) {
   561         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   562                                "forced to look at the secondary_free_list");
   563       }
   564       res = new_region_try_secondary_free_list(is_old);
   565       if (res != NULL) {
   566         return res;
   567       }
   568     }
   569   }
   571   res = _free_list.remove_region(is_old);
   573   if (res == NULL) {
   574     if (G1ConcRegionFreeingVerbose) {
   575       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   576                              "res == NULL, trying the secondary_free_list");
   577     }
   578     res = new_region_try_secondary_free_list(is_old);
   579   }
   580   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   581     // Currently, only attempts to allocate GC alloc regions set
   582     // do_expand to true. So, we should only reach here during a
   583     // safepoint. If this assumption changes we might have to
   584     // reconsider the use of _expand_heap_after_alloc_failure.
   585     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   587     ergo_verbose1(ErgoHeapSizing,
   588                   "attempt heap expansion",
   589                   ergo_format_reason("region allocation request failed")
   590                   ergo_format_byte("allocation request"),
   591                   word_size * HeapWordSize);
   592     if (expand(word_size * HeapWordSize)) {
   593       // Given that expand() succeeded in expanding the heap, and we
   594       // always expand the heap by an amount aligned to the heap
   595       // region size, the free list should in theory not be empty.
   596       // In either case remove_region() will check for NULL.
   597       res = _free_list.remove_region(is_old);
   598     } else {
   599       _expand_heap_after_alloc_failure = false;
   600     }
   601   }
   602   return res;
   603 }
   605 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   606                                                         size_t word_size) {
   607   assert(isHumongous(word_size), "word_size should be humongous");
   608   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   610   uint first = G1_NULL_HRS_INDEX;
   611   if (num_regions == 1) {
   612     // Only one region to allocate, no need to go through the slower
   613     // path. The caller will attempt the expansion if this fails, so
   614     // let's not try to expand here too.
   615     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   616     if (hr != NULL) {
   617       first = hr->hrs_index();
   618     } else {
   619       first = G1_NULL_HRS_INDEX;
   620     }
   621   } else {
   622     // We can't allocate humongous regions while cleanupComplete() is
   623     // running, since some of the regions we find to be empty might not
   624     // yet be added to the free list and it is not straightforward to
   625     // know which list they are on so that we can remove them. Note
   626     // that we only need to do this if we need to allocate more than
   627     // one region to satisfy the current humongous allocation
   628     // request. If we are only allocating one region we use the common
   629     // region allocation code (see above).
   630     wait_while_free_regions_coming();
   631     append_secondary_free_list_if_not_empty_with_lock();
   633     if (free_regions() >= num_regions) {
   634       first = _hrs.find_contiguous(num_regions);
   635       if (first != G1_NULL_HRS_INDEX) {
   636         for (uint i = first; i < first + num_regions; ++i) {
   637           HeapRegion* hr = region_at(i);
   638           assert(hr->is_empty(), "sanity");
   639           assert(is_on_master_free_list(hr), "sanity");
   640           hr->set_pending_removal(true);
   641         }
   642         _free_list.remove_all_pending(num_regions);
   643       }
   644     }
   645   }
   646   return first;
   647 }
   649 HeapWord*
   650 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   651                                                            uint num_regions,
   652                                                            size_t word_size) {
   653   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   654   assert(isHumongous(word_size), "word_size should be humongous");
   655   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   657   // Index of last region in the series + 1.
   658   uint last = first + num_regions;
   660   // We need to initialize the region(s) we just discovered. This is
   661   // a bit tricky given that it can happen concurrently with
   662   // refinement threads refining cards on these regions and
   663   // potentially wanting to refine the BOT as they are scanning
   664   // those cards (this can happen shortly after a cleanup; see CR
   665   // 6991377). So we have to set up the region(s) carefully and in
   666   // a specific order.
   668   // The word size sum of all the regions we will allocate.
   669   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   670   assert(word_size <= word_size_sum, "sanity");
   672   // This will be the "starts humongous" region.
   673   HeapRegion* first_hr = region_at(first);
   674   // The header of the new object will be placed at the bottom of
   675   // the first region.
   676   HeapWord* new_obj = first_hr->bottom();
   677   // This will be the new end of the first region in the series that
   678   // should also match the end of the last region in the series.
   679   HeapWord* new_end = new_obj + word_size_sum;
   680   // This will be the new top of the first region that will reflect
   681   // this allocation.
   682   HeapWord* new_top = new_obj + word_size;
   684   // First, we need to zero the header of the space that we will be
   685   // allocating. When we update top further down, some refinement
   686   // threads might try to scan the region. By zeroing the header we
   687   // ensure that any thread that will try to scan the region will
   688   // come across the zero klass word and bail out.
   689   //
   690   // NOTE: It would not have been correct to have used
   691   // CollectedHeap::fill_with_object() and make the space look like
   692   // an int array. The thread that is doing the allocation will
   693   // later update the object header to a potentially different array
   694   // type and, for a very short period of time, the klass and length
   695   // fields will be inconsistent. This could cause a refinement
   696   // thread to calculate the object size incorrectly.
   697   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   699   // We will set up the first region as "starts humongous". This
   700   // will also update the BOT covering all the regions to reflect
   701   // that there is a single object that starts at the bottom of the
   702   // first region.
   703   first_hr->set_startsHumongous(new_top, new_end);
   705   // Then, if there are any, we will set up the "continues
   706   // humongous" regions.
   707   HeapRegion* hr = NULL;
   708   for (uint i = first + 1; i < last; ++i) {
   709     hr = region_at(i);
   710     hr->set_continuesHumongous(first_hr);
   711   }
   712   // If we have "continues humongous" regions (hr != NULL), then the
   713   // end of the last one should match new_end.
   714   assert(hr == NULL || hr->end() == new_end, "sanity");
   716   // Up to this point no concurrent thread would have been able to
   717   // do any scanning on any region in this series. All the top
   718   // fields still point to bottom, so the intersection between
   719   // [bottom,top] and [card_start,card_end] will be empty. Before we
   720   // update the top fields, we'll do a storestore to make sure that
   721   // no thread sees the update to top before the zeroing of the
   722   // object header and the BOT initialization.
   723   OrderAccess::storestore();
   725   // Now that the BOT and the object header have been initialized,
   726   // we can update top of the "starts humongous" region.
   727   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   728          "new_top should be in this region");
   729   first_hr->set_top(new_top);
   730   if (_hr_printer.is_active()) {
   731     HeapWord* bottom = first_hr->bottom();
   732     HeapWord* end = first_hr->orig_end();
   733     if ((first + 1) == last) {
   734       // the series has a single humongous region
   735       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   736     } else {
   737       // the series has more than one humongous regions
   738       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   739     }
   740   }
   742   // Now, we will update the top fields of the "continues humongous"
   743   // regions. The reason we need to do this is that, otherwise,
   744   // these regions would look empty and this will confuse parts of
   745   // G1. For example, the code that looks for a consecutive number
   746   // of empty regions will consider them empty and try to
   747   // re-allocate them. We can extend is_empty() to also include
   748   // !continuesHumongous(), but it is easier to just update the top
   749   // fields here. The way we set top for all regions (i.e., top ==
   750   // end for all regions but the last one, top == new_top for the
   751   // last one) is actually used when we will free up the humongous
   752   // region in free_humongous_region().
   753   hr = NULL;
   754   for (uint i = first + 1; i < last; ++i) {
   755     hr = region_at(i);
   756     if ((i + 1) == last) {
   757       // last continues humongous region
   758       assert(hr->bottom() < new_top && new_top <= hr->end(),
   759              "new_top should fall on this region");
   760       hr->set_top(new_top);
   761       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   762     } else {
   763       // not last one
   764       assert(new_top > hr->end(), "new_top should be above this region");
   765       hr->set_top(hr->end());
   766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   767     }
   768   }
   769   // If we have continues humongous regions (hr != NULL), then the
   770   // end of the last one should match new_end and its top should
   771   // match new_top.
   772   assert(hr == NULL ||
   773          (hr->end() == new_end && hr->top() == new_top), "sanity");
   775   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   776   _summary_bytes_used += first_hr->used();
   777   _humongous_set.add(first_hr);
   779   return new_obj;
   780 }
   782 // If could fit into free regions w/o expansion, try.
   783 // Otherwise, if can expand, do so.
   784 // Otherwise, if using ex regions might help, try with ex given back.
   785 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   786   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   788   verify_region_sets_optional();
   790   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   791   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   792   uint x_num = expansion_regions();
   793   uint fs = _hrs.free_suffix();
   794   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   795   if (first == G1_NULL_HRS_INDEX) {
   796     // The only thing we can do now is attempt expansion.
   797     if (fs + x_num >= num_regions) {
   798       // If the number of regions we're trying to allocate for this
   799       // object is at most the number of regions in the free suffix,
   800       // then the call to humongous_obj_allocate_find_first() above
   801       // should have succeeded and we wouldn't be here.
   802       //
   803       // We should only be trying to expand when the free suffix is
   804       // not sufficient for the object _and_ we have some expansion
   805       // room available.
   806       assert(num_regions > fs, "earlier allocation should have succeeded");
   808       ergo_verbose1(ErgoHeapSizing,
   809                     "attempt heap expansion",
   810                     ergo_format_reason("humongous allocation request failed")
   811                     ergo_format_byte("allocation request"),
   812                     word_size * HeapWordSize);
   813       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   814         // Even though the heap was expanded, it might not have
   815         // reached the desired size. So, we cannot assume that the
   816         // allocation will succeed.
   817         first = humongous_obj_allocate_find_first(num_regions, word_size);
   818       }
   819     }
   820   }
   822   HeapWord* result = NULL;
   823   if (first != G1_NULL_HRS_INDEX) {
   824     result =
   825       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   826     assert(result != NULL, "it should always return a valid result");
   828     // A successful humongous object allocation changes the used space
   829     // information of the old generation so we need to recalculate the
   830     // sizes and update the jstat counters here.
   831     g1mm()->update_sizes();
   832   }
   834   verify_region_sets_optional();
   836   return result;
   837 }
   839 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   840   assert_heap_not_locked_and_not_at_safepoint();
   841   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   843   unsigned int dummy_gc_count_before;
   844   int dummy_gclocker_retry_count = 0;
   845   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   846 }
   848 HeapWord*
   849 G1CollectedHeap::mem_allocate(size_t word_size,
   850                               bool*  gc_overhead_limit_was_exceeded) {
   851   assert_heap_not_locked_and_not_at_safepoint();
   853   // Loop until the allocation is satisfied, or unsatisfied after GC.
   854   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   855     unsigned int gc_count_before;
   857     HeapWord* result = NULL;
   858     if (!isHumongous(word_size)) {
   859       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   860     } else {
   861       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   862     }
   863     if (result != NULL) {
   864       return result;
   865     }
   867     // Create the garbage collection operation...
   868     VM_G1CollectForAllocation op(gc_count_before, word_size);
   869     // ...and get the VM thread to execute it.
   870     VMThread::execute(&op);
   872     if (op.prologue_succeeded() && op.pause_succeeded()) {
   873       // If the operation was successful we'll return the result even
   874       // if it is NULL. If the allocation attempt failed immediately
   875       // after a Full GC, it's unlikely we'll be able to allocate now.
   876       HeapWord* result = op.result();
   877       if (result != NULL && !isHumongous(word_size)) {
   878         // Allocations that take place on VM operations do not do any
   879         // card dirtying and we have to do it here. We only have to do
   880         // this for non-humongous allocations, though.
   881         dirty_young_block(result, word_size);
   882       }
   883       return result;
   884     } else {
   885       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   886         return NULL;
   887       }
   888       assert(op.result() == NULL,
   889              "the result should be NULL if the VM op did not succeed");
   890     }
   892     // Give a warning if we seem to be looping forever.
   893     if ((QueuedAllocationWarningCount > 0) &&
   894         (try_count % QueuedAllocationWarningCount == 0)) {
   895       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   896     }
   897   }
   899   ShouldNotReachHere();
   900   return NULL;
   901 }
   903 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   904                                            unsigned int *gc_count_before_ret,
   905                                            int* gclocker_retry_count_ret) {
   906   // Make sure you read the note in attempt_allocation_humongous().
   908   assert_heap_not_locked_and_not_at_safepoint();
   909   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   910          "be called for humongous allocation requests");
   912   // We should only get here after the first-level allocation attempt
   913   // (attempt_allocation()) failed to allocate.
   915   // We will loop until a) we manage to successfully perform the
   916   // allocation or b) we successfully schedule a collection which
   917   // fails to perform the allocation. b) is the only case when we'll
   918   // return NULL.
   919   HeapWord* result = NULL;
   920   for (int try_count = 1; /* we'll return */; try_count += 1) {
   921     bool should_try_gc;
   922     unsigned int gc_count_before;
   924     {
   925       MutexLockerEx x(Heap_lock);
   927       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   928                                                       false /* bot_updates */);
   929       if (result != NULL) {
   930         return result;
   931       }
   933       // If we reach here, attempt_allocation_locked() above failed to
   934       // allocate a new region. So the mutator alloc region should be NULL.
   935       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   937       if (GC_locker::is_active_and_needs_gc()) {
   938         if (g1_policy()->can_expand_young_list()) {
   939           // No need for an ergo verbose message here,
   940           // can_expand_young_list() does this when it returns true.
   941           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   942                                                       false /* bot_updates */);
   943           if (result != NULL) {
   944             return result;
   945           }
   946         }
   947         should_try_gc = false;
   948       } else {
   949         // The GCLocker may not be active but the GCLocker initiated
   950         // GC may not yet have been performed (GCLocker::needs_gc()
   951         // returns true). In this case we do not try this GC and
   952         // wait until the GCLocker initiated GC is performed, and
   953         // then retry the allocation.
   954         if (GC_locker::needs_gc()) {
   955           should_try_gc = false;
   956         } else {
   957           // Read the GC count while still holding the Heap_lock.
   958           gc_count_before = total_collections();
   959           should_try_gc = true;
   960         }
   961       }
   962     }
   964     if (should_try_gc) {
   965       bool succeeded;
   966       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   967           GCCause::_g1_inc_collection_pause);
   968       if (result != NULL) {
   969         assert(succeeded, "only way to get back a non-NULL result");
   970         return result;
   971       }
   973       if (succeeded) {
   974         // If we get here we successfully scheduled a collection which
   975         // failed to allocate. No point in trying to allocate
   976         // further. We'll just return NULL.
   977         MutexLockerEx x(Heap_lock);
   978         *gc_count_before_ret = total_collections();
   979         return NULL;
   980       }
   981     } else {
   982       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   983         MutexLockerEx x(Heap_lock);
   984         *gc_count_before_ret = total_collections();
   985         return NULL;
   986       }
   987       // The GCLocker is either active or the GCLocker initiated
   988       // GC has not yet been performed. Stall until it is and
   989       // then retry the allocation.
   990       GC_locker::stall_until_clear();
   991       (*gclocker_retry_count_ret) += 1;
   992     }
   994     // We can reach here if we were unsuccessful in scheduling a
   995     // collection (because another thread beat us to it) or if we were
   996     // stalled due to the GC locker. In either can we should retry the
   997     // allocation attempt in case another thread successfully
   998     // performed a collection and reclaimed enough space. We do the
   999     // first attempt (without holding the Heap_lock) here and the
  1000     // follow-on attempt will be at the start of the next loop
  1001     // iteration (after taking the Heap_lock).
  1002     result = _mutator_alloc_region.attempt_allocation(word_size,
  1003                                                       false /* bot_updates */);
  1004     if (result != NULL) {
  1005       return result;
  1008     // Give a warning if we seem to be looping forever.
  1009     if ((QueuedAllocationWarningCount > 0) &&
  1010         (try_count % QueuedAllocationWarningCount == 0)) {
  1011       warning("G1CollectedHeap::attempt_allocation_slow() "
  1012               "retries %d times", try_count);
  1016   ShouldNotReachHere();
  1017   return NULL;
  1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1021                                           unsigned int * gc_count_before_ret,
  1022                                           int* gclocker_retry_count_ret) {
  1023   // The structure of this method has a lot of similarities to
  1024   // attempt_allocation_slow(). The reason these two were not merged
  1025   // into a single one is that such a method would require several "if
  1026   // allocation is not humongous do this, otherwise do that"
  1027   // conditional paths which would obscure its flow. In fact, an early
  1028   // version of this code did use a unified method which was harder to
  1029   // follow and, as a result, it had subtle bugs that were hard to
  1030   // track down. So keeping these two methods separate allows each to
  1031   // be more readable. It will be good to keep these two in sync as
  1032   // much as possible.
  1034   assert_heap_not_locked_and_not_at_safepoint();
  1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1036          "should only be called for humongous allocations");
  1038   // Humongous objects can exhaust the heap quickly, so we should check if we
  1039   // need to start a marking cycle at each humongous object allocation. We do
  1040   // the check before we do the actual allocation. The reason for doing it
  1041   // before the allocation is that we avoid having to keep track of the newly
  1042   // allocated memory while we do a GC.
  1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1044                                            word_size)) {
  1045     collect(GCCause::_g1_humongous_allocation);
  1048   // We will loop until a) we manage to successfully perform the
  1049   // allocation or b) we successfully schedule a collection which
  1050   // fails to perform the allocation. b) is the only case when we'll
  1051   // return NULL.
  1052   HeapWord* result = NULL;
  1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1054     bool should_try_gc;
  1055     unsigned int gc_count_before;
  1058       MutexLockerEx x(Heap_lock);
  1060       // Given that humongous objects are not allocated in young
  1061       // regions, we'll first try to do the allocation without doing a
  1062       // collection hoping that there's enough space in the heap.
  1063       result = humongous_obj_allocate(word_size);
  1064       if (result != NULL) {
  1065         return result;
  1068       if (GC_locker::is_active_and_needs_gc()) {
  1069         should_try_gc = false;
  1070       } else {
  1071          // The GCLocker may not be active but the GCLocker initiated
  1072         // GC may not yet have been performed (GCLocker::needs_gc()
  1073         // returns true). In this case we do not try this GC and
  1074         // wait until the GCLocker initiated GC is performed, and
  1075         // then retry the allocation.
  1076         if (GC_locker::needs_gc()) {
  1077           should_try_gc = false;
  1078         } else {
  1079           // Read the GC count while still holding the Heap_lock.
  1080           gc_count_before = total_collections();
  1081           should_try_gc = true;
  1086     if (should_try_gc) {
  1087       // If we failed to allocate the humongous object, we should try to
  1088       // do a collection pause (if we're allowed) in case it reclaims
  1089       // enough space for the allocation to succeed after the pause.
  1091       bool succeeded;
  1092       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1093           GCCause::_g1_humongous_allocation);
  1094       if (result != NULL) {
  1095         assert(succeeded, "only way to get back a non-NULL result");
  1096         return result;
  1099       if (succeeded) {
  1100         // If we get here we successfully scheduled a collection which
  1101         // failed to allocate. No point in trying to allocate
  1102         // further. We'll just return NULL.
  1103         MutexLockerEx x(Heap_lock);
  1104         *gc_count_before_ret = total_collections();
  1105         return NULL;
  1107     } else {
  1108       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1109         MutexLockerEx x(Heap_lock);
  1110         *gc_count_before_ret = total_collections();
  1111         return NULL;
  1113       // The GCLocker is either active or the GCLocker initiated
  1114       // GC has not yet been performed. Stall until it is and
  1115       // then retry the allocation.
  1116       GC_locker::stall_until_clear();
  1117       (*gclocker_retry_count_ret) += 1;
  1120     // We can reach here if we were unsuccessful in scheduling a
  1121     // collection (because another thread beat us to it) or if we were
  1122     // stalled due to the GC locker. In either can we should retry the
  1123     // allocation attempt in case another thread successfully
  1124     // performed a collection and reclaimed enough space.  Give a
  1125     // warning if we seem to be looping forever.
  1127     if ((QueuedAllocationWarningCount > 0) &&
  1128         (try_count % QueuedAllocationWarningCount == 0)) {
  1129       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1130               "retries %d times", try_count);
  1134   ShouldNotReachHere();
  1135   return NULL;
  1138 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1139                                        bool expect_null_mutator_alloc_region) {
  1140   assert_at_safepoint(true /* should_be_vm_thread */);
  1141   assert(_mutator_alloc_region.get() == NULL ||
  1142                                              !expect_null_mutator_alloc_region,
  1143          "the current alloc region was unexpectedly found to be non-NULL");
  1145   if (!isHumongous(word_size)) {
  1146     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1147                                                       false /* bot_updates */);
  1148   } else {
  1149     HeapWord* result = humongous_obj_allocate(word_size);
  1150     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1151       g1_policy()->set_initiate_conc_mark_if_possible();
  1153     return result;
  1156   ShouldNotReachHere();
  1159 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1160   G1CollectedHeap* _g1h;
  1161   ModRefBarrierSet* _mr_bs;
  1162 public:
  1163   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1164     _g1h(g1h), _mr_bs(mr_bs) {}
  1166   bool doHeapRegion(HeapRegion* r) {
  1167     HeapRegionRemSet* hrrs = r->rem_set();
  1169     if (r->continuesHumongous()) {
  1170       // We'll assert that the strong code root list and RSet is empty
  1171       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1172       assert(hrrs->occupied() == 0, "RSet should be empty");
  1173       return false;
  1176     _g1h->reset_gc_time_stamps(r);
  1177     hrrs->clear();
  1178     // You might think here that we could clear just the cards
  1179     // corresponding to the used region.  But no: if we leave a dirty card
  1180     // in a region we might allocate into, then it would prevent that card
  1181     // from being enqueued, and cause it to be missed.
  1182     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1183     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1185     return false;
  1187 };
  1189 void G1CollectedHeap::clear_rsets_post_compaction() {
  1190   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1191   heap_region_iterate(&rs_clear);
  1194 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1195   G1CollectedHeap*   _g1h;
  1196   UpdateRSOopClosure _cl;
  1197   int                _worker_i;
  1198 public:
  1199   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1200     _cl(g1->g1_rem_set(), worker_i),
  1201     _worker_i(worker_i),
  1202     _g1h(g1)
  1203   { }
  1205   bool doHeapRegion(HeapRegion* r) {
  1206     if (!r->continuesHumongous()) {
  1207       _cl.set_from(r);
  1208       r->oop_iterate(&_cl);
  1210     return false;
  1212 };
  1214 class ParRebuildRSTask: public AbstractGangTask {
  1215   G1CollectedHeap* _g1;
  1216 public:
  1217   ParRebuildRSTask(G1CollectedHeap* g1)
  1218     : AbstractGangTask("ParRebuildRSTask"),
  1219       _g1(g1)
  1220   { }
  1222   void work(uint worker_id) {
  1223     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1224     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1225                                           _g1->workers()->active_workers(),
  1226                                          HeapRegion::RebuildRSClaimValue);
  1228 };
  1230 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1231 private:
  1232   G1HRPrinter* _hr_printer;
  1233 public:
  1234   bool doHeapRegion(HeapRegion* hr) {
  1235     assert(!hr->is_young(), "not expecting to find young regions");
  1236     // We only generate output for non-empty regions.
  1237     if (!hr->is_empty()) {
  1238       if (!hr->isHumongous()) {
  1239         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1240       } else if (hr->startsHumongous()) {
  1241         if (hr->region_num() == 1) {
  1242           // single humongous region
  1243           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1244         } else {
  1245           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1247       } else {
  1248         assert(hr->continuesHumongous(), "only way to get here");
  1249         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1252     return false;
  1255   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1256     : _hr_printer(hr_printer) { }
  1257 };
  1259 void G1CollectedHeap::print_hrs_post_compaction() {
  1260   PostCompactionPrinterClosure cl(hr_printer());
  1261   heap_region_iterate(&cl);
  1264 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1265                                     bool clear_all_soft_refs,
  1266                                     size_t word_size) {
  1267   assert_at_safepoint(true /* should_be_vm_thread */);
  1269   if (GC_locker::check_active_before_gc()) {
  1270     return false;
  1273   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1274   gc_timer->register_gc_start();
  1276   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1277   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1279   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1280   ResourceMark rm;
  1282   print_heap_before_gc();
  1283   trace_heap_before_gc(gc_tracer);
  1285   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1287   verify_region_sets_optional();
  1289   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1290                            collector_policy()->should_clear_all_soft_refs();
  1292   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1295     IsGCActiveMark x;
  1297     // Timing
  1298     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1299     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1300     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1303       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1304       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1305       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1307       double start = os::elapsedTime();
  1308       g1_policy()->record_full_collection_start();
  1310       // Note: When we have a more flexible GC logging framework that
  1311       // allows us to add optional attributes to a GC log record we
  1312       // could consider timing and reporting how long we wait in the
  1313       // following two methods.
  1314       wait_while_free_regions_coming();
  1315       // If we start the compaction before the CM threads finish
  1316       // scanning the root regions we might trip them over as we'll
  1317       // be moving objects / updating references. So let's wait until
  1318       // they are done. By telling them to abort, they should complete
  1319       // early.
  1320       _cm->root_regions()->abort();
  1321       _cm->root_regions()->wait_until_scan_finished();
  1322       append_secondary_free_list_if_not_empty_with_lock();
  1324       gc_prologue(true);
  1325       increment_total_collections(true /* full gc */);
  1326       increment_old_marking_cycles_started();
  1328       assert(used() == recalculate_used(), "Should be equal");
  1330       verify_before_gc();
  1332       pre_full_gc_dump(gc_timer);
  1334       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1336       // Disable discovery and empty the discovered lists
  1337       // for the CM ref processor.
  1338       ref_processor_cm()->disable_discovery();
  1339       ref_processor_cm()->abandon_partial_discovery();
  1340       ref_processor_cm()->verify_no_references_recorded();
  1342       // Abandon current iterations of concurrent marking and concurrent
  1343       // refinement, if any are in progress. We have to do this before
  1344       // wait_until_scan_finished() below.
  1345       concurrent_mark()->abort();
  1347       // Make sure we'll choose a new allocation region afterwards.
  1348       release_mutator_alloc_region();
  1349       abandon_gc_alloc_regions();
  1350       g1_rem_set()->cleanupHRRS();
  1352       // We should call this after we retire any currently active alloc
  1353       // regions so that all the ALLOC / RETIRE events are generated
  1354       // before the start GC event.
  1355       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1357       // We may have added regions to the current incremental collection
  1358       // set between the last GC or pause and now. We need to clear the
  1359       // incremental collection set and then start rebuilding it afresh
  1360       // after this full GC.
  1361       abandon_collection_set(g1_policy()->inc_cset_head());
  1362       g1_policy()->clear_incremental_cset();
  1363       g1_policy()->stop_incremental_cset_building();
  1365       tear_down_region_sets(false /* free_list_only */);
  1366       g1_policy()->set_gcs_are_young(true);
  1368       // See the comments in g1CollectedHeap.hpp and
  1369       // G1CollectedHeap::ref_processing_init() about
  1370       // how reference processing currently works in G1.
  1372       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1373       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1375       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1376       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1378       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1379       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1381       // Do collection work
  1383         HandleMark hm;  // Discard invalid handles created during gc
  1384         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1387       assert(free_regions() == 0, "we should not have added any free regions");
  1388       rebuild_region_sets(false /* free_list_only */);
  1390       // Enqueue any discovered reference objects that have
  1391       // not been removed from the discovered lists.
  1392       ref_processor_stw()->enqueue_discovered_references();
  1394       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1396       MemoryService::track_memory_usage();
  1398       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1399       ref_processor_stw()->verify_no_references_recorded();
  1401       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1402       ClassLoaderDataGraph::purge();
  1403       MetaspaceAux::verify_metrics();
  1405       // Note: since we've just done a full GC, concurrent
  1406       // marking is no longer active. Therefore we need not
  1407       // re-enable reference discovery for the CM ref processor.
  1408       // That will be done at the start of the next marking cycle.
  1409       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1410       ref_processor_cm()->verify_no_references_recorded();
  1412       reset_gc_time_stamp();
  1413       // Since everything potentially moved, we will clear all remembered
  1414       // sets, and clear all cards.  Later we will rebuild remembered
  1415       // sets. We will also reset the GC time stamps of the regions.
  1416       clear_rsets_post_compaction();
  1417       check_gc_time_stamps();
  1419       // Resize the heap if necessary.
  1420       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1422       if (_hr_printer.is_active()) {
  1423         // We should do this after we potentially resize the heap so
  1424         // that all the COMMIT / UNCOMMIT events are generated before
  1425         // the end GC event.
  1427         print_hrs_post_compaction();
  1428         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1431       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1432       if (hot_card_cache->use_cache()) {
  1433         hot_card_cache->reset_card_counts();
  1434         hot_card_cache->reset_hot_cache();
  1437       // Rebuild remembered sets of all regions.
  1438       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1439         uint n_workers =
  1440           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1441                                                   workers()->active_workers(),
  1442                                                   Threads::number_of_non_daemon_threads());
  1443         assert(UseDynamicNumberOfGCThreads ||
  1444                n_workers == workers()->total_workers(),
  1445                "If not dynamic should be using all the  workers");
  1446         workers()->set_active_workers(n_workers);
  1447         // Set parallel threads in the heap (_n_par_threads) only
  1448         // before a parallel phase and always reset it to 0 after
  1449         // the phase so that the number of parallel threads does
  1450         // no get carried forward to a serial phase where there
  1451         // may be code that is "possibly_parallel".
  1452         set_par_threads(n_workers);
  1454         ParRebuildRSTask rebuild_rs_task(this);
  1455         assert(check_heap_region_claim_values(
  1456                HeapRegion::InitialClaimValue), "sanity check");
  1457         assert(UseDynamicNumberOfGCThreads ||
  1458                workers()->active_workers() == workers()->total_workers(),
  1459                "Unless dynamic should use total workers");
  1460         // Use the most recent number of  active workers
  1461         assert(workers()->active_workers() > 0,
  1462                "Active workers not properly set");
  1463         set_par_threads(workers()->active_workers());
  1464         workers()->run_task(&rebuild_rs_task);
  1465         set_par_threads(0);
  1466         assert(check_heap_region_claim_values(
  1467                HeapRegion::RebuildRSClaimValue), "sanity check");
  1468         reset_heap_region_claim_values();
  1469       } else {
  1470         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1471         heap_region_iterate(&rebuild_rs);
  1474       // Rebuild the strong code root lists for each region
  1475       rebuild_strong_code_roots();
  1477       if (true) { // FIXME
  1478         MetaspaceGC::compute_new_size();
  1481 #ifdef TRACESPINNING
  1482       ParallelTaskTerminator::print_termination_counts();
  1483 #endif
  1485       // Discard all rset updates
  1486       JavaThread::dirty_card_queue_set().abandon_logs();
  1487       assert(!G1DeferredRSUpdate
  1488              || (G1DeferredRSUpdate &&
  1489                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1491       _young_list->reset_sampled_info();
  1492       // At this point there should be no regions in the
  1493       // entire heap tagged as young.
  1494       assert(check_young_list_empty(true /* check_heap */),
  1495              "young list should be empty at this point");
  1497       // Update the number of full collections that have been completed.
  1498       increment_old_marking_cycles_completed(false /* concurrent */);
  1500       _hrs.verify_optional();
  1501       verify_region_sets_optional();
  1503       verify_after_gc();
  1505       // Start a new incremental collection set for the next pause
  1506       assert(g1_policy()->collection_set() == NULL, "must be");
  1507       g1_policy()->start_incremental_cset_building();
  1509       clear_cset_fast_test();
  1511       init_mutator_alloc_region();
  1513       double end = os::elapsedTime();
  1514       g1_policy()->record_full_collection_end();
  1516       if (G1Log::fine()) {
  1517         g1_policy()->print_heap_transition();
  1520       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1521       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1522       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1523       // before any GC notifications are raised.
  1524       g1mm()->update_sizes();
  1526       gc_epilogue(true);
  1529     if (G1Log::finer()) {
  1530       g1_policy()->print_detailed_heap_transition(true /* full */);
  1533     print_heap_after_gc();
  1534     trace_heap_after_gc(gc_tracer);
  1536     post_full_gc_dump(gc_timer);
  1538     gc_timer->register_gc_end();
  1539     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1542   return true;
  1545 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1546   // do_collection() will return whether it succeeded in performing
  1547   // the GC. Currently, there is no facility on the
  1548   // do_full_collection() API to notify the caller than the collection
  1549   // did not succeed (e.g., because it was locked out by the GC
  1550   // locker). So, right now, we'll ignore the return value.
  1551   bool dummy = do_collection(true,                /* explicit_gc */
  1552                              clear_all_soft_refs,
  1553                              0                    /* word_size */);
  1556 // This code is mostly copied from TenuredGeneration.
  1557 void
  1558 G1CollectedHeap::
  1559 resize_if_necessary_after_full_collection(size_t word_size) {
  1560   // Include the current allocation, if any, and bytes that will be
  1561   // pre-allocated to support collections, as "used".
  1562   const size_t used_after_gc = used();
  1563   const size_t capacity_after_gc = capacity();
  1564   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1566   // This is enforced in arguments.cpp.
  1567   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1568          "otherwise the code below doesn't make sense");
  1570   // We don't have floating point command-line arguments
  1571   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1572   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1573   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1574   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1576   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1577   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1579   // We have to be careful here as these two calculations can overflow
  1580   // 32-bit size_t's.
  1581   double used_after_gc_d = (double) used_after_gc;
  1582   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1583   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1585   // Let's make sure that they are both under the max heap size, which
  1586   // by default will make them fit into a size_t.
  1587   double desired_capacity_upper_bound = (double) max_heap_size;
  1588   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1589                                     desired_capacity_upper_bound);
  1590   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1591                                     desired_capacity_upper_bound);
  1593   // We can now safely turn them into size_t's.
  1594   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1595   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1597   // This assert only makes sense here, before we adjust them
  1598   // with respect to the min and max heap size.
  1599   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1600          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1601                  "maximum_desired_capacity = "SIZE_FORMAT,
  1602                  minimum_desired_capacity, maximum_desired_capacity));
  1604   // Should not be greater than the heap max size. No need to adjust
  1605   // it with respect to the heap min size as it's a lower bound (i.e.,
  1606   // we'll try to make the capacity larger than it, not smaller).
  1607   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1608   // Should not be less than the heap min size. No need to adjust it
  1609   // with respect to the heap max size as it's an upper bound (i.e.,
  1610   // we'll try to make the capacity smaller than it, not greater).
  1611   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1613   if (capacity_after_gc < minimum_desired_capacity) {
  1614     // Don't expand unless it's significant
  1615     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1616     ergo_verbose4(ErgoHeapSizing,
  1617                   "attempt heap expansion",
  1618                   ergo_format_reason("capacity lower than "
  1619                                      "min desired capacity after Full GC")
  1620                   ergo_format_byte("capacity")
  1621                   ergo_format_byte("occupancy")
  1622                   ergo_format_byte_perc("min desired capacity"),
  1623                   capacity_after_gc, used_after_gc,
  1624                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1625     expand(expand_bytes);
  1627     // No expansion, now see if we want to shrink
  1628   } else if (capacity_after_gc > maximum_desired_capacity) {
  1629     // Capacity too large, compute shrinking size
  1630     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1631     ergo_verbose4(ErgoHeapSizing,
  1632                   "attempt heap shrinking",
  1633                   ergo_format_reason("capacity higher than "
  1634                                      "max desired capacity after Full GC")
  1635                   ergo_format_byte("capacity")
  1636                   ergo_format_byte("occupancy")
  1637                   ergo_format_byte_perc("max desired capacity"),
  1638                   capacity_after_gc, used_after_gc,
  1639                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1640     shrink(shrink_bytes);
  1645 HeapWord*
  1646 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1647                                            bool* succeeded) {
  1648   assert_at_safepoint(true /* should_be_vm_thread */);
  1650   *succeeded = true;
  1651   // Let's attempt the allocation first.
  1652   HeapWord* result =
  1653     attempt_allocation_at_safepoint(word_size,
  1654                                  false /* expect_null_mutator_alloc_region */);
  1655   if (result != NULL) {
  1656     assert(*succeeded, "sanity");
  1657     return result;
  1660   // In a G1 heap, we're supposed to keep allocation from failing by
  1661   // incremental pauses.  Therefore, at least for now, we'll favor
  1662   // expansion over collection.  (This might change in the future if we can
  1663   // do something smarter than full collection to satisfy a failed alloc.)
  1664   result = expand_and_allocate(word_size);
  1665   if (result != NULL) {
  1666     assert(*succeeded, "sanity");
  1667     return result;
  1670   // Expansion didn't work, we'll try to do a Full GC.
  1671   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1672                                     false, /* clear_all_soft_refs */
  1673                                     word_size);
  1674   if (!gc_succeeded) {
  1675     *succeeded = false;
  1676     return NULL;
  1679   // Retry the allocation
  1680   result = attempt_allocation_at_safepoint(word_size,
  1681                                   true /* expect_null_mutator_alloc_region */);
  1682   if (result != NULL) {
  1683     assert(*succeeded, "sanity");
  1684     return result;
  1687   // Then, try a Full GC that will collect all soft references.
  1688   gc_succeeded = do_collection(false, /* explicit_gc */
  1689                                true,  /* clear_all_soft_refs */
  1690                                word_size);
  1691   if (!gc_succeeded) {
  1692     *succeeded = false;
  1693     return NULL;
  1696   // Retry the allocation once more
  1697   result = attempt_allocation_at_safepoint(word_size,
  1698                                   true /* expect_null_mutator_alloc_region */);
  1699   if (result != NULL) {
  1700     assert(*succeeded, "sanity");
  1701     return result;
  1704   assert(!collector_policy()->should_clear_all_soft_refs(),
  1705          "Flag should have been handled and cleared prior to this point");
  1707   // What else?  We might try synchronous finalization later.  If the total
  1708   // space available is large enough for the allocation, then a more
  1709   // complete compaction phase than we've tried so far might be
  1710   // appropriate.
  1711   assert(*succeeded, "sanity");
  1712   return NULL;
  1715 // Attempting to expand the heap sufficiently
  1716 // to support an allocation of the given "word_size".  If
  1717 // successful, perform the allocation and return the address of the
  1718 // allocated block, or else "NULL".
  1720 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1721   assert_at_safepoint(true /* should_be_vm_thread */);
  1723   verify_region_sets_optional();
  1725   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1726   ergo_verbose1(ErgoHeapSizing,
  1727                 "attempt heap expansion",
  1728                 ergo_format_reason("allocation request failed")
  1729                 ergo_format_byte("allocation request"),
  1730                 word_size * HeapWordSize);
  1731   if (expand(expand_bytes)) {
  1732     _hrs.verify_optional();
  1733     verify_region_sets_optional();
  1734     return attempt_allocation_at_safepoint(word_size,
  1735                                  false /* expect_null_mutator_alloc_region */);
  1737   return NULL;
  1740 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1741                                              HeapWord* new_end) {
  1742   assert(old_end != new_end, "don't call this otherwise");
  1743   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1745   // Update the committed mem region.
  1746   _g1_committed.set_end(new_end);
  1747   // Tell the card table about the update.
  1748   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1749   // Tell the BOT about the update.
  1750   _bot_shared->resize(_g1_committed.word_size());
  1751   // Tell the hot card cache about the update
  1752   _cg1r->hot_card_cache()->resize_card_counts(capacity());
  1755 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1756   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1757   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1758                                        HeapRegion::GrainBytes);
  1759   ergo_verbose2(ErgoHeapSizing,
  1760                 "expand the heap",
  1761                 ergo_format_byte("requested expansion amount")
  1762                 ergo_format_byte("attempted expansion amount"),
  1763                 expand_bytes, aligned_expand_bytes);
  1765   if (_g1_storage.uncommitted_size() == 0) {
  1766     ergo_verbose0(ErgoHeapSizing,
  1767                       "did not expand the heap",
  1768                       ergo_format_reason("heap already fully expanded"));
  1769     return false;
  1772   // First commit the memory.
  1773   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1774   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1775   if (successful) {
  1776     // Then propagate this update to the necessary data structures.
  1777     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1778     update_committed_space(old_end, new_end);
  1780     FreeRegionList expansion_list("Local Expansion List");
  1781     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1782     assert(mr.start() == old_end, "post-condition");
  1783     // mr might be a smaller region than what was requested if
  1784     // expand_by() was unable to allocate the HeapRegion instances
  1785     assert(mr.end() <= new_end, "post-condition");
  1787     size_t actual_expand_bytes = mr.byte_size();
  1788     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1789     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1790            "post-condition");
  1791     if (actual_expand_bytes < aligned_expand_bytes) {
  1792       // We could not expand _hrs to the desired size. In this case we
  1793       // need to shrink the committed space accordingly.
  1794       assert(mr.end() < new_end, "invariant");
  1796       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1797       // First uncommit the memory.
  1798       _g1_storage.shrink_by(diff_bytes);
  1799       // Then propagate this update to the necessary data structures.
  1800       update_committed_space(new_end, mr.end());
  1802     _free_list.add_as_tail(&expansion_list);
  1804     if (_hr_printer.is_active()) {
  1805       HeapWord* curr = mr.start();
  1806       while (curr < mr.end()) {
  1807         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1808         _hr_printer.commit(curr, curr_end);
  1809         curr = curr_end;
  1811       assert(curr == mr.end(), "post-condition");
  1813     g1_policy()->record_new_heap_size(n_regions());
  1814   } else {
  1815     ergo_verbose0(ErgoHeapSizing,
  1816                   "did not expand the heap",
  1817                   ergo_format_reason("heap expansion operation failed"));
  1818     // The expansion of the virtual storage space was unsuccessful.
  1819     // Let's see if it was because we ran out of swap.
  1820     if (G1ExitOnExpansionFailure &&
  1821         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1822       // We had head room...
  1823       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1826   return successful;
  1829 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1830   size_t aligned_shrink_bytes =
  1831     ReservedSpace::page_align_size_down(shrink_bytes);
  1832   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1833                                          HeapRegion::GrainBytes);
  1834   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1836   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
  1837   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1838   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1840   ergo_verbose3(ErgoHeapSizing,
  1841                 "shrink the heap",
  1842                 ergo_format_byte("requested shrinking amount")
  1843                 ergo_format_byte("aligned shrinking amount")
  1844                 ergo_format_byte("attempted shrinking amount"),
  1845                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1846   if (num_regions_removed > 0) {
  1847     _g1_storage.shrink_by(shrunk_bytes);
  1848     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1850     if (_hr_printer.is_active()) {
  1851       HeapWord* curr = old_end;
  1852       while (curr > new_end) {
  1853         HeapWord* curr_end = curr;
  1854         curr -= HeapRegion::GrainWords;
  1855         _hr_printer.uncommit(curr, curr_end);
  1859     _expansion_regions += num_regions_removed;
  1860     update_committed_space(old_end, new_end);
  1861     HeapRegionRemSet::shrink_heap(n_regions());
  1862     g1_policy()->record_new_heap_size(n_regions());
  1863   } else {
  1864     ergo_verbose0(ErgoHeapSizing,
  1865                   "did not shrink the heap",
  1866                   ergo_format_reason("heap shrinking operation failed"));
  1870 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1871   verify_region_sets_optional();
  1873   // We should only reach here at the end of a Full GC which means we
  1874   // should not not be holding to any GC alloc regions. The method
  1875   // below will make sure of that and do any remaining clean up.
  1876   abandon_gc_alloc_regions();
  1878   // Instead of tearing down / rebuilding the free lists here, we
  1879   // could instead use the remove_all_pending() method on free_list to
  1880   // remove only the ones that we need to remove.
  1881   tear_down_region_sets(true /* free_list_only */);
  1882   shrink_helper(shrink_bytes);
  1883   rebuild_region_sets(true /* free_list_only */);
  1885   _hrs.verify_optional();
  1886   verify_region_sets_optional();
  1889 // Public methods.
  1891 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1892 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1893 #endif // _MSC_VER
  1896 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1897   SharedHeap(policy_),
  1898   _g1_policy(policy_),
  1899   _dirty_card_queue_set(false),
  1900   _into_cset_dirty_card_queue_set(false),
  1901   _is_alive_closure_cm(this),
  1902   _is_alive_closure_stw(this),
  1903   _ref_processor_cm(NULL),
  1904   _ref_processor_stw(NULL),
  1905   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1906   _bot_shared(NULL),
  1907   _evac_failure_scan_stack(NULL),
  1908   _mark_in_progress(false),
  1909   _cg1r(NULL), _summary_bytes_used(0),
  1910   _g1mm(NULL),
  1911   _refine_cte_cl(NULL),
  1912   _full_collection(false),
  1913   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  1914   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1915   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1916   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1917   _free_regions_coming(false),
  1918   _young_list(new YoungList(this)),
  1919   _gc_time_stamp(0),
  1920   _retained_old_gc_alloc_region(NULL),
  1921   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1922   _old_plab_stats(OldPLABSize, PLABWeight),
  1923   _expand_heap_after_alloc_failure(true),
  1924   _surviving_young_words(NULL),
  1925   _old_marking_cycles_started(0),
  1926   _old_marking_cycles_completed(0),
  1927   _concurrent_cycle_started(false),
  1928   _in_cset_fast_test(),
  1929   _dirty_cards_region_list(NULL),
  1930   _worker_cset_start_region(NULL),
  1931   _worker_cset_start_region_time_stamp(NULL),
  1932   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1933   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1934   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1935   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1937   _g1h = this;
  1938   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1939     vm_exit_during_initialization("Failed necessary allocation.");
  1942   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1944   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1945   _task_queues = new RefToScanQueueSet(n_queues);
  1947   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1948   assert(n_rem_sets > 0, "Invariant.");
  1950   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1951   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1952   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1954   for (int i = 0; i < n_queues; i++) {
  1955     RefToScanQueue* q = new RefToScanQueue();
  1956     q->initialize();
  1957     _task_queues->register_queue(i, q);
  1958     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1960   clear_cset_start_regions();
  1962   // Initialize the G1EvacuationFailureALot counters and flags.
  1963   NOT_PRODUCT(reset_evacuation_should_fail();)
  1965   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1968 jint G1CollectedHeap::initialize() {
  1969   CollectedHeap::pre_initialize();
  1970   os::enable_vtime();
  1972   G1Log::init();
  1974   // Necessary to satisfy locking discipline assertions.
  1976   MutexLocker x(Heap_lock);
  1978   // We have to initialize the printer before committing the heap, as
  1979   // it will be used then.
  1980   _hr_printer.set_active(G1PrintHeapRegions);
  1982   // While there are no constraints in the GC code that HeapWordSize
  1983   // be any particular value, there are multiple other areas in the
  1984   // system which believe this to be true (e.g. oop->object_size in some
  1985   // cases incorrectly returns the size in wordSize units rather than
  1986   // HeapWordSize).
  1987   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1989   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1990   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1991   size_t heap_alignment = collector_policy()->heap_alignment();
  1993   // Ensure that the sizes are properly aligned.
  1994   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1995   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1996   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1998   _refine_cte_cl = new RefineCardTableEntryClosure();
  2000   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  2002   // Reserve the maximum.
  2004   // When compressed oops are enabled, the preferred heap base
  2005   // is calculated by subtracting the requested size from the
  2006   // 32Gb boundary and using the result as the base address for
  2007   // heap reservation. If the requested size is not aligned to
  2008   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2009   // into the ReservedHeapSpace constructor) then the actual
  2010   // base of the reserved heap may end up differing from the
  2011   // address that was requested (i.e. the preferred heap base).
  2012   // If this happens then we could end up using a non-optimal
  2013   // compressed oops mode.
  2015   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2016                                                  heap_alignment);
  2018   // It is important to do this in a way such that concurrent readers can't
  2019   // temporarily think something is in the heap.  (I've actually seen this
  2020   // happen in asserts: DLD.)
  2021   _reserved.set_word_size(0);
  2022   _reserved.set_start((HeapWord*)heap_rs.base());
  2023   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2025   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2027   // Create the gen rem set (and barrier set) for the entire reserved region.
  2028   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2029   set_barrier_set(rem_set()->bs());
  2030   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  2031     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  2032     return JNI_ENOMEM;
  2035   // Also create a G1 rem set.
  2036   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  2038   // Carve out the G1 part of the heap.
  2040   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2041   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2042                            g1_rs.size()/HeapWordSize);
  2044   _g1_storage.initialize(g1_rs, 0);
  2045   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2046   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2047                   (HeapWord*) _g1_reserved.end());
  2048   assert(_hrs.max_length() == _expansion_regions,
  2049          err_msg("max length: %u expansion regions: %u",
  2050                  _hrs.max_length(), _expansion_regions));
  2052   // Do later initialization work for concurrent refinement.
  2053   _cg1r->init();
  2055   // 6843694 - ensure that the maximum region index can fit
  2056   // in the remembered set structures.
  2057   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2058   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2060   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2061   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2062   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2063             "too many cards per region");
  2065   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2067   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2068                                              heap_word_size(init_byte_size));
  2070   _g1h = this;
  2072   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
  2074   // Create the ConcurrentMark data structure and thread.
  2075   // (Must do this late, so that "max_regions" is defined.)
  2076   _cm = new ConcurrentMark(this, heap_rs);
  2077   if (_cm == NULL || !_cm->completed_initialization()) {
  2078     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2079     return JNI_ENOMEM;
  2081   _cmThread = _cm->cmThread();
  2083   // Initialize the from_card cache structure of HeapRegionRemSet.
  2084   HeapRegionRemSet::init_heap(max_regions());
  2086   // Now expand into the initial heap size.
  2087   if (!expand(init_byte_size)) {
  2088     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2089     return JNI_ENOMEM;
  2092   // Perform any initialization actions delegated to the policy.
  2093   g1_policy()->init();
  2095   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2096                                                SATB_Q_FL_lock,
  2097                                                G1SATBProcessCompletedThreshold,
  2098                                                Shared_SATB_Q_lock);
  2100   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2101                                                 DirtyCardQ_CBL_mon,
  2102                                                 DirtyCardQ_FL_lock,
  2103                                                 concurrent_g1_refine()->yellow_zone(),
  2104                                                 concurrent_g1_refine()->red_zone(),
  2105                                                 Shared_DirtyCardQ_lock);
  2107   if (G1DeferredRSUpdate) {
  2108     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2109                                       DirtyCardQ_CBL_mon,
  2110                                       DirtyCardQ_FL_lock,
  2111                                       -1, // never trigger processing
  2112                                       -1, // no limit on length
  2113                                       Shared_DirtyCardQ_lock,
  2114                                       &JavaThread::dirty_card_queue_set());
  2117   // Initialize the card queue set used to hold cards containing
  2118   // references into the collection set.
  2119   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2120                                              DirtyCardQ_CBL_mon,
  2121                                              DirtyCardQ_FL_lock,
  2122                                              -1, // never trigger processing
  2123                                              -1, // no limit on length
  2124                                              Shared_DirtyCardQ_lock,
  2125                                              &JavaThread::dirty_card_queue_set());
  2127   // In case we're keeping closure specialization stats, initialize those
  2128   // counts and that mechanism.
  2129   SpecializationStats::clear();
  2131   // Here we allocate the dummy full region that is required by the
  2132   // G1AllocRegion class. If we don't pass an address in the reserved
  2133   // space here, lots of asserts fire.
  2135   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2136                                              _g1_reserved.start());
  2137   // We'll re-use the same region whether the alloc region will
  2138   // require BOT updates or not and, if it doesn't, then a non-young
  2139   // region will complain that it cannot support allocations without
  2140   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2141   dummy_region->set_young();
  2142   // Make sure it's full.
  2143   dummy_region->set_top(dummy_region->end());
  2144   G1AllocRegion::setup(this, dummy_region);
  2146   init_mutator_alloc_region();
  2148   // Do create of the monitoring and management support so that
  2149   // values in the heap have been properly initialized.
  2150   _g1mm = new G1MonitoringSupport(this);
  2152   G1StringDedup::initialize();
  2154   return JNI_OK;
  2157 void G1CollectedHeap::stop() {
  2158   // Stop all concurrent threads. We do this to make sure these threads
  2159   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2160   // that are destroyed during shutdown.
  2161   _cg1r->stop();
  2162   _cmThread->stop();
  2163   if (G1StringDedup::is_enabled()) {
  2164     G1StringDedup::stop();
  2168 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2169   return HeapRegion::max_region_size();
  2172 void G1CollectedHeap::ref_processing_init() {
  2173   // Reference processing in G1 currently works as follows:
  2174   //
  2175   // * There are two reference processor instances. One is
  2176   //   used to record and process discovered references
  2177   //   during concurrent marking; the other is used to
  2178   //   record and process references during STW pauses
  2179   //   (both full and incremental).
  2180   // * Both ref processors need to 'span' the entire heap as
  2181   //   the regions in the collection set may be dotted around.
  2182   //
  2183   // * For the concurrent marking ref processor:
  2184   //   * Reference discovery is enabled at initial marking.
  2185   //   * Reference discovery is disabled and the discovered
  2186   //     references processed etc during remarking.
  2187   //   * Reference discovery is MT (see below).
  2188   //   * Reference discovery requires a barrier (see below).
  2189   //   * Reference processing may or may not be MT
  2190   //     (depending on the value of ParallelRefProcEnabled
  2191   //     and ParallelGCThreads).
  2192   //   * A full GC disables reference discovery by the CM
  2193   //     ref processor and abandons any entries on it's
  2194   //     discovered lists.
  2195   //
  2196   // * For the STW processor:
  2197   //   * Non MT discovery is enabled at the start of a full GC.
  2198   //   * Processing and enqueueing during a full GC is non-MT.
  2199   //   * During a full GC, references are processed after marking.
  2200   //
  2201   //   * Discovery (may or may not be MT) is enabled at the start
  2202   //     of an incremental evacuation pause.
  2203   //   * References are processed near the end of a STW evacuation pause.
  2204   //   * For both types of GC:
  2205   //     * Discovery is atomic - i.e. not concurrent.
  2206   //     * Reference discovery will not need a barrier.
  2208   SharedHeap::ref_processing_init();
  2209   MemRegion mr = reserved_region();
  2211   // Concurrent Mark ref processor
  2212   _ref_processor_cm =
  2213     new ReferenceProcessor(mr,    // span
  2214                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2215                                 // mt processing
  2216                            (int) ParallelGCThreads,
  2217                                 // degree of mt processing
  2218                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2219                                 // mt discovery
  2220                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2221                                 // degree of mt discovery
  2222                            false,
  2223                                 // Reference discovery is not atomic
  2224                            &_is_alive_closure_cm);
  2225                                 // is alive closure
  2226                                 // (for efficiency/performance)
  2228   // STW ref processor
  2229   _ref_processor_stw =
  2230     new ReferenceProcessor(mr,    // span
  2231                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2232                                 // mt processing
  2233                            MAX2((int)ParallelGCThreads, 1),
  2234                                 // degree of mt processing
  2235                            (ParallelGCThreads > 1),
  2236                                 // mt discovery
  2237                            MAX2((int)ParallelGCThreads, 1),
  2238                                 // degree of mt discovery
  2239                            true,
  2240                                 // Reference discovery is atomic
  2241                            &_is_alive_closure_stw);
  2242                                 // is alive closure
  2243                                 // (for efficiency/performance)
  2246 size_t G1CollectedHeap::capacity() const {
  2247   return _g1_committed.byte_size();
  2250 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2251   assert(!hr->continuesHumongous(), "pre-condition");
  2252   hr->reset_gc_time_stamp();
  2253   if (hr->startsHumongous()) {
  2254     uint first_index = hr->hrs_index() + 1;
  2255     uint last_index = hr->last_hc_index();
  2256     for (uint i = first_index; i < last_index; i += 1) {
  2257       HeapRegion* chr = region_at(i);
  2258       assert(chr->continuesHumongous(), "sanity");
  2259       chr->reset_gc_time_stamp();
  2264 #ifndef PRODUCT
  2265 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2266 private:
  2267   unsigned _gc_time_stamp;
  2268   bool _failures;
  2270 public:
  2271   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2272     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2274   virtual bool doHeapRegion(HeapRegion* hr) {
  2275     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2276     if (_gc_time_stamp != region_gc_time_stamp) {
  2277       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2278                              "expected %d", HR_FORMAT_PARAMS(hr),
  2279                              region_gc_time_stamp, _gc_time_stamp);
  2280       _failures = true;
  2282     return false;
  2285   bool failures() { return _failures; }
  2286 };
  2288 void G1CollectedHeap::check_gc_time_stamps() {
  2289   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2290   heap_region_iterate(&cl);
  2291   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2293 #endif // PRODUCT
  2295 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2296                                                  DirtyCardQueue* into_cset_dcq,
  2297                                                  bool concurrent,
  2298                                                  uint worker_i) {
  2299   // Clean cards in the hot card cache
  2300   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2301   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2303   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2304   int n_completed_buffers = 0;
  2305   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2306     n_completed_buffers++;
  2308   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2309   dcqs.clear_n_completed_buffers();
  2310   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2314 // Computes the sum of the storage used by the various regions.
  2316 size_t G1CollectedHeap::used() const {
  2317   assert(Heap_lock->owner() != NULL,
  2318          "Should be owned on this thread's behalf.");
  2319   size_t result = _summary_bytes_used;
  2320   // Read only once in case it is set to NULL concurrently
  2321   HeapRegion* hr = _mutator_alloc_region.get();
  2322   if (hr != NULL)
  2323     result += hr->used();
  2324   return result;
  2327 size_t G1CollectedHeap::used_unlocked() const {
  2328   size_t result = _summary_bytes_used;
  2329   return result;
  2332 class SumUsedClosure: public HeapRegionClosure {
  2333   size_t _used;
  2334 public:
  2335   SumUsedClosure() : _used(0) {}
  2336   bool doHeapRegion(HeapRegion* r) {
  2337     if (!r->continuesHumongous()) {
  2338       _used += r->used();
  2340     return false;
  2342   size_t result() { return _used; }
  2343 };
  2345 size_t G1CollectedHeap::recalculate_used() const {
  2346   double recalculate_used_start = os::elapsedTime();
  2348   SumUsedClosure blk;
  2349   heap_region_iterate(&blk);
  2351   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2352   return blk.result();
  2355 size_t G1CollectedHeap::unsafe_max_alloc() {
  2356   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2357   // otherwise, is there space in the current allocation region?
  2359   // We need to store the current allocation region in a local variable
  2360   // here. The problem is that this method doesn't take any locks and
  2361   // there may be other threads which overwrite the current allocation
  2362   // region field. attempt_allocation(), for example, sets it to NULL
  2363   // and this can happen *after* the NULL check here but before the call
  2364   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2365   // to be a problem in the optimized build, since the two loads of the
  2366   // current allocation region field are optimized away.
  2367   HeapRegion* hr = _mutator_alloc_region.get();
  2368   if (hr == NULL) {
  2369     return 0;
  2371   return hr->free();
  2374 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2375   switch (cause) {
  2376     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2377     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2378     case GCCause::_g1_humongous_allocation: return true;
  2379     default:                                return false;
  2383 #ifndef PRODUCT
  2384 void G1CollectedHeap::allocate_dummy_regions() {
  2385   // Let's fill up most of the region
  2386   size_t word_size = HeapRegion::GrainWords - 1024;
  2387   // And as a result the region we'll allocate will be humongous.
  2388   guarantee(isHumongous(word_size), "sanity");
  2390   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2391     // Let's use the existing mechanism for the allocation
  2392     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2393     if (dummy_obj != NULL) {
  2394       MemRegion mr(dummy_obj, word_size);
  2395       CollectedHeap::fill_with_object(mr);
  2396     } else {
  2397       // If we can't allocate once, we probably cannot allocate
  2398       // again. Let's get out of the loop.
  2399       break;
  2403 #endif // !PRODUCT
  2405 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2406   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2407     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2408     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2409     _old_marking_cycles_started, _old_marking_cycles_completed));
  2411   _old_marking_cycles_started++;
  2414 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2415   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2417   // We assume that if concurrent == true, then the caller is a
  2418   // concurrent thread that was joined the Suspendible Thread
  2419   // Set. If there's ever a cheap way to check this, we should add an
  2420   // assert here.
  2422   // Given that this method is called at the end of a Full GC or of a
  2423   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2424   // interrupt a concurrent cycle), the number of full collections
  2425   // completed should be either one (in the case where there was no
  2426   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2427   // behind the number of full collections started.
  2429   // This is the case for the inner caller, i.e. a Full GC.
  2430   assert(concurrent ||
  2431          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2432          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2433          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2434                  "is inconsistent with _old_marking_cycles_completed = %u",
  2435                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2437   // This is the case for the outer caller, i.e. the concurrent cycle.
  2438   assert(!concurrent ||
  2439          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2440          err_msg("for outer caller (concurrent cycle): "
  2441                  "_old_marking_cycles_started = %u "
  2442                  "is inconsistent with _old_marking_cycles_completed = %u",
  2443                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2445   _old_marking_cycles_completed += 1;
  2447   // We need to clear the "in_progress" flag in the CM thread before
  2448   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2449   // is set) so that if a waiter requests another System.gc() it doesn't
  2450   // incorrectly see that a marking cycle is still in progress.
  2451   if (concurrent) {
  2452     _cmThread->clear_in_progress();
  2455   // This notify_all() will ensure that a thread that called
  2456   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2457   // and it's waiting for a full GC to finish will be woken up. It is
  2458   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2459   FullGCCount_lock->notify_all();
  2462 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2463   _concurrent_cycle_started = true;
  2464   _gc_timer_cm->register_gc_start(start_time);
  2466   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2467   trace_heap_before_gc(_gc_tracer_cm);
  2470 void G1CollectedHeap::register_concurrent_cycle_end() {
  2471   if (_concurrent_cycle_started) {
  2472     if (_cm->has_aborted()) {
  2473       _gc_tracer_cm->report_concurrent_mode_failure();
  2476     _gc_timer_cm->register_gc_end();
  2477     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2479     _concurrent_cycle_started = false;
  2483 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2484   if (_concurrent_cycle_started) {
  2485     trace_heap_after_gc(_gc_tracer_cm);
  2489 G1YCType G1CollectedHeap::yc_type() {
  2490   bool is_young = g1_policy()->gcs_are_young();
  2491   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2492   bool is_during_mark = mark_in_progress();
  2494   if (is_initial_mark) {
  2495     return InitialMark;
  2496   } else if (is_during_mark) {
  2497     return DuringMark;
  2498   } else if (is_young) {
  2499     return Normal;
  2500   } else {
  2501     return Mixed;
  2505 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2506   assert_heap_not_locked();
  2508   unsigned int gc_count_before;
  2509   unsigned int old_marking_count_before;
  2510   bool retry_gc;
  2512   do {
  2513     retry_gc = false;
  2516       MutexLocker ml(Heap_lock);
  2518       // Read the GC count while holding the Heap_lock
  2519       gc_count_before = total_collections();
  2520       old_marking_count_before = _old_marking_cycles_started;
  2523     if (should_do_concurrent_full_gc(cause)) {
  2524       // Schedule an initial-mark evacuation pause that will start a
  2525       // concurrent cycle. We're setting word_size to 0 which means that
  2526       // we are not requesting a post-GC allocation.
  2527       VM_G1IncCollectionPause op(gc_count_before,
  2528                                  0,     /* word_size */
  2529                                  true,  /* should_initiate_conc_mark */
  2530                                  g1_policy()->max_pause_time_ms(),
  2531                                  cause);
  2533       VMThread::execute(&op);
  2534       if (!op.pause_succeeded()) {
  2535         if (old_marking_count_before == _old_marking_cycles_started) {
  2536           retry_gc = op.should_retry_gc();
  2537         } else {
  2538           // A Full GC happened while we were trying to schedule the
  2539           // initial-mark GC. No point in starting a new cycle given
  2540           // that the whole heap was collected anyway.
  2543         if (retry_gc) {
  2544           if (GC_locker::is_active_and_needs_gc()) {
  2545             GC_locker::stall_until_clear();
  2549     } else {
  2550       if (cause == GCCause::_gc_locker
  2551           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2553         // Schedule a standard evacuation pause. We're setting word_size
  2554         // to 0 which means that we are not requesting a post-GC allocation.
  2555         VM_G1IncCollectionPause op(gc_count_before,
  2556                                    0,     /* word_size */
  2557                                    false, /* should_initiate_conc_mark */
  2558                                    g1_policy()->max_pause_time_ms(),
  2559                                    cause);
  2560         VMThread::execute(&op);
  2561       } else {
  2562         // Schedule a Full GC.
  2563         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2564         VMThread::execute(&op);
  2567   } while (retry_gc);
  2570 bool G1CollectedHeap::is_in(const void* p) const {
  2571   if (_g1_committed.contains(p)) {
  2572     // Given that we know that p is in the committed space,
  2573     // heap_region_containing_raw() should successfully
  2574     // return the containing region.
  2575     HeapRegion* hr = heap_region_containing_raw(p);
  2576     return hr->is_in(p);
  2577   } else {
  2578     return false;
  2582 // Iteration functions.
  2584 // Iterates an OopClosure over all ref-containing fields of objects
  2585 // within a HeapRegion.
  2587 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2588   MemRegion _mr;
  2589   ExtendedOopClosure* _cl;
  2590 public:
  2591   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2592     : _mr(mr), _cl(cl) {}
  2593   bool doHeapRegion(HeapRegion* r) {
  2594     if (!r->continuesHumongous()) {
  2595       r->oop_iterate(_cl);
  2597     return false;
  2599 };
  2601 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2602   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2603   heap_region_iterate(&blk);
  2606 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2607   IterateOopClosureRegionClosure blk(mr, cl);
  2608   heap_region_iterate(&blk);
  2611 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2613 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2614   ObjectClosure* _cl;
  2615 public:
  2616   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2617   bool doHeapRegion(HeapRegion* r) {
  2618     if (! r->continuesHumongous()) {
  2619       r->object_iterate(_cl);
  2621     return false;
  2623 };
  2625 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2626   IterateObjectClosureRegionClosure blk(cl);
  2627   heap_region_iterate(&blk);
  2630 // Calls a SpaceClosure on a HeapRegion.
  2632 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2633   SpaceClosure* _cl;
  2634 public:
  2635   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2636   bool doHeapRegion(HeapRegion* r) {
  2637     _cl->do_space(r);
  2638     return false;
  2640 };
  2642 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2643   SpaceClosureRegionClosure blk(cl);
  2644   heap_region_iterate(&blk);
  2647 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2648   _hrs.iterate(cl);
  2651 void
  2652 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2653                                                  uint worker_id,
  2654                                                  uint no_of_par_workers,
  2655                                                  jint claim_value) {
  2656   const uint regions = n_regions();
  2657   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2658                              no_of_par_workers :
  2659                              1);
  2660   assert(UseDynamicNumberOfGCThreads ||
  2661          no_of_par_workers == workers()->total_workers(),
  2662          "Non dynamic should use fixed number of workers");
  2663   // try to spread out the starting points of the workers
  2664   const HeapRegion* start_hr =
  2665                         start_region_for_worker(worker_id, no_of_par_workers);
  2666   const uint start_index = start_hr->hrs_index();
  2668   // each worker will actually look at all regions
  2669   for (uint count = 0; count < regions; ++count) {
  2670     const uint index = (start_index + count) % regions;
  2671     assert(0 <= index && index < regions, "sanity");
  2672     HeapRegion* r = region_at(index);
  2673     // we'll ignore "continues humongous" regions (we'll process them
  2674     // when we come across their corresponding "start humongous"
  2675     // region) and regions already claimed
  2676     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2677       continue;
  2679     // OK, try to claim it
  2680     if (r->claimHeapRegion(claim_value)) {
  2681       // success!
  2682       assert(!r->continuesHumongous(), "sanity");
  2683       if (r->startsHumongous()) {
  2684         // If the region is "starts humongous" we'll iterate over its
  2685         // "continues humongous" first; in fact we'll do them
  2686         // first. The order is important. In on case, calling the
  2687         // closure on the "starts humongous" region might de-allocate
  2688         // and clear all its "continues humongous" regions and, as a
  2689         // result, we might end up processing them twice. So, we'll do
  2690         // them first (notice: most closures will ignore them anyway) and
  2691         // then we'll do the "starts humongous" region.
  2692         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2693           HeapRegion* chr = region_at(ch_index);
  2695           // if the region has already been claimed or it's not
  2696           // "continues humongous" we're done
  2697           if (chr->claim_value() == claim_value ||
  2698               !chr->continuesHumongous()) {
  2699             break;
  2702           // No one should have claimed it directly. We can given
  2703           // that we claimed its "starts humongous" region.
  2704           assert(chr->claim_value() != claim_value, "sanity");
  2705           assert(chr->humongous_start_region() == r, "sanity");
  2707           if (chr->claimHeapRegion(claim_value)) {
  2708             // we should always be able to claim it; no one else should
  2709             // be trying to claim this region
  2711             bool res2 = cl->doHeapRegion(chr);
  2712             assert(!res2, "Should not abort");
  2714             // Right now, this holds (i.e., no closure that actually
  2715             // does something with "continues humongous" regions
  2716             // clears them). We might have to weaken it in the future,
  2717             // but let's leave these two asserts here for extra safety.
  2718             assert(chr->continuesHumongous(), "should still be the case");
  2719             assert(chr->humongous_start_region() == r, "sanity");
  2720           } else {
  2721             guarantee(false, "we should not reach here");
  2726       assert(!r->continuesHumongous(), "sanity");
  2727       bool res = cl->doHeapRegion(r);
  2728       assert(!res, "Should not abort");
  2733 class ResetClaimValuesClosure: public HeapRegionClosure {
  2734 public:
  2735   bool doHeapRegion(HeapRegion* r) {
  2736     r->set_claim_value(HeapRegion::InitialClaimValue);
  2737     return false;
  2739 };
  2741 void G1CollectedHeap::reset_heap_region_claim_values() {
  2742   ResetClaimValuesClosure blk;
  2743   heap_region_iterate(&blk);
  2746 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2747   ResetClaimValuesClosure blk;
  2748   collection_set_iterate(&blk);
  2751 #ifdef ASSERT
  2752 // This checks whether all regions in the heap have the correct claim
  2753 // value. I also piggy-backed on this a check to ensure that the
  2754 // humongous_start_region() information on "continues humongous"
  2755 // regions is correct.
  2757 class CheckClaimValuesClosure : public HeapRegionClosure {
  2758 private:
  2759   jint _claim_value;
  2760   uint _failures;
  2761   HeapRegion* _sh_region;
  2763 public:
  2764   CheckClaimValuesClosure(jint claim_value) :
  2765     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2766   bool doHeapRegion(HeapRegion* r) {
  2767     if (r->claim_value() != _claim_value) {
  2768       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2769                              "claim value = %d, should be %d",
  2770                              HR_FORMAT_PARAMS(r),
  2771                              r->claim_value(), _claim_value);
  2772       ++_failures;
  2774     if (!r->isHumongous()) {
  2775       _sh_region = NULL;
  2776     } else if (r->startsHumongous()) {
  2777       _sh_region = r;
  2778     } else if (r->continuesHumongous()) {
  2779       if (r->humongous_start_region() != _sh_region) {
  2780         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2781                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2782                                HR_FORMAT_PARAMS(r),
  2783                                r->humongous_start_region(),
  2784                                _sh_region);
  2785         ++_failures;
  2788     return false;
  2790   uint failures() { return _failures; }
  2791 };
  2793 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2794   CheckClaimValuesClosure cl(claim_value);
  2795   heap_region_iterate(&cl);
  2796   return cl.failures() == 0;
  2799 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2800 private:
  2801   jint _claim_value;
  2802   uint _failures;
  2804 public:
  2805   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2806     _claim_value(claim_value), _failures(0) { }
  2808   uint failures() { return _failures; }
  2810   bool doHeapRegion(HeapRegion* hr) {
  2811     assert(hr->in_collection_set(), "how?");
  2812     assert(!hr->isHumongous(), "H-region in CSet");
  2813     if (hr->claim_value() != _claim_value) {
  2814       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2815                              "claim value = %d, should be %d",
  2816                              HR_FORMAT_PARAMS(hr),
  2817                              hr->claim_value(), _claim_value);
  2818       _failures += 1;
  2820     return false;
  2822 };
  2824 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2825   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2826   collection_set_iterate(&cl);
  2827   return cl.failures() == 0;
  2829 #endif // ASSERT
  2831 // Clear the cached CSet starting regions and (more importantly)
  2832 // the time stamps. Called when we reset the GC time stamp.
  2833 void G1CollectedHeap::clear_cset_start_regions() {
  2834   assert(_worker_cset_start_region != NULL, "sanity");
  2835   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2837   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2838   for (int i = 0; i < n_queues; i++) {
  2839     _worker_cset_start_region[i] = NULL;
  2840     _worker_cset_start_region_time_stamp[i] = 0;
  2844 // Given the id of a worker, obtain or calculate a suitable
  2845 // starting region for iterating over the current collection set.
  2846 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2847   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2849   HeapRegion* result = NULL;
  2850   unsigned gc_time_stamp = get_gc_time_stamp();
  2852   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2853     // Cached starting region for current worker was set
  2854     // during the current pause - so it's valid.
  2855     // Note: the cached starting heap region may be NULL
  2856     // (when the collection set is empty).
  2857     result = _worker_cset_start_region[worker_i];
  2858     assert(result == NULL || result->in_collection_set(), "sanity");
  2859     return result;
  2862   // The cached entry was not valid so let's calculate
  2863   // a suitable starting heap region for this worker.
  2865   // We want the parallel threads to start their collection
  2866   // set iteration at different collection set regions to
  2867   // avoid contention.
  2868   // If we have:
  2869   //          n collection set regions
  2870   //          p threads
  2871   // Then thread t will start at region floor ((t * n) / p)
  2873   result = g1_policy()->collection_set();
  2874   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2875     uint cs_size = g1_policy()->cset_region_length();
  2876     uint active_workers = workers()->active_workers();
  2877     assert(UseDynamicNumberOfGCThreads ||
  2878              active_workers == workers()->total_workers(),
  2879              "Unless dynamic should use total workers");
  2881     uint end_ind   = (cs_size * worker_i) / active_workers;
  2882     uint start_ind = 0;
  2884     if (worker_i > 0 &&
  2885         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2886       // Previous workers starting region is valid
  2887       // so let's iterate from there
  2888       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2889       result = _worker_cset_start_region[worker_i - 1];
  2892     for (uint i = start_ind; i < end_ind; i++) {
  2893       result = result->next_in_collection_set();
  2897   // Note: the calculated starting heap region may be NULL
  2898   // (when the collection set is empty).
  2899   assert(result == NULL || result->in_collection_set(), "sanity");
  2900   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2901          "should be updated only once per pause");
  2902   _worker_cset_start_region[worker_i] = result;
  2903   OrderAccess::storestore();
  2904   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2905   return result;
  2908 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2909                                                      uint no_of_par_workers) {
  2910   uint worker_num =
  2911            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2912   assert(UseDynamicNumberOfGCThreads ||
  2913          no_of_par_workers == workers()->total_workers(),
  2914          "Non dynamic should use fixed number of workers");
  2915   const uint start_index = n_regions() * worker_i / worker_num;
  2916   return region_at(start_index);
  2919 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2920   HeapRegion* r = g1_policy()->collection_set();
  2921   while (r != NULL) {
  2922     HeapRegion* next = r->next_in_collection_set();
  2923     if (cl->doHeapRegion(r)) {
  2924       cl->incomplete();
  2925       return;
  2927     r = next;
  2931 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2932                                                   HeapRegionClosure *cl) {
  2933   if (r == NULL) {
  2934     // The CSet is empty so there's nothing to do.
  2935     return;
  2938   assert(r->in_collection_set(),
  2939          "Start region must be a member of the collection set.");
  2940   HeapRegion* cur = r;
  2941   while (cur != NULL) {
  2942     HeapRegion* next = cur->next_in_collection_set();
  2943     if (cl->doHeapRegion(cur) && false) {
  2944       cl->incomplete();
  2945       return;
  2947     cur = next;
  2949   cur = g1_policy()->collection_set();
  2950   while (cur != r) {
  2951     HeapRegion* next = cur->next_in_collection_set();
  2952     if (cl->doHeapRegion(cur) && false) {
  2953       cl->incomplete();
  2954       return;
  2956     cur = next;
  2960 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2961   return n_regions() > 0 ? region_at(0) : NULL;
  2965 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2966   Space* res = heap_region_containing(addr);
  2967   return res;
  2970 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2971   Space* sp = space_containing(addr);
  2972   if (sp != NULL) {
  2973     return sp->block_start(addr);
  2975   return NULL;
  2978 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2979   Space* sp = space_containing(addr);
  2980   assert(sp != NULL, "block_size of address outside of heap");
  2981   return sp->block_size(addr);
  2984 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2985   Space* sp = space_containing(addr);
  2986   return sp->block_is_obj(addr);
  2989 bool G1CollectedHeap::supports_tlab_allocation() const {
  2990   return true;
  2993 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2994   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2997 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2998   return young_list()->eden_used_bytes();
  3001 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  3002 // must be smaller than the humongous object limit.
  3003 size_t G1CollectedHeap::max_tlab_size() const {
  3004   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  3007 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  3008   // Return the remaining space in the cur alloc region, but not less than
  3009   // the min TLAB size.
  3011   // Also, this value can be at most the humongous object threshold,
  3012   // since we can't allow tlabs to grow big enough to accommodate
  3013   // humongous objects.
  3015   HeapRegion* hr = _mutator_alloc_region.get();
  3016   size_t max_tlab = max_tlab_size() * wordSize;
  3017   if (hr == NULL) {
  3018     return max_tlab;
  3019   } else {
  3020     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  3024 size_t G1CollectedHeap::max_capacity() const {
  3025   return _g1_reserved.byte_size();
  3028 jlong G1CollectedHeap::millis_since_last_gc() {
  3029   // assert(false, "NYI");
  3030   return 0;
  3033 void G1CollectedHeap::prepare_for_verify() {
  3034   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3035     ensure_parsability(false);
  3037   g1_rem_set()->prepare_for_verify();
  3040 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3041                                               VerifyOption vo) {
  3042   switch (vo) {
  3043   case VerifyOption_G1UsePrevMarking:
  3044     return hr->obj_allocated_since_prev_marking(obj);
  3045   case VerifyOption_G1UseNextMarking:
  3046     return hr->obj_allocated_since_next_marking(obj);
  3047   case VerifyOption_G1UseMarkWord:
  3048     return false;
  3049   default:
  3050     ShouldNotReachHere();
  3052   return false; // keep some compilers happy
  3055 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3056   switch (vo) {
  3057   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3058   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3059   case VerifyOption_G1UseMarkWord:    return NULL;
  3060   default:                            ShouldNotReachHere();
  3062   return NULL; // keep some compilers happy
  3065 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3066   switch (vo) {
  3067   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3068   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3069   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3070   default:                            ShouldNotReachHere();
  3072   return false; // keep some compilers happy
  3075 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3076   switch (vo) {
  3077   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3078   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3079   case VerifyOption_G1UseMarkWord:    return "NONE";
  3080   default:                            ShouldNotReachHere();
  3082   return NULL; // keep some compilers happy
  3085 class VerifyRootsClosure: public OopClosure {
  3086 private:
  3087   G1CollectedHeap* _g1h;
  3088   VerifyOption     _vo;
  3089   bool             _failures;
  3090 public:
  3091   // _vo == UsePrevMarking -> use "prev" marking information,
  3092   // _vo == UseNextMarking -> use "next" marking information,
  3093   // _vo == UseMarkWord    -> use mark word from object header.
  3094   VerifyRootsClosure(VerifyOption vo) :
  3095     _g1h(G1CollectedHeap::heap()),
  3096     _vo(vo),
  3097     _failures(false) { }
  3099   bool failures() { return _failures; }
  3101   template <class T> void do_oop_nv(T* p) {
  3102     T heap_oop = oopDesc::load_heap_oop(p);
  3103     if (!oopDesc::is_null(heap_oop)) {
  3104       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3105       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3106         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3107                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3108         if (_vo == VerifyOption_G1UseMarkWord) {
  3109           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3111         obj->print_on(gclog_or_tty);
  3112         _failures = true;
  3117   void do_oop(oop* p)       { do_oop_nv(p); }
  3118   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3119 };
  3121 class G1VerifyCodeRootOopClosure: public OopClosure {
  3122   G1CollectedHeap* _g1h;
  3123   OopClosure* _root_cl;
  3124   nmethod* _nm;
  3125   VerifyOption _vo;
  3126   bool _failures;
  3128   template <class T> void do_oop_work(T* p) {
  3129     // First verify that this root is live
  3130     _root_cl->do_oop(p);
  3132     if (!G1VerifyHeapRegionCodeRoots) {
  3133       // We're not verifying the code roots attached to heap region.
  3134       return;
  3137     // Don't check the code roots during marking verification in a full GC
  3138     if (_vo == VerifyOption_G1UseMarkWord) {
  3139       return;
  3142     // Now verify that the current nmethod (which contains p) is
  3143     // in the code root list of the heap region containing the
  3144     // object referenced by p.
  3146     T heap_oop = oopDesc::load_heap_oop(p);
  3147     if (!oopDesc::is_null(heap_oop)) {
  3148       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3150       // Now fetch the region containing the object
  3151       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3152       HeapRegionRemSet* hrrs = hr->rem_set();
  3153       // Verify that the strong code root list for this region
  3154       // contains the nmethod
  3155       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3156         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3157                               "from nmethod "PTR_FORMAT" not in strong "
  3158                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3159                               p, _nm, hr->bottom(), hr->end());
  3160         _failures = true;
  3165 public:
  3166   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3167     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3169   void do_oop(oop* p) { do_oop_work(p); }
  3170   void do_oop(narrowOop* p) { do_oop_work(p); }
  3172   void set_nmethod(nmethod* nm) { _nm = nm; }
  3173   bool failures() { return _failures; }
  3174 };
  3176 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3177   G1VerifyCodeRootOopClosure* _oop_cl;
  3179 public:
  3180   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3181     _oop_cl(oop_cl) {}
  3183   void do_code_blob(CodeBlob* cb) {
  3184     nmethod* nm = cb->as_nmethod_or_null();
  3185     if (nm != NULL) {
  3186       _oop_cl->set_nmethod(nm);
  3187       nm->oops_do(_oop_cl);
  3190 };
  3192 class YoungRefCounterClosure : public OopClosure {
  3193   G1CollectedHeap* _g1h;
  3194   int              _count;
  3195  public:
  3196   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3197   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3198   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3200   int count() { return _count; }
  3201   void reset_count() { _count = 0; };
  3202 };
  3204 class VerifyKlassClosure: public KlassClosure {
  3205   YoungRefCounterClosure _young_ref_counter_closure;
  3206   OopClosure *_oop_closure;
  3207  public:
  3208   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3209   void do_klass(Klass* k) {
  3210     k->oops_do(_oop_closure);
  3212     _young_ref_counter_closure.reset_count();
  3213     k->oops_do(&_young_ref_counter_closure);
  3214     if (_young_ref_counter_closure.count() > 0) {
  3215       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3218 };
  3220 class VerifyLivenessOopClosure: public OopClosure {
  3221   G1CollectedHeap* _g1h;
  3222   VerifyOption _vo;
  3223 public:
  3224   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3225     _g1h(g1h), _vo(vo)
  3226   { }
  3227   void do_oop(narrowOop *p) { do_oop_work(p); }
  3228   void do_oop(      oop *p) { do_oop_work(p); }
  3230   template <class T> void do_oop_work(T *p) {
  3231     oop obj = oopDesc::load_decode_heap_oop(p);
  3232     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3233               "Dead object referenced by a not dead object");
  3235 };
  3237 class VerifyObjsInRegionClosure: public ObjectClosure {
  3238 private:
  3239   G1CollectedHeap* _g1h;
  3240   size_t _live_bytes;
  3241   HeapRegion *_hr;
  3242   VerifyOption _vo;
  3243 public:
  3244   // _vo == UsePrevMarking -> use "prev" marking information,
  3245   // _vo == UseNextMarking -> use "next" marking information,
  3246   // _vo == UseMarkWord    -> use mark word from object header.
  3247   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3248     : _live_bytes(0), _hr(hr), _vo(vo) {
  3249     _g1h = G1CollectedHeap::heap();
  3251   void do_object(oop o) {
  3252     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3253     assert(o != NULL, "Huh?");
  3254     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3255       // If the object is alive according to the mark word,
  3256       // then verify that the marking information agrees.
  3257       // Note we can't verify the contra-positive of the
  3258       // above: if the object is dead (according to the mark
  3259       // word), it may not be marked, or may have been marked
  3260       // but has since became dead, or may have been allocated
  3261       // since the last marking.
  3262       if (_vo == VerifyOption_G1UseMarkWord) {
  3263         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3266       o->oop_iterate_no_header(&isLive);
  3267       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3268         size_t obj_size = o->size();    // Make sure we don't overflow
  3269         _live_bytes += (obj_size * HeapWordSize);
  3273   size_t live_bytes() { return _live_bytes; }
  3274 };
  3276 class PrintObjsInRegionClosure : public ObjectClosure {
  3277   HeapRegion *_hr;
  3278   G1CollectedHeap *_g1;
  3279 public:
  3280   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3281     _g1 = G1CollectedHeap::heap();
  3282   };
  3284   void do_object(oop o) {
  3285     if (o != NULL) {
  3286       HeapWord *start = (HeapWord *) o;
  3287       size_t word_sz = o->size();
  3288       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3289                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3290                           (void*) o, word_sz,
  3291                           _g1->isMarkedPrev(o),
  3292                           _g1->isMarkedNext(o),
  3293                           _hr->obj_allocated_since_prev_marking(o));
  3294       HeapWord *end = start + word_sz;
  3295       HeapWord *cur;
  3296       int *val;
  3297       for (cur = start; cur < end; cur++) {
  3298         val = (int *) cur;
  3299         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3303 };
  3305 class VerifyRegionClosure: public HeapRegionClosure {
  3306 private:
  3307   bool             _par;
  3308   VerifyOption     _vo;
  3309   bool             _failures;
  3310 public:
  3311   // _vo == UsePrevMarking -> use "prev" marking information,
  3312   // _vo == UseNextMarking -> use "next" marking information,
  3313   // _vo == UseMarkWord    -> use mark word from object header.
  3314   VerifyRegionClosure(bool par, VerifyOption vo)
  3315     : _par(par),
  3316       _vo(vo),
  3317       _failures(false) {}
  3319   bool failures() {
  3320     return _failures;
  3323   bool doHeapRegion(HeapRegion* r) {
  3324     if (!r->continuesHumongous()) {
  3325       bool failures = false;
  3326       r->verify(_vo, &failures);
  3327       if (failures) {
  3328         _failures = true;
  3329       } else {
  3330         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3331         r->object_iterate(&not_dead_yet_cl);
  3332         if (_vo != VerifyOption_G1UseNextMarking) {
  3333           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3334             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3335                                    "max_live_bytes "SIZE_FORMAT" "
  3336                                    "< calculated "SIZE_FORMAT,
  3337                                    r->bottom(), r->end(),
  3338                                    r->max_live_bytes(),
  3339                                  not_dead_yet_cl.live_bytes());
  3340             _failures = true;
  3342         } else {
  3343           // When vo == UseNextMarking we cannot currently do a sanity
  3344           // check on the live bytes as the calculation has not been
  3345           // finalized yet.
  3349     return false; // stop the region iteration if we hit a failure
  3351 };
  3353 // This is the task used for parallel verification of the heap regions
  3355 class G1ParVerifyTask: public AbstractGangTask {
  3356 private:
  3357   G1CollectedHeap* _g1h;
  3358   VerifyOption     _vo;
  3359   bool             _failures;
  3361 public:
  3362   // _vo == UsePrevMarking -> use "prev" marking information,
  3363   // _vo == UseNextMarking -> use "next" marking information,
  3364   // _vo == UseMarkWord    -> use mark word from object header.
  3365   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3366     AbstractGangTask("Parallel verify task"),
  3367     _g1h(g1h),
  3368     _vo(vo),
  3369     _failures(false) { }
  3371   bool failures() {
  3372     return _failures;
  3375   void work(uint worker_id) {
  3376     HandleMark hm;
  3377     VerifyRegionClosure blk(true, _vo);
  3378     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3379                                           _g1h->workers()->active_workers(),
  3380                                           HeapRegion::ParVerifyClaimValue);
  3381     if (blk.failures()) {
  3382       _failures = true;
  3385 };
  3387 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3388   if (SafepointSynchronize::is_at_safepoint()) {
  3389     assert(Thread::current()->is_VM_thread(),
  3390            "Expected to be executed serially by the VM thread at this point");
  3392     if (!silent) { gclog_or_tty->print("Roots "); }
  3393     VerifyRootsClosure rootsCl(vo);
  3394     VerifyKlassClosure klassCl(this, &rootsCl);
  3395     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3397     // We apply the relevant closures to all the oops in the
  3398     // system dictionary, class loader data graph, the string table
  3399     // and the nmethods in the code cache.
  3400     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3401     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3403     process_all_roots(true,            // activate StrongRootsScope
  3404                       SO_AllCodeCache, // roots scanning options
  3405                       &rootsCl,
  3406                       &cldCl,
  3407                       &blobsCl);
  3409     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3411     if (vo != VerifyOption_G1UseMarkWord) {
  3412       // If we're verifying during a full GC then the region sets
  3413       // will have been torn down at the start of the GC. Therefore
  3414       // verifying the region sets will fail. So we only verify
  3415       // the region sets when not in a full GC.
  3416       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3417       verify_region_sets();
  3420     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3421     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3422       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3423              "sanity check");
  3425       G1ParVerifyTask task(this, vo);
  3426       assert(UseDynamicNumberOfGCThreads ||
  3427         workers()->active_workers() == workers()->total_workers(),
  3428         "If not dynamic should be using all the workers");
  3429       int n_workers = workers()->active_workers();
  3430       set_par_threads(n_workers);
  3431       workers()->run_task(&task);
  3432       set_par_threads(0);
  3433       if (task.failures()) {
  3434         failures = true;
  3437       // Checks that the expected amount of parallel work was done.
  3438       // The implication is that n_workers is > 0.
  3439       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3440              "sanity check");
  3442       reset_heap_region_claim_values();
  3444       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3445              "sanity check");
  3446     } else {
  3447       VerifyRegionClosure blk(false, vo);
  3448       heap_region_iterate(&blk);
  3449       if (blk.failures()) {
  3450         failures = true;
  3453     if (!silent) gclog_or_tty->print("RemSet ");
  3454     rem_set()->verify();
  3456     if (G1StringDedup::is_enabled()) {
  3457       if (!silent) gclog_or_tty->print("StrDedup ");
  3458       G1StringDedup::verify();
  3461     if (failures) {
  3462       gclog_or_tty->print_cr("Heap:");
  3463       // It helps to have the per-region information in the output to
  3464       // help us track down what went wrong. This is why we call
  3465       // print_extended_on() instead of print_on().
  3466       print_extended_on(gclog_or_tty);
  3467       gclog_or_tty->cr();
  3468 #ifndef PRODUCT
  3469       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3470         concurrent_mark()->print_reachable("at-verification-failure",
  3471                                            vo, false /* all */);
  3473 #endif
  3474       gclog_or_tty->flush();
  3476     guarantee(!failures, "there should not have been any failures");
  3477   } else {
  3478     if (!silent) {
  3479       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3480       if (G1StringDedup::is_enabled()) {
  3481         gclog_or_tty->print(", StrDedup");
  3483       gclog_or_tty->print(") ");
  3488 void G1CollectedHeap::verify(bool silent) {
  3489   verify(silent, VerifyOption_G1UsePrevMarking);
  3492 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3493   double verify_time_ms = 0.0;
  3495   if (guard && total_collections() >= VerifyGCStartAt) {
  3496     double verify_start = os::elapsedTime();
  3497     HandleMark hm;  // Discard invalid handles created during verification
  3498     prepare_for_verify();
  3499     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3500     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3503   return verify_time_ms;
  3506 void G1CollectedHeap::verify_before_gc() {
  3507   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3508   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3511 void G1CollectedHeap::verify_after_gc() {
  3512   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3513   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3516 class PrintRegionClosure: public HeapRegionClosure {
  3517   outputStream* _st;
  3518 public:
  3519   PrintRegionClosure(outputStream* st) : _st(st) {}
  3520   bool doHeapRegion(HeapRegion* r) {
  3521     r->print_on(_st);
  3522     return false;
  3524 };
  3526 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3527                                        const HeapRegion* hr,
  3528                                        const VerifyOption vo) const {
  3529   switch (vo) {
  3530   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3531   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3532   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3533   default:                            ShouldNotReachHere();
  3535   return false; // keep some compilers happy
  3538 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3539                                        const VerifyOption vo) const {
  3540   switch (vo) {
  3541   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3542   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3543   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3544   default:                            ShouldNotReachHere();
  3546   return false; // keep some compilers happy
  3549 void G1CollectedHeap::print_on(outputStream* st) const {
  3550   st->print(" %-20s", "garbage-first heap");
  3551   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3552             capacity()/K, used_unlocked()/K);
  3553   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3554             _g1_storage.low_boundary(),
  3555             _g1_storage.high(),
  3556             _g1_storage.high_boundary());
  3557   st->cr();
  3558   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3559   uint young_regions = _young_list->length();
  3560   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3561             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3562   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3563   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3564             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3565   st->cr();
  3566   MetaspaceAux::print_on(st);
  3569 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3570   print_on(st);
  3572   // Print the per-region information.
  3573   st->cr();
  3574   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3575                "HS=humongous(starts), HC=humongous(continues), "
  3576                "CS=collection set, F=free, TS=gc time stamp, "
  3577                "PTAMS=previous top-at-mark-start, "
  3578                "NTAMS=next top-at-mark-start)");
  3579   PrintRegionClosure blk(st);
  3580   heap_region_iterate(&blk);
  3583 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3584   this->CollectedHeap::print_on_error(st);
  3586   if (_cm != NULL) {
  3587     st->cr();
  3588     _cm->print_on_error(st);
  3592 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3593   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3594     workers()->print_worker_threads_on(st);
  3596   _cmThread->print_on(st);
  3597   st->cr();
  3598   _cm->print_worker_threads_on(st);
  3599   _cg1r->print_worker_threads_on(st);
  3600   if (G1StringDedup::is_enabled()) {
  3601     G1StringDedup::print_worker_threads_on(st);
  3605 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3606   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3607     workers()->threads_do(tc);
  3609   tc->do_thread(_cmThread);
  3610   _cg1r->threads_do(tc);
  3611   if (G1StringDedup::is_enabled()) {
  3612     G1StringDedup::threads_do(tc);
  3616 void G1CollectedHeap::print_tracing_info() const {
  3617   // We'll overload this to mean "trace GC pause statistics."
  3618   if (TraceGen0Time || TraceGen1Time) {
  3619     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3620     // to that.
  3621     g1_policy()->print_tracing_info();
  3623   if (G1SummarizeRSetStats) {
  3624     g1_rem_set()->print_summary_info();
  3626   if (G1SummarizeConcMark) {
  3627     concurrent_mark()->print_summary_info();
  3629   g1_policy()->print_yg_surv_rate_info();
  3630   SpecializationStats::print();
  3633 #ifndef PRODUCT
  3634 // Helpful for debugging RSet issues.
  3636 class PrintRSetsClosure : public HeapRegionClosure {
  3637 private:
  3638   const char* _msg;
  3639   size_t _occupied_sum;
  3641 public:
  3642   bool doHeapRegion(HeapRegion* r) {
  3643     HeapRegionRemSet* hrrs = r->rem_set();
  3644     size_t occupied = hrrs->occupied();
  3645     _occupied_sum += occupied;
  3647     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3648                            HR_FORMAT_PARAMS(r));
  3649     if (occupied == 0) {
  3650       gclog_or_tty->print_cr("  RSet is empty");
  3651     } else {
  3652       hrrs->print();
  3654     gclog_or_tty->print_cr("----------");
  3655     return false;
  3658   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3659     gclog_or_tty->cr();
  3660     gclog_or_tty->print_cr("========================================");
  3661     gclog_or_tty->print_cr("%s", msg);
  3662     gclog_or_tty->cr();
  3665   ~PrintRSetsClosure() {
  3666     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3667     gclog_or_tty->print_cr("========================================");
  3668     gclog_or_tty->cr();
  3670 };
  3672 void G1CollectedHeap::print_cset_rsets() {
  3673   PrintRSetsClosure cl("Printing CSet RSets");
  3674   collection_set_iterate(&cl);
  3677 void G1CollectedHeap::print_all_rsets() {
  3678   PrintRSetsClosure cl("Printing All RSets");;
  3679   heap_region_iterate(&cl);
  3681 #endif // PRODUCT
  3683 G1CollectedHeap* G1CollectedHeap::heap() {
  3684   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3685          "not a garbage-first heap");
  3686   return _g1h;
  3689 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3690   // always_do_update_barrier = false;
  3691   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3692   // Fill TLAB's and such
  3693   accumulate_statistics_all_tlabs();
  3694   ensure_parsability(true);
  3696   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3697       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3698     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3702 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3704   if (G1SummarizeRSetStats &&
  3705       (G1SummarizeRSetStatsPeriod > 0) &&
  3706       // we are at the end of the GC. Total collections has already been increased.
  3707       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3708     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3711   // FIXME: what is this about?
  3712   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3713   // is set.
  3714   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3715                         "derived pointer present"));
  3716   // always_do_update_barrier = true;
  3718   resize_all_tlabs();
  3720   // We have just completed a GC. Update the soft reference
  3721   // policy with the new heap occupancy
  3722   Universe::update_heap_info_at_gc();
  3725 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3726                                                unsigned int gc_count_before,
  3727                                                bool* succeeded,
  3728                                                GCCause::Cause gc_cause) {
  3729   assert_heap_not_locked_and_not_at_safepoint();
  3730   g1_policy()->record_stop_world_start();
  3731   VM_G1IncCollectionPause op(gc_count_before,
  3732                              word_size,
  3733                              false, /* should_initiate_conc_mark */
  3734                              g1_policy()->max_pause_time_ms(),
  3735                              gc_cause);
  3736   VMThread::execute(&op);
  3738   HeapWord* result = op.result();
  3739   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3740   assert(result == NULL || ret_succeeded,
  3741          "the result should be NULL if the VM did not succeed");
  3742   *succeeded = ret_succeeded;
  3744   assert_heap_not_locked();
  3745   return result;
  3748 void
  3749 G1CollectedHeap::doConcurrentMark() {
  3750   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3751   if (!_cmThread->in_progress()) {
  3752     _cmThread->set_started();
  3753     CGC_lock->notify();
  3757 size_t G1CollectedHeap::pending_card_num() {
  3758   size_t extra_cards = 0;
  3759   JavaThread *curr = Threads::first();
  3760   while (curr != NULL) {
  3761     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3762     extra_cards += dcq.size();
  3763     curr = curr->next();
  3765   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3766   size_t buffer_size = dcqs.buffer_size();
  3767   size_t buffer_num = dcqs.completed_buffers_num();
  3769   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3770   // in bytes - not the number of 'entries'. We need to convert
  3771   // into a number of cards.
  3772   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3775 size_t G1CollectedHeap::cards_scanned() {
  3776   return g1_rem_set()->cardsScanned();
  3779 void
  3780 G1CollectedHeap::setup_surviving_young_words() {
  3781   assert(_surviving_young_words == NULL, "pre-condition");
  3782   uint array_length = g1_policy()->young_cset_region_length();
  3783   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3784   if (_surviving_young_words == NULL) {
  3785     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3786                           "Not enough space for young surv words summary.");
  3788   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3789 #ifdef ASSERT
  3790   for (uint i = 0;  i < array_length; ++i) {
  3791     assert( _surviving_young_words[i] == 0, "memset above" );
  3793 #endif // !ASSERT
  3796 void
  3797 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3798   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3799   uint array_length = g1_policy()->young_cset_region_length();
  3800   for (uint i = 0; i < array_length; ++i) {
  3801     _surviving_young_words[i] += surv_young_words[i];
  3805 void
  3806 G1CollectedHeap::cleanup_surviving_young_words() {
  3807   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3808   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3809   _surviving_young_words = NULL;
  3812 #ifdef ASSERT
  3813 class VerifyCSetClosure: public HeapRegionClosure {
  3814 public:
  3815   bool doHeapRegion(HeapRegion* hr) {
  3816     // Here we check that the CSet region's RSet is ready for parallel
  3817     // iteration. The fields that we'll verify are only manipulated
  3818     // when the region is part of a CSet and is collected. Afterwards,
  3819     // we reset these fields when we clear the region's RSet (when the
  3820     // region is freed) so they are ready when the region is
  3821     // re-allocated. The only exception to this is if there's an
  3822     // evacuation failure and instead of freeing the region we leave
  3823     // it in the heap. In that case, we reset these fields during
  3824     // evacuation failure handling.
  3825     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3827     // Here's a good place to add any other checks we'd like to
  3828     // perform on CSet regions.
  3829     return false;
  3831 };
  3832 #endif // ASSERT
  3834 #if TASKQUEUE_STATS
  3835 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3836   st->print_raw_cr("GC Task Stats");
  3837   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3838   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3841 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3842   print_taskqueue_stats_hdr(st);
  3844   TaskQueueStats totals;
  3845   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3846   for (int i = 0; i < n; ++i) {
  3847     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3848     totals += task_queue(i)->stats;
  3850   st->print_raw("tot "); totals.print(st); st->cr();
  3852   DEBUG_ONLY(totals.verify());
  3855 void G1CollectedHeap::reset_taskqueue_stats() {
  3856   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3857   for (int i = 0; i < n; ++i) {
  3858     task_queue(i)->stats.reset();
  3861 #endif // TASKQUEUE_STATS
  3863 void G1CollectedHeap::log_gc_header() {
  3864   if (!G1Log::fine()) {
  3865     return;
  3868   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3870   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3871     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3872     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3874   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3877 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3878   if (!G1Log::fine()) {
  3879     return;
  3882   if (G1Log::finer()) {
  3883     if (evacuation_failed()) {
  3884       gclog_or_tty->print(" (to-space exhausted)");
  3886     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3887     g1_policy()->phase_times()->note_gc_end();
  3888     g1_policy()->phase_times()->print(pause_time_sec);
  3889     g1_policy()->print_detailed_heap_transition();
  3890   } else {
  3891     if (evacuation_failed()) {
  3892       gclog_or_tty->print("--");
  3894     g1_policy()->print_heap_transition();
  3895     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3897   gclog_or_tty->flush();
  3900 bool
  3901 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3902   assert_at_safepoint(true /* should_be_vm_thread */);
  3903   guarantee(!is_gc_active(), "collection is not reentrant");
  3905   if (GC_locker::check_active_before_gc()) {
  3906     return false;
  3909   _gc_timer_stw->register_gc_start();
  3911   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3913   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3914   ResourceMark rm;
  3916   print_heap_before_gc();
  3917   trace_heap_before_gc(_gc_tracer_stw);
  3919   verify_region_sets_optional();
  3920   verify_dirty_young_regions();
  3922   // This call will decide whether this pause is an initial-mark
  3923   // pause. If it is, during_initial_mark_pause() will return true
  3924   // for the duration of this pause.
  3925   g1_policy()->decide_on_conc_mark_initiation();
  3927   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3928   assert(!g1_policy()->during_initial_mark_pause() ||
  3929           g1_policy()->gcs_are_young(), "sanity");
  3931   // We also do not allow mixed GCs during marking.
  3932   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3934   // Record whether this pause is an initial mark. When the current
  3935   // thread has completed its logging output and it's safe to signal
  3936   // the CM thread, the flag's value in the policy has been reset.
  3937   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3939   // Inner scope for scope based logging, timers, and stats collection
  3941     EvacuationInfo evacuation_info;
  3943     if (g1_policy()->during_initial_mark_pause()) {
  3944       // We are about to start a marking cycle, so we increment the
  3945       // full collection counter.
  3946       increment_old_marking_cycles_started();
  3947       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3950     _gc_tracer_stw->report_yc_type(yc_type());
  3952     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3954     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3955                                 workers()->active_workers() : 1);
  3956     double pause_start_sec = os::elapsedTime();
  3957     g1_policy()->phase_times()->note_gc_start(active_workers);
  3958     log_gc_header();
  3960     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3961     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3963     // If the secondary_free_list is not empty, append it to the
  3964     // free_list. No need to wait for the cleanup operation to finish;
  3965     // the region allocation code will check the secondary_free_list
  3966     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3967     // set, skip this step so that the region allocation code has to
  3968     // get entries from the secondary_free_list.
  3969     if (!G1StressConcRegionFreeing) {
  3970       append_secondary_free_list_if_not_empty_with_lock();
  3973     assert(check_young_list_well_formed(), "young list should be well formed");
  3974     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3975            "sanity check");
  3977     // Don't dynamically change the number of GC threads this early.  A value of
  3978     // 0 is used to indicate serial work.  When parallel work is done,
  3979     // it will be set.
  3981     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3982       IsGCActiveMark x;
  3984       gc_prologue(false);
  3985       increment_total_collections(false /* full gc */);
  3986       increment_gc_time_stamp();
  3988       verify_before_gc();
  3990       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3992       // Please see comment in g1CollectedHeap.hpp and
  3993       // G1CollectedHeap::ref_processing_init() to see how
  3994       // reference processing currently works in G1.
  3996       // Enable discovery in the STW reference processor
  3997       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3998                                             true /*verify_no_refs*/);
  4001         // We want to temporarily turn off discovery by the
  4002         // CM ref processor, if necessary, and turn it back on
  4003         // on again later if we do. Using a scoped
  4004         // NoRefDiscovery object will do this.
  4005         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  4007         // Forget the current alloc region (we might even choose it to be part
  4008         // of the collection set!).
  4009         release_mutator_alloc_region();
  4011         // We should call this after we retire the mutator alloc
  4012         // region(s) so that all the ALLOC / RETIRE events are generated
  4013         // before the start GC event.
  4014         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  4016         // This timing is only used by the ergonomics to handle our pause target.
  4017         // It is unclear why this should not include the full pause. We will
  4018         // investigate this in CR 7178365.
  4019         //
  4020         // Preserving the old comment here if that helps the investigation:
  4021         //
  4022         // The elapsed time induced by the start time below deliberately elides
  4023         // the possible verification above.
  4024         double sample_start_time_sec = os::elapsedTime();
  4026 #if YOUNG_LIST_VERBOSE
  4027         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  4028         _young_list->print();
  4029         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4030 #endif // YOUNG_LIST_VERBOSE
  4032         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  4034         double scan_wait_start = os::elapsedTime();
  4035         // We have to wait until the CM threads finish scanning the
  4036         // root regions as it's the only way to ensure that all the
  4037         // objects on them have been correctly scanned before we start
  4038         // moving them during the GC.
  4039         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4040         double wait_time_ms = 0.0;
  4041         if (waited) {
  4042           double scan_wait_end = os::elapsedTime();
  4043           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4045         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4047 #if YOUNG_LIST_VERBOSE
  4048         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4049         _young_list->print();
  4050 #endif // YOUNG_LIST_VERBOSE
  4052         if (g1_policy()->during_initial_mark_pause()) {
  4053           concurrent_mark()->checkpointRootsInitialPre();
  4056 #if YOUNG_LIST_VERBOSE
  4057         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4058         _young_list->print();
  4059         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4060 #endif // YOUNG_LIST_VERBOSE
  4062         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4064         _cm->note_start_of_gc();
  4065         // We should not verify the per-thread SATB buffers given that
  4066         // we have not filtered them yet (we'll do so during the
  4067         // GC). We also call this after finalize_cset() to
  4068         // ensure that the CSet has been finalized.
  4069         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4070                                  true  /* verify_enqueued_buffers */,
  4071                                  false /* verify_thread_buffers */,
  4072                                  true  /* verify_fingers */);
  4074         if (_hr_printer.is_active()) {
  4075           HeapRegion* hr = g1_policy()->collection_set();
  4076           while (hr != NULL) {
  4077             G1HRPrinter::RegionType type;
  4078             if (!hr->is_young()) {
  4079               type = G1HRPrinter::Old;
  4080             } else if (hr->is_survivor()) {
  4081               type = G1HRPrinter::Survivor;
  4082             } else {
  4083               type = G1HRPrinter::Eden;
  4085             _hr_printer.cset(hr);
  4086             hr = hr->next_in_collection_set();
  4090 #ifdef ASSERT
  4091         VerifyCSetClosure cl;
  4092         collection_set_iterate(&cl);
  4093 #endif // ASSERT
  4095         setup_surviving_young_words();
  4097         // Initialize the GC alloc regions.
  4098         init_gc_alloc_regions(evacuation_info);
  4100         // Actually do the work...
  4101         evacuate_collection_set(evacuation_info);
  4103         // We do this to mainly verify the per-thread SATB buffers
  4104         // (which have been filtered by now) since we didn't verify
  4105         // them earlier. No point in re-checking the stacks / enqueued
  4106         // buffers given that the CSet has not changed since last time
  4107         // we checked.
  4108         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4109                                  false /* verify_enqueued_buffers */,
  4110                                  true  /* verify_thread_buffers */,
  4111                                  true  /* verify_fingers */);
  4113         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4114         g1_policy()->clear_collection_set();
  4116         cleanup_surviving_young_words();
  4118         // Start a new incremental collection set for the next pause.
  4119         g1_policy()->start_incremental_cset_building();
  4121         clear_cset_fast_test();
  4123         _young_list->reset_sampled_info();
  4125         // Don't check the whole heap at this point as the
  4126         // GC alloc regions from this pause have been tagged
  4127         // as survivors and moved on to the survivor list.
  4128         // Survivor regions will fail the !is_young() check.
  4129         assert(check_young_list_empty(false /* check_heap */),
  4130           "young list should be empty");
  4132 #if YOUNG_LIST_VERBOSE
  4133         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4134         _young_list->print();
  4135 #endif // YOUNG_LIST_VERBOSE
  4137         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4138                                              _young_list->first_survivor_region(),
  4139                                              _young_list->last_survivor_region());
  4141         _young_list->reset_auxilary_lists();
  4143         if (evacuation_failed()) {
  4144           _summary_bytes_used = recalculate_used();
  4145           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4146           for (uint i = 0; i < n_queues; i++) {
  4147             if (_evacuation_failed_info_array[i].has_failed()) {
  4148               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4151         } else {
  4152           // The "used" of the the collection set have already been subtracted
  4153           // when they were freed.  Add in the bytes evacuated.
  4154           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4157         if (g1_policy()->during_initial_mark_pause()) {
  4158           // We have to do this before we notify the CM threads that
  4159           // they can start working to make sure that all the
  4160           // appropriate initialization is done on the CM object.
  4161           concurrent_mark()->checkpointRootsInitialPost();
  4162           set_marking_started();
  4163           // Note that we don't actually trigger the CM thread at
  4164           // this point. We do that later when we're sure that
  4165           // the current thread has completed its logging output.
  4168         allocate_dummy_regions();
  4170 #if YOUNG_LIST_VERBOSE
  4171         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4172         _young_list->print();
  4173         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4174 #endif // YOUNG_LIST_VERBOSE
  4176         init_mutator_alloc_region();
  4179           size_t expand_bytes = g1_policy()->expansion_amount();
  4180           if (expand_bytes > 0) {
  4181             size_t bytes_before = capacity();
  4182             // No need for an ergo verbose message here,
  4183             // expansion_amount() does this when it returns a value > 0.
  4184             if (!expand(expand_bytes)) {
  4185               // We failed to expand the heap so let's verify that
  4186               // committed/uncommitted amount match the backing store
  4187               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  4188               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  4193         // We redo the verification but now wrt to the new CSet which
  4194         // has just got initialized after the previous CSet was freed.
  4195         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4196                                  true  /* verify_enqueued_buffers */,
  4197                                  true  /* verify_thread_buffers */,
  4198                                  true  /* verify_fingers */);
  4199         _cm->note_end_of_gc();
  4201         // This timing is only used by the ergonomics to handle our pause target.
  4202         // It is unclear why this should not include the full pause. We will
  4203         // investigate this in CR 7178365.
  4204         double sample_end_time_sec = os::elapsedTime();
  4205         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4206         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4208         MemoryService::track_memory_usage();
  4210         // In prepare_for_verify() below we'll need to scan the deferred
  4211         // update buffers to bring the RSets up-to-date if
  4212         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4213         // the update buffers we'll probably need to scan cards on the
  4214         // regions we just allocated to (i.e., the GC alloc
  4215         // regions). However, during the last GC we called
  4216         // set_saved_mark() on all the GC alloc regions, so card
  4217         // scanning might skip the [saved_mark_word()...top()] area of
  4218         // those regions (i.e., the area we allocated objects into
  4219         // during the last GC). But it shouldn't. Given that
  4220         // saved_mark_word() is conditional on whether the GC time stamp
  4221         // on the region is current or not, by incrementing the GC time
  4222         // stamp here we invalidate all the GC time stamps on all the
  4223         // regions and saved_mark_word() will simply return top() for
  4224         // all the regions. This is a nicer way of ensuring this rather
  4225         // than iterating over the regions and fixing them. In fact, the
  4226         // GC time stamp increment here also ensures that
  4227         // saved_mark_word() will return top() between pauses, i.e.,
  4228         // during concurrent refinement. So we don't need the
  4229         // is_gc_active() check to decided which top to use when
  4230         // scanning cards (see CR 7039627).
  4231         increment_gc_time_stamp();
  4233         verify_after_gc();
  4235         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4236         ref_processor_stw()->verify_no_references_recorded();
  4238         // CM reference discovery will be re-enabled if necessary.
  4241       // We should do this after we potentially expand the heap so
  4242       // that all the COMMIT events are generated before the end GC
  4243       // event, and after we retire the GC alloc regions so that all
  4244       // RETIRE events are generated before the end GC event.
  4245       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4247       if (mark_in_progress()) {
  4248         concurrent_mark()->update_g1_committed();
  4251 #ifdef TRACESPINNING
  4252       ParallelTaskTerminator::print_termination_counts();
  4253 #endif
  4255       gc_epilogue(false);
  4258     // Print the remainder of the GC log output.
  4259     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4261     // It is not yet to safe to tell the concurrent mark to
  4262     // start as we have some optional output below. We don't want the
  4263     // output from the concurrent mark thread interfering with this
  4264     // logging output either.
  4266     _hrs.verify_optional();
  4267     verify_region_sets_optional();
  4269     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4270     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4272     print_heap_after_gc();
  4273     trace_heap_after_gc(_gc_tracer_stw);
  4275     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4276     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4277     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4278     // before any GC notifications are raised.
  4279     g1mm()->update_sizes();
  4281     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4282     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4283     _gc_timer_stw->register_gc_end();
  4284     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4286   // It should now be safe to tell the concurrent mark thread to start
  4287   // without its logging output interfering with the logging output
  4288   // that came from the pause.
  4290   if (should_start_conc_mark) {
  4291     // CAUTION: after the doConcurrentMark() call below,
  4292     // the concurrent marking thread(s) could be running
  4293     // concurrently with us. Make sure that anything after
  4294     // this point does not assume that we are the only GC thread
  4295     // running. Note: of course, the actual marking work will
  4296     // not start until the safepoint itself is released in
  4297     // SuspendibleThreadSet::desynchronize().
  4298     doConcurrentMark();
  4301   return true;
  4304 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4306   size_t gclab_word_size;
  4307   switch (purpose) {
  4308     case GCAllocForSurvived:
  4309       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4310       break;
  4311     case GCAllocForTenured:
  4312       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4313       break;
  4314     default:
  4315       assert(false, "unknown GCAllocPurpose");
  4316       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4317       break;
  4320   // Prevent humongous PLAB sizes for two reasons:
  4321   // * PLABs are allocated using a similar paths as oops, but should
  4322   //   never be in a humongous region
  4323   // * Allowing humongous PLABs needlessly churns the region free lists
  4324   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4327 void G1CollectedHeap::init_mutator_alloc_region() {
  4328   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4329   _mutator_alloc_region.init();
  4332 void G1CollectedHeap::release_mutator_alloc_region() {
  4333   _mutator_alloc_region.release();
  4334   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4337 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
  4338   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4339   _retained_old_gc_alloc_region = NULL;
  4341   // We will discard the current GC alloc region if:
  4342   // a) it's in the collection set (it can happen!),
  4343   // b) it's already full (no point in using it),
  4344   // c) it's empty (this means that it was emptied during
  4345   // a cleanup and it should be on the free list now), or
  4346   // d) it's humongous (this means that it was emptied
  4347   // during a cleanup and was added to the free list, but
  4348   // has been subsequently used to allocate a humongous
  4349   // object that may be less than the region size).
  4350   if (retained_region != NULL &&
  4351       !retained_region->in_collection_set() &&
  4352       !(retained_region->top() == retained_region->end()) &&
  4353       !retained_region->is_empty() &&
  4354       !retained_region->isHumongous()) {
  4355     retained_region->record_top_and_timestamp();
  4356     // The retained region was added to the old region set when it was
  4357     // retired. We have to remove it now, since we don't allow regions
  4358     // we allocate to in the region sets. We'll re-add it later, when
  4359     // it's retired again.
  4360     _old_set.remove(retained_region);
  4361     bool during_im = g1_policy()->during_initial_mark_pause();
  4362     retained_region->note_start_of_copying(during_im);
  4363     _old_gc_alloc_region.set(retained_region);
  4364     _hr_printer.reuse(retained_region);
  4365     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4369 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4370   assert_at_safepoint(true /* should_be_vm_thread */);
  4372   _survivor_gc_alloc_region.init();
  4373   _old_gc_alloc_region.init();
  4375   use_retained_old_gc_alloc_region(evacuation_info);
  4378 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4379   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4380                                          _old_gc_alloc_region.count());
  4381   _survivor_gc_alloc_region.release();
  4382   // If we have an old GC alloc region to release, we'll save it in
  4383   // _retained_old_gc_alloc_region. If we don't
  4384   // _retained_old_gc_alloc_region will become NULL. This is what we
  4385   // want either way so no reason to check explicitly for either
  4386   // condition.
  4387   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4389   if (ResizePLAB) {
  4390     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4391     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4395 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4396   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4397   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4398   _retained_old_gc_alloc_region = NULL;
  4401 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4402   _drain_in_progress = false;
  4403   set_evac_failure_closure(cl);
  4404   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4407 void G1CollectedHeap::finalize_for_evac_failure() {
  4408   assert(_evac_failure_scan_stack != NULL &&
  4409          _evac_failure_scan_stack->length() == 0,
  4410          "Postcondition");
  4411   assert(!_drain_in_progress, "Postcondition");
  4412   delete _evac_failure_scan_stack;
  4413   _evac_failure_scan_stack = NULL;
  4416 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4417   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4419   double remove_self_forwards_start = os::elapsedTime();
  4421   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4423   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4424     set_par_threads();
  4425     workers()->run_task(&rsfp_task);
  4426     set_par_threads(0);
  4427   } else {
  4428     rsfp_task.work(0);
  4431   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4433   // Reset the claim values in the regions in the collection set.
  4434   reset_cset_heap_region_claim_values();
  4436   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4438   // Now restore saved marks, if any.
  4439   assert(_objs_with_preserved_marks.size() ==
  4440             _preserved_marks_of_objs.size(), "Both or none.");
  4441   while (!_objs_with_preserved_marks.is_empty()) {
  4442     oop obj = _objs_with_preserved_marks.pop();
  4443     markOop m = _preserved_marks_of_objs.pop();
  4444     obj->set_mark(m);
  4446   _objs_with_preserved_marks.clear(true);
  4447   _preserved_marks_of_objs.clear(true);
  4449   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4452 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4453   _evac_failure_scan_stack->push(obj);
  4456 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4457   assert(_evac_failure_scan_stack != NULL, "precondition");
  4459   while (_evac_failure_scan_stack->length() > 0) {
  4460      oop obj = _evac_failure_scan_stack->pop();
  4461      _evac_failure_closure->set_region(heap_region_containing(obj));
  4462      obj->oop_iterate_backwards(_evac_failure_closure);
  4466 oop
  4467 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4468                                                oop old) {
  4469   assert(obj_in_cs(old),
  4470          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4471                  (HeapWord*) old));
  4472   markOop m = old->mark();
  4473   oop forward_ptr = old->forward_to_atomic(old);
  4474   if (forward_ptr == NULL) {
  4475     // Forward-to-self succeeded.
  4476     assert(_par_scan_state != NULL, "par scan state");
  4477     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4478     uint queue_num = _par_scan_state->queue_num();
  4480     _evacuation_failed = true;
  4481     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4482     if (_evac_failure_closure != cl) {
  4483       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4484       assert(!_drain_in_progress,
  4485              "Should only be true while someone holds the lock.");
  4486       // Set the global evac-failure closure to the current thread's.
  4487       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4488       set_evac_failure_closure(cl);
  4489       // Now do the common part.
  4490       handle_evacuation_failure_common(old, m);
  4491       // Reset to NULL.
  4492       set_evac_failure_closure(NULL);
  4493     } else {
  4494       // The lock is already held, and this is recursive.
  4495       assert(_drain_in_progress, "This should only be the recursive case.");
  4496       handle_evacuation_failure_common(old, m);
  4498     return old;
  4499   } else {
  4500     // Forward-to-self failed. Either someone else managed to allocate
  4501     // space for this object (old != forward_ptr) or they beat us in
  4502     // self-forwarding it (old == forward_ptr).
  4503     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4504            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4505                    "should not be in the CSet",
  4506                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4507     return forward_ptr;
  4511 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4512   preserve_mark_if_necessary(old, m);
  4514   HeapRegion* r = heap_region_containing(old);
  4515   if (!r->evacuation_failed()) {
  4516     r->set_evacuation_failed(true);
  4517     _hr_printer.evac_failure(r);
  4520   push_on_evac_failure_scan_stack(old);
  4522   if (!_drain_in_progress) {
  4523     // prevent recursion in copy_to_survivor_space()
  4524     _drain_in_progress = true;
  4525     drain_evac_failure_scan_stack();
  4526     _drain_in_progress = false;
  4530 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4531   assert(evacuation_failed(), "Oversaving!");
  4532   // We want to call the "for_promotion_failure" version only in the
  4533   // case of a promotion failure.
  4534   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4535     _objs_with_preserved_marks.push(obj);
  4536     _preserved_marks_of_objs.push(m);
  4540 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4541                                                   size_t word_size) {
  4542   if (purpose == GCAllocForSurvived) {
  4543     HeapWord* result = survivor_attempt_allocation(word_size);
  4544     if (result != NULL) {
  4545       return result;
  4546     } else {
  4547       // Let's try to allocate in the old gen in case we can fit the
  4548       // object there.
  4549       return old_attempt_allocation(word_size);
  4551   } else {
  4552     assert(purpose ==  GCAllocForTenured, "sanity");
  4553     HeapWord* result = old_attempt_allocation(word_size);
  4554     if (result != NULL) {
  4555       return result;
  4556     } else {
  4557       // Let's try to allocate in the survivors in case we can fit the
  4558       // object there.
  4559       return survivor_attempt_allocation(word_size);
  4563   ShouldNotReachHere();
  4564   // Trying to keep some compilers happy.
  4565   return NULL;
  4568 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4569   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
  4571 void G1ParCopyHelper::mark_object(oop obj) {
  4572 #ifdef ASSERT
  4573   HeapRegion* hr = _g1->heap_region_containing(obj);
  4574   assert(hr != NULL, "sanity");
  4575   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4576 #endif // ASSERT
  4578   // We know that the object is not moving so it's safe to read its size.
  4579   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4582 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4583 #ifdef ASSERT
  4584   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4585   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4586   assert(from_obj != to_obj, "should not be self-forwarded");
  4588   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4589   assert(from_hr != NULL, "sanity");
  4590   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4592   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4593   assert(to_hr != NULL, "sanity");
  4594   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4595 #endif // ASSERT
  4597   // The object might be in the process of being copied by another
  4598   // worker so we cannot trust that its to-space image is
  4599   // well-formed. So we have to read its size from its from-space
  4600   // image which we know should not be changing.
  4601   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4604 template <class T>
  4605 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4606   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4607     _scanned_klass->record_modified_oops();
  4611 template <G1Barrier barrier, G1Mark do_mark_object>
  4612 template <class T>
  4613 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4614   T heap_oop = oopDesc::load_heap_oop(p);
  4616   if (oopDesc::is_null(heap_oop)) {
  4617     return;
  4620   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4622   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4624   if (_g1->in_cset_fast_test(obj)) {
  4625     oop forwardee;
  4626     if (obj->is_forwarded()) {
  4627       forwardee = obj->forwardee();
  4628     } else {
  4629       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4631     assert(forwardee != NULL, "forwardee should not be NULL");
  4632     oopDesc::encode_store_heap_oop(p, forwardee);
  4633     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4634       // If the object is self-forwarded we don't need to explicitly
  4635       // mark it, the evacuation failure protocol will do so.
  4636       mark_forwarded_object(obj, forwardee);
  4639     if (barrier == G1BarrierKlass) {
  4640       do_klass_barrier(p, forwardee);
  4642   } else {
  4643     // The object is not in collection set. If we're a root scanning
  4644     // closure during an initial mark pause then attempt to mark the object.
  4645     if (do_mark_object == G1MarkFromRoot) {
  4646       mark_object(obj);
  4650   if (barrier == G1BarrierEvac) {
  4651     _par_scan_state->update_rs(_from, p, _worker_id);
  4655 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4656 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4658 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4659 protected:
  4660   G1CollectedHeap*              _g1h;
  4661   G1ParScanThreadState*         _par_scan_state;
  4662   RefToScanQueueSet*            _queues;
  4663   ParallelTaskTerminator*       _terminator;
  4665   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4666   RefToScanQueueSet*      queues()         { return _queues; }
  4667   ParallelTaskTerminator* terminator()     { return _terminator; }
  4669 public:
  4670   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4671                                 G1ParScanThreadState* par_scan_state,
  4672                                 RefToScanQueueSet* queues,
  4673                                 ParallelTaskTerminator* terminator)
  4674     : _g1h(g1h), _par_scan_state(par_scan_state),
  4675       _queues(queues), _terminator(terminator) {}
  4677   void do_void();
  4679 private:
  4680   inline bool offer_termination();
  4681 };
  4683 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4684   G1ParScanThreadState* const pss = par_scan_state();
  4685   pss->start_term_time();
  4686   const bool res = terminator()->offer_termination();
  4687   pss->end_term_time();
  4688   return res;
  4691 void G1ParEvacuateFollowersClosure::do_void() {
  4692   G1ParScanThreadState* const pss = par_scan_state();
  4693   pss->trim_queue();
  4694   do {
  4695     pss->steal_and_trim_queue(queues());
  4696   } while (!offer_termination());
  4699 class G1KlassScanClosure : public KlassClosure {
  4700  G1ParCopyHelper* _closure;
  4701  bool             _process_only_dirty;
  4702  int              _count;
  4703  public:
  4704   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4705       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4706   void do_klass(Klass* klass) {
  4707     // If the klass has not been dirtied we know that there's
  4708     // no references into  the young gen and we can skip it.
  4709    if (!_process_only_dirty || klass->has_modified_oops()) {
  4710       // Clean the klass since we're going to scavenge all the metadata.
  4711       klass->clear_modified_oops();
  4713       // Tell the closure that this klass is the Klass to scavenge
  4714       // and is the one to dirty if oops are left pointing into the young gen.
  4715       _closure->set_scanned_klass(klass);
  4717       klass->oops_do(_closure);
  4719       _closure->set_scanned_klass(NULL);
  4721     _count++;
  4723 };
  4725 class G1ParTask : public AbstractGangTask {
  4726 protected:
  4727   G1CollectedHeap*       _g1h;
  4728   RefToScanQueueSet      *_queues;
  4729   ParallelTaskTerminator _terminator;
  4730   uint _n_workers;
  4732   Mutex _stats_lock;
  4733   Mutex* stats_lock() { return &_stats_lock; }
  4735   size_t getNCards() {
  4736     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4737       / G1BlockOffsetSharedArray::N_bytes;
  4740 public:
  4741   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4742     : AbstractGangTask("G1 collection"),
  4743       _g1h(g1h),
  4744       _queues(task_queues),
  4745       _terminator(0, _queues),
  4746       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4747   {}
  4749   RefToScanQueueSet* queues() { return _queues; }
  4751   RefToScanQueue *work_queue(int i) {
  4752     return queues()->queue(i);
  4755   ParallelTaskTerminator* terminator() { return &_terminator; }
  4757   virtual void set_for_termination(int active_workers) {
  4758     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4759     // in the young space (_par_seq_tasks) in the G1 heap
  4760     // for SequentialSubTasksDone.
  4761     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4762     // both of which need setting by set_n_termination().
  4763     _g1h->SharedHeap::set_n_termination(active_workers);
  4764     _g1h->set_n_termination(active_workers);
  4765     terminator()->reset_for_reuse(active_workers);
  4766     _n_workers = active_workers;
  4769   // Helps out with CLD processing.
  4770   //
  4771   // During InitialMark we need to:
  4772   // 1) Scavenge all CLDs for the young GC.
  4773   // 2) Mark all objects directly reachable from strong CLDs.
  4774   template <G1Mark do_mark_object>
  4775   class G1CLDClosure : public CLDClosure {
  4776     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4777     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4778     G1KlassScanClosure                                _klass_in_cld_closure;
  4779     bool                                              _claim;
  4781    public:
  4782     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4783                  bool only_young, bool claim)
  4784         : _oop_closure(oop_closure),
  4785           _oop_in_klass_closure(oop_closure->g1(),
  4786                                 oop_closure->pss(),
  4787                                 oop_closure->rp()),
  4788           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4789           _claim(claim) {
  4793     void do_cld(ClassLoaderData* cld) {
  4794       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4796   };
  4798   class G1CodeBlobClosure: public CodeBlobClosure {
  4799     OopClosure* _f;
  4801    public:
  4802     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
  4803     void do_code_blob(CodeBlob* blob) {
  4804       nmethod* that = blob->as_nmethod_or_null();
  4805       if (that != NULL) {
  4806         if (!that->test_set_oops_do_mark()) {
  4807           that->oops_do(_f);
  4808           that->fix_oop_relocations();
  4812   };
  4814   void work(uint worker_id) {
  4815     if (worker_id >= _n_workers) return;  // no work needed this round
  4817     double start_time_ms = os::elapsedTime() * 1000.0;
  4818     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4821       ResourceMark rm;
  4822       HandleMark   hm;
  4824       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4826       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4827       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4829       pss.set_evac_failure_closure(&evac_failure_cl);
  4831       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4833       // Non-IM young GC.
  4834       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4835       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4836                                                                                only_young, // Only process dirty klasses.
  4837                                                                                false);     // No need to claim CLDs.
  4838       // IM young GC.
  4839       //    Strong roots closures.
  4840       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4841       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4842                                                                                false, // Process all klasses.
  4843                                                                                true); // Need to claim CLDs.
  4844       //    Weak roots closures.
  4845       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4846       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4847                                                                                     false, // Process all klasses.
  4848                                                                                     true); // Need to claim CLDs.
  4850       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4851       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4852       // IM Weak code roots are handled later.
  4854       OopClosure* strong_root_cl;
  4855       OopClosure* weak_root_cl;
  4856       CLDClosure* strong_cld_cl;
  4857       CLDClosure* weak_cld_cl;
  4858       CodeBlobClosure* strong_code_cl;
  4860       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4861         // We also need to mark copied objects.
  4862         strong_root_cl = &scan_mark_root_cl;
  4863         weak_root_cl   = &scan_mark_weak_root_cl;
  4864         strong_cld_cl  = &scan_mark_cld_cl;
  4865         weak_cld_cl    = &scan_mark_weak_cld_cl;
  4866         strong_code_cl = &scan_mark_code_cl;
  4867       } else {
  4868         strong_root_cl = &scan_only_root_cl;
  4869         weak_root_cl   = &scan_only_root_cl;
  4870         strong_cld_cl  = &scan_only_cld_cl;
  4871         weak_cld_cl    = &scan_only_cld_cl;
  4872         strong_code_cl = &scan_only_code_cl;
  4876       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4878       pss.start_strong_roots();
  4879       _g1h->g1_process_roots(strong_root_cl,
  4880                              weak_root_cl,
  4881                              &push_heap_rs_cl,
  4882                              strong_cld_cl,
  4883                              weak_cld_cl,
  4884                              strong_code_cl,
  4885                              worker_id);
  4887       pss.end_strong_roots();
  4890         double start = os::elapsedTime();
  4891         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4892         evac.do_void();
  4893         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4894         double term_ms = pss.term_time()*1000.0;
  4895         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4896         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4898       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4899       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4901       if (ParallelGCVerbose) {
  4902         MutexLocker x(stats_lock());
  4903         pss.print_termination_stats(worker_id);
  4906       assert(pss.queue_is_empty(), "should be empty");
  4908       // Close the inner scope so that the ResourceMark and HandleMark
  4909       // destructors are executed here and are included as part of the
  4910       // "GC Worker Time".
  4913     double end_time_ms = os::elapsedTime() * 1000.0;
  4914     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4916 };
  4918 // *** Common G1 Evacuation Stuff
  4920 // This method is run in a GC worker.
  4922 void
  4923 G1CollectedHeap::
  4924 g1_process_roots(OopClosure* scan_non_heap_roots,
  4925                  OopClosure* scan_non_heap_weak_roots,
  4926                  OopsInHeapRegionClosure* scan_rs,
  4927                  CLDClosure* scan_strong_clds,
  4928                  CLDClosure* scan_weak_clds,
  4929                  CodeBlobClosure* scan_strong_code,
  4930                  uint worker_i) {
  4932   // First scan the shared roots.
  4933   double ext_roots_start = os::elapsedTime();
  4934   double closure_app_time_sec = 0.0;
  4936   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4938   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4939   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4941   process_roots(false, // no scoping; this is parallel code
  4942                 SharedHeap::SO_None,
  4943                 &buf_scan_non_heap_roots,
  4944                 &buf_scan_non_heap_weak_roots,
  4945                 scan_strong_clds,
  4946                 // Initial Mark handles the weak CLDs separately.
  4947                 (during_im ? NULL : scan_weak_clds),
  4948                 scan_strong_code);
  4950   // Now the CM ref_processor roots.
  4951   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4952     // We need to treat the discovered reference lists of the
  4953     // concurrent mark ref processor as roots and keep entries
  4954     // (which are added by the marking threads) on them live
  4955     // until they can be processed at the end of marking.
  4956     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4959   if (during_im) {
  4960     // Barrier to make sure all workers passed
  4961     // the strong CLD and strong nmethods phases.
  4962     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4964     // Now take the complement of the strong CLDs.
  4965     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4968   // Finish up any enqueued closure apps (attributed as object copy time).
  4969   buf_scan_non_heap_roots.done();
  4970   buf_scan_non_heap_weak_roots.done();
  4972   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4973       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4975   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4977   double ext_root_time_ms =
  4978     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4980   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4982   // During conc marking we have to filter the per-thread SATB buffers
  4983   // to make sure we remove any oops into the CSet (which will show up
  4984   // as implicitly live).
  4985   double satb_filtering_ms = 0.0;
  4986   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4987     if (mark_in_progress()) {
  4988       double satb_filter_start = os::elapsedTime();
  4990       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4992       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4995   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4997   // Now scan the complement of the collection set.
  4998   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
  5000   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  5002   _process_strong_tasks->all_tasks_completed();
  5005 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  5006 private:
  5007   BoolObjectClosure* _is_alive;
  5008   int _initial_string_table_size;
  5009   int _initial_symbol_table_size;
  5011   bool  _process_strings;
  5012   int _strings_processed;
  5013   int _strings_removed;
  5015   bool  _process_symbols;
  5016   int _symbols_processed;
  5017   int _symbols_removed;
  5019   bool _do_in_parallel;
  5020 public:
  5021   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  5022     AbstractGangTask("String/Symbol Unlinking"),
  5023     _is_alive(is_alive),
  5024     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  5025     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  5026     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  5028     _initial_string_table_size = StringTable::the_table()->table_size();
  5029     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  5030     if (process_strings) {
  5031       StringTable::clear_parallel_claimed_index();
  5033     if (process_symbols) {
  5034       SymbolTable::clear_parallel_claimed_index();
  5038   ~G1StringSymbolTableUnlinkTask() {
  5039     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  5040               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  5041                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  5042     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  5043               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  5044                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  5046     if (G1TraceStringSymbolTableScrubbing) {
  5047       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  5048                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  5049                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  5050                              strings_processed(), strings_removed(),
  5051                              symbols_processed(), symbols_removed());
  5055   void work(uint worker_id) {
  5056     if (_do_in_parallel) {
  5057       int strings_processed = 0;
  5058       int strings_removed = 0;
  5059       int symbols_processed = 0;
  5060       int symbols_removed = 0;
  5061       if (_process_strings) {
  5062         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  5063         Atomic::add(strings_processed, &_strings_processed);
  5064         Atomic::add(strings_removed, &_strings_removed);
  5066       if (_process_symbols) {
  5067         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  5068         Atomic::add(symbols_processed, &_symbols_processed);
  5069         Atomic::add(symbols_removed, &_symbols_removed);
  5071     } else {
  5072       if (_process_strings) {
  5073         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  5075       if (_process_symbols) {
  5076         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  5081   size_t strings_processed() const { return (size_t)_strings_processed; }
  5082   size_t strings_removed()   const { return (size_t)_strings_removed; }
  5084   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  5085   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  5086 };
  5088 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  5089 private:
  5090   static Monitor* _lock;
  5092   BoolObjectClosure* const _is_alive;
  5093   const bool               _unloading_occurred;
  5094   const uint               _num_workers;
  5096   // Variables used to claim nmethods.
  5097   nmethod* _first_nmethod;
  5098   volatile nmethod* _claimed_nmethod;
  5100   // The list of nmethods that need to be processed by the second pass.
  5101   volatile nmethod* _postponed_list;
  5102   volatile uint     _num_entered_barrier;
  5104  public:
  5105   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  5106       _is_alive(is_alive),
  5107       _unloading_occurred(unloading_occurred),
  5108       _num_workers(num_workers),
  5109       _first_nmethod(NULL),
  5110       _claimed_nmethod(NULL),
  5111       _postponed_list(NULL),
  5112       _num_entered_barrier(0)
  5114     nmethod::increase_unloading_clock();
  5115     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  5116     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  5119   ~G1CodeCacheUnloadingTask() {
  5120     CodeCache::verify_clean_inline_caches();
  5122     CodeCache::set_needs_cache_clean(false);
  5123     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  5125     CodeCache::verify_icholder_relocations();
  5128  private:
  5129   void add_to_postponed_list(nmethod* nm) {
  5130       nmethod* old;
  5131       do {
  5132         old = (nmethod*)_postponed_list;
  5133         nm->set_unloading_next(old);
  5134       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  5137   void clean_nmethod(nmethod* nm) {
  5138     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  5140     if (postponed) {
  5141       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  5142       add_to_postponed_list(nm);
  5145     // Mark that this thread has been cleaned/unloaded.
  5146     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5147     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5150   void clean_nmethod_postponed(nmethod* nm) {
  5151     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5154   static const int MaxClaimNmethods = 16;
  5156   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5157     nmethod* first;
  5158     nmethod* last;
  5160     do {
  5161       *num_claimed_nmethods = 0;
  5163       first = last = (nmethod*)_claimed_nmethod;
  5165       if (first != NULL) {
  5166         for (int i = 0; i < MaxClaimNmethods; i++) {
  5167           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5169           if (last == NULL) {
  5170             break;
  5173           claimed_nmethods[i] = last;
  5174           (*num_claimed_nmethods)++;
  5178     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5181   nmethod* claim_postponed_nmethod() {
  5182     nmethod* claim;
  5183     nmethod* next;
  5185     do {
  5186       claim = (nmethod*)_postponed_list;
  5187       if (claim == NULL) {
  5188         return NULL;
  5191       next = claim->unloading_next();
  5193     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5195     return claim;
  5198  public:
  5199   // Mark that we're done with the first pass of nmethod cleaning.
  5200   void barrier_mark(uint worker_id) {
  5201     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5202     _num_entered_barrier++;
  5203     if (_num_entered_barrier == _num_workers) {
  5204       ml.notify_all();
  5208   // See if we have to wait for the other workers to
  5209   // finish their first-pass nmethod cleaning work.
  5210   void barrier_wait(uint worker_id) {
  5211     if (_num_entered_barrier < _num_workers) {
  5212       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5213       while (_num_entered_barrier < _num_workers) {
  5214           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5219   // Cleaning and unloading of nmethods. Some work has to be postponed
  5220   // to the second pass, when we know which nmethods survive.
  5221   void work_first_pass(uint worker_id) {
  5222     // The first nmethods is claimed by the first worker.
  5223     if (worker_id == 0 && _first_nmethod != NULL) {
  5224       clean_nmethod(_first_nmethod);
  5225       _first_nmethod = NULL;
  5228     int num_claimed_nmethods;
  5229     nmethod* claimed_nmethods[MaxClaimNmethods];
  5231     while (true) {
  5232       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5234       if (num_claimed_nmethods == 0) {
  5235         break;
  5238       for (int i = 0; i < num_claimed_nmethods; i++) {
  5239         clean_nmethod(claimed_nmethods[i]);
  5244   void work_second_pass(uint worker_id) {
  5245     nmethod* nm;
  5246     // Take care of postponed nmethods.
  5247     while ((nm = claim_postponed_nmethod()) != NULL) {
  5248       clean_nmethod_postponed(nm);
  5251 };
  5253 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5255 class G1KlassCleaningTask : public StackObj {
  5256   BoolObjectClosure*                      _is_alive;
  5257   volatile jint                           _clean_klass_tree_claimed;
  5258   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5260  public:
  5261   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5262       _is_alive(is_alive),
  5263       _clean_klass_tree_claimed(0),
  5264       _klass_iterator() {
  5267  private:
  5268   bool claim_clean_klass_tree_task() {
  5269     if (_clean_klass_tree_claimed) {
  5270       return false;
  5273     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5276   InstanceKlass* claim_next_klass() {
  5277     Klass* klass;
  5278     do {
  5279       klass =_klass_iterator.next_klass();
  5280     } while (klass != NULL && !klass->oop_is_instance());
  5282     return (InstanceKlass*)klass;
  5285 public:
  5287   void clean_klass(InstanceKlass* ik) {
  5288     ik->clean_implementors_list(_is_alive);
  5289     ik->clean_method_data(_is_alive);
  5291     // G1 specific cleanup work that has
  5292     // been moved here to be done in parallel.
  5293     ik->clean_dependent_nmethods();
  5296   void work() {
  5297     ResourceMark rm;
  5299     // One worker will clean the subklass/sibling klass tree.
  5300     if (claim_clean_klass_tree_task()) {
  5301       Klass::clean_subklass_tree(_is_alive);
  5304     // All workers will help cleaning the classes,
  5305     InstanceKlass* klass;
  5306     while ((klass = claim_next_klass()) != NULL) {
  5307       clean_klass(klass);
  5310 };
  5312 // To minimize the remark pause times, the tasks below are done in parallel.
  5313 class G1ParallelCleaningTask : public AbstractGangTask {
  5314 private:
  5315   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5316   G1CodeCacheUnloadingTask      _code_cache_task;
  5317   G1KlassCleaningTask           _klass_cleaning_task;
  5319 public:
  5320   // The constructor is run in the VMThread.
  5321   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5322       AbstractGangTask("Parallel Cleaning"),
  5323       _string_symbol_task(is_alive, process_strings, process_symbols),
  5324       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5325       _klass_cleaning_task(is_alive) {
  5328   // The parallel work done by all worker threads.
  5329   void work(uint worker_id) {
  5330     // Do first pass of code cache cleaning.
  5331     _code_cache_task.work_first_pass(worker_id);
  5333     // Let the threads, mark that the first pass is done.
  5334     _code_cache_task.barrier_mark(worker_id);
  5336     // Clean the Strings and Symbols.
  5337     _string_symbol_task.work(worker_id);
  5339     // Wait for all workers to finish the first code cache cleaning pass.
  5340     _code_cache_task.barrier_wait(worker_id);
  5342     // Do the second code cache cleaning work, which realize on
  5343     // the liveness information gathered during the first pass.
  5344     _code_cache_task.work_second_pass(worker_id);
  5346     // Clean all klasses that were not unloaded.
  5347     _klass_cleaning_task.work();
  5349 };
  5352 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5353                                         bool process_strings,
  5354                                         bool process_symbols,
  5355                                         bool class_unloading_occurred) {
  5356   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5357                     workers()->active_workers() : 1);
  5359   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5360                                         n_workers, class_unloading_occurred);
  5361   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5362     set_par_threads(n_workers);
  5363     workers()->run_task(&g1_unlink_task);
  5364     set_par_threads(0);
  5365   } else {
  5366     g1_unlink_task.work(0);
  5370 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5371                                                      bool process_strings, bool process_symbols) {
  5373     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5374                      _g1h->workers()->active_workers() : 1);
  5375     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5376     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5377       set_par_threads(n_workers);
  5378       workers()->run_task(&g1_unlink_task);
  5379       set_par_threads(0);
  5380     } else {
  5381       g1_unlink_task.work(0);
  5385   if (G1StringDedup::is_enabled()) {
  5386     G1StringDedup::unlink(is_alive);
  5390 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5391  private:
  5392   DirtyCardQueueSet* _queue;
  5393  public:
  5394   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5396   virtual void work(uint worker_id) {
  5397     double start_time = os::elapsedTime();
  5399     RedirtyLoggedCardTableEntryClosure cl;
  5400     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5401       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5402     } else {
  5403       _queue->apply_closure_to_all_completed_buffers(&cl);
  5406     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5407     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5408     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5410 };
  5412 void G1CollectedHeap::redirty_logged_cards() {
  5413   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5414   double redirty_logged_cards_start = os::elapsedTime();
  5416   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5417                    _g1h->workers()->active_workers() : 1);
  5419   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5420   dirty_card_queue_set().reset_for_par_iteration();
  5421   if (use_parallel_gc_threads()) {
  5422     set_par_threads(n_workers);
  5423     workers()->run_task(&redirty_task);
  5424     set_par_threads(0);
  5425   } else {
  5426     redirty_task.work(0);
  5429   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5430   dcq.merge_bufferlists(&dirty_card_queue_set());
  5431   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5433   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5436 // Weak Reference Processing support
  5438 // An always "is_alive" closure that is used to preserve referents.
  5439 // If the object is non-null then it's alive.  Used in the preservation
  5440 // of referent objects that are pointed to by reference objects
  5441 // discovered by the CM ref processor.
  5442 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5443   G1CollectedHeap* _g1;
  5444 public:
  5445   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5446   bool do_object_b(oop p) {
  5447     if (p != NULL) {
  5448       return true;
  5450     return false;
  5452 };
  5454 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5455   // An object is reachable if it is outside the collection set,
  5456   // or is inside and copied.
  5457   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5460 // Non Copying Keep Alive closure
  5461 class G1KeepAliveClosure: public OopClosure {
  5462   G1CollectedHeap* _g1;
  5463 public:
  5464   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5465   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5466   void do_oop(      oop* p) {
  5467     oop obj = *p;
  5469     if (_g1->obj_in_cs(obj)) {
  5470       assert( obj->is_forwarded(), "invariant" );
  5471       *p = obj->forwardee();
  5474 };
  5476 // Copying Keep Alive closure - can be called from both
  5477 // serial and parallel code as long as different worker
  5478 // threads utilize different G1ParScanThreadState instances
  5479 // and different queues.
  5481 class G1CopyingKeepAliveClosure: public OopClosure {
  5482   G1CollectedHeap*         _g1h;
  5483   OopClosure*              _copy_non_heap_obj_cl;
  5484   G1ParScanThreadState*    _par_scan_state;
  5486 public:
  5487   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5488                             OopClosure* non_heap_obj_cl,
  5489                             G1ParScanThreadState* pss):
  5490     _g1h(g1h),
  5491     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5492     _par_scan_state(pss)
  5493   {}
  5495   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5496   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5498   template <class T> void do_oop_work(T* p) {
  5499     oop obj = oopDesc::load_decode_heap_oop(p);
  5501     if (_g1h->obj_in_cs(obj)) {
  5502       // If the referent object has been forwarded (either copied
  5503       // to a new location or to itself in the event of an
  5504       // evacuation failure) then we need to update the reference
  5505       // field and, if both reference and referent are in the G1
  5506       // heap, update the RSet for the referent.
  5507       //
  5508       // If the referent has not been forwarded then we have to keep
  5509       // it alive by policy. Therefore we have copy the referent.
  5510       //
  5511       // If the reference field is in the G1 heap then we can push
  5512       // on the PSS queue. When the queue is drained (after each
  5513       // phase of reference processing) the object and it's followers
  5514       // will be copied, the reference field set to point to the
  5515       // new location, and the RSet updated. Otherwise we need to
  5516       // use the the non-heap or metadata closures directly to copy
  5517       // the referent object and update the pointer, while avoiding
  5518       // updating the RSet.
  5520       if (_g1h->is_in_g1_reserved(p)) {
  5521         _par_scan_state->push_on_queue(p);
  5522       } else {
  5523         assert(!Metaspace::contains((const void*)p),
  5524                err_msg("Unexpectedly found a pointer from metadata: "
  5525                               PTR_FORMAT, p));
  5526           _copy_non_heap_obj_cl->do_oop(p);
  5530 };
  5532 // Serial drain queue closure. Called as the 'complete_gc'
  5533 // closure for each discovered list in some of the
  5534 // reference processing phases.
  5536 class G1STWDrainQueueClosure: public VoidClosure {
  5537 protected:
  5538   G1CollectedHeap* _g1h;
  5539   G1ParScanThreadState* _par_scan_state;
  5541   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5543 public:
  5544   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5545     _g1h(g1h),
  5546     _par_scan_state(pss)
  5547   { }
  5549   void do_void() {
  5550     G1ParScanThreadState* const pss = par_scan_state();
  5551     pss->trim_queue();
  5553 };
  5555 // Parallel Reference Processing closures
  5557 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5558 // processing during G1 evacuation pauses.
  5560 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5561 private:
  5562   G1CollectedHeap*   _g1h;
  5563   RefToScanQueueSet* _queues;
  5564   FlexibleWorkGang*  _workers;
  5565   int                _active_workers;
  5567 public:
  5568   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5569                         FlexibleWorkGang* workers,
  5570                         RefToScanQueueSet *task_queues,
  5571                         int n_workers) :
  5572     _g1h(g1h),
  5573     _queues(task_queues),
  5574     _workers(workers),
  5575     _active_workers(n_workers)
  5577     assert(n_workers > 0, "shouldn't call this otherwise");
  5580   // Executes the given task using concurrent marking worker threads.
  5581   virtual void execute(ProcessTask& task);
  5582   virtual void execute(EnqueueTask& task);
  5583 };
  5585 // Gang task for possibly parallel reference processing
  5587 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5588   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5589   ProcessTask&     _proc_task;
  5590   G1CollectedHeap* _g1h;
  5591   RefToScanQueueSet *_task_queues;
  5592   ParallelTaskTerminator* _terminator;
  5594 public:
  5595   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5596                      G1CollectedHeap* g1h,
  5597                      RefToScanQueueSet *task_queues,
  5598                      ParallelTaskTerminator* terminator) :
  5599     AbstractGangTask("Process reference objects in parallel"),
  5600     _proc_task(proc_task),
  5601     _g1h(g1h),
  5602     _task_queues(task_queues),
  5603     _terminator(terminator)
  5604   {}
  5606   virtual void work(uint worker_id) {
  5607     // The reference processing task executed by a single worker.
  5608     ResourceMark rm;
  5609     HandleMark   hm;
  5611     G1STWIsAliveClosure is_alive(_g1h);
  5613     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5614     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5616     pss.set_evac_failure_closure(&evac_failure_cl);
  5618     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5620     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5622     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5624     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5625       // We also need to mark copied objects.
  5626       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5629     // Keep alive closure.
  5630     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5632     // Complete GC closure
  5633     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5635     // Call the reference processing task's work routine.
  5636     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5638     // Note we cannot assert that the refs array is empty here as not all
  5639     // of the processing tasks (specifically phase2 - pp2_work) execute
  5640     // the complete_gc closure (which ordinarily would drain the queue) so
  5641     // the queue may not be empty.
  5643 };
  5645 // Driver routine for parallel reference processing.
  5646 // Creates an instance of the ref processing gang
  5647 // task and has the worker threads execute it.
  5648 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5649   assert(_workers != NULL, "Need parallel worker threads.");
  5651   ParallelTaskTerminator terminator(_active_workers, _queues);
  5652   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5654   _g1h->set_par_threads(_active_workers);
  5655   _workers->run_task(&proc_task_proxy);
  5656   _g1h->set_par_threads(0);
  5659 // Gang task for parallel reference enqueueing.
  5661 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5662   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5663   EnqueueTask& _enq_task;
  5665 public:
  5666   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5667     AbstractGangTask("Enqueue reference objects in parallel"),
  5668     _enq_task(enq_task)
  5669   { }
  5671   virtual void work(uint worker_id) {
  5672     _enq_task.work(worker_id);
  5674 };
  5676 // Driver routine for parallel reference enqueueing.
  5677 // Creates an instance of the ref enqueueing gang
  5678 // task and has the worker threads execute it.
  5680 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5681   assert(_workers != NULL, "Need parallel worker threads.");
  5683   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5685   _g1h->set_par_threads(_active_workers);
  5686   _workers->run_task(&enq_task_proxy);
  5687   _g1h->set_par_threads(0);
  5690 // End of weak reference support closures
  5692 // Abstract task used to preserve (i.e. copy) any referent objects
  5693 // that are in the collection set and are pointed to by reference
  5694 // objects discovered by the CM ref processor.
  5696 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5697 protected:
  5698   G1CollectedHeap* _g1h;
  5699   RefToScanQueueSet      *_queues;
  5700   ParallelTaskTerminator _terminator;
  5701   uint _n_workers;
  5703 public:
  5704   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5705     AbstractGangTask("ParPreserveCMReferents"),
  5706     _g1h(g1h),
  5707     _queues(task_queues),
  5708     _terminator(workers, _queues),
  5709     _n_workers(workers)
  5710   { }
  5712   void work(uint worker_id) {
  5713     ResourceMark rm;
  5714     HandleMark   hm;
  5716     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5717     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5719     pss.set_evac_failure_closure(&evac_failure_cl);
  5721     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5723     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5725     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5727     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5729     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5730       // We also need to mark copied objects.
  5731       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5734     // Is alive closure
  5735     G1AlwaysAliveClosure always_alive(_g1h);
  5737     // Copying keep alive closure. Applied to referent objects that need
  5738     // to be copied.
  5739     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5741     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5743     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5744     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5746     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5747     // So this must be true - but assert just in case someone decides to
  5748     // change the worker ids.
  5749     assert(0 <= worker_id && worker_id < limit, "sanity");
  5750     assert(!rp->discovery_is_atomic(), "check this code");
  5752     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5753     for (uint idx = worker_id; idx < limit; idx += stride) {
  5754       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5756       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5757       while (iter.has_next()) {
  5758         // Since discovery is not atomic for the CM ref processor, we
  5759         // can see some null referent objects.
  5760         iter.load_ptrs(DEBUG_ONLY(true));
  5761         oop ref = iter.obj();
  5763         // This will filter nulls.
  5764         if (iter.is_referent_alive()) {
  5765           iter.make_referent_alive();
  5767         iter.move_to_next();
  5771     // Drain the queue - which may cause stealing
  5772     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5773     drain_queue.do_void();
  5774     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5775     assert(pss.queue_is_empty(), "should be");
  5777 };
  5779 // Weak Reference processing during an evacuation pause (part 1).
  5780 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5781   double ref_proc_start = os::elapsedTime();
  5783   ReferenceProcessor* rp = _ref_processor_stw;
  5784   assert(rp->discovery_enabled(), "should have been enabled");
  5786   // Any reference objects, in the collection set, that were 'discovered'
  5787   // by the CM ref processor should have already been copied (either by
  5788   // applying the external root copy closure to the discovered lists, or
  5789   // by following an RSet entry).
  5790   //
  5791   // But some of the referents, that are in the collection set, that these
  5792   // reference objects point to may not have been copied: the STW ref
  5793   // processor would have seen that the reference object had already
  5794   // been 'discovered' and would have skipped discovering the reference,
  5795   // but would not have treated the reference object as a regular oop.
  5796   // As a result the copy closure would not have been applied to the
  5797   // referent object.
  5798   //
  5799   // We need to explicitly copy these referent objects - the references
  5800   // will be processed at the end of remarking.
  5801   //
  5802   // We also need to do this copying before we process the reference
  5803   // objects discovered by the STW ref processor in case one of these
  5804   // referents points to another object which is also referenced by an
  5805   // object discovered by the STW ref processor.
  5807   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5808            no_of_gc_workers == workers()->active_workers(),
  5809            "Need to reset active GC workers");
  5811   set_par_threads(no_of_gc_workers);
  5812   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5813                                                  no_of_gc_workers,
  5814                                                  _task_queues);
  5816   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5817     workers()->run_task(&keep_cm_referents);
  5818   } else {
  5819     keep_cm_referents.work(0);
  5822   set_par_threads(0);
  5824   // Closure to test whether a referent is alive.
  5825   G1STWIsAliveClosure is_alive(this);
  5827   // Even when parallel reference processing is enabled, the processing
  5828   // of JNI refs is serial and performed serially by the current thread
  5829   // rather than by a worker. The following PSS will be used for processing
  5830   // JNI refs.
  5832   // Use only a single queue for this PSS.
  5833   G1ParScanThreadState            pss(this, 0, NULL);
  5835   // We do not embed a reference processor in the copying/scanning
  5836   // closures while we're actually processing the discovered
  5837   // reference objects.
  5838   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5840   pss.set_evac_failure_closure(&evac_failure_cl);
  5842   assert(pss.queue_is_empty(), "pre-condition");
  5844   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5846   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5848   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5850   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5851     // We also need to mark copied objects.
  5852     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5855   // Keep alive closure.
  5856   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5858   // Serial Complete GC closure
  5859   G1STWDrainQueueClosure drain_queue(this, &pss);
  5861   // Setup the soft refs policy...
  5862   rp->setup_policy(false);
  5864   ReferenceProcessorStats stats;
  5865   if (!rp->processing_is_mt()) {
  5866     // Serial reference processing...
  5867     stats = rp->process_discovered_references(&is_alive,
  5868                                               &keep_alive,
  5869                                               &drain_queue,
  5870                                               NULL,
  5871                                               _gc_timer_stw,
  5872                                               _gc_tracer_stw->gc_id());
  5873   } else {
  5874     // Parallel reference processing
  5875     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5876     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5878     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5879     stats = rp->process_discovered_references(&is_alive,
  5880                                               &keep_alive,
  5881                                               &drain_queue,
  5882                                               &par_task_executor,
  5883                                               _gc_timer_stw,
  5884                                               _gc_tracer_stw->gc_id());
  5887   _gc_tracer_stw->report_gc_reference_stats(stats);
  5889   // We have completed copying any necessary live referent objects.
  5890   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5892   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5893   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5896 // Weak Reference processing during an evacuation pause (part 2).
  5897 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5898   double ref_enq_start = os::elapsedTime();
  5900   ReferenceProcessor* rp = _ref_processor_stw;
  5901   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5903   // Now enqueue any remaining on the discovered lists on to
  5904   // the pending list.
  5905   if (!rp->processing_is_mt()) {
  5906     // Serial reference processing...
  5907     rp->enqueue_discovered_references();
  5908   } else {
  5909     // Parallel reference enqueueing
  5911     assert(no_of_gc_workers == workers()->active_workers(),
  5912            "Need to reset active workers");
  5913     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5914     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5916     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5917     rp->enqueue_discovered_references(&par_task_executor);
  5920   rp->verify_no_references_recorded();
  5921   assert(!rp->discovery_enabled(), "should have been disabled");
  5923   // FIXME
  5924   // CM's reference processing also cleans up the string and symbol tables.
  5925   // Should we do that here also? We could, but it is a serial operation
  5926   // and could significantly increase the pause time.
  5928   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5929   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5932 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5933   _expand_heap_after_alloc_failure = true;
  5934   _evacuation_failed = false;
  5936   // Should G1EvacuationFailureALot be in effect for this GC?
  5937   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5939   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5941   // Disable the hot card cache.
  5942   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5943   hot_card_cache->reset_hot_cache_claimed_index();
  5944   hot_card_cache->set_use_cache(false);
  5946   uint n_workers;
  5947   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5948     n_workers =
  5949       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5950                                      workers()->active_workers(),
  5951                                      Threads::number_of_non_daemon_threads());
  5952     assert(UseDynamicNumberOfGCThreads ||
  5953            n_workers == workers()->total_workers(),
  5954            "If not dynamic should be using all the  workers");
  5955     workers()->set_active_workers(n_workers);
  5956     set_par_threads(n_workers);
  5957   } else {
  5958     assert(n_par_threads() == 0,
  5959            "Should be the original non-parallel value");
  5960     n_workers = 1;
  5963   G1ParTask g1_par_task(this, _task_queues);
  5965   init_for_evac_failure(NULL);
  5967   rem_set()->prepare_for_younger_refs_iterate(true);
  5969   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5970   double start_par_time_sec = os::elapsedTime();
  5971   double end_par_time_sec;
  5974     StrongRootsScope srs(this);
  5975     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5976     if (g1_policy()->during_initial_mark_pause()) {
  5977       ClassLoaderDataGraph::clear_claimed_marks();
  5980     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5981       // The individual threads will set their evac-failure closures.
  5982       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5983       // These tasks use ShareHeap::_process_strong_tasks
  5984       assert(UseDynamicNumberOfGCThreads ||
  5985              workers()->active_workers() == workers()->total_workers(),
  5986              "If not dynamic should be using all the  workers");
  5987       workers()->run_task(&g1_par_task);
  5988     } else {
  5989       g1_par_task.set_for_termination(n_workers);
  5990       g1_par_task.work(0);
  5992     end_par_time_sec = os::elapsedTime();
  5994     // Closing the inner scope will execute the destructor
  5995     // for the StrongRootsScope object. We record the current
  5996     // elapsed time before closing the scope so that time
  5997     // taken for the SRS destructor is NOT included in the
  5998     // reported parallel time.
  6001   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  6002   g1_policy()->phase_times()->record_par_time(par_time_ms);
  6004   double code_root_fixup_time_ms =
  6005         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  6006   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  6008   set_par_threads(0);
  6010   // Process any discovered reference objects - we have
  6011   // to do this _before_ we retire the GC alloc regions
  6012   // as we may have to copy some 'reachable' referent
  6013   // objects (and their reachable sub-graphs) that were
  6014   // not copied during the pause.
  6015   process_discovered_references(n_workers);
  6017   // Weak root processing.
  6019     G1STWIsAliveClosure is_alive(this);
  6020     G1KeepAliveClosure keep_alive(this);
  6021     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  6022     if (G1StringDedup::is_enabled()) {
  6023       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  6027   release_gc_alloc_regions(n_workers, evacuation_info);
  6028   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  6030   // Reset and re-enable the hot card cache.
  6031   // Note the counts for the cards in the regions in the
  6032   // collection set are reset when the collection set is freed.
  6033   hot_card_cache->reset_hot_cache();
  6034   hot_card_cache->set_use_cache(true);
  6036   // Migrate the strong code roots attached to each region in
  6037   // the collection set. Ideally we would like to do this
  6038   // after we have finished the scanning/evacuation of the
  6039   // strong code roots for a particular heap region.
  6040   migrate_strong_code_roots();
  6042   purge_code_root_memory();
  6044   if (g1_policy()->during_initial_mark_pause()) {
  6045     // Reset the claim values set during marking the strong code roots
  6046     reset_heap_region_claim_values();
  6049   finalize_for_evac_failure();
  6051   if (evacuation_failed()) {
  6052     remove_self_forwarding_pointers();
  6054     // Reset the G1EvacuationFailureALot counters and flags
  6055     // Note: the values are reset only when an actual
  6056     // evacuation failure occurs.
  6057     NOT_PRODUCT(reset_evacuation_should_fail();)
  6060   // Enqueue any remaining references remaining on the STW
  6061   // reference processor's discovered lists. We need to do
  6062   // this after the card table is cleaned (and verified) as
  6063   // the act of enqueueing entries on to the pending list
  6064   // will log these updates (and dirty their associated
  6065   // cards). We need these updates logged to update any
  6066   // RSets.
  6067   enqueue_discovered_references(n_workers);
  6069   if (G1DeferredRSUpdate) {
  6070     redirty_logged_cards();
  6072   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  6075 void G1CollectedHeap::free_region(HeapRegion* hr,
  6076                                   FreeRegionList* free_list,
  6077                                   bool par,
  6078                                   bool locked) {
  6079   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  6080   assert(!hr->is_empty(), "the region should not be empty");
  6081   assert(free_list != NULL, "pre-condition");
  6083   // Clear the card counts for this region.
  6084   // Note: we only need to do this if the region is not young
  6085   // (since we don't refine cards in young regions).
  6086   if (!hr->is_young()) {
  6087     _cg1r->hot_card_cache()->reset_card_counts(hr);
  6089   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  6090   free_list->add_ordered(hr);
  6093 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  6094                                      FreeRegionList* free_list,
  6095                                      bool par) {
  6096   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  6097   assert(free_list != NULL, "pre-condition");
  6099   size_t hr_capacity = hr->capacity();
  6100   // We need to read this before we make the region non-humongous,
  6101   // otherwise the information will be gone.
  6102   uint last_index = hr->last_hc_index();
  6103   hr->set_notHumongous();
  6104   free_region(hr, free_list, par);
  6106   uint i = hr->hrs_index() + 1;
  6107   while (i < last_index) {
  6108     HeapRegion* curr_hr = region_at(i);
  6109     assert(curr_hr->continuesHumongous(), "invariant");
  6110     curr_hr->set_notHumongous();
  6111     free_region(curr_hr, free_list, par);
  6112     i += 1;
  6116 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  6117                                        const HeapRegionSetCount& humongous_regions_removed) {
  6118   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  6119     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6120     _old_set.bulk_remove(old_regions_removed);
  6121     _humongous_set.bulk_remove(humongous_regions_removed);
  6126 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6127   assert(list != NULL, "list can't be null");
  6128   if (!list->is_empty()) {
  6129     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6130     _free_list.add_ordered(list);
  6134 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6135   assert(_summary_bytes_used >= bytes,
  6136          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
  6137                   _summary_bytes_used, bytes));
  6138   _summary_bytes_used -= bytes;
  6141 class G1ParCleanupCTTask : public AbstractGangTask {
  6142   G1SATBCardTableModRefBS* _ct_bs;
  6143   G1CollectedHeap* _g1h;
  6144   HeapRegion* volatile _su_head;
  6145 public:
  6146   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6147                      G1CollectedHeap* g1h) :
  6148     AbstractGangTask("G1 Par Cleanup CT Task"),
  6149     _ct_bs(ct_bs), _g1h(g1h) { }
  6151   void work(uint worker_id) {
  6152     HeapRegion* r;
  6153     while (r = _g1h->pop_dirty_cards_region()) {
  6154       clear_cards(r);
  6158   void clear_cards(HeapRegion* r) {
  6159     // Cards of the survivors should have already been dirtied.
  6160     if (!r->is_survivor()) {
  6161       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6164 };
  6166 #ifndef PRODUCT
  6167 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6168   G1CollectedHeap* _g1h;
  6169   G1SATBCardTableModRefBS* _ct_bs;
  6170 public:
  6171   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6172     : _g1h(g1h), _ct_bs(ct_bs) { }
  6173   virtual bool doHeapRegion(HeapRegion* r) {
  6174     if (r->is_survivor()) {
  6175       _g1h->verify_dirty_region(r);
  6176     } else {
  6177       _g1h->verify_not_dirty_region(r);
  6179     return false;
  6181 };
  6183 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6184   // All of the region should be clean.
  6185   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6186   MemRegion mr(hr->bottom(), hr->end());
  6187   ct_bs->verify_not_dirty_region(mr);
  6190 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6191   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6192   // dirty allocated blocks as they allocate them. The thread that
  6193   // retires each region and replaces it with a new one will do a
  6194   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6195   // not dirty that area (one less thing to have to do while holding
  6196   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6197   // is dirty.
  6198   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6199   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6200   if (hr->is_young()) {
  6201     ct_bs->verify_g1_young_region(mr);
  6202   } else {
  6203     ct_bs->verify_dirty_region(mr);
  6207 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6208   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6209   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6210     verify_dirty_region(hr);
  6214 void G1CollectedHeap::verify_dirty_young_regions() {
  6215   verify_dirty_young_list(_young_list->first_region());
  6217 #endif
  6219 void G1CollectedHeap::cleanUpCardTable() {
  6220   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6221   double start = os::elapsedTime();
  6224     // Iterate over the dirty cards region list.
  6225     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6227     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6228       set_par_threads();
  6229       workers()->run_task(&cleanup_task);
  6230       set_par_threads(0);
  6231     } else {
  6232       while (_dirty_cards_region_list) {
  6233         HeapRegion* r = _dirty_cards_region_list;
  6234         cleanup_task.clear_cards(r);
  6235         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6236         if (_dirty_cards_region_list == r) {
  6237           // The last region.
  6238           _dirty_cards_region_list = NULL;
  6240         r->set_next_dirty_cards_region(NULL);
  6243 #ifndef PRODUCT
  6244     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6245       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6246       heap_region_iterate(&cleanup_verifier);
  6248 #endif
  6251   double elapsed = os::elapsedTime() - start;
  6252   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6255 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6256   size_t pre_used = 0;
  6257   FreeRegionList local_free_list("Local List for CSet Freeing");
  6259   double young_time_ms     = 0.0;
  6260   double non_young_time_ms = 0.0;
  6262   // Since the collection set is a superset of the the young list,
  6263   // all we need to do to clear the young list is clear its
  6264   // head and length, and unlink any young regions in the code below
  6265   _young_list->clear();
  6267   G1CollectorPolicy* policy = g1_policy();
  6269   double start_sec = os::elapsedTime();
  6270   bool non_young = true;
  6272   HeapRegion* cur = cs_head;
  6273   int age_bound = -1;
  6274   size_t rs_lengths = 0;
  6276   while (cur != NULL) {
  6277     assert(!is_on_master_free_list(cur), "sanity");
  6278     if (non_young) {
  6279       if (cur->is_young()) {
  6280         double end_sec = os::elapsedTime();
  6281         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6282         non_young_time_ms += elapsed_ms;
  6284         start_sec = os::elapsedTime();
  6285         non_young = false;
  6287     } else {
  6288       if (!cur->is_young()) {
  6289         double end_sec = os::elapsedTime();
  6290         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6291         young_time_ms += elapsed_ms;
  6293         start_sec = os::elapsedTime();
  6294         non_young = true;
  6298     rs_lengths += cur->rem_set()->occupied_locked();
  6300     HeapRegion* next = cur->next_in_collection_set();
  6301     assert(cur->in_collection_set(), "bad CS");
  6302     cur->set_next_in_collection_set(NULL);
  6303     cur->set_in_collection_set(false);
  6305     if (cur->is_young()) {
  6306       int index = cur->young_index_in_cset();
  6307       assert(index != -1, "invariant");
  6308       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6309       size_t words_survived = _surviving_young_words[index];
  6310       cur->record_surv_words_in_group(words_survived);
  6312       // At this point the we have 'popped' cur from the collection set
  6313       // (linked via next_in_collection_set()) but it is still in the
  6314       // young list (linked via next_young_region()). Clear the
  6315       // _next_young_region field.
  6316       cur->set_next_young_region(NULL);
  6317     } else {
  6318       int index = cur->young_index_in_cset();
  6319       assert(index == -1, "invariant");
  6322     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6323             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6324             "invariant" );
  6326     if (!cur->evacuation_failed()) {
  6327       MemRegion used_mr = cur->used_region();
  6329       // And the region is empty.
  6330       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6331       pre_used += cur->used();
  6332       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6333     } else {
  6334       cur->uninstall_surv_rate_group();
  6335       if (cur->is_young()) {
  6336         cur->set_young_index_in_cset(-1);
  6338       cur->set_not_young();
  6339       cur->set_evacuation_failed(false);
  6340       // The region is now considered to be old.
  6341       _old_set.add(cur);
  6342       evacuation_info.increment_collectionset_used_after(cur->used());
  6344     cur = next;
  6347   evacuation_info.set_regions_freed(local_free_list.length());
  6348   policy->record_max_rs_lengths(rs_lengths);
  6349   policy->cset_regions_freed();
  6351   double end_sec = os::elapsedTime();
  6352   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6354   if (non_young) {
  6355     non_young_time_ms += elapsed_ms;
  6356   } else {
  6357     young_time_ms += elapsed_ms;
  6360   prepend_to_freelist(&local_free_list);
  6361   decrement_summary_bytes(pre_used);
  6362   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6363   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6366 // This routine is similar to the above but does not record
  6367 // any policy statistics or update free lists; we are abandoning
  6368 // the current incremental collection set in preparation of a
  6369 // full collection. After the full GC we will start to build up
  6370 // the incremental collection set again.
  6371 // This is only called when we're doing a full collection
  6372 // and is immediately followed by the tearing down of the young list.
  6374 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6375   HeapRegion* cur = cs_head;
  6377   while (cur != NULL) {
  6378     HeapRegion* next = cur->next_in_collection_set();
  6379     assert(cur->in_collection_set(), "bad CS");
  6380     cur->set_next_in_collection_set(NULL);
  6381     cur->set_in_collection_set(false);
  6382     cur->set_young_index_in_cset(-1);
  6383     cur = next;
  6387 void G1CollectedHeap::set_free_regions_coming() {
  6388   if (G1ConcRegionFreeingVerbose) {
  6389     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6390                            "setting free regions coming");
  6393   assert(!free_regions_coming(), "pre-condition");
  6394   _free_regions_coming = true;
  6397 void G1CollectedHeap::reset_free_regions_coming() {
  6398   assert(free_regions_coming(), "pre-condition");
  6401     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6402     _free_regions_coming = false;
  6403     SecondaryFreeList_lock->notify_all();
  6406   if (G1ConcRegionFreeingVerbose) {
  6407     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6408                            "reset free regions coming");
  6412 void G1CollectedHeap::wait_while_free_regions_coming() {
  6413   // Most of the time we won't have to wait, so let's do a quick test
  6414   // first before we take the lock.
  6415   if (!free_regions_coming()) {
  6416     return;
  6419   if (G1ConcRegionFreeingVerbose) {
  6420     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6421                            "waiting for free regions");
  6425     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6426     while (free_regions_coming()) {
  6427       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6431   if (G1ConcRegionFreeingVerbose) {
  6432     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6433                            "done waiting for free regions");
  6437 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6438   assert(heap_lock_held_for_gc(),
  6439               "the heap lock should already be held by or for this thread");
  6440   _young_list->push_region(hr);
  6443 class NoYoungRegionsClosure: public HeapRegionClosure {
  6444 private:
  6445   bool _success;
  6446 public:
  6447   NoYoungRegionsClosure() : _success(true) { }
  6448   bool doHeapRegion(HeapRegion* r) {
  6449     if (r->is_young()) {
  6450       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6451                              r->bottom(), r->end());
  6452       _success = false;
  6454     return false;
  6456   bool success() { return _success; }
  6457 };
  6459 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6460   bool ret = _young_list->check_list_empty(check_sample);
  6462   if (check_heap) {
  6463     NoYoungRegionsClosure closure;
  6464     heap_region_iterate(&closure);
  6465     ret = ret && closure.success();
  6468   return ret;
  6471 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6472 private:
  6473   HeapRegionSet *_old_set;
  6475 public:
  6476   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6478   bool doHeapRegion(HeapRegion* r) {
  6479     if (r->is_empty()) {
  6480       // We ignore empty regions, we'll empty the free list afterwards
  6481     } else if (r->is_young()) {
  6482       // We ignore young regions, we'll empty the young list afterwards
  6483     } else if (r->isHumongous()) {
  6484       // We ignore humongous regions, we're not tearing down the
  6485       // humongous region set
  6486     } else {
  6487       // The rest should be old
  6488       _old_set->remove(r);
  6490     return false;
  6493   ~TearDownRegionSetsClosure() {
  6494     assert(_old_set->is_empty(), "post-condition");
  6496 };
  6498 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6499   assert_at_safepoint(true /* should_be_vm_thread */);
  6501   if (!free_list_only) {
  6502     TearDownRegionSetsClosure cl(&_old_set);
  6503     heap_region_iterate(&cl);
  6505     // Note that emptying the _young_list is postponed and instead done as
  6506     // the first step when rebuilding the regions sets again. The reason for
  6507     // this is that during a full GC string deduplication needs to know if
  6508     // a collected region was young or old when the full GC was initiated.
  6510   _free_list.remove_all();
  6513 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6514 private:
  6515   bool            _free_list_only;
  6516   HeapRegionSet*   _old_set;
  6517   FreeRegionList* _free_list;
  6518   size_t          _total_used;
  6520 public:
  6521   RebuildRegionSetsClosure(bool free_list_only,
  6522                            HeapRegionSet* old_set, FreeRegionList* free_list) :
  6523     _free_list_only(free_list_only),
  6524     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6525     assert(_free_list->is_empty(), "pre-condition");
  6526     if (!free_list_only) {
  6527       assert(_old_set->is_empty(), "pre-condition");
  6531   bool doHeapRegion(HeapRegion* r) {
  6532     if (r->continuesHumongous()) {
  6533       return false;
  6536     if (r->is_empty()) {
  6537       // Add free regions to the free list
  6538       _free_list->add_as_tail(r);
  6539     } else if (!_free_list_only) {
  6540       assert(!r->is_young(), "we should not come across young regions");
  6542       if (r->isHumongous()) {
  6543         // We ignore humongous regions, we left the humongous set unchanged
  6544       } else {
  6545         // The rest should be old, add them to the old set
  6546         _old_set->add(r);
  6548       _total_used += r->used();
  6551     return false;
  6554   size_t total_used() {
  6555     return _total_used;
  6557 };
  6559 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6560   assert_at_safepoint(true /* should_be_vm_thread */);
  6562   if (!free_list_only) {
  6563     _young_list->empty_list();
  6566   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6567   heap_region_iterate(&cl);
  6569   if (!free_list_only) {
  6570     _summary_bytes_used = cl.total_used();
  6572   assert(_summary_bytes_used == recalculate_used(),
  6573          err_msg("inconsistent _summary_bytes_used, "
  6574                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6575                  _summary_bytes_used, recalculate_used()));
  6578 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6579   _refine_cte_cl->set_concurrent(concurrent);
  6582 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6583   HeapRegion* hr = heap_region_containing(p);
  6584   if (hr == NULL) {
  6585     return false;
  6586   } else {
  6587     return hr->is_in(p);
  6591 // Methods for the mutator alloc region
  6593 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6594                                                       bool force) {
  6595   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6596   assert(!force || g1_policy()->can_expand_young_list(),
  6597          "if force is true we should be able to expand the young list");
  6598   bool young_list_full = g1_policy()->is_young_list_full();
  6599   if (force || !young_list_full) {
  6600     HeapRegion* new_alloc_region = new_region(word_size,
  6601                                               false /* is_old */,
  6602                                               false /* do_expand */);
  6603     if (new_alloc_region != NULL) {
  6604       set_region_short_lived_locked(new_alloc_region);
  6605       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6606       return new_alloc_region;
  6609   return NULL;
  6612 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6613                                                   size_t allocated_bytes) {
  6614   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6615   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6617   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6618   _summary_bytes_used += allocated_bytes;
  6619   _hr_printer.retire(alloc_region);
  6620   // We update the eden sizes here, when the region is retired,
  6621   // instead of when it's allocated, since this is the point that its
  6622   // used space has been recored in _summary_bytes_used.
  6623   g1mm()->update_eden_size();
  6626 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6627                                                     bool force) {
  6628   return _g1h->new_mutator_alloc_region(word_size, force);
  6631 void G1CollectedHeap::set_par_threads() {
  6632   // Don't change the number of workers.  Use the value previously set
  6633   // in the workgroup.
  6634   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6635   uint n_workers = workers()->active_workers();
  6636   assert(UseDynamicNumberOfGCThreads ||
  6637            n_workers == workers()->total_workers(),
  6638       "Otherwise should be using the total number of workers");
  6639   if (n_workers == 0) {
  6640     assert(false, "Should have been set in prior evacuation pause.");
  6641     n_workers = ParallelGCThreads;
  6642     workers()->set_active_workers(n_workers);
  6644   set_par_threads(n_workers);
  6647 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6648                                        size_t allocated_bytes) {
  6649   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6652 // Methods for the GC alloc regions
  6654 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6655                                                  uint count,
  6656                                                  GCAllocPurpose ap) {
  6657   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6659   if (count < g1_policy()->max_regions(ap)) {
  6660     bool survivor = (ap == GCAllocForSurvived);
  6661     HeapRegion* new_alloc_region = new_region(word_size,
  6662                                               !survivor,
  6663                                               true /* do_expand */);
  6664     if (new_alloc_region != NULL) {
  6665       // We really only need to do this for old regions given that we
  6666       // should never scan survivors. But it doesn't hurt to do it
  6667       // for survivors too.
  6668       new_alloc_region->record_top_and_timestamp();
  6669       if (survivor) {
  6670         new_alloc_region->set_survivor();
  6671         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6672       } else {
  6673         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6675       bool during_im = g1_policy()->during_initial_mark_pause();
  6676       new_alloc_region->note_start_of_copying(during_im);
  6677       return new_alloc_region;
  6678     } else {
  6679       g1_policy()->note_alloc_region_limit_reached(ap);
  6682   return NULL;
  6685 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6686                                              size_t allocated_bytes,
  6687                                              GCAllocPurpose ap) {
  6688   bool during_im = g1_policy()->during_initial_mark_pause();
  6689   alloc_region->note_end_of_copying(during_im);
  6690   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6691   if (ap == GCAllocForSurvived) {
  6692     young_list()->add_survivor_region(alloc_region);
  6693   } else {
  6694     _old_set.add(alloc_region);
  6696   _hr_printer.retire(alloc_region);
  6699 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6700                                                        bool force) {
  6701   assert(!force, "not supported for GC alloc regions");
  6702   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6705 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6706                                           size_t allocated_bytes) {
  6707   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6708                                GCAllocForSurvived);
  6711 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6712                                                   bool force) {
  6713   assert(!force, "not supported for GC alloc regions");
  6714   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6717 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6718                                      size_t allocated_bytes) {
  6719   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6720                                GCAllocForTenured);
  6722 // Heap region set verification
  6724 class VerifyRegionListsClosure : public HeapRegionClosure {
  6725 private:
  6726   HeapRegionSet*   _old_set;
  6727   HeapRegionSet*   _humongous_set;
  6728   FreeRegionList*  _free_list;
  6730 public:
  6731   HeapRegionSetCount _old_count;
  6732   HeapRegionSetCount _humongous_count;
  6733   HeapRegionSetCount _free_count;
  6735   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6736                            HeapRegionSet* humongous_set,
  6737                            FreeRegionList* free_list) :
  6738     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
  6739     _old_count(), _humongous_count(), _free_count(){ }
  6741   bool doHeapRegion(HeapRegion* hr) {
  6742     if (hr->continuesHumongous()) {
  6743       return false;
  6746     if (hr->is_young()) {
  6747       // TODO
  6748     } else if (hr->startsHumongous()) {
  6749       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
  6750       _humongous_count.increment(1u, hr->capacity());
  6751     } else if (hr->is_empty()) {
  6752       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
  6753       _free_count.increment(1u, hr->capacity());
  6754     } else {
  6755       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
  6756       _old_count.increment(1u, hr->capacity());
  6758     return false;
  6761   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
  6762     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6763     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6764         old_set->total_capacity_bytes(), _old_count.capacity()));
  6766     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6767     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6768         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6770     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
  6771     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6772         free_list->total_capacity_bytes(), _free_count.capacity()));
  6774 };
  6776 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6777                                              HeapWord* bottom) {
  6778   HeapWord* end = bottom + HeapRegion::GrainWords;
  6779   MemRegion mr(bottom, end);
  6780   assert(_g1_reserved.contains(mr), "invariant");
  6781   // This might return NULL if the allocation fails
  6782   return new HeapRegion(hrs_index, _bot_shared, mr);
  6785 void G1CollectedHeap::verify_region_sets() {
  6786   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6788   // First, check the explicit lists.
  6789   _free_list.verify_list();
  6791     // Given that a concurrent operation might be adding regions to
  6792     // the secondary free list we have to take the lock before
  6793     // verifying it.
  6794     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6795     _secondary_free_list.verify_list();
  6798   // If a concurrent region freeing operation is in progress it will
  6799   // be difficult to correctly attributed any free regions we come
  6800   // across to the correct free list given that they might belong to
  6801   // one of several (free_list, secondary_free_list, any local lists,
  6802   // etc.). So, if that's the case we will skip the rest of the
  6803   // verification operation. Alternatively, waiting for the concurrent
  6804   // operation to complete will have a non-trivial effect on the GC's
  6805   // operation (no concurrent operation will last longer than the
  6806   // interval between two calls to verification) and it might hide
  6807   // any issues that we would like to catch during testing.
  6808   if (free_regions_coming()) {
  6809     return;
  6812   // Make sure we append the secondary_free_list on the free_list so
  6813   // that all free regions we will come across can be safely
  6814   // attributed to the free_list.
  6815   append_secondary_free_list_if_not_empty_with_lock();
  6817   // Finally, make sure that the region accounting in the lists is
  6818   // consistent with what we see in the heap.
  6820   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6821   heap_region_iterate(&cl);
  6822   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
  6825 // Optimized nmethod scanning
  6827 class RegisterNMethodOopClosure: public OopClosure {
  6828   G1CollectedHeap* _g1h;
  6829   nmethod* _nm;
  6831   template <class T> void do_oop_work(T* p) {
  6832     T heap_oop = oopDesc::load_heap_oop(p);
  6833     if (!oopDesc::is_null(heap_oop)) {
  6834       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6835       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6836       assert(!hr->continuesHumongous(),
  6837              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6838                      " starting at "HR_FORMAT,
  6839                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6841       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6842       // entries but having duplicates is  OK since we "mark" nmethods
  6843       // as visited when we scan the strong code root lists during the GC.
  6844       hr->add_strong_code_root(_nm);
  6845       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  6846              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  6847                      _nm, HR_FORMAT_PARAMS(hr)));
  6851 public:
  6852   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6853     _g1h(g1h), _nm(nm) {}
  6855   void do_oop(oop* p)       { do_oop_work(p); }
  6856   void do_oop(narrowOop* p) { do_oop_work(p); }
  6857 };
  6859 class UnregisterNMethodOopClosure: public OopClosure {
  6860   G1CollectedHeap* _g1h;
  6861   nmethod* _nm;
  6863   template <class T> void do_oop_work(T* p) {
  6864     T heap_oop = oopDesc::load_heap_oop(p);
  6865     if (!oopDesc::is_null(heap_oop)) {
  6866       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6867       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6868       assert(!hr->continuesHumongous(),
  6869              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6870                      " starting at "HR_FORMAT,
  6871                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6873       hr->remove_strong_code_root(_nm);
  6874       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  6875              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  6876                      _nm, HR_FORMAT_PARAMS(hr)));
  6880 public:
  6881   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6882     _g1h(g1h), _nm(nm) {}
  6884   void do_oop(oop* p)       { do_oop_work(p); }
  6885   void do_oop(narrowOop* p) { do_oop_work(p); }
  6886 };
  6888 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6889   CollectedHeap::register_nmethod(nm);
  6891   guarantee(nm != NULL, "sanity");
  6892   RegisterNMethodOopClosure reg_cl(this, nm);
  6893   nm->oops_do(&reg_cl);
  6896 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6897   CollectedHeap::unregister_nmethod(nm);
  6899   guarantee(nm != NULL, "sanity");
  6900   UnregisterNMethodOopClosure reg_cl(this, nm);
  6901   nm->oops_do(&reg_cl, true);
  6904 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  6905 public:
  6906   bool doHeapRegion(HeapRegion *hr) {
  6907     assert(!hr->isHumongous(),
  6908            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  6909                    HR_FORMAT_PARAMS(hr)));
  6910     hr->migrate_strong_code_roots();
  6911     return false;
  6913 };
  6915 void G1CollectedHeap::migrate_strong_code_roots() {
  6916   MigrateCodeRootsHeapRegionClosure cl;
  6917   double migrate_start = os::elapsedTime();
  6918   collection_set_iterate(&cl);
  6919   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  6920   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  6923 void G1CollectedHeap::purge_code_root_memory() {
  6924   double purge_start = os::elapsedTime();
  6925   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  6926   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  6927   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  6930 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  6931   G1CollectedHeap* _g1h;
  6933 public:
  6934   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  6935     _g1h(g1h) {}
  6937   void do_code_blob(CodeBlob* cb) {
  6938     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  6939     if (nm == NULL) {
  6940       return;
  6943     if (ScavengeRootsInCode) {
  6944       _g1h->register_nmethod(nm);
  6947 };
  6949 void G1CollectedHeap::rebuild_strong_code_roots() {
  6950   RebuildStrongCodeRootClosure blob_cl(this);
  6951   CodeCache::blobs_do(&blob_cl);

mercurial