src/share/vm/gc_implementation/g1/g1BlockOffsetTable.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6987
9441d22e429a
child 7050
6701abbc4441
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    27 #include "gc_implementation/g1/heapRegion.hpp"
    28 #include "memory/space.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/java.hpp"
    31 #include "services/memTracker.hpp"
    33 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    35 //////////////////////////////////////////////////////////////////////
    36 // G1BlockOffsetSharedArray
    37 //////////////////////////////////////////////////////////////////////
    39 G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
    40                                                    size_t init_word_size) :
    41   _reserved(reserved), _end(NULL)
    42 {
    43   size_t size = compute_size(reserved.word_size());
    44   ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
    45   if (!rs.is_reserved()) {
    46     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    47   }
    48   if (!_vs.initialize(rs, 0)) {
    49     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    50   }
    52   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
    54   _offset_array = (u_char*)_vs.low_boundary();
    55   resize(init_word_size);
    56   if (TraceBlockOffsetTable) {
    57     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
    58     gclog_or_tty->print_cr("  "
    59                   "  rs.base(): " INTPTR_FORMAT
    60                   "  rs.size(): " INTPTR_FORMAT
    61                   "  rs end(): " INTPTR_FORMAT,
    62                   rs.base(), rs.size(), rs.base() + rs.size());
    63     gclog_or_tty->print_cr("  "
    64                   "  _vs.low_boundary(): " INTPTR_FORMAT
    65                   "  _vs.high_boundary(): " INTPTR_FORMAT,
    66                   _vs.low_boundary(),
    67                   _vs.high_boundary());
    68   }
    69 }
    71 void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
    72   assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
    73   size_t new_size = compute_size(new_word_size);
    74   size_t old_size = _vs.committed_size();
    75   size_t delta;
    76   char* high = _vs.high();
    77   _end = _reserved.start() + new_word_size;
    78   if (new_size > old_size) {
    79     delta = ReservedSpace::page_align_size_up(new_size - old_size);
    80     assert(delta > 0, "just checking");
    81     if (!_vs.expand_by(delta)) {
    82       // Do better than this for Merlin
    83       vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion");
    84     }
    85     assert(_vs.high() == high + delta, "invalid expansion");
    86     // Initialization of the contents is left to the
    87     // G1BlockOffsetArray that uses it.
    88   } else {
    89     delta = ReservedSpace::page_align_size_down(old_size - new_size);
    90     if (delta == 0) return;
    91     _vs.shrink_by(delta);
    92     assert(_vs.high() == high - delta, "invalid expansion");
    93   }
    94 }
    96 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
    97   assert(p >= _reserved.start(), "just checking");
    98   size_t delta = pointer_delta(p, _reserved.start());
    99   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
   100 }
   102 void G1BlockOffsetSharedArray::set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
   103   check_index(index_for(right - 1), "right address out of range");
   104   assert(left  < right, "Heap addresses out of order");
   105   size_t num_cards = pointer_delta(right, left) >> LogN_words;
   106   if (UseMemSetInBOT) {
   107     memset(&_offset_array[index_for(left)], offset, num_cards);
   108   } else {
   109     size_t i = index_for(left);
   110     const size_t end = i + num_cards;
   111     for (; i < end; i++) {
   112       _offset_array[i] = offset;
   113     }
   114   }
   115 }
   117 //////////////////////////////////////////////////////////////////////
   118 // G1BlockOffsetArray
   119 //////////////////////////////////////////////////////////////////////
   121 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
   122                                        MemRegion mr, bool init_to_zero) :
   123   G1BlockOffsetTable(mr.start(), mr.end()),
   124   _unallocated_block(_bottom),
   125   _array(array), _gsp(NULL),
   126   _init_to_zero(init_to_zero) {
   127   assert(_bottom <= _end, "arguments out of order");
   128   if (!_init_to_zero) {
   129     // initialize cards to point back to mr.start()
   130     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
   131     _array->set_offset_array(0, 0);  // set first card to 0
   132   }
   133 }
   135 void G1BlockOffsetArray::set_space(G1OffsetTableContigSpace* sp) {
   136   _gsp = sp;
   137 }
   139 // The arguments follow the normal convention of denoting
   140 // a right-open interval: [start, end)
   141 void
   142 G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
   144   if (start >= end) {
   145     // The start address is equal to the end address (or to
   146     // the right of the end address) so there are not cards
   147     // that need to be updated..
   148     return;
   149   }
   151   // Write the backskip value for each region.
   152   //
   153   //    offset
   154   //    card             2nd                       3rd
   155   //     | +- 1st        |                         |
   156   //     v v             v                         v
   157   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   158   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
   159   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   160   //    11              19                        75
   161   //      12
   162   //
   163   //    offset card is the card that points to the start of an object
   164   //      x - offset value of offset card
   165   //    1st - start of first logarithmic region
   166   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
   167   //    2nd - start of second logarithmic region
   168   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
   169   //    3rd - start of third logarithmic region
   170   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
   171   //
   172   //    integer below the block offset entry is an example of
   173   //    the index of the entry
   174   //
   175   //    Given an address,
   176   //      Find the index for the address
   177   //      Find the block offset table entry
   178   //      Convert the entry to a back slide
   179   //        (e.g., with today's, offset = 0x81 =>
   180   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
   181   //      Move back N (e.g., 8) entries and repeat with the
   182   //        value of the new entry
   183   //
   184   size_t start_card = _array->index_for(start);
   185   size_t end_card = _array->index_for(end-1);
   186   assert(start ==_array->address_for_index(start_card), "Precondition");
   187   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
   188   set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
   189 }
   191 // Unlike the normal convention in this code, the argument here denotes
   192 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
   193 // above.
   194 void
   195 G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
   196   if (start_card > end_card) {
   197     return;
   198   }
   199   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
   200   assert(_array->offset_array(start_card-1) <= N_words,
   201          "Offset card has an unexpected value");
   202   size_t start_card_for_region = start_card;
   203   u_char offset = max_jubyte;
   204   for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
   205     // -1 so that the the card with the actual offset is counted.  Another -1
   206     // so that the reach ends in this region and not at the start
   207     // of the next.
   208     size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
   209     offset = N_words + i;
   210     if (reach >= end_card) {
   211       _array->set_offset_array(start_card_for_region, end_card, offset);
   212       start_card_for_region = reach + 1;
   213       break;
   214     }
   215     _array->set_offset_array(start_card_for_region, reach, offset);
   216     start_card_for_region = reach + 1;
   217   }
   218   assert(start_card_for_region > end_card, "Sanity check");
   219   DEBUG_ONLY(check_all_cards(start_card, end_card);)
   220 }
   222 // The block [blk_start, blk_end) has been allocated;
   223 // adjust the block offset table to represent this information;
   224 // right-open interval: [blk_start, blk_end)
   225 void
   226 G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   227   mark_block(blk_start, blk_end);
   228   allocated(blk_start, blk_end);
   229 }
   231 // Adjust BOT to show that a previously whole block has been split
   232 // into two.
   233 void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
   234                                      size_t left_blk_size) {
   235   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   236   verify_single_block(blk, blk_size);
   237   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
   238   // is one single block.
   239   mark_block(blk + left_blk_size, blk + blk_size);
   240 }
   243 // Action_mark - update the BOT for the block [blk_start, blk_end).
   244 //               Current typical use is for splitting a block.
   245 // Action_single - update the BOT for an allocation.
   246 // Action_verify - BOT verification.
   247 void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
   248                                            HeapWord* blk_end,
   249                                            Action action) {
   250   assert(Universe::heap()->is_in_reserved(blk_start),
   251          "reference must be into the heap");
   252   assert(Universe::heap()->is_in_reserved(blk_end-1),
   253          "limit must be within the heap");
   254   // This is optimized to make the test fast, assuming we only rarely
   255   // cross boundaries.
   256   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
   257   uintptr_t start_ui = (uintptr_t)blk_start;
   258   // Calculate the last card boundary preceding end of blk
   259   intptr_t boundary_before_end = (intptr_t)end_ui;
   260   clear_bits(boundary_before_end, right_n_bits(LogN));
   261   if (start_ui <= (uintptr_t)boundary_before_end) {
   262     // blk starts at or crosses a boundary
   263     // Calculate index of card on which blk begins
   264     size_t    start_index = _array->index_for(blk_start);
   265     // Index of card on which blk ends
   266     size_t    end_index   = _array->index_for(blk_end - 1);
   267     // Start address of card on which blk begins
   268     HeapWord* boundary    = _array->address_for_index(start_index);
   269     assert(boundary <= blk_start, "blk should start at or after boundary");
   270     if (blk_start != boundary) {
   271       // blk starts strictly after boundary
   272       // adjust card boundary and start_index forward to next card
   273       boundary += N_words;
   274       start_index++;
   275     }
   276     assert(start_index <= end_index, "monotonicity of index_for()");
   277     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
   278     switch (action) {
   279       case Action_mark: {
   280         if (init_to_zero()) {
   281           _array->set_offset_array(start_index, boundary, blk_start);
   282           break;
   283         } // Else fall through to the next case
   284       }
   285       case Action_single: {
   286         _array->set_offset_array(start_index, boundary, blk_start);
   287         // We have finished marking the "offset card". We need to now
   288         // mark the subsequent cards that this blk spans.
   289         if (start_index < end_index) {
   290           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
   291           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
   292           set_remainder_to_point_to_start(rem_st, rem_end);
   293         }
   294         break;
   295       }
   296       case Action_check: {
   297         _array->check_offset_array(start_index, boundary, blk_start);
   298         // We have finished checking the "offset card". We need to now
   299         // check the subsequent cards that this blk spans.
   300         check_all_cards(start_index + 1, end_index);
   301         break;
   302       }
   303       default:
   304         ShouldNotReachHere();
   305     }
   306   }
   307 }
   309 // The card-interval [start_card, end_card] is a closed interval; this
   310 // is an expensive check -- use with care and only under protection of
   311 // suitable flag.
   312 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
   314   if (end_card < start_card) {
   315     return;
   316   }
   317   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
   318   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
   319     u_char entry = _array->offset_array(c);
   320     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
   321       guarantee(entry > N_words,
   322                 err_msg("Should be in logarithmic region - "
   323                         "entry: " UINT32_FORMAT ", "
   324                         "_array->offset_array(c): " UINT32_FORMAT ", "
   325                         "N_words: " UINT32_FORMAT,
   326                         entry, _array->offset_array(c), N_words));
   327     }
   328     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
   329     size_t landing_card = c - backskip;
   330     guarantee(landing_card >= (start_card - 1), "Inv");
   331     if (landing_card >= start_card) {
   332       guarantee(_array->offset_array(landing_card) <= entry,
   333                 err_msg("Monotonicity - landing_card offset: " UINT32_FORMAT ", "
   334                         "entry: " UINT32_FORMAT,
   335                         _array->offset_array(landing_card), entry));
   336     } else {
   337       guarantee(landing_card == start_card - 1, "Tautology");
   338       // Note that N_words is the maximum offset value
   339       guarantee(_array->offset_array(landing_card) <= N_words,
   340                 err_msg("landing card offset: " UINT32_FORMAT ", "
   341                         "N_words: " UINT32_FORMAT,
   342                         _array->offset_array(landing_card), N_words));
   343     }
   344   }
   345 }
   347 // The range [blk_start, blk_end) represents a single contiguous block
   348 // of storage; modify the block offset table to represent this
   349 // information; Right-open interval: [blk_start, blk_end)
   350 // NOTE: this method does _not_ adjust _unallocated_block.
   351 void
   352 G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
   353   do_block_internal(blk_start, blk_end, Action_single);
   354 }
   356 // Mark the BOT such that if [blk_start, blk_end) straddles a card
   357 // boundary, the card following the first such boundary is marked
   358 // with the appropriate offset.
   359 // NOTE: this method does _not_ adjust _unallocated_block or
   360 // any cards subsequent to the first one.
   361 void
   362 G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
   363   do_block_internal(blk_start, blk_end, Action_mark);
   364 }
   366 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
   367   assert(_bottom <= addr && addr < _end,
   368          "addr must be covered by this Array");
   369   // Must read this exactly once because it can be modified by parallel
   370   // allocation.
   371   HeapWord* ub = _unallocated_block;
   372   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   373     assert(ub < _end, "tautology (see above)");
   374     return ub;
   375   }
   376   // Otherwise, find the block start using the table.
   377   HeapWord* q = block_at_or_preceding(addr, false, 0);
   378   return forward_to_block_containing_addr(q, addr);
   379 }
   381 // This duplicates a little code from the above: unavoidable.
   382 HeapWord*
   383 G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
   384   assert(_bottom <= addr && addr < _end,
   385          "addr must be covered by this Array");
   386   // Must read this exactly once because it can be modified by parallel
   387   // allocation.
   388   HeapWord* ub = _unallocated_block;
   389   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   390     assert(ub < _end, "tautology (see above)");
   391     return ub;
   392   }
   393   // Otherwise, find the block start using the table.
   394   HeapWord* q = block_at_or_preceding(addr, false, 0);
   395   HeapWord* n = q + block_size(q);
   396   return forward_to_block_containing_addr_const(q, n, addr);
   397 }
   400 HeapWord*
   401 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
   402                                                           HeapWord* n,
   403                                                           const void* addr) {
   404   // We're not in the normal case.  We need to handle an important subcase
   405   // here: LAB allocation.  An allocation previously recorded in the
   406   // offset table was actually a lab allocation, and was divided into
   407   // several objects subsequently.  Fix this situation as we answer the
   408   // query, by updating entries as we cross them.
   410   // If the fist object's end q is at the card boundary. Start refining
   411   // with the corresponding card (the value of the entry will be basically
   412   // set to 0). If the object crosses the boundary -- start from the next card.
   413   size_t n_index = _array->index_for(n);
   414   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
   415   // Calculate a consistent next boundary.  If "n" is not at the boundary
   416   // already, step to the boundary.
   417   HeapWord* next_boundary = _array->address_for_index(n_index) +
   418                             (n_index == next_index ? 0 : N_words);
   419   assert(next_boundary <= _array->_end,
   420          err_msg("next_boundary is beyond the end of the covered region "
   421                  " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
   422                  next_boundary, _array->_end));
   423   if (addr >= gsp()->top()) return gsp()->top();
   424   while (next_boundary < addr) {
   425     while (n <= next_boundary) {
   426       q = n;
   427       oop obj = oop(q);
   428       if (obj->klass_or_null() == NULL) return q;
   429       n += block_size(q);
   430     }
   431     assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
   432     // [q, n) is the block that crosses the boundary.
   433     alloc_block_work2(&next_boundary, &next_index, q, n);
   434   }
   435   return forward_to_block_containing_addr_const(q, n, addr);
   436 }
   438 HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
   439   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   441   assert(_bottom <= addr && addr < _end,
   442          "addr must be covered by this Array");
   443   // Must read this exactly once because it can be modified by parallel
   444   // allocation.
   445   HeapWord* ub = _unallocated_block;
   446   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   447     assert(ub < _end, "tautology (see above)");
   448     return ub;
   449   }
   451   // Otherwise, find the block start using the table, but taking
   452   // care (cf block_start_unsafe() above) not to parse any objects/blocks
   453   // on the cards themsleves.
   454   size_t index = _array->index_for(addr);
   455   assert(_array->address_for_index(index) == addr,
   456          "arg should be start of card");
   458   HeapWord* q = (HeapWord*)addr;
   459   uint offset;
   460   do {
   461     offset = _array->offset_array(index--);
   462     q -= offset;
   463   } while (offset == N_words);
   464   assert(q <= addr, "block start should be to left of arg");
   465   return q;
   466 }
   468 // Note that the committed size of the covered space may have changed,
   469 // so the table size might also wish to change.
   470 void G1BlockOffsetArray::resize(size_t new_word_size) {
   471   HeapWord* new_end = _bottom + new_word_size;
   472   if (_end < new_end && !init_to_zero()) {
   473     // verify that the old and new boundaries are also card boundaries
   474     assert(_array->is_card_boundary(_end),
   475            "_end not a card boundary");
   476     assert(_array->is_card_boundary(new_end),
   477            "new _end would not be a card boundary");
   478     // set all the newly added cards
   479     _array->set_offset_array(_end, new_end, N_words);
   480   }
   481   _end = new_end;  // update _end
   482 }
   484 void G1BlockOffsetArray::set_region(MemRegion mr) {
   485   _bottom = mr.start();
   486   _end = mr.end();
   487 }
   489 //
   490 //              threshold_
   491 //              |   _index_
   492 //              v   v
   493 //      +-------+-------+-------+-------+-------+
   494 //      | i-1   |   i   | i+1   | i+2   | i+3   |
   495 //      +-------+-------+-------+-------+-------+
   496 //       ( ^    ]
   497 //         block-start
   498 //
   499 void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
   500                                            HeapWord* blk_start, HeapWord* blk_end) {
   501   // For efficiency, do copy-in/copy-out.
   502   HeapWord* threshold = *threshold_;
   503   size_t    index = *index_;
   505   assert(blk_start != NULL && blk_end > blk_start,
   506          "phantom block");
   507   assert(blk_end > threshold, "should be past threshold");
   508   assert(blk_start <= threshold, "blk_start should be at or before threshold");
   509   assert(pointer_delta(threshold, blk_start) <= N_words,
   510          "offset should be <= BlockOffsetSharedArray::N");
   511   assert(Universe::heap()->is_in_reserved(blk_start),
   512          "reference must be into the heap");
   513   assert(Universe::heap()->is_in_reserved(blk_end-1),
   514          "limit must be within the heap");
   515   assert(threshold == _array->_reserved.start() + index*N_words,
   516          "index must agree with threshold");
   518   DEBUG_ONLY(size_t orig_index = index;)
   520   // Mark the card that holds the offset into the block.  Note
   521   // that _next_offset_index and _next_offset_threshold are not
   522   // updated until the end of this method.
   523   _array->set_offset_array(index, threshold, blk_start);
   525   // We need to now mark the subsequent cards that this blk spans.
   527   // Index of card on which blk ends.
   528   size_t end_index   = _array->index_for(blk_end - 1);
   530   // Are there more cards left to be updated?
   531   if (index + 1 <= end_index) {
   532     HeapWord* rem_st  = _array->address_for_index(index + 1);
   533     // Calculate rem_end this way because end_index
   534     // may be the last valid index in the covered region.
   535     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
   536     set_remainder_to_point_to_start(rem_st, rem_end);
   537   }
   539   index = end_index + 1;
   540   // Calculate threshold_ this way because end_index
   541   // may be the last valid index in the covered region.
   542   threshold = _array->address_for_index(end_index) + N_words;
   543   assert(threshold >= blk_end, "Incorrect offset threshold");
   545   // index_ and threshold_ updated here.
   546   *threshold_ = threshold;
   547   *index_ = index;
   549 #ifdef ASSERT
   550   // The offset can be 0 if the block starts on a boundary.  That
   551   // is checked by an assertion above.
   552   size_t start_index = _array->index_for(blk_start);
   553   HeapWord* boundary = _array->address_for_index(start_index);
   554   assert((_array->offset_array(orig_index) == 0 &&
   555           blk_start == boundary) ||
   556           (_array->offset_array(orig_index) > 0 &&
   557          _array->offset_array(orig_index) <= N_words),
   558          err_msg("offset array should have been set - "
   559                   "orig_index offset: " UINT32_FORMAT ", "
   560                   "blk_start: " PTR_FORMAT ", "
   561                   "boundary: " PTR_FORMAT,
   562                   _array->offset_array(orig_index),
   563                   blk_start, boundary));
   564   for (size_t j = orig_index + 1; j <= end_index; j++) {
   565     assert(_array->offset_array(j) > 0 &&
   566            _array->offset_array(j) <=
   567              (u_char) (N_words+BlockOffsetArray::N_powers-1),
   568            err_msg("offset array should have been set - "
   569                    UINT32_FORMAT " not > 0 OR "
   570                    UINT32_FORMAT " not <= " UINT32_FORMAT,
   571                    _array->offset_array(j),
   572                    _array->offset_array(j),
   573                    (u_char) (N_words+BlockOffsetArray::N_powers-1)));
   574   }
   575 #endif
   576 }
   578 bool
   579 G1BlockOffsetArray::verify_for_object(HeapWord* obj_start,
   580                                       size_t word_size) const {
   581   size_t first_card = _array->index_for(obj_start);
   582   size_t last_card = _array->index_for(obj_start + word_size - 1);
   583   if (!_array->is_card_boundary(obj_start)) {
   584     // If the object is not on a card boundary the BOT entry of the
   585     // first card should point to another object so we should not
   586     // check that one.
   587     first_card += 1;
   588   }
   589   for (size_t card = first_card; card <= last_card; card += 1) {
   590     HeapWord* card_addr = _array->address_for_index(card);
   591     HeapWord* block_start = block_start_const(card_addr);
   592     if (block_start != obj_start) {
   593       gclog_or_tty->print_cr("block start: "PTR_FORMAT" is incorrect - "
   594                              "card index: "SIZE_FORMAT" "
   595                              "card addr: "PTR_FORMAT" BOT entry: %u "
   596                              "obj: "PTR_FORMAT" word size: "SIZE_FORMAT" "
   597                              "cards: ["SIZE_FORMAT","SIZE_FORMAT"]",
   598                              block_start, card, card_addr,
   599                              _array->offset_array(card),
   600                              obj_start, word_size, first_card, last_card);
   601       return false;
   602     }
   603   }
   604   return true;
   605 }
   607 #ifndef PRODUCT
   608 void
   609 G1BlockOffsetArray::print_on(outputStream* out) {
   610   size_t from_index = _array->index_for(_bottom);
   611   size_t to_index = _array->index_for(_end);
   612   out->print_cr(">> BOT for area ["PTR_FORMAT","PTR_FORMAT") "
   613                 "cards ["SIZE_FORMAT","SIZE_FORMAT")",
   614                 _bottom, _end, from_index, to_index);
   615   for (size_t i = from_index; i < to_index; ++i) {
   616     out->print_cr("  entry "SIZE_FORMAT_W(8)" | "PTR_FORMAT" : %3u",
   617                   i, _array->address_for_index(i),
   618                   (uint) _array->offset_array(i));
   619   }
   620 }
   621 #endif // !PRODUCT
   623 //////////////////////////////////////////////////////////////////////
   624 // G1BlockOffsetArrayContigSpace
   625 //////////////////////////////////////////////////////////////////////
   627 HeapWord*
   628 G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
   629   assert(_bottom <= addr && addr < _end,
   630          "addr must be covered by this Array");
   631   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
   632   return forward_to_block_containing_addr(q, addr);
   633 }
   635 HeapWord*
   636 G1BlockOffsetArrayContigSpace::
   637 block_start_unsafe_const(const void* addr) const {
   638   assert(_bottom <= addr && addr < _end,
   639          "addr must be covered by this Array");
   640   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
   641   HeapWord* n = q + block_size(q);
   642   return forward_to_block_containing_addr_const(q, n, addr);
   643 }
   645 G1BlockOffsetArrayContigSpace::
   646 G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
   647                               MemRegion mr) :
   648   G1BlockOffsetArray(array, mr, true)
   649 {
   650   _next_offset_threshold = NULL;
   651   _next_offset_index = 0;
   652 }
   654 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
   655   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   656          "just checking");
   657   _next_offset_index = _array->index_for(_bottom);
   658   _next_offset_index++;
   659   _next_offset_threshold =
   660     _array->address_for_index(_next_offset_index);
   661   return _next_offset_threshold;
   662 }
   664 void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
   665   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   666          "just checking");
   667   size_t bottom_index = _array->index_for(_bottom);
   668   assert(_array->address_for_index(bottom_index) == _bottom,
   669          "Precondition of call");
   670   _array->set_offset_array(bottom_index, 0);
   671 }
   673 void
   674 G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_top) {
   675   assert(new_top <= _end, "_end should have already been updated");
   677   // The first BOT entry should have offset 0.
   678   zero_bottom_entry();
   679   initialize_threshold();
   680   alloc_block(_bottom, new_top);
   681  }
   683 #ifndef PRODUCT
   684 void
   685 G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
   686   G1BlockOffsetArray::print_on(out);
   687   out->print_cr("  next offset threshold: "PTR_FORMAT, _next_offset_threshold);
   688   out->print_cr("  next offset index:     "SIZE_FORMAT, _next_offset_index);
   689 }
   690 #endif // !PRODUCT

mercurial