src/share/vm/gc_implementation/g1/concurrentMark.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6977
4dfab3faf5e7
child 6996
f3aeae1f9fc5
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    35 #include "gc_implementation/g1/g1RemSet.hpp"
    36 #include "gc_implementation/g1/heapRegion.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    39 #include "gc_implementation/shared/vmGCOperations.hpp"
    40 #include "gc_implementation/shared/gcTimer.hpp"
    41 #include "gc_implementation/shared/gcTrace.hpp"
    42 #include "gc_implementation/shared/gcTraceTime.hpp"
    43 #include "memory/allocation.hpp"
    44 #include "memory/genOopClosures.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/resourceArea.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/prefetch.inline.hpp"
    51 #include "services/memTracker.hpp"
    53 // Concurrent marking bit map wrapper
    55 CMBitMapRO::CMBitMapRO(int shifter) :
    56   _bm(),
    57   _shifter(shifter) {
    58   _bmStartWord = 0;
    59   _bmWordSize = 0;
    60 }
    62 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    63                                                const HeapWord* limit) const {
    64   // First we must round addr *up* to a possible object boundary.
    65   addr = (HeapWord*)align_size_up((intptr_t)addr,
    66                                   HeapWordSize << _shifter);
    67   size_t addrOffset = heapWordToOffset(addr);
    68   if (limit == NULL) {
    69     limit = _bmStartWord + _bmWordSize;
    70   }
    71   size_t limitOffset = heapWordToOffset(limit);
    72   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    73   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    74   assert(nextAddr >= addr, "get_next_one postcondition");
    75   assert(nextAddr == limit || isMarked(nextAddr),
    76          "get_next_one postcondition");
    77   return nextAddr;
    78 }
    80 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    81                                                  const HeapWord* limit) const {
    82   size_t addrOffset = heapWordToOffset(addr);
    83   if (limit == NULL) {
    84     limit = _bmStartWord + _bmWordSize;
    85   }
    86   size_t limitOffset = heapWordToOffset(limit);
    87   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    88   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    89   assert(nextAddr >= addr, "get_next_one postcondition");
    90   assert(nextAddr == limit || !isMarked(nextAddr),
    91          "get_next_one postcondition");
    92   return nextAddr;
    93 }
    95 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    96   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    97   return (int) (diff >> _shifter);
    98 }
   100 #ifndef PRODUCT
   101 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
   102   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   103   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   104          "size inconsistency");
   105   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
   106          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
   107 }
   108 #endif
   110 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   111   _bm.print_on_error(st, prefix);
   112 }
   114 bool CMBitMap::allocate(ReservedSpace heap_rs) {
   115   _bmStartWord = (HeapWord*)(heap_rs.base());
   116   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
   117   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
   118                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
   119   if (!brs.is_reserved()) {
   120     warning("ConcurrentMark marking bit map allocation failure");
   121     return false;
   122   }
   123   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
   124   // For now we'll just commit all of the bit map up front.
   125   // Later on we'll try to be more parsimonious with swap.
   126   if (!_virtual_space.initialize(brs, brs.size())) {
   127     warning("ConcurrentMark marking bit map backing store failure");
   128     return false;
   129   }
   130   assert(_virtual_space.committed_size() == brs.size(),
   131          "didn't reserve backing store for all of concurrent marking bit map?");
   132   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
   133   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
   134          _bmWordSize, "inconsistency in bit map sizing");
   135   _bm.set_size(_bmWordSize >> _shifter);
   136   return true;
   137 }
   139 void CMBitMap::clearAll() {
   140   _bm.clear();
   141   return;
   142 }
   144 void CMBitMap::markRange(MemRegion mr) {
   145   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   146   assert(!mr.is_empty(), "unexpected empty region");
   147   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   148           ((HeapWord *) mr.end())),
   149          "markRange memory region end is not card aligned");
   150   // convert address range into offset range
   151   _bm.at_put_range(heapWordToOffset(mr.start()),
   152                    heapWordToOffset(mr.end()), true);
   153 }
   155 void CMBitMap::clearRange(MemRegion mr) {
   156   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   157   assert(!mr.is_empty(), "unexpected empty region");
   158   // convert address range into offset range
   159   _bm.at_put_range(heapWordToOffset(mr.start()),
   160                    heapWordToOffset(mr.end()), false);
   161 }
   163 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   164                                             HeapWord* end_addr) {
   165   HeapWord* start = getNextMarkedWordAddress(addr);
   166   start = MIN2(start, end_addr);
   167   HeapWord* end   = getNextUnmarkedWordAddress(start);
   168   end = MIN2(end, end_addr);
   169   assert(start <= end, "Consistency check");
   170   MemRegion mr(start, end);
   171   if (!mr.is_empty()) {
   172     clearRange(mr);
   173   }
   174   return mr;
   175 }
   177 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   178   _base(NULL), _cm(cm)
   179 #ifdef ASSERT
   180   , _drain_in_progress(false)
   181   , _drain_in_progress_yields(false)
   182 #endif
   183 {}
   185 bool CMMarkStack::allocate(size_t capacity) {
   186   // allocate a stack of the requisite depth
   187   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   188   if (!rs.is_reserved()) {
   189     warning("ConcurrentMark MarkStack allocation failure");
   190     return false;
   191   }
   192   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   193   if (!_virtual_space.initialize(rs, rs.size())) {
   194     warning("ConcurrentMark MarkStack backing store failure");
   195     // Release the virtual memory reserved for the marking stack
   196     rs.release();
   197     return false;
   198   }
   199   assert(_virtual_space.committed_size() == rs.size(),
   200          "Didn't reserve backing store for all of ConcurrentMark stack?");
   201   _base = (oop*) _virtual_space.low();
   202   setEmpty();
   203   _capacity = (jint) capacity;
   204   _saved_index = -1;
   205   _should_expand = false;
   206   NOT_PRODUCT(_max_depth = 0);
   207   return true;
   208 }
   210 void CMMarkStack::expand() {
   211   // Called, during remark, if we've overflown the marking stack during marking.
   212   assert(isEmpty(), "stack should been emptied while handling overflow");
   213   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   214   // Clear expansion flag
   215   _should_expand = false;
   216   if (_capacity == (jint) MarkStackSizeMax) {
   217     if (PrintGCDetails && Verbose) {
   218       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   219     }
   220     return;
   221   }
   222   // Double capacity if possible
   223   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   224   // Do not give up existing stack until we have managed to
   225   // get the double capacity that we desired.
   226   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   227                                                            sizeof(oop)));
   228   if (rs.is_reserved()) {
   229     // Release the backing store associated with old stack
   230     _virtual_space.release();
   231     // Reinitialize virtual space for new stack
   232     if (!_virtual_space.initialize(rs, rs.size())) {
   233       fatal("Not enough swap for expanded marking stack capacity");
   234     }
   235     _base = (oop*)(_virtual_space.low());
   236     _index = 0;
   237     _capacity = new_capacity;
   238   } else {
   239     if (PrintGCDetails && Verbose) {
   240       // Failed to double capacity, continue;
   241       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   242                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   243                           _capacity / K, new_capacity / K);
   244     }
   245   }
   246 }
   248 void CMMarkStack::set_should_expand() {
   249   // If we're resetting the marking state because of an
   250   // marking stack overflow, record that we should, if
   251   // possible, expand the stack.
   252   _should_expand = _cm->has_overflown();
   253 }
   255 CMMarkStack::~CMMarkStack() {
   256   if (_base != NULL) {
   257     _base = NULL;
   258     _virtual_space.release();
   259   }
   260 }
   262 void CMMarkStack::par_push(oop ptr) {
   263   while (true) {
   264     if (isFull()) {
   265       _overflow = true;
   266       return;
   267     }
   268     // Otherwise...
   269     jint index = _index;
   270     jint next_index = index+1;
   271     jint res = Atomic::cmpxchg(next_index, &_index, index);
   272     if (res == index) {
   273       _base[index] = ptr;
   274       // Note that we don't maintain this atomically.  We could, but it
   275       // doesn't seem necessary.
   276       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   277       return;
   278     }
   279     // Otherwise, we need to try again.
   280   }
   281 }
   283 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   284   while (true) {
   285     if (isFull()) {
   286       _overflow = true;
   287       return;
   288     }
   289     // Otherwise...
   290     jint index = _index;
   291     jint next_index = index + n;
   292     if (next_index > _capacity) {
   293       _overflow = true;
   294       return;
   295     }
   296     jint res = Atomic::cmpxchg(next_index, &_index, index);
   297     if (res == index) {
   298       for (int i = 0; i < n; i++) {
   299         int  ind = index + i;
   300         assert(ind < _capacity, "By overflow test above.");
   301         _base[ind] = ptr_arr[i];
   302       }
   303       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   304       return;
   305     }
   306     // Otherwise, we need to try again.
   307   }
   308 }
   310 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   311   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   312   jint start = _index;
   313   jint next_index = start + n;
   314   if (next_index > _capacity) {
   315     _overflow = true;
   316     return;
   317   }
   318   // Otherwise.
   319   _index = next_index;
   320   for (int i = 0; i < n; i++) {
   321     int ind = start + i;
   322     assert(ind < _capacity, "By overflow test above.");
   323     _base[ind] = ptr_arr[i];
   324   }
   325   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   326 }
   328 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   329   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   330   jint index = _index;
   331   if (index == 0) {
   332     *n = 0;
   333     return false;
   334   } else {
   335     int k = MIN2(max, index);
   336     jint  new_ind = index - k;
   337     for (int j = 0; j < k; j++) {
   338       ptr_arr[j] = _base[new_ind + j];
   339     }
   340     _index = new_ind;
   341     *n = k;
   342     return true;
   343   }
   344 }
   346 template<class OopClosureClass>
   347 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   348   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   349          || SafepointSynchronize::is_at_safepoint(),
   350          "Drain recursion must be yield-safe.");
   351   bool res = true;
   352   debug_only(_drain_in_progress = true);
   353   debug_only(_drain_in_progress_yields = yield_after);
   354   while (!isEmpty()) {
   355     oop newOop = pop();
   356     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   357     assert(newOop->is_oop(), "Expected an oop");
   358     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   359            "only grey objects on this stack");
   360     newOop->oop_iterate(cl);
   361     if (yield_after && _cm->do_yield_check()) {
   362       res = false;
   363       break;
   364     }
   365   }
   366   debug_only(_drain_in_progress = false);
   367   return res;
   368 }
   370 void CMMarkStack::note_start_of_gc() {
   371   assert(_saved_index == -1,
   372          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   373   _saved_index = _index;
   374 }
   376 void CMMarkStack::note_end_of_gc() {
   377   // This is intentionally a guarantee, instead of an assert. If we
   378   // accidentally add something to the mark stack during GC, it
   379   // will be a correctness issue so it's better if we crash. we'll
   380   // only check this once per GC anyway, so it won't be a performance
   381   // issue in any way.
   382   guarantee(_saved_index == _index,
   383             err_msg("saved index: %d index: %d", _saved_index, _index));
   384   _saved_index = -1;
   385 }
   387 void CMMarkStack::oops_do(OopClosure* f) {
   388   assert(_saved_index == _index,
   389          err_msg("saved index: %d index: %d", _saved_index, _index));
   390   for (int i = 0; i < _index; i += 1) {
   391     f->do_oop(&_base[i]);
   392   }
   393 }
   395 bool ConcurrentMark::not_yet_marked(oop obj) const {
   396   return _g1h->is_obj_ill(obj);
   397 }
   399 CMRootRegions::CMRootRegions() :
   400   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   401   _should_abort(false),  _next_survivor(NULL) { }
   403 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   404   _young_list = g1h->young_list();
   405   _cm = cm;
   406 }
   408 void CMRootRegions::prepare_for_scan() {
   409   assert(!scan_in_progress(), "pre-condition");
   411   // Currently, only survivors can be root regions.
   412   assert(_next_survivor == NULL, "pre-condition");
   413   _next_survivor = _young_list->first_survivor_region();
   414   _scan_in_progress = (_next_survivor != NULL);
   415   _should_abort = false;
   416 }
   418 HeapRegion* CMRootRegions::claim_next() {
   419   if (_should_abort) {
   420     // If someone has set the should_abort flag, we return NULL to
   421     // force the caller to bail out of their loop.
   422     return NULL;
   423   }
   425   // Currently, only survivors can be root regions.
   426   HeapRegion* res = _next_survivor;
   427   if (res != NULL) {
   428     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   429     // Read it again in case it changed while we were waiting for the lock.
   430     res = _next_survivor;
   431     if (res != NULL) {
   432       if (res == _young_list->last_survivor_region()) {
   433         // We just claimed the last survivor so store NULL to indicate
   434         // that we're done.
   435         _next_survivor = NULL;
   436       } else {
   437         _next_survivor = res->get_next_young_region();
   438       }
   439     } else {
   440       // Someone else claimed the last survivor while we were trying
   441       // to take the lock so nothing else to do.
   442     }
   443   }
   444   assert(res == NULL || res->is_survivor(), "post-condition");
   446   return res;
   447 }
   449 void CMRootRegions::scan_finished() {
   450   assert(scan_in_progress(), "pre-condition");
   452   // Currently, only survivors can be root regions.
   453   if (!_should_abort) {
   454     assert(_next_survivor == NULL, "we should have claimed all survivors");
   455   }
   456   _next_survivor = NULL;
   458   {
   459     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   460     _scan_in_progress = false;
   461     RootRegionScan_lock->notify_all();
   462   }
   463 }
   465 bool CMRootRegions::wait_until_scan_finished() {
   466   if (!scan_in_progress()) return false;
   468   {
   469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   470     while (scan_in_progress()) {
   471       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   472     }
   473   }
   474   return true;
   475 }
   477 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   478 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   479 #endif // _MSC_VER
   481 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   482   return MAX2((n_par_threads + 2) / 4, 1U);
   483 }
   485 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
   486   _g1h(g1h),
   487   _markBitMap1(log2_intptr(MinObjAlignment)),
   488   _markBitMap2(log2_intptr(MinObjAlignment)),
   489   _parallel_marking_threads(0),
   490   _max_parallel_marking_threads(0),
   491   _sleep_factor(0.0),
   492   _marking_task_overhead(1.0),
   493   _cleanup_sleep_factor(0.0),
   494   _cleanup_task_overhead(1.0),
   495   _cleanup_list("Cleanup List"),
   496   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   497   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
   498             CardTableModRefBS::card_shift,
   499             false /* in_resource_area*/),
   501   _prevMarkBitMap(&_markBitMap1),
   502   _nextMarkBitMap(&_markBitMap2),
   504   _markStack(this),
   505   // _finger set in set_non_marking_state
   507   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   508   // _active_tasks set in set_non_marking_state
   509   // _tasks set inside the constructor
   510   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   511   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   513   _has_overflown(false),
   514   _concurrent(false),
   515   _has_aborted(false),
   516   _aborted_gc_id(GCId::undefined()),
   517   _restart_for_overflow(false),
   518   _concurrent_marking_in_progress(false),
   520   // _verbose_level set below
   522   _init_times(),
   523   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   524   _cleanup_times(),
   525   _total_counting_time(0.0),
   526   _total_rs_scrub_time(0.0),
   528   _parallel_workers(NULL),
   530   _count_card_bitmaps(NULL),
   531   _count_marked_bytes(NULL),
   532   _completed_initialization(false) {
   533   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   534   if (verbose_level < no_verbose) {
   535     verbose_level = no_verbose;
   536   }
   537   if (verbose_level > high_verbose) {
   538     verbose_level = high_verbose;
   539   }
   540   _verbose_level = verbose_level;
   542   if (verbose_low()) {
   543     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   544                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   545   }
   547   if (!_markBitMap1.allocate(heap_rs)) {
   548     warning("Failed to allocate first CM bit map");
   549     return;
   550   }
   551   if (!_markBitMap2.allocate(heap_rs)) {
   552     warning("Failed to allocate second CM bit map");
   553     return;
   554   }
   556   // Create & start a ConcurrentMark thread.
   557   _cmThread = new ConcurrentMarkThread(this);
   558   assert(cmThread() != NULL, "CM Thread should have been created");
   559   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   560   if (_cmThread->osthread() == NULL) {
   561       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   562   }
   564   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   565   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
   566   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
   568   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   569   satb_qs.set_buffer_size(G1SATBBufferSize);
   571   _root_regions.init(_g1h, this);
   573   if (ConcGCThreads > ParallelGCThreads) {
   574     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   575             "than ParallelGCThreads (" UINTX_FORMAT ").",
   576             ConcGCThreads, ParallelGCThreads);
   577     return;
   578   }
   579   if (ParallelGCThreads == 0) {
   580     // if we are not running with any parallel GC threads we will not
   581     // spawn any marking threads either
   582     _parallel_marking_threads =       0;
   583     _max_parallel_marking_threads =   0;
   584     _sleep_factor             =     0.0;
   585     _marking_task_overhead    =     1.0;
   586   } else {
   587     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   588       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   589       // if both are set
   590       _sleep_factor             = 0.0;
   591       _marking_task_overhead    = 1.0;
   592     } else if (G1MarkingOverheadPercent > 0) {
   593       // We will calculate the number of parallel marking threads based
   594       // on a target overhead with respect to the soft real-time goal
   595       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   596       double overall_cm_overhead =
   597         (double) MaxGCPauseMillis * marking_overhead /
   598         (double) GCPauseIntervalMillis;
   599       double cpu_ratio = 1.0 / (double) os::processor_count();
   600       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   601       double marking_task_overhead =
   602         overall_cm_overhead / marking_thread_num *
   603                                                 (double) os::processor_count();
   604       double sleep_factor =
   605                          (1.0 - marking_task_overhead) / marking_task_overhead;
   607       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   608       _sleep_factor             = sleep_factor;
   609       _marking_task_overhead    = marking_task_overhead;
   610     } else {
   611       // Calculate the number of parallel marking threads by scaling
   612       // the number of parallel GC threads.
   613       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   614       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   615       _sleep_factor             = 0.0;
   616       _marking_task_overhead    = 1.0;
   617     }
   619     assert(ConcGCThreads > 0, "Should have been set");
   620     _parallel_marking_threads = (uint) ConcGCThreads;
   621     _max_parallel_marking_threads = _parallel_marking_threads;
   623     if (parallel_marking_threads() > 1) {
   624       _cleanup_task_overhead = 1.0;
   625     } else {
   626       _cleanup_task_overhead = marking_task_overhead();
   627     }
   628     _cleanup_sleep_factor =
   629                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   631 #if 0
   632     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   633     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   634     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   635     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   636     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   637 #endif
   639     guarantee(parallel_marking_threads() > 0, "peace of mind");
   640     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   641          _max_parallel_marking_threads, false, true);
   642     if (_parallel_workers == NULL) {
   643       vm_exit_during_initialization("Failed necessary allocation.");
   644     } else {
   645       _parallel_workers->initialize_workers();
   646     }
   647   }
   649   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   650     uintx mark_stack_size =
   651       MIN2(MarkStackSizeMax,
   652           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   653     // Verify that the calculated value for MarkStackSize is in range.
   654     // It would be nice to use the private utility routine from Arguments.
   655     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   656       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   657               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   658               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   659       return;
   660     }
   661     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   662   } else {
   663     // Verify MarkStackSize is in range.
   664     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   665       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   666         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   667           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   668                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   669                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   670           return;
   671         }
   672       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   673         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   674           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   675                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   676                   MarkStackSize, MarkStackSizeMax);
   677           return;
   678         }
   679       }
   680     }
   681   }
   683   if (!_markStack.allocate(MarkStackSize)) {
   684     warning("Failed to allocate CM marking stack");
   685     return;
   686   }
   688   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   689   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   691   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   692   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   694   BitMap::idx_t card_bm_size = _card_bm.size();
   696   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   697   _active_tasks = _max_worker_id;
   699   size_t max_regions = (size_t) _g1h->max_regions();
   700   for (uint i = 0; i < _max_worker_id; ++i) {
   701     CMTaskQueue* task_queue = new CMTaskQueue();
   702     task_queue->initialize();
   703     _task_queues->register_queue(i, task_queue);
   705     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   706     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   708     _tasks[i] = new CMTask(i, this,
   709                            _count_marked_bytes[i],
   710                            &_count_card_bitmaps[i],
   711                            task_queue, _task_queues);
   713     _accum_task_vtime[i] = 0.0;
   714   }
   716   // Calculate the card number for the bottom of the heap. Used
   717   // in biasing indexes into the accounting card bitmaps.
   718   _heap_bottom_card_num =
   719     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   720                                 CardTableModRefBS::card_shift);
   722   // Clear all the liveness counting data
   723   clear_all_count_data();
   725   // so that the call below can read a sensible value
   726   _heap_start = (HeapWord*) heap_rs.base();
   727   set_non_marking_state();
   728   _completed_initialization = true;
   729 }
   731 void ConcurrentMark::update_g1_committed(bool force) {
   732   // If concurrent marking is not in progress, then we do not need to
   733   // update _heap_end.
   734   if (!concurrent_marking_in_progress() && !force) return;
   736   MemRegion committed = _g1h->g1_committed();
   737   assert(committed.start() == _heap_start, "start shouldn't change");
   738   HeapWord* new_end = committed.end();
   739   if (new_end > _heap_end) {
   740     // The heap has been expanded.
   742     _heap_end = new_end;
   743   }
   744   // Notice that the heap can also shrink. However, this only happens
   745   // during a Full GC (at least currently) and the entire marking
   746   // phase will bail out and the task will not be restarted. So, let's
   747   // do nothing.
   748 }
   750 void ConcurrentMark::reset() {
   751   // Starting values for these two. This should be called in a STW
   752   // phase. CM will be notified of any future g1_committed expansions
   753   // will be at the end of evacuation pauses, when tasks are
   754   // inactive.
   755   MemRegion committed = _g1h->g1_committed();
   756   _heap_start = committed.start();
   757   _heap_end   = committed.end();
   759   // Separated the asserts so that we know which one fires.
   760   assert(_heap_start != NULL, "heap bounds should look ok");
   761   assert(_heap_end != NULL, "heap bounds should look ok");
   762   assert(_heap_start < _heap_end, "heap bounds should look ok");
   764   // Reset all the marking data structures and any necessary flags
   765   reset_marking_state();
   767   if (verbose_low()) {
   768     gclog_or_tty->print_cr("[global] resetting");
   769   }
   771   // We do reset all of them, since different phases will use
   772   // different number of active threads. So, it's easiest to have all
   773   // of them ready.
   774   for (uint i = 0; i < _max_worker_id; ++i) {
   775     _tasks[i]->reset(_nextMarkBitMap);
   776   }
   778   // we need this to make sure that the flag is on during the evac
   779   // pause with initial mark piggy-backed
   780   set_concurrent_marking_in_progress();
   781 }
   784 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   785   _markStack.set_should_expand();
   786   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   787   if (clear_overflow) {
   788     clear_has_overflown();
   789   } else {
   790     assert(has_overflown(), "pre-condition");
   791   }
   792   _finger = _heap_start;
   794   for (uint i = 0; i < _max_worker_id; ++i) {
   795     CMTaskQueue* queue = _task_queues->queue(i);
   796     queue->set_empty();
   797   }
   798 }
   800 void ConcurrentMark::set_concurrency(uint active_tasks) {
   801   assert(active_tasks <= _max_worker_id, "we should not have more");
   803   _active_tasks = active_tasks;
   804   // Need to update the three data structures below according to the
   805   // number of active threads for this phase.
   806   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   807   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   808   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   809 }
   811 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   812   set_concurrency(active_tasks);
   814   _concurrent = concurrent;
   815   // We propagate this to all tasks, not just the active ones.
   816   for (uint i = 0; i < _max_worker_id; ++i)
   817     _tasks[i]->set_concurrent(concurrent);
   819   if (concurrent) {
   820     set_concurrent_marking_in_progress();
   821   } else {
   822     // We currently assume that the concurrent flag has been set to
   823     // false before we start remark. At this point we should also be
   824     // in a STW phase.
   825     assert(!concurrent_marking_in_progress(), "invariant");
   826     assert(out_of_regions(),
   827            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   828                    p2i(_finger), p2i(_heap_end)));
   829     update_g1_committed(true);
   830   }
   831 }
   833 void ConcurrentMark::set_non_marking_state() {
   834   // We set the global marking state to some default values when we're
   835   // not doing marking.
   836   reset_marking_state();
   837   _active_tasks = 0;
   838   clear_concurrent_marking_in_progress();
   839 }
   841 ConcurrentMark::~ConcurrentMark() {
   842   // The ConcurrentMark instance is never freed.
   843   ShouldNotReachHere();
   844 }
   846 void ConcurrentMark::clearNextBitmap() {
   847   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   848   G1CollectorPolicy* g1p = g1h->g1_policy();
   850   // Make sure that the concurrent mark thread looks to still be in
   851   // the current cycle.
   852   guarantee(cmThread()->during_cycle(), "invariant");
   854   // We are finishing up the current cycle by clearing the next
   855   // marking bitmap and getting it ready for the next cycle. During
   856   // this time no other cycle can start. So, let's make sure that this
   857   // is the case.
   858   guarantee(!g1h->mark_in_progress(), "invariant");
   860   // clear the mark bitmap (no grey objects to start with).
   861   // We need to do this in chunks and offer to yield in between
   862   // each chunk.
   863   HeapWord* start  = _nextMarkBitMap->startWord();
   864   HeapWord* end    = _nextMarkBitMap->endWord();
   865   HeapWord* cur    = start;
   866   size_t chunkSize = M;
   867   while (cur < end) {
   868     HeapWord* next = cur + chunkSize;
   869     if (next > end) {
   870       next = end;
   871     }
   872     MemRegion mr(cur,next);
   873     _nextMarkBitMap->clearRange(mr);
   874     cur = next;
   875     do_yield_check();
   877     // Repeat the asserts from above. We'll do them as asserts here to
   878     // minimize their overhead on the product. However, we'll have
   879     // them as guarantees at the beginning / end of the bitmap
   880     // clearing to get some checking in the product.
   881     assert(cmThread()->during_cycle(), "invariant");
   882     assert(!g1h->mark_in_progress(), "invariant");
   883   }
   885   // Clear the liveness counting data
   886   clear_all_count_data();
   888   // Repeat the asserts from above.
   889   guarantee(cmThread()->during_cycle(), "invariant");
   890   guarantee(!g1h->mark_in_progress(), "invariant");
   891 }
   893 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   894 public:
   895   bool doHeapRegion(HeapRegion* r) {
   896     if (!r->continuesHumongous()) {
   897       r->note_start_of_marking();
   898     }
   899     return false;
   900   }
   901 };
   903 void ConcurrentMark::checkpointRootsInitialPre() {
   904   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   905   G1CollectorPolicy* g1p = g1h->g1_policy();
   907   _has_aborted = false;
   909 #ifndef PRODUCT
   910   if (G1PrintReachableAtInitialMark) {
   911     print_reachable("at-cycle-start",
   912                     VerifyOption_G1UsePrevMarking, true /* all */);
   913   }
   914 #endif
   916   // Initialise marking structures. This has to be done in a STW phase.
   917   reset();
   919   // For each region note start of marking.
   920   NoteStartOfMarkHRClosure startcl;
   921   g1h->heap_region_iterate(&startcl);
   922 }
   925 void ConcurrentMark::checkpointRootsInitialPost() {
   926   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   928   // If we force an overflow during remark, the remark operation will
   929   // actually abort and we'll restart concurrent marking. If we always
   930   // force an oveflow during remark we'll never actually complete the
   931   // marking phase. So, we initilize this here, at the start of the
   932   // cycle, so that at the remaining overflow number will decrease at
   933   // every remark and we'll eventually not need to cause one.
   934   force_overflow_stw()->init();
   936   // Start Concurrent Marking weak-reference discovery.
   937   ReferenceProcessor* rp = g1h->ref_processor_cm();
   938   // enable ("weak") refs discovery
   939   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   940   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   942   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   943   // This is the start of  the marking cycle, we're expected all
   944   // threads to have SATB queues with active set to false.
   945   satb_mq_set.set_active_all_threads(true, /* new active value */
   946                                      false /* expected_active */);
   948   _root_regions.prepare_for_scan();
   950   // update_g1_committed() will be called at the end of an evac pause
   951   // when marking is on. So, it's also called at the end of the
   952   // initial-mark pause to update the heap end, if the heap expands
   953   // during it. No need to call it here.
   954 }
   956 /*
   957  * Notice that in the next two methods, we actually leave the STS
   958  * during the barrier sync and join it immediately afterwards. If we
   959  * do not do this, the following deadlock can occur: one thread could
   960  * be in the barrier sync code, waiting for the other thread to also
   961  * sync up, whereas another one could be trying to yield, while also
   962  * waiting for the other threads to sync up too.
   963  *
   964  * Note, however, that this code is also used during remark and in
   965  * this case we should not attempt to leave / enter the STS, otherwise
   966  * we'll either hit an asseert (debug / fastdebug) or deadlock
   967  * (product). So we should only leave / enter the STS if we are
   968  * operating concurrently.
   969  *
   970  * Because the thread that does the sync barrier has left the STS, it
   971  * is possible to be suspended for a Full GC or an evacuation pause
   972  * could occur. This is actually safe, since the entering the sync
   973  * barrier is one of the last things do_marking_step() does, and it
   974  * doesn't manipulate any data structures afterwards.
   975  */
   977 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   978   if (verbose_low()) {
   979     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   980   }
   982   if (concurrent()) {
   983     SuspendibleThreadSet::leave();
   984   }
   986   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
   988   if (concurrent()) {
   989     SuspendibleThreadSet::join();
   990   }
   991   // at this point everyone should have synced up and not be doing any
   992   // more work
   994   if (verbose_low()) {
   995     if (barrier_aborted) {
   996       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
   997     } else {
   998       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
   999     }
  1002   if (barrier_aborted) {
  1003     // If the barrier aborted we ignore the overflow condition and
  1004     // just abort the whole marking phase as quickly as possible.
  1005     return;
  1008   // If we're executing the concurrent phase of marking, reset the marking
  1009   // state; otherwise the marking state is reset after reference processing,
  1010   // during the remark pause.
  1011   // If we reset here as a result of an overflow during the remark we will
  1012   // see assertion failures from any subsequent set_concurrency_and_phase()
  1013   // calls.
  1014   if (concurrent()) {
  1015     // let the task associated with with worker 0 do this
  1016     if (worker_id == 0) {
  1017       // task 0 is responsible for clearing the global data structures
  1018       // We should be here because of an overflow. During STW we should
  1019       // not clear the overflow flag since we rely on it being true when
  1020       // we exit this method to abort the pause and restart concurent
  1021       // marking.
  1022       reset_marking_state(true /* clear_overflow */);
  1023       force_overflow()->update();
  1025       if (G1Log::fine()) {
  1026         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1027         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1032   // after this, each task should reset its own data structures then
  1033   // then go into the second barrier
  1036 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1037   if (verbose_low()) {
  1038     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1041   if (concurrent()) {
  1042     SuspendibleThreadSet::leave();
  1045   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1047   if (concurrent()) {
  1048     SuspendibleThreadSet::join();
  1050   // at this point everything should be re-initialized and ready to go
  1052   if (verbose_low()) {
  1053     if (barrier_aborted) {
  1054       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1055     } else {
  1056       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1061 #ifndef PRODUCT
  1062 void ForceOverflowSettings::init() {
  1063   _num_remaining = G1ConcMarkForceOverflow;
  1064   _force = false;
  1065   update();
  1068 void ForceOverflowSettings::update() {
  1069   if (_num_remaining > 0) {
  1070     _num_remaining -= 1;
  1071     _force = true;
  1072   } else {
  1073     _force = false;
  1077 bool ForceOverflowSettings::should_force() {
  1078   if (_force) {
  1079     _force = false;
  1080     return true;
  1081   } else {
  1082     return false;
  1085 #endif // !PRODUCT
  1087 class CMConcurrentMarkingTask: public AbstractGangTask {
  1088 private:
  1089   ConcurrentMark*       _cm;
  1090   ConcurrentMarkThread* _cmt;
  1092 public:
  1093   void work(uint worker_id) {
  1094     assert(Thread::current()->is_ConcurrentGC_thread(),
  1095            "this should only be done by a conc GC thread");
  1096     ResourceMark rm;
  1098     double start_vtime = os::elapsedVTime();
  1100     SuspendibleThreadSet::join();
  1102     assert(worker_id < _cm->active_tasks(), "invariant");
  1103     CMTask* the_task = _cm->task(worker_id);
  1104     the_task->record_start_time();
  1105     if (!_cm->has_aborted()) {
  1106       do {
  1107         double start_vtime_sec = os::elapsedVTime();
  1108         double start_time_sec = os::elapsedTime();
  1109         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1111         the_task->do_marking_step(mark_step_duration_ms,
  1112                                   true  /* do_termination */,
  1113                                   false /* is_serial*/);
  1115         double end_time_sec = os::elapsedTime();
  1116         double end_vtime_sec = os::elapsedVTime();
  1117         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1118         double elapsed_time_sec = end_time_sec - start_time_sec;
  1119         _cm->clear_has_overflown();
  1121         bool ret = _cm->do_yield_check(worker_id);
  1123         jlong sleep_time_ms;
  1124         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1125           sleep_time_ms =
  1126             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1127           SuspendibleThreadSet::leave();
  1128           os::sleep(Thread::current(), sleep_time_ms, false);
  1129           SuspendibleThreadSet::join();
  1131         double end_time2_sec = os::elapsedTime();
  1132         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1134 #if 0
  1135           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1136                                  "overhead %1.4lf",
  1137                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1138                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1139           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1140                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1141 #endif
  1142       } while (!_cm->has_aborted() && the_task->has_aborted());
  1144     the_task->record_end_time();
  1145     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1147     SuspendibleThreadSet::leave();
  1149     double end_vtime = os::elapsedVTime();
  1150     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1153   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1154                           ConcurrentMarkThread* cmt) :
  1155       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1157   ~CMConcurrentMarkingTask() { }
  1158 };
  1160 // Calculates the number of active workers for a concurrent
  1161 // phase.
  1162 uint ConcurrentMark::calc_parallel_marking_threads() {
  1163   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1164     uint n_conc_workers = 0;
  1165     if (!UseDynamicNumberOfGCThreads ||
  1166         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1167          !ForceDynamicNumberOfGCThreads)) {
  1168       n_conc_workers = max_parallel_marking_threads();
  1169     } else {
  1170       n_conc_workers =
  1171         AdaptiveSizePolicy::calc_default_active_workers(
  1172                                      max_parallel_marking_threads(),
  1173                                      1, /* Minimum workers */
  1174                                      parallel_marking_threads(),
  1175                                      Threads::number_of_non_daemon_threads());
  1176       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1177       // that scaling has already gone into "_max_parallel_marking_threads".
  1179     assert(n_conc_workers > 0, "Always need at least 1");
  1180     return n_conc_workers;
  1182   // If we are not running with any parallel GC threads we will not
  1183   // have spawned any marking threads either. Hence the number of
  1184   // concurrent workers should be 0.
  1185   return 0;
  1188 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1189   // Currently, only survivors can be root regions.
  1190   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1191   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1193   const uintx interval = PrefetchScanIntervalInBytes;
  1194   HeapWord* curr = hr->bottom();
  1195   const HeapWord* end = hr->top();
  1196   while (curr < end) {
  1197     Prefetch::read(curr, interval);
  1198     oop obj = oop(curr);
  1199     int size = obj->oop_iterate(&cl);
  1200     assert(size == obj->size(), "sanity");
  1201     curr += size;
  1205 class CMRootRegionScanTask : public AbstractGangTask {
  1206 private:
  1207   ConcurrentMark* _cm;
  1209 public:
  1210   CMRootRegionScanTask(ConcurrentMark* cm) :
  1211     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1213   void work(uint worker_id) {
  1214     assert(Thread::current()->is_ConcurrentGC_thread(),
  1215            "this should only be done by a conc GC thread");
  1217     CMRootRegions* root_regions = _cm->root_regions();
  1218     HeapRegion* hr = root_regions->claim_next();
  1219     while (hr != NULL) {
  1220       _cm->scanRootRegion(hr, worker_id);
  1221       hr = root_regions->claim_next();
  1224 };
  1226 void ConcurrentMark::scanRootRegions() {
  1227   // Start of concurrent marking.
  1228   ClassLoaderDataGraph::clear_claimed_marks();
  1230   // scan_in_progress() will have been set to true only if there was
  1231   // at least one root region to scan. So, if it's false, we
  1232   // should not attempt to do any further work.
  1233   if (root_regions()->scan_in_progress()) {
  1234     _parallel_marking_threads = calc_parallel_marking_threads();
  1235     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1236            "Maximum number of marking threads exceeded");
  1237     uint active_workers = MAX2(1U, parallel_marking_threads());
  1239     CMRootRegionScanTask task(this);
  1240     if (use_parallel_marking_threads()) {
  1241       _parallel_workers->set_active_workers((int) active_workers);
  1242       _parallel_workers->run_task(&task);
  1243     } else {
  1244       task.work(0);
  1247     // It's possible that has_aborted() is true here without actually
  1248     // aborting the survivor scan earlier. This is OK as it's
  1249     // mainly used for sanity checking.
  1250     root_regions()->scan_finished();
  1254 void ConcurrentMark::markFromRoots() {
  1255   // we might be tempted to assert that:
  1256   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1257   //        "inconsistent argument?");
  1258   // However that wouldn't be right, because it's possible that
  1259   // a safepoint is indeed in progress as a younger generation
  1260   // stop-the-world GC happens even as we mark in this generation.
  1262   _restart_for_overflow = false;
  1263   force_overflow_conc()->init();
  1265   // _g1h has _n_par_threads
  1266   _parallel_marking_threads = calc_parallel_marking_threads();
  1267   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1268     "Maximum number of marking threads exceeded");
  1270   uint active_workers = MAX2(1U, parallel_marking_threads());
  1272   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1273   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1275   CMConcurrentMarkingTask markingTask(this, cmThread());
  1276   if (use_parallel_marking_threads()) {
  1277     _parallel_workers->set_active_workers((int)active_workers);
  1278     // Don't set _n_par_threads because it affects MT in process_roots()
  1279     // and the decisions on that MT processing is made elsewhere.
  1280     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1281     _parallel_workers->run_task(&markingTask);
  1282   } else {
  1283     markingTask.work(0);
  1285   print_stats();
  1288 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1289   // world is stopped at this checkpoint
  1290   assert(SafepointSynchronize::is_at_safepoint(),
  1291          "world should be stopped");
  1293   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1295   // If a full collection has happened, we shouldn't do this.
  1296   if (has_aborted()) {
  1297     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1298     return;
  1301   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1303   if (VerifyDuringGC) {
  1304     HandleMark hm;  // handle scope
  1305     Universe::heap()->prepare_for_verify();
  1306     Universe::verify(VerifyOption_G1UsePrevMarking,
  1307                      " VerifyDuringGC:(before)");
  1310   G1CollectorPolicy* g1p = g1h->g1_policy();
  1311   g1p->record_concurrent_mark_remark_start();
  1313   double start = os::elapsedTime();
  1315   checkpointRootsFinalWork();
  1317   double mark_work_end = os::elapsedTime();
  1319   weakRefsWork(clear_all_soft_refs);
  1321   if (has_overflown()) {
  1322     // Oops.  We overflowed.  Restart concurrent marking.
  1323     _restart_for_overflow = true;
  1324     if (G1TraceMarkStackOverflow) {
  1325       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1328     // Verify the heap w.r.t. the previous marking bitmap.
  1329     if (VerifyDuringGC) {
  1330       HandleMark hm;  // handle scope
  1331       Universe::heap()->prepare_for_verify();
  1332       Universe::verify(VerifyOption_G1UsePrevMarking,
  1333                        " VerifyDuringGC:(overflow)");
  1336     // Clear the marking state because we will be restarting
  1337     // marking due to overflowing the global mark stack.
  1338     reset_marking_state();
  1339   } else {
  1340     // Aggregate the per-task counting data that we have accumulated
  1341     // while marking.
  1342     aggregate_count_data();
  1344     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1345     // We're done with marking.
  1346     // This is the end of  the marking cycle, we're expected all
  1347     // threads to have SATB queues with active set to true.
  1348     satb_mq_set.set_active_all_threads(false, /* new active value */
  1349                                        true /* expected_active */);
  1351     if (VerifyDuringGC) {
  1352       HandleMark hm;  // handle scope
  1353       Universe::heap()->prepare_for_verify();
  1354       Universe::verify(VerifyOption_G1UseNextMarking,
  1355                        " VerifyDuringGC:(after)");
  1357     assert(!restart_for_overflow(), "sanity");
  1358     // Completely reset the marking state since marking completed
  1359     set_non_marking_state();
  1362   // Expand the marking stack, if we have to and if we can.
  1363   if (_markStack.should_expand()) {
  1364     _markStack.expand();
  1367   // Statistics
  1368   double now = os::elapsedTime();
  1369   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1370   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1371   _remark_times.add((now - start) * 1000.0);
  1373   g1p->record_concurrent_mark_remark_end();
  1375   G1CMIsAliveClosure is_alive(g1h);
  1376   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1379 // Base class of the closures that finalize and verify the
  1380 // liveness counting data.
  1381 class CMCountDataClosureBase: public HeapRegionClosure {
  1382 protected:
  1383   G1CollectedHeap* _g1h;
  1384   ConcurrentMark* _cm;
  1385   CardTableModRefBS* _ct_bs;
  1387   BitMap* _region_bm;
  1388   BitMap* _card_bm;
  1390   // Takes a region that's not empty (i.e., it has at least one
  1391   // live object in it and sets its corresponding bit on the region
  1392   // bitmap to 1. If the region is "starts humongous" it will also set
  1393   // to 1 the bits on the region bitmap that correspond to its
  1394   // associated "continues humongous" regions.
  1395   void set_bit_for_region(HeapRegion* hr) {
  1396     assert(!hr->continuesHumongous(), "should have filtered those out");
  1398     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1399     if (!hr->startsHumongous()) {
  1400       // Normal (non-humongous) case: just set the bit.
  1401       _region_bm->par_at_put(index, true);
  1402     } else {
  1403       // Starts humongous case: calculate how many regions are part of
  1404       // this humongous region and then set the bit range.
  1405       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1406       _region_bm->par_at_put_range(index, end_index, true);
  1410 public:
  1411   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1412                          BitMap* region_bm, BitMap* card_bm):
  1413     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1414     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1415     _region_bm(region_bm), _card_bm(card_bm) { }
  1416 };
  1418 // Closure that calculates the # live objects per region. Used
  1419 // for verification purposes during the cleanup pause.
  1420 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1421   CMBitMapRO* _bm;
  1422   size_t _region_marked_bytes;
  1424 public:
  1425   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1426                          BitMap* region_bm, BitMap* card_bm) :
  1427     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1428     _bm(bm), _region_marked_bytes(0) { }
  1430   bool doHeapRegion(HeapRegion* hr) {
  1432     if (hr->continuesHumongous()) {
  1433       // We will ignore these here and process them when their
  1434       // associated "starts humongous" region is processed (see
  1435       // set_bit_for_heap_region()). Note that we cannot rely on their
  1436       // associated "starts humongous" region to have their bit set to
  1437       // 1 since, due to the region chunking in the parallel region
  1438       // iteration, a "continues humongous" region might be visited
  1439       // before its associated "starts humongous".
  1440       return false;
  1443     HeapWord* ntams = hr->next_top_at_mark_start();
  1444     HeapWord* start = hr->bottom();
  1446     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1447            err_msg("Preconditions not met - "
  1448                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1449                    p2i(start), p2i(ntams), p2i(hr->end())));
  1451     // Find the first marked object at or after "start".
  1452     start = _bm->getNextMarkedWordAddress(start, ntams);
  1454     size_t marked_bytes = 0;
  1456     while (start < ntams) {
  1457       oop obj = oop(start);
  1458       int obj_sz = obj->size();
  1459       HeapWord* obj_end = start + obj_sz;
  1461       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1462       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1464       // Note: if we're looking at the last region in heap - obj_end
  1465       // could be actually just beyond the end of the heap; end_idx
  1466       // will then correspond to a (non-existent) card that is also
  1467       // just beyond the heap.
  1468       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1469         // end of object is not card aligned - increment to cover
  1470         // all the cards spanned by the object
  1471         end_idx += 1;
  1474       // Set the bits in the card BM for the cards spanned by this object.
  1475       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1477       // Add the size of this object to the number of marked bytes.
  1478       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1480       // Find the next marked object after this one.
  1481       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1484     // Mark the allocated-since-marking portion...
  1485     HeapWord* top = hr->top();
  1486     if (ntams < top) {
  1487       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1488       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1490       // Note: if we're looking at the last region in heap - top
  1491       // could be actually just beyond the end of the heap; end_idx
  1492       // will then correspond to a (non-existent) card that is also
  1493       // just beyond the heap.
  1494       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1495         // end of object is not card aligned - increment to cover
  1496         // all the cards spanned by the object
  1497         end_idx += 1;
  1499       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1501       // This definitely means the region has live objects.
  1502       set_bit_for_region(hr);
  1505     // Update the live region bitmap.
  1506     if (marked_bytes > 0) {
  1507       set_bit_for_region(hr);
  1510     // Set the marked bytes for the current region so that
  1511     // it can be queried by a calling verificiation routine
  1512     _region_marked_bytes = marked_bytes;
  1514     return false;
  1517   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1518 };
  1520 // Heap region closure used for verifying the counting data
  1521 // that was accumulated concurrently and aggregated during
  1522 // the remark pause. This closure is applied to the heap
  1523 // regions during the STW cleanup pause.
  1525 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1526   G1CollectedHeap* _g1h;
  1527   ConcurrentMark* _cm;
  1528   CalcLiveObjectsClosure _calc_cl;
  1529   BitMap* _region_bm;   // Region BM to be verified
  1530   BitMap* _card_bm;     // Card BM to be verified
  1531   bool _verbose;        // verbose output?
  1533   BitMap* _exp_region_bm; // Expected Region BM values
  1534   BitMap* _exp_card_bm;   // Expected card BM values
  1536   int _failures;
  1538 public:
  1539   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1540                                 BitMap* region_bm,
  1541                                 BitMap* card_bm,
  1542                                 BitMap* exp_region_bm,
  1543                                 BitMap* exp_card_bm,
  1544                                 bool verbose) :
  1545     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1546     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1547     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1548     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1549     _failures(0) { }
  1551   int failures() const { return _failures; }
  1553   bool doHeapRegion(HeapRegion* hr) {
  1554     if (hr->continuesHumongous()) {
  1555       // We will ignore these here and process them when their
  1556       // associated "starts humongous" region is processed (see
  1557       // set_bit_for_heap_region()). Note that we cannot rely on their
  1558       // associated "starts humongous" region to have their bit set to
  1559       // 1 since, due to the region chunking in the parallel region
  1560       // iteration, a "continues humongous" region might be visited
  1561       // before its associated "starts humongous".
  1562       return false;
  1565     int failures = 0;
  1567     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1568     // this region and set the corresponding bits in the expected region
  1569     // and card bitmaps.
  1570     bool res = _calc_cl.doHeapRegion(hr);
  1571     assert(res == false, "should be continuing");
  1573     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1574                     Mutex::_no_safepoint_check_flag);
  1576     // Verify the marked bytes for this region.
  1577     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1578     size_t act_marked_bytes = hr->next_marked_bytes();
  1580     // We're not OK if expected marked bytes > actual marked bytes. It means
  1581     // we have missed accounting some objects during the actual marking.
  1582     if (exp_marked_bytes > act_marked_bytes) {
  1583       if (_verbose) {
  1584         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1585                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1586                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1588       failures += 1;
  1591     // Verify the bit, for this region, in the actual and expected
  1592     // (which was just calculated) region bit maps.
  1593     // We're not OK if the bit in the calculated expected region
  1594     // bitmap is set and the bit in the actual region bitmap is not.
  1595     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1597     bool expected = _exp_region_bm->at(index);
  1598     bool actual = _region_bm->at(index);
  1599     if (expected && !actual) {
  1600       if (_verbose) {
  1601         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1602                                "expected: %s, actual: %s",
  1603                                hr->hrs_index(),
  1604                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1606       failures += 1;
  1609     // Verify that the card bit maps for the cards spanned by the current
  1610     // region match. We have an error if we have a set bit in the expected
  1611     // bit map and the corresponding bit in the actual bitmap is not set.
  1613     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1614     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1616     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1617       expected = _exp_card_bm->at(i);
  1618       actual = _card_bm->at(i);
  1620       if (expected && !actual) {
  1621         if (_verbose) {
  1622           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1623                                  "expected: %s, actual: %s",
  1624                                  hr->hrs_index(), i,
  1625                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1627         failures += 1;
  1631     if (failures > 0 && _verbose)  {
  1632       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1633                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1634                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1635                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1638     _failures += failures;
  1640     // We could stop iteration over the heap when we
  1641     // find the first violating region by returning true.
  1642     return false;
  1644 };
  1646 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1647 protected:
  1648   G1CollectedHeap* _g1h;
  1649   ConcurrentMark* _cm;
  1650   BitMap* _actual_region_bm;
  1651   BitMap* _actual_card_bm;
  1653   uint    _n_workers;
  1655   BitMap* _expected_region_bm;
  1656   BitMap* _expected_card_bm;
  1658   int  _failures;
  1659   bool _verbose;
  1661 public:
  1662   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1663                             BitMap* region_bm, BitMap* card_bm,
  1664                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1665     : AbstractGangTask("G1 verify final counting"),
  1666       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1667       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1668       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1669       _failures(0), _verbose(false),
  1670       _n_workers(0) {
  1671     assert(VerifyDuringGC, "don't call this otherwise");
  1673     // Use the value already set as the number of active threads
  1674     // in the call to run_task().
  1675     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1676       assert( _g1h->workers()->active_workers() > 0,
  1677         "Should have been previously set");
  1678       _n_workers = _g1h->workers()->active_workers();
  1679     } else {
  1680       _n_workers = 1;
  1683     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1684     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1686     _verbose = _cm->verbose_medium();
  1689   void work(uint worker_id) {
  1690     assert(worker_id < _n_workers, "invariant");
  1692     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1693                                             _actual_region_bm, _actual_card_bm,
  1694                                             _expected_region_bm,
  1695                                             _expected_card_bm,
  1696                                             _verbose);
  1698     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1699       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1700                                             worker_id,
  1701                                             _n_workers,
  1702                                             HeapRegion::VerifyCountClaimValue);
  1703     } else {
  1704       _g1h->heap_region_iterate(&verify_cl);
  1707     Atomic::add(verify_cl.failures(), &_failures);
  1710   int failures() const { return _failures; }
  1711 };
  1713 // Closure that finalizes the liveness counting data.
  1714 // Used during the cleanup pause.
  1715 // Sets the bits corresponding to the interval [NTAMS, top]
  1716 // (which contains the implicitly live objects) in the
  1717 // card liveness bitmap. Also sets the bit for each region,
  1718 // containing live data, in the region liveness bitmap.
  1720 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1721  public:
  1722   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1723                               BitMap* region_bm,
  1724                               BitMap* card_bm) :
  1725     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1727   bool doHeapRegion(HeapRegion* hr) {
  1729     if (hr->continuesHumongous()) {
  1730       // We will ignore these here and process them when their
  1731       // associated "starts humongous" region is processed (see
  1732       // set_bit_for_heap_region()). Note that we cannot rely on their
  1733       // associated "starts humongous" region to have their bit set to
  1734       // 1 since, due to the region chunking in the parallel region
  1735       // iteration, a "continues humongous" region might be visited
  1736       // before its associated "starts humongous".
  1737       return false;
  1740     HeapWord* ntams = hr->next_top_at_mark_start();
  1741     HeapWord* top   = hr->top();
  1743     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1745     // Mark the allocated-since-marking portion...
  1746     if (ntams < top) {
  1747       // This definitely means the region has live objects.
  1748       set_bit_for_region(hr);
  1750       // Now set the bits in the card bitmap for [ntams, top)
  1751       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1752       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1754       // Note: if we're looking at the last region in heap - top
  1755       // could be actually just beyond the end of the heap; end_idx
  1756       // will then correspond to a (non-existent) card that is also
  1757       // just beyond the heap.
  1758       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1759         // end of object is not card aligned - increment to cover
  1760         // all the cards spanned by the object
  1761         end_idx += 1;
  1764       assert(end_idx <= _card_bm->size(),
  1765              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1766                      end_idx, _card_bm->size()));
  1767       assert(start_idx < _card_bm->size(),
  1768              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1769                      start_idx, _card_bm->size()));
  1771       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1774     // Set the bit for the region if it contains live data
  1775     if (hr->next_marked_bytes() > 0) {
  1776       set_bit_for_region(hr);
  1779     return false;
  1781 };
  1783 class G1ParFinalCountTask: public AbstractGangTask {
  1784 protected:
  1785   G1CollectedHeap* _g1h;
  1786   ConcurrentMark* _cm;
  1787   BitMap* _actual_region_bm;
  1788   BitMap* _actual_card_bm;
  1790   uint    _n_workers;
  1792 public:
  1793   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1794     : AbstractGangTask("G1 final counting"),
  1795       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1796       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1797       _n_workers(0) {
  1798     // Use the value already set as the number of active threads
  1799     // in the call to run_task().
  1800     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1801       assert( _g1h->workers()->active_workers() > 0,
  1802         "Should have been previously set");
  1803       _n_workers = _g1h->workers()->active_workers();
  1804     } else {
  1805       _n_workers = 1;
  1809   void work(uint worker_id) {
  1810     assert(worker_id < _n_workers, "invariant");
  1812     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1813                                                 _actual_region_bm,
  1814                                                 _actual_card_bm);
  1816     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1817       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1818                                             worker_id,
  1819                                             _n_workers,
  1820                                             HeapRegion::FinalCountClaimValue);
  1821     } else {
  1822       _g1h->heap_region_iterate(&final_update_cl);
  1825 };
  1827 class G1ParNoteEndTask;
  1829 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1830   G1CollectedHeap* _g1;
  1831   size_t _max_live_bytes;
  1832   uint _regions_claimed;
  1833   size_t _freed_bytes;
  1834   FreeRegionList* _local_cleanup_list;
  1835   HeapRegionSetCount _old_regions_removed;
  1836   HeapRegionSetCount _humongous_regions_removed;
  1837   HRRSCleanupTask* _hrrs_cleanup_task;
  1838   double _claimed_region_time;
  1839   double _max_region_time;
  1841 public:
  1842   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1843                              FreeRegionList* local_cleanup_list,
  1844                              HRRSCleanupTask* hrrs_cleanup_task) :
  1845     _g1(g1),
  1846     _max_live_bytes(0), _regions_claimed(0),
  1847     _freed_bytes(0),
  1848     _claimed_region_time(0.0), _max_region_time(0.0),
  1849     _local_cleanup_list(local_cleanup_list),
  1850     _old_regions_removed(),
  1851     _humongous_regions_removed(),
  1852     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1854   size_t freed_bytes() { return _freed_bytes; }
  1855   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1856   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1858   bool doHeapRegion(HeapRegion *hr) {
  1859     if (hr->continuesHumongous()) {
  1860       return false;
  1862     // We use a claim value of zero here because all regions
  1863     // were claimed with value 1 in the FinalCount task.
  1864     _g1->reset_gc_time_stamps(hr);
  1865     double start = os::elapsedTime();
  1866     _regions_claimed++;
  1867     hr->note_end_of_marking();
  1868     _max_live_bytes += hr->max_live_bytes();
  1870     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1871       _freed_bytes += hr->used();
  1872       hr->set_containing_set(NULL);
  1873       if (hr->isHumongous()) {
  1874         assert(hr->startsHumongous(), "we should only see starts humongous");
  1875         _humongous_regions_removed.increment(1u, hr->capacity());
  1876         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1877       } else {
  1878         _old_regions_removed.increment(1u, hr->capacity());
  1879         _g1->free_region(hr, _local_cleanup_list, true);
  1881     } else {
  1882       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1885     double region_time = (os::elapsedTime() - start);
  1886     _claimed_region_time += region_time;
  1887     if (region_time > _max_region_time) {
  1888       _max_region_time = region_time;
  1890     return false;
  1893   size_t max_live_bytes() { return _max_live_bytes; }
  1894   uint regions_claimed() { return _regions_claimed; }
  1895   double claimed_region_time_sec() { return _claimed_region_time; }
  1896   double max_region_time_sec() { return _max_region_time; }
  1897 };
  1899 class G1ParNoteEndTask: public AbstractGangTask {
  1900   friend class G1NoteEndOfConcMarkClosure;
  1902 protected:
  1903   G1CollectedHeap* _g1h;
  1904   size_t _max_live_bytes;
  1905   size_t _freed_bytes;
  1906   FreeRegionList* _cleanup_list;
  1908 public:
  1909   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1910                    FreeRegionList* cleanup_list) :
  1911     AbstractGangTask("G1 note end"), _g1h(g1h),
  1912     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1914   void work(uint worker_id) {
  1915     double start = os::elapsedTime();
  1916     FreeRegionList local_cleanup_list("Local Cleanup List");
  1917     HRRSCleanupTask hrrs_cleanup_task;
  1918     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1919                                            &hrrs_cleanup_task);
  1920     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1921       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1922                                             _g1h->workers()->active_workers(),
  1923                                             HeapRegion::NoteEndClaimValue);
  1924     } else {
  1925       _g1h->heap_region_iterate(&g1_note_end);
  1927     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1929     // Now update the lists
  1930     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1932       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1933       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1934       _max_live_bytes += g1_note_end.max_live_bytes();
  1935       _freed_bytes += g1_note_end.freed_bytes();
  1937       // If we iterate over the global cleanup list at the end of
  1938       // cleanup to do this printing we will not guarantee to only
  1939       // generate output for the newly-reclaimed regions (the list
  1940       // might not be empty at the beginning of cleanup; we might
  1941       // still be working on its previous contents). So we do the
  1942       // printing here, before we append the new regions to the global
  1943       // cleanup list.
  1945       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1946       if (hr_printer->is_active()) {
  1947         FreeRegionListIterator iter(&local_cleanup_list);
  1948         while (iter.more_available()) {
  1949           HeapRegion* hr = iter.get_next();
  1950           hr_printer->cleanup(hr);
  1954       _cleanup_list->add_ordered(&local_cleanup_list);
  1955       assert(local_cleanup_list.is_empty(), "post-condition");
  1957       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1960   size_t max_live_bytes() { return _max_live_bytes; }
  1961   size_t freed_bytes() { return _freed_bytes; }
  1962 };
  1964 class G1ParScrubRemSetTask: public AbstractGangTask {
  1965 protected:
  1966   G1RemSet* _g1rs;
  1967   BitMap* _region_bm;
  1968   BitMap* _card_bm;
  1969 public:
  1970   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1971                        BitMap* region_bm, BitMap* card_bm) :
  1972     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1973     _region_bm(region_bm), _card_bm(card_bm) { }
  1975   void work(uint worker_id) {
  1976     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1977       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1978                        HeapRegion::ScrubRemSetClaimValue);
  1979     } else {
  1980       _g1rs->scrub(_region_bm, _card_bm);
  1984 };
  1986 void ConcurrentMark::cleanup() {
  1987   // world is stopped at this checkpoint
  1988   assert(SafepointSynchronize::is_at_safepoint(),
  1989          "world should be stopped");
  1990   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1992   // If a full collection has happened, we shouldn't do this.
  1993   if (has_aborted()) {
  1994     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1995     return;
  1998   g1h->verify_region_sets_optional();
  2000   if (VerifyDuringGC) {
  2001     HandleMark hm;  // handle scope
  2002     Universe::heap()->prepare_for_verify();
  2003     Universe::verify(VerifyOption_G1UsePrevMarking,
  2004                      " VerifyDuringGC:(before)");
  2007   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2008   g1p->record_concurrent_mark_cleanup_start();
  2010   double start = os::elapsedTime();
  2012   HeapRegionRemSet::reset_for_cleanup_tasks();
  2014   uint n_workers;
  2016   // Do counting once more with the world stopped for good measure.
  2017   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2019   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2020    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2021            "sanity check");
  2023     g1h->set_par_threads();
  2024     n_workers = g1h->n_par_threads();
  2025     assert(g1h->n_par_threads() == n_workers,
  2026            "Should not have been reset");
  2027     g1h->workers()->run_task(&g1_par_count_task);
  2028     // Done with the parallel phase so reset to 0.
  2029     g1h->set_par_threads(0);
  2031     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2032            "sanity check");
  2033   } else {
  2034     n_workers = 1;
  2035     g1_par_count_task.work(0);
  2038   if (VerifyDuringGC) {
  2039     // Verify that the counting data accumulated during marking matches
  2040     // that calculated by walking the marking bitmap.
  2042     // Bitmaps to hold expected values
  2043     BitMap expected_region_bm(_region_bm.size(), true);
  2044     BitMap expected_card_bm(_card_bm.size(), true);
  2046     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2047                                                  &_region_bm,
  2048                                                  &_card_bm,
  2049                                                  &expected_region_bm,
  2050                                                  &expected_card_bm);
  2052     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2053       g1h->set_par_threads((int)n_workers);
  2054       g1h->workers()->run_task(&g1_par_verify_task);
  2055       // Done with the parallel phase so reset to 0.
  2056       g1h->set_par_threads(0);
  2058       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2059              "sanity check");
  2060     } else {
  2061       g1_par_verify_task.work(0);
  2064     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2067   size_t start_used_bytes = g1h->used();
  2068   g1h->set_marking_complete();
  2070   double count_end = os::elapsedTime();
  2071   double this_final_counting_time = (count_end - start);
  2072   _total_counting_time += this_final_counting_time;
  2074   if (G1PrintRegionLivenessInfo) {
  2075     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2076     _g1h->heap_region_iterate(&cl);
  2079   // Install newly created mark bitMap as "prev".
  2080   swapMarkBitMaps();
  2082   g1h->reset_gc_time_stamp();
  2084   // Note end of marking in all heap regions.
  2085   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2086   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2087     g1h->set_par_threads((int)n_workers);
  2088     g1h->workers()->run_task(&g1_par_note_end_task);
  2089     g1h->set_par_threads(0);
  2091     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2092            "sanity check");
  2093   } else {
  2094     g1_par_note_end_task.work(0);
  2096   g1h->check_gc_time_stamps();
  2098   if (!cleanup_list_is_empty()) {
  2099     // The cleanup list is not empty, so we'll have to process it
  2100     // concurrently. Notify anyone else that might be wanting free
  2101     // regions that there will be more free regions coming soon.
  2102     g1h->set_free_regions_coming();
  2105   // call below, since it affects the metric by which we sort the heap
  2106   // regions.
  2107   if (G1ScrubRemSets) {
  2108     double rs_scrub_start = os::elapsedTime();
  2109     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2110     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2111       g1h->set_par_threads((int)n_workers);
  2112       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2113       g1h->set_par_threads(0);
  2115       assert(g1h->check_heap_region_claim_values(
  2116                                             HeapRegion::ScrubRemSetClaimValue),
  2117              "sanity check");
  2118     } else {
  2119       g1_par_scrub_rs_task.work(0);
  2122     double rs_scrub_end = os::elapsedTime();
  2123     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2124     _total_rs_scrub_time += this_rs_scrub_time;
  2127   // this will also free any regions totally full of garbage objects,
  2128   // and sort the regions.
  2129   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2131   // Statistics.
  2132   double end = os::elapsedTime();
  2133   _cleanup_times.add((end - start) * 1000.0);
  2135   if (G1Log::fine()) {
  2136     g1h->print_size_transition(gclog_or_tty,
  2137                                start_used_bytes,
  2138                                g1h->used(),
  2139                                g1h->capacity());
  2142   // Clean up will have freed any regions completely full of garbage.
  2143   // Update the soft reference policy with the new heap occupancy.
  2144   Universe::update_heap_info_at_gc();
  2146   if (VerifyDuringGC) {
  2147     HandleMark hm;  // handle scope
  2148     Universe::heap()->prepare_for_verify();
  2149     Universe::verify(VerifyOption_G1UsePrevMarking,
  2150                      " VerifyDuringGC:(after)");
  2153   g1h->verify_region_sets_optional();
  2155   // We need to make this be a "collection" so any collection pause that
  2156   // races with it goes around and waits for completeCleanup to finish.
  2157   g1h->increment_total_collections();
  2159   // Clean out dead classes and update Metaspace sizes.
  2160   ClassLoaderDataGraph::purge();
  2161   MetaspaceGC::compute_new_size();
  2163   // We reclaimed old regions so we should calculate the sizes to make
  2164   // sure we update the old gen/space data.
  2165   g1h->g1mm()->update_sizes();
  2167   g1h->trace_heap_after_concurrent_cycle();
  2170 void ConcurrentMark::completeCleanup() {
  2171   if (has_aborted()) return;
  2173   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2175   _cleanup_list.verify_optional();
  2176   FreeRegionList tmp_free_list("Tmp Free List");
  2178   if (G1ConcRegionFreeingVerbose) {
  2179     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2180                            "cleanup list has %u entries",
  2181                            _cleanup_list.length());
  2184   // Noone else should be accessing the _cleanup_list at this point,
  2185   // so it's not necessary to take any locks
  2186   while (!_cleanup_list.is_empty()) {
  2187     HeapRegion* hr = _cleanup_list.remove_head();
  2188     assert(hr != NULL, "Got NULL from a non-empty list");
  2189     hr->par_clear();
  2190     tmp_free_list.add_ordered(hr);
  2192     // Instead of adding one region at a time to the secondary_free_list,
  2193     // we accumulate them in the local list and move them a few at a
  2194     // time. This also cuts down on the number of notify_all() calls
  2195     // we do during this process. We'll also append the local list when
  2196     // _cleanup_list is empty (which means we just removed the last
  2197     // region from the _cleanup_list).
  2198     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2199         _cleanup_list.is_empty()) {
  2200       if (G1ConcRegionFreeingVerbose) {
  2201         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2202                                "appending %u entries to the secondary_free_list, "
  2203                                "cleanup list still has %u entries",
  2204                                tmp_free_list.length(),
  2205                                _cleanup_list.length());
  2209         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2210         g1h->secondary_free_list_add(&tmp_free_list);
  2211         SecondaryFreeList_lock->notify_all();
  2214       if (G1StressConcRegionFreeing) {
  2215         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2216           os::sleep(Thread::current(), (jlong) 1, false);
  2221   assert(tmp_free_list.is_empty(), "post-condition");
  2224 // Supporting Object and Oop closures for reference discovery
  2225 // and processing in during marking
  2227 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2228   HeapWord* addr = (HeapWord*)obj;
  2229   return addr != NULL &&
  2230          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2233 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2234 // Uses the CMTask associated with a worker thread (for serial reference
  2235 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2236 // trace referent objects.
  2237 //
  2238 // Using the CMTask and embedded local queues avoids having the worker
  2239 // threads operating on the global mark stack. This reduces the risk
  2240 // of overflowing the stack - which we would rather avoid at this late
  2241 // state. Also using the tasks' local queues removes the potential
  2242 // of the workers interfering with each other that could occur if
  2243 // operating on the global stack.
  2245 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2246   ConcurrentMark* _cm;
  2247   CMTask*         _task;
  2248   int             _ref_counter_limit;
  2249   int             _ref_counter;
  2250   bool            _is_serial;
  2251  public:
  2252   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2253     _cm(cm), _task(task), _is_serial(is_serial),
  2254     _ref_counter_limit(G1RefProcDrainInterval) {
  2255     assert(_ref_counter_limit > 0, "sanity");
  2256     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2257     _ref_counter = _ref_counter_limit;
  2260   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2261   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2263   template <class T> void do_oop_work(T* p) {
  2264     if (!_cm->has_overflown()) {
  2265       oop obj = oopDesc::load_decode_heap_oop(p);
  2266       if (_cm->verbose_high()) {
  2267         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2268                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2269                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2272       _task->deal_with_reference(obj);
  2273       _ref_counter--;
  2275       if (_ref_counter == 0) {
  2276         // We have dealt with _ref_counter_limit references, pushing them
  2277         // and objects reachable from them on to the local stack (and
  2278         // possibly the global stack). Call CMTask::do_marking_step() to
  2279         // process these entries.
  2280         //
  2281         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2282         // there's nothing more to do (i.e. we're done with the entries that
  2283         // were pushed as a result of the CMTask::deal_with_reference() calls
  2284         // above) or we overflow.
  2285         //
  2286         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2287         // flag while there may still be some work to do. (See the comment at
  2288         // the beginning of CMTask::do_marking_step() for those conditions -
  2289         // one of which is reaching the specified time target.) It is only
  2290         // when CMTask::do_marking_step() returns without setting the
  2291         // has_aborted() flag that the marking step has completed.
  2292         do {
  2293           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2294           _task->do_marking_step(mark_step_duration_ms,
  2295                                  false      /* do_termination */,
  2296                                  _is_serial);
  2297         } while (_task->has_aborted() && !_cm->has_overflown());
  2298         _ref_counter = _ref_counter_limit;
  2300     } else {
  2301       if (_cm->verbose_high()) {
  2302          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2306 };
  2308 // 'Drain' oop closure used by both serial and parallel reference processing.
  2309 // Uses the CMTask associated with a given worker thread (for serial
  2310 // reference processing the CMtask for worker 0 is used). Calls the
  2311 // do_marking_step routine, with an unbelievably large timeout value,
  2312 // to drain the marking data structures of the remaining entries
  2313 // added by the 'keep alive' oop closure above.
  2315 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2316   ConcurrentMark* _cm;
  2317   CMTask*         _task;
  2318   bool            _is_serial;
  2319  public:
  2320   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2321     _cm(cm), _task(task), _is_serial(is_serial) {
  2322     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2325   void do_void() {
  2326     do {
  2327       if (_cm->verbose_high()) {
  2328         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2329                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2332       // We call CMTask::do_marking_step() to completely drain the local
  2333       // and global marking stacks of entries pushed by the 'keep alive'
  2334       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2335       //
  2336       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2337       // if there's nothing more to do (i.e. we'completely drained the
  2338       // entries that were pushed as a a result of applying the 'keep alive'
  2339       // closure to the entries on the discovered ref lists) or we overflow
  2340       // the global marking stack.
  2341       //
  2342       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2343       // flag while there may still be some work to do. (See the comment at
  2344       // the beginning of CMTask::do_marking_step() for those conditions -
  2345       // one of which is reaching the specified time target.) It is only
  2346       // when CMTask::do_marking_step() returns without setting the
  2347       // has_aborted() flag that the marking step has completed.
  2349       _task->do_marking_step(1000000000.0 /* something very large */,
  2350                              true         /* do_termination */,
  2351                              _is_serial);
  2352     } while (_task->has_aborted() && !_cm->has_overflown());
  2354 };
  2356 // Implementation of AbstractRefProcTaskExecutor for parallel
  2357 // reference processing at the end of G1 concurrent marking
  2359 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2360 private:
  2361   G1CollectedHeap* _g1h;
  2362   ConcurrentMark*  _cm;
  2363   WorkGang*        _workers;
  2364   int              _active_workers;
  2366 public:
  2367   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2368                         ConcurrentMark* cm,
  2369                         WorkGang* workers,
  2370                         int n_workers) :
  2371     _g1h(g1h), _cm(cm),
  2372     _workers(workers), _active_workers(n_workers) { }
  2374   // Executes the given task using concurrent marking worker threads.
  2375   virtual void execute(ProcessTask& task);
  2376   virtual void execute(EnqueueTask& task);
  2377 };
  2379 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2380   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2381   ProcessTask&     _proc_task;
  2382   G1CollectedHeap* _g1h;
  2383   ConcurrentMark*  _cm;
  2385 public:
  2386   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2387                      G1CollectedHeap* g1h,
  2388                      ConcurrentMark* cm) :
  2389     AbstractGangTask("Process reference objects in parallel"),
  2390     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2391     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2392     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2395   virtual void work(uint worker_id) {
  2396     CMTask* task = _cm->task(worker_id);
  2397     G1CMIsAliveClosure g1_is_alive(_g1h);
  2398     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2399     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2401     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2403 };
  2405 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2406   assert(_workers != NULL, "Need parallel worker threads.");
  2407   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2409   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2411   // We need to reset the concurrency level before each
  2412   // proxy task execution, so that the termination protocol
  2413   // and overflow handling in CMTask::do_marking_step() knows
  2414   // how many workers to wait for.
  2415   _cm->set_concurrency(_active_workers);
  2416   _g1h->set_par_threads(_active_workers);
  2417   _workers->run_task(&proc_task_proxy);
  2418   _g1h->set_par_threads(0);
  2421 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2422   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2423   EnqueueTask& _enq_task;
  2425 public:
  2426   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2427     AbstractGangTask("Enqueue reference objects in parallel"),
  2428     _enq_task(enq_task) { }
  2430   virtual void work(uint worker_id) {
  2431     _enq_task.work(worker_id);
  2433 };
  2435 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2436   assert(_workers != NULL, "Need parallel worker threads.");
  2437   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2439   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2441   // Not strictly necessary but...
  2442   //
  2443   // We need to reset the concurrency level before each
  2444   // proxy task execution, so that the termination protocol
  2445   // and overflow handling in CMTask::do_marking_step() knows
  2446   // how many workers to wait for.
  2447   _cm->set_concurrency(_active_workers);
  2448   _g1h->set_par_threads(_active_workers);
  2449   _workers->run_task(&enq_task_proxy);
  2450   _g1h->set_par_threads(0);
  2453 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2454   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2457 // Helper class to get rid of some boilerplate code.
  2458 class G1RemarkGCTraceTime : public GCTraceTime {
  2459   static bool doit_and_prepend(bool doit) {
  2460     if (doit) {
  2461       gclog_or_tty->put(' ');
  2463     return doit;
  2466  public:
  2467   G1RemarkGCTraceTime(const char* title, bool doit)
  2468     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2469         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2471 };
  2473 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2474   if (has_overflown()) {
  2475     // Skip processing the discovered references if we have
  2476     // overflown the global marking stack. Reference objects
  2477     // only get discovered once so it is OK to not
  2478     // de-populate the discovered reference lists. We could have,
  2479     // but the only benefit would be that, when marking restarts,
  2480     // less reference objects are discovered.
  2481     return;
  2484   ResourceMark rm;
  2485   HandleMark   hm;
  2487   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2489   // Is alive closure.
  2490   G1CMIsAliveClosure g1_is_alive(g1h);
  2492   // Inner scope to exclude the cleaning of the string and symbol
  2493   // tables from the displayed time.
  2495     if (G1Log::finer()) {
  2496       gclog_or_tty->put(' ');
  2498     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2500     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2502     // See the comment in G1CollectedHeap::ref_processing_init()
  2503     // about how reference processing currently works in G1.
  2505     // Set the soft reference policy
  2506     rp->setup_policy(clear_all_soft_refs);
  2507     assert(_markStack.isEmpty(), "mark stack should be empty");
  2509     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2510     // in serial reference processing. Note these closures are also
  2511     // used for serially processing (by the the current thread) the
  2512     // JNI references during parallel reference processing.
  2513     //
  2514     // These closures do not need to synchronize with the worker
  2515     // threads involved in parallel reference processing as these
  2516     // instances are executed serially by the current thread (e.g.
  2517     // reference processing is not multi-threaded and is thus
  2518     // performed by the current thread instead of a gang worker).
  2519     //
  2520     // The gang tasks involved in parallel reference procssing create
  2521     // their own instances of these closures, which do their own
  2522     // synchronization among themselves.
  2523     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2524     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2526     // We need at least one active thread. If reference processing
  2527     // is not multi-threaded we use the current (VMThread) thread,
  2528     // otherwise we use the work gang from the G1CollectedHeap and
  2529     // we utilize all the worker threads we can.
  2530     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2531     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2532     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2534     // Parallel processing task executor.
  2535     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2536                                               g1h->workers(), active_workers);
  2537     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2539     // Set the concurrency level. The phase was already set prior to
  2540     // executing the remark task.
  2541     set_concurrency(active_workers);
  2543     // Set the degree of MT processing here.  If the discovery was done MT,
  2544     // the number of threads involved during discovery could differ from
  2545     // the number of active workers.  This is OK as long as the discovered
  2546     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2547     rp->set_active_mt_degree(active_workers);
  2549     // Process the weak references.
  2550     const ReferenceProcessorStats& stats =
  2551         rp->process_discovered_references(&g1_is_alive,
  2552                                           &g1_keep_alive,
  2553                                           &g1_drain_mark_stack,
  2554                                           executor,
  2555                                           g1h->gc_timer_cm(),
  2556                                           concurrent_gc_id());
  2557     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2559     // The do_oop work routines of the keep_alive and drain_marking_stack
  2560     // oop closures will set the has_overflown flag if we overflow the
  2561     // global marking stack.
  2563     assert(_markStack.overflow() || _markStack.isEmpty(),
  2564             "mark stack should be empty (unless it overflowed)");
  2566     if (_markStack.overflow()) {
  2567       // This should have been done already when we tried to push an
  2568       // entry on to the global mark stack. But let's do it again.
  2569       set_has_overflown();
  2572     assert(rp->num_q() == active_workers, "why not");
  2574     rp->enqueue_discovered_references(executor);
  2576     rp->verify_no_references_recorded();
  2577     assert(!rp->discovery_enabled(), "Post condition");
  2580   if (has_overflown()) {
  2581     // We can not trust g1_is_alive if the marking stack overflowed
  2582     return;
  2585   assert(_markStack.isEmpty(), "Marking should have completed");
  2587   // Unload Klasses, String, Symbols, Code Cache, etc.
  2589   G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2591   bool purged_classes;
  2594     G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2595     purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
  2599     G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2600     weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2603   if (G1StringDedup::is_enabled()) {
  2604     G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2605     G1StringDedup::unlink(&g1_is_alive);
  2609 void ConcurrentMark::swapMarkBitMaps() {
  2610   CMBitMapRO* temp = _prevMarkBitMap;
  2611   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2612   _nextMarkBitMap  = (CMBitMap*)  temp;
  2615 class CMObjectClosure;
  2617 // Closure for iterating over objects, currently only used for
  2618 // processing SATB buffers.
  2619 class CMObjectClosure : public ObjectClosure {
  2620 private:
  2621   CMTask* _task;
  2623 public:
  2624   void do_object(oop obj) {
  2625     _task->deal_with_reference(obj);
  2628   CMObjectClosure(CMTask* task) : _task(task) { }
  2629 };
  2631 class G1RemarkThreadsClosure : public ThreadClosure {
  2632   CMObjectClosure _cm_obj;
  2633   G1CMOopClosure _cm_cl;
  2634   MarkingCodeBlobClosure _code_cl;
  2635   int _thread_parity;
  2636   bool _is_par;
  2638  public:
  2639   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2640     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2641     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2643   void do_thread(Thread* thread) {
  2644     if (thread->is_Java_thread()) {
  2645       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2646         JavaThread* jt = (JavaThread*)thread;
  2648         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2649         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2650         // * Alive if on the stack of an executing method
  2651         // * Weakly reachable otherwise
  2652         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2653         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2654         jt->nmethods_do(&_code_cl);
  2656         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
  2658     } else if (thread->is_VM_thread()) {
  2659       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2660         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
  2664 };
  2666 class CMRemarkTask: public AbstractGangTask {
  2667 private:
  2668   ConcurrentMark* _cm;
  2669   bool            _is_serial;
  2670 public:
  2671   void work(uint worker_id) {
  2672     // Since all available tasks are actually started, we should
  2673     // only proceed if we're supposed to be actived.
  2674     if (worker_id < _cm->active_tasks()) {
  2675       CMTask* task = _cm->task(worker_id);
  2676       task->record_start_time();
  2678         ResourceMark rm;
  2679         HandleMark hm;
  2681         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2682         Threads::threads_do(&threads_f);
  2685       do {
  2686         task->do_marking_step(1000000000.0 /* something very large */,
  2687                               true         /* do_termination       */,
  2688                               _is_serial);
  2689       } while (task->has_aborted() && !_cm->has_overflown());
  2690       // If we overflow, then we do not want to restart. We instead
  2691       // want to abort remark and do concurrent marking again.
  2692       task->record_end_time();
  2696   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2697     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2698     _cm->terminator()->reset_for_reuse(active_workers);
  2700 };
  2702 void ConcurrentMark::checkpointRootsFinalWork() {
  2703   ResourceMark rm;
  2704   HandleMark   hm;
  2705   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2707   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2709   g1h->ensure_parsability(false);
  2711   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2712     G1CollectedHeap::StrongRootsScope srs(g1h);
  2713     // this is remark, so we'll use up all active threads
  2714     uint active_workers = g1h->workers()->active_workers();
  2715     if (active_workers == 0) {
  2716       assert(active_workers > 0, "Should have been set earlier");
  2717       active_workers = (uint) ParallelGCThreads;
  2718       g1h->workers()->set_active_workers(active_workers);
  2720     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2721     // Leave _parallel_marking_threads at it's
  2722     // value originally calculated in the ConcurrentMark
  2723     // constructor and pass values of the active workers
  2724     // through the gang in the task.
  2726     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2727     // We will start all available threads, even if we decide that the
  2728     // active_workers will be fewer. The extra ones will just bail out
  2729     // immediately.
  2730     g1h->set_par_threads(active_workers);
  2731     g1h->workers()->run_task(&remarkTask);
  2732     g1h->set_par_threads(0);
  2733   } else {
  2734     G1CollectedHeap::StrongRootsScope srs(g1h);
  2735     uint active_workers = 1;
  2736     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2738     // Note - if there's no work gang then the VMThread will be
  2739     // the thread to execute the remark - serially. We have
  2740     // to pass true for the is_serial parameter so that
  2741     // CMTask::do_marking_step() doesn't enter the sync
  2742     // barriers in the event of an overflow. Doing so will
  2743     // cause an assert that the current thread is not a
  2744     // concurrent GC thread.
  2745     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2746     remarkTask.work(0);
  2748   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2749   guarantee(has_overflown() ||
  2750             satb_mq_set.completed_buffers_num() == 0,
  2751             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2752                     BOOL_TO_STR(has_overflown()),
  2753                     satb_mq_set.completed_buffers_num()));
  2755   print_stats();
  2758 #ifndef PRODUCT
  2760 class PrintReachableOopClosure: public OopClosure {
  2761 private:
  2762   G1CollectedHeap* _g1h;
  2763   outputStream*    _out;
  2764   VerifyOption     _vo;
  2765   bool             _all;
  2767 public:
  2768   PrintReachableOopClosure(outputStream* out,
  2769                            VerifyOption  vo,
  2770                            bool          all) :
  2771     _g1h(G1CollectedHeap::heap()),
  2772     _out(out), _vo(vo), _all(all) { }
  2774   void do_oop(narrowOop* p) { do_oop_work(p); }
  2775   void do_oop(      oop* p) { do_oop_work(p); }
  2777   template <class T> void do_oop_work(T* p) {
  2778     oop         obj = oopDesc::load_decode_heap_oop(p);
  2779     const char* str = NULL;
  2780     const char* str2 = "";
  2782     if (obj == NULL) {
  2783       str = "";
  2784     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2785       str = " O";
  2786     } else {
  2787       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2788       guarantee(hr != NULL, "invariant");
  2789       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2790       bool marked = _g1h->is_marked(obj, _vo);
  2792       if (over_tams) {
  2793         str = " >";
  2794         if (marked) {
  2795           str2 = " AND MARKED";
  2797       } else if (marked) {
  2798         str = " M";
  2799       } else {
  2800         str = " NOT";
  2804     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2805                    p2i(p), p2i((void*) obj), str, str2);
  2807 };
  2809 class PrintReachableObjectClosure : public ObjectClosure {
  2810 private:
  2811   G1CollectedHeap* _g1h;
  2812   outputStream*    _out;
  2813   VerifyOption     _vo;
  2814   bool             _all;
  2815   HeapRegion*      _hr;
  2817 public:
  2818   PrintReachableObjectClosure(outputStream* out,
  2819                               VerifyOption  vo,
  2820                               bool          all,
  2821                               HeapRegion*   hr) :
  2822     _g1h(G1CollectedHeap::heap()),
  2823     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2825   void do_object(oop o) {
  2826     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2827     bool marked = _g1h->is_marked(o, _vo);
  2828     bool print_it = _all || over_tams || marked;
  2830     if (print_it) {
  2831       _out->print_cr(" "PTR_FORMAT"%s",
  2832                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2833       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2834       o->oop_iterate_no_header(&oopCl);
  2837 };
  2839 class PrintReachableRegionClosure : public HeapRegionClosure {
  2840 private:
  2841   G1CollectedHeap* _g1h;
  2842   outputStream*    _out;
  2843   VerifyOption     _vo;
  2844   bool             _all;
  2846 public:
  2847   bool doHeapRegion(HeapRegion* hr) {
  2848     HeapWord* b = hr->bottom();
  2849     HeapWord* e = hr->end();
  2850     HeapWord* t = hr->top();
  2851     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2852     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2853                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2854     _out->cr();
  2856     HeapWord* from = b;
  2857     HeapWord* to   = t;
  2859     if (to > from) {
  2860       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2861       _out->cr();
  2862       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2863       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2864       _out->cr();
  2867     return false;
  2870   PrintReachableRegionClosure(outputStream* out,
  2871                               VerifyOption  vo,
  2872                               bool          all) :
  2873     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2874 };
  2876 void ConcurrentMark::print_reachable(const char* str,
  2877                                      VerifyOption vo,
  2878                                      bool all) {
  2879   gclog_or_tty->cr();
  2880   gclog_or_tty->print_cr("== Doing heap dump... ");
  2882   if (G1PrintReachableBaseFile == NULL) {
  2883     gclog_or_tty->print_cr("  #### error: no base file defined");
  2884     return;
  2887   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2888       (JVM_MAXPATHLEN - 1)) {
  2889     gclog_or_tty->print_cr("  #### error: file name too long");
  2890     return;
  2893   char file_name[JVM_MAXPATHLEN];
  2894   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2895   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2897   fileStream fout(file_name);
  2898   if (!fout.is_open()) {
  2899     gclog_or_tty->print_cr("  #### error: could not open file");
  2900     return;
  2903   outputStream* out = &fout;
  2904   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2905   out->cr();
  2907   out->print_cr("--- ITERATING OVER REGIONS");
  2908   out->cr();
  2909   PrintReachableRegionClosure rcl(out, vo, all);
  2910   _g1h->heap_region_iterate(&rcl);
  2911   out->cr();
  2913   gclog_or_tty->print_cr("  done");
  2914   gclog_or_tty->flush();
  2917 #endif // PRODUCT
  2919 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2920   // Note we are overriding the read-only view of the prev map here, via
  2921   // the cast.
  2922   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2925 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2926   _nextMarkBitMap->clearRange(mr);
  2929 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2930   clearRangePrevBitmap(mr);
  2931   clearRangeNextBitmap(mr);
  2934 HeapRegion*
  2935 ConcurrentMark::claim_region(uint worker_id) {
  2936   // "checkpoint" the finger
  2937   HeapWord* finger = _finger;
  2939   // _heap_end will not change underneath our feet; it only changes at
  2940   // yield points.
  2941   while (finger < _heap_end) {
  2942     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2944     // Note on how this code handles humongous regions. In the
  2945     // normal case the finger will reach the start of a "starts
  2946     // humongous" (SH) region. Its end will either be the end of the
  2947     // last "continues humongous" (CH) region in the sequence, or the
  2948     // standard end of the SH region (if the SH is the only region in
  2949     // the sequence). That way claim_region() will skip over the CH
  2950     // regions. However, there is a subtle race between a CM thread
  2951     // executing this method and a mutator thread doing a humongous
  2952     // object allocation. The two are not mutually exclusive as the CM
  2953     // thread does not need to hold the Heap_lock when it gets
  2954     // here. So there is a chance that claim_region() will come across
  2955     // a free region that's in the progress of becoming a SH or a CH
  2956     // region. In the former case, it will either
  2957     //   a) Miss the update to the region's end, in which case it will
  2958     //      visit every subsequent CH region, will find their bitmaps
  2959     //      empty, and do nothing, or
  2960     //   b) Will observe the update of the region's end (in which case
  2961     //      it will skip the subsequent CH regions).
  2962     // If it comes across a region that suddenly becomes CH, the
  2963     // scenario will be similar to b). So, the race between
  2964     // claim_region() and a humongous object allocation might force us
  2965     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2966     // iterations) but it should not introduce and correctness issues.
  2967     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  2968     HeapWord*   bottom        = curr_region->bottom();
  2969     HeapWord*   end           = curr_region->end();
  2970     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2972     if (verbose_low()) {
  2973       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2974                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2975                              "limit = "PTR_FORMAT,
  2976                              worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  2979     // Is the gap between reading the finger and doing the CAS too long?
  2980     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2981     if (res == finger) {
  2982       // we succeeded
  2984       // notice that _finger == end cannot be guaranteed here since,
  2985       // someone else might have moved the finger even further
  2986       assert(_finger >= end, "the finger should have moved forward");
  2988       if (verbose_low()) {
  2989         gclog_or_tty->print_cr("[%u] we were successful with region = "
  2990                                PTR_FORMAT, worker_id, p2i(curr_region));
  2993       if (limit > bottom) {
  2994         if (verbose_low()) {
  2995           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  2996                                  "returning it ", worker_id, p2i(curr_region));
  2998         return curr_region;
  2999       } else {
  3000         assert(limit == bottom,
  3001                "the region limit should be at bottom");
  3002         if (verbose_low()) {
  3003           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  3004                                  "returning NULL", worker_id, p2i(curr_region));
  3006         // we return NULL and the caller should try calling
  3007         // claim_region() again.
  3008         return NULL;
  3010     } else {
  3011       assert(_finger > finger, "the finger should have moved forward");
  3012       if (verbose_low()) {
  3013         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3014                                "global finger = "PTR_FORMAT", "
  3015                                "our finger = "PTR_FORMAT,
  3016                                worker_id, p2i(_finger), p2i(finger));
  3019       // read it again
  3020       finger = _finger;
  3024   return NULL;
  3027 #ifndef PRODUCT
  3028 enum VerifyNoCSetOopsPhase {
  3029   VerifyNoCSetOopsStack,
  3030   VerifyNoCSetOopsQueues,
  3031   VerifyNoCSetOopsSATBCompleted,
  3032   VerifyNoCSetOopsSATBThread
  3033 };
  3035 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3036 private:
  3037   G1CollectedHeap* _g1h;
  3038   VerifyNoCSetOopsPhase _phase;
  3039   int _info;
  3041   const char* phase_str() {
  3042     switch (_phase) {
  3043     case VerifyNoCSetOopsStack:         return "Stack";
  3044     case VerifyNoCSetOopsQueues:        return "Queue";
  3045     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3046     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3047     default:                            ShouldNotReachHere();
  3049     return NULL;
  3052   void do_object_work(oop obj) {
  3053     guarantee(!_g1h->obj_in_cs(obj),
  3054               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3055                       p2i((void*) obj), phase_str(), _info));
  3058 public:
  3059   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3061   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3062     _phase = phase;
  3063     _info = info;
  3066   virtual void do_oop(oop* p) {
  3067     oop obj = oopDesc::load_decode_heap_oop(p);
  3068     do_object_work(obj);
  3071   virtual void do_oop(narrowOop* p) {
  3072     // We should not come across narrow oops while scanning marking
  3073     // stacks and SATB buffers.
  3074     ShouldNotReachHere();
  3077   virtual void do_object(oop obj) {
  3078     do_object_work(obj);
  3080 };
  3082 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3083                                          bool verify_enqueued_buffers,
  3084                                          bool verify_thread_buffers,
  3085                                          bool verify_fingers) {
  3086   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3087   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3088     return;
  3091   VerifyNoCSetOopsClosure cl;
  3093   if (verify_stacks) {
  3094     // Verify entries on the global mark stack
  3095     cl.set_phase(VerifyNoCSetOopsStack);
  3096     _markStack.oops_do(&cl);
  3098     // Verify entries on the task queues
  3099     for (uint i = 0; i < _max_worker_id; i += 1) {
  3100       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3101       CMTaskQueue* queue = _task_queues->queue(i);
  3102       queue->oops_do(&cl);
  3106   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3108   // Verify entries on the enqueued SATB buffers
  3109   if (verify_enqueued_buffers) {
  3110     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3111     satb_qs.iterate_completed_buffers_read_only(&cl);
  3114   // Verify entries on the per-thread SATB buffers
  3115   if (verify_thread_buffers) {
  3116     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3117     satb_qs.iterate_thread_buffers_read_only(&cl);
  3120   if (verify_fingers) {
  3121     // Verify the global finger
  3122     HeapWord* global_finger = finger();
  3123     if (global_finger != NULL && global_finger < _heap_end) {
  3124       // The global finger always points to a heap region boundary. We
  3125       // use heap_region_containing_raw() to get the containing region
  3126       // given that the global finger could be pointing to a free region
  3127       // which subsequently becomes continues humongous. If that
  3128       // happens, heap_region_containing() will return the bottom of the
  3129       // corresponding starts humongous region and the check below will
  3130       // not hold any more.
  3131       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3132       guarantee(global_finger == global_hr->bottom(),
  3133                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3134                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3137     // Verify the task fingers
  3138     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3139     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3140       CMTask* task = _tasks[i];
  3141       HeapWord* task_finger = task->finger();
  3142       if (task_finger != NULL && task_finger < _heap_end) {
  3143         // See above note on the global finger verification.
  3144         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3145         guarantee(task_finger == task_hr->bottom() ||
  3146                   !task_hr->in_collection_set(),
  3147                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3148                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3153 #endif // PRODUCT
  3155 // Aggregate the counting data that was constructed concurrently
  3156 // with marking.
  3157 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3158   G1CollectedHeap* _g1h;
  3159   ConcurrentMark* _cm;
  3160   CardTableModRefBS* _ct_bs;
  3161   BitMap* _cm_card_bm;
  3162   uint _max_worker_id;
  3164  public:
  3165   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3166                               BitMap* cm_card_bm,
  3167                               uint max_worker_id) :
  3168     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3169     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3170     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3172   bool doHeapRegion(HeapRegion* hr) {
  3173     if (hr->continuesHumongous()) {
  3174       // We will ignore these here and process them when their
  3175       // associated "starts humongous" region is processed.
  3176       // Note that we cannot rely on their associated
  3177       // "starts humongous" region to have their bit set to 1
  3178       // since, due to the region chunking in the parallel region
  3179       // iteration, a "continues humongous" region might be visited
  3180       // before its associated "starts humongous".
  3181       return false;
  3184     HeapWord* start = hr->bottom();
  3185     HeapWord* limit = hr->next_top_at_mark_start();
  3186     HeapWord* end = hr->end();
  3188     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3189            err_msg("Preconditions not met - "
  3190                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3191                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3192                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3194     assert(hr->next_marked_bytes() == 0, "Precondition");
  3196     if (start == limit) {
  3197       // NTAMS of this region has not been set so nothing to do.
  3198       return false;
  3201     // 'start' should be in the heap.
  3202     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3203     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3204     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3206     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3207     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3208     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3210     // If ntams is not card aligned then we bump card bitmap index
  3211     // for limit so that we get the all the cards spanned by
  3212     // the object ending at ntams.
  3213     // Note: if this is the last region in the heap then ntams
  3214     // could be actually just beyond the end of the the heap;
  3215     // limit_idx will then  correspond to a (non-existent) card
  3216     // that is also outside the heap.
  3217     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3218       limit_idx += 1;
  3221     assert(limit_idx <= end_idx, "or else use atomics");
  3223     // Aggregate the "stripe" in the count data associated with hr.
  3224     uint hrs_index = hr->hrs_index();
  3225     size_t marked_bytes = 0;
  3227     for (uint i = 0; i < _max_worker_id; i += 1) {
  3228       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3229       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3231       // Fetch the marked_bytes in this region for task i and
  3232       // add it to the running total for this region.
  3233       marked_bytes += marked_bytes_array[hrs_index];
  3235       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3236       // into the global card bitmap.
  3237       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3239       while (scan_idx < limit_idx) {
  3240         assert(task_card_bm->at(scan_idx) == true, "should be");
  3241         _cm_card_bm->set_bit(scan_idx);
  3242         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3244         // BitMap::get_next_one_offset() can handle the case when
  3245         // its left_offset parameter is greater than its right_offset
  3246         // parameter. It does, however, have an early exit if
  3247         // left_offset == right_offset. So let's limit the value
  3248         // passed in for left offset here.
  3249         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3250         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3254     // Update the marked bytes for this region.
  3255     hr->add_to_marked_bytes(marked_bytes);
  3257     // Next heap region
  3258     return false;
  3260 };
  3262 class G1AggregateCountDataTask: public AbstractGangTask {
  3263 protected:
  3264   G1CollectedHeap* _g1h;
  3265   ConcurrentMark* _cm;
  3266   BitMap* _cm_card_bm;
  3267   uint _max_worker_id;
  3268   int _active_workers;
  3270 public:
  3271   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3272                            ConcurrentMark* cm,
  3273                            BitMap* cm_card_bm,
  3274                            uint max_worker_id,
  3275                            int n_workers) :
  3276     AbstractGangTask("Count Aggregation"),
  3277     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3278     _max_worker_id(max_worker_id),
  3279     _active_workers(n_workers) { }
  3281   void work(uint worker_id) {
  3282     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3284     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3285       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3286                                             _active_workers,
  3287                                             HeapRegion::AggregateCountClaimValue);
  3288     } else {
  3289       _g1h->heap_region_iterate(&cl);
  3292 };
  3295 void ConcurrentMark::aggregate_count_data() {
  3296   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3297                         _g1h->workers()->active_workers() :
  3298                         1);
  3300   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3301                                            _max_worker_id, n_workers);
  3303   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3304     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3305            "sanity check");
  3306     _g1h->set_par_threads(n_workers);
  3307     _g1h->workers()->run_task(&g1_par_agg_task);
  3308     _g1h->set_par_threads(0);
  3310     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3311            "sanity check");
  3312     _g1h->reset_heap_region_claim_values();
  3313   } else {
  3314     g1_par_agg_task.work(0);
  3318 // Clear the per-worker arrays used to store the per-region counting data
  3319 void ConcurrentMark::clear_all_count_data() {
  3320   // Clear the global card bitmap - it will be filled during
  3321   // liveness count aggregation (during remark) and the
  3322   // final counting task.
  3323   _card_bm.clear();
  3325   // Clear the global region bitmap - it will be filled as part
  3326   // of the final counting task.
  3327   _region_bm.clear();
  3329   uint max_regions = _g1h->max_regions();
  3330   assert(_max_worker_id > 0, "uninitialized");
  3332   for (uint i = 0; i < _max_worker_id; i += 1) {
  3333     BitMap* task_card_bm = count_card_bitmap_for(i);
  3334     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3336     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3337     assert(marked_bytes_array != NULL, "uninitialized");
  3339     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3340     task_card_bm->clear();
  3344 void ConcurrentMark::print_stats() {
  3345   if (verbose_stats()) {
  3346     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3347     for (size_t i = 0; i < _active_tasks; ++i) {
  3348       _tasks[i]->print_stats();
  3349       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3354 // abandon current marking iteration due to a Full GC
  3355 void ConcurrentMark::abort() {
  3356   // Clear all marks to force marking thread to do nothing
  3357   _nextMarkBitMap->clearAll();
  3358   // Clear the liveness counting data
  3359   clear_all_count_data();
  3360   // Empty mark stack
  3361   reset_marking_state();
  3362   for (uint i = 0; i < _max_worker_id; ++i) {
  3363     _tasks[i]->clear_region_fields();
  3365   _first_overflow_barrier_sync.abort();
  3366   _second_overflow_barrier_sync.abort();
  3367   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3368   if (!gc_id.is_undefined()) {
  3369     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3370     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3371     _aborted_gc_id = gc_id;
  3373   _has_aborted = true;
  3375   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3376   satb_mq_set.abandon_partial_marking();
  3377   // This can be called either during or outside marking, we'll read
  3378   // the expected_active value from the SATB queue set.
  3379   satb_mq_set.set_active_all_threads(
  3380                                  false, /* new active value */
  3381                                  satb_mq_set.is_active() /* expected_active */);
  3383   _g1h->trace_heap_after_concurrent_cycle();
  3384   _g1h->register_concurrent_cycle_end();
  3387 const GCId& ConcurrentMark::concurrent_gc_id() {
  3388   if (has_aborted()) {
  3389     return _aborted_gc_id;
  3391   return _g1h->gc_tracer_cm()->gc_id();
  3394 static void print_ms_time_info(const char* prefix, const char* name,
  3395                                NumberSeq& ns) {
  3396   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3397                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3398   if (ns.num() > 0) {
  3399     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3400                            prefix, ns.sd(), ns.maximum());
  3404 void ConcurrentMark::print_summary_info() {
  3405   gclog_or_tty->print_cr(" Concurrent marking:");
  3406   print_ms_time_info("  ", "init marks", _init_times);
  3407   print_ms_time_info("  ", "remarks", _remark_times);
  3409     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3410     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3413   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3414   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3415                          _total_counting_time,
  3416                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3417                           (double)_cleanup_times.num()
  3418                          : 0.0));
  3419   if (G1ScrubRemSets) {
  3420     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3421                            _total_rs_scrub_time,
  3422                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3423                             (double)_cleanup_times.num()
  3424                            : 0.0));
  3426   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3427                          (_init_times.sum() + _remark_times.sum() +
  3428                           _cleanup_times.sum())/1000.0);
  3429   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3430                 "(%8.2f s marking).",
  3431                 cmThread()->vtime_accum(),
  3432                 cmThread()->vtime_mark_accum());
  3435 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3436   if (use_parallel_marking_threads()) {
  3437     _parallel_workers->print_worker_threads_on(st);
  3441 void ConcurrentMark::print_on_error(outputStream* st) const {
  3442   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3443       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3444   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3445   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3448 // We take a break if someone is trying to stop the world.
  3449 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3450   if (SuspendibleThreadSet::should_yield()) {
  3451     if (worker_id == 0) {
  3452       _g1h->g1_policy()->record_concurrent_pause();
  3454     SuspendibleThreadSet::yield();
  3455     return true;
  3456   } else {
  3457     return false;
  3461 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3462   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3463   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3466 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3467                                                  void* last) {
  3468   return containing_card_is_marked(start) &&
  3469          containing_card_is_marked(last);
  3472 #ifndef PRODUCT
  3473 // for debugging purposes
  3474 void ConcurrentMark::print_finger() {
  3475   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3476                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3477   for (uint i = 0; i < _max_worker_id; ++i) {
  3478     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3480   gclog_or_tty->cr();
  3482 #endif
  3484 void CMTask::scan_object(oop obj) {
  3485   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3487   if (_cm->verbose_high()) {
  3488     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3489                            _worker_id, p2i((void*) obj));
  3492   size_t obj_size = obj->size();
  3493   _words_scanned += obj_size;
  3495   obj->oop_iterate(_cm_oop_closure);
  3496   statsOnly( ++_objs_scanned );
  3497   check_limits();
  3500 // Closure for iteration over bitmaps
  3501 class CMBitMapClosure : public BitMapClosure {
  3502 private:
  3503   // the bitmap that is being iterated over
  3504   CMBitMap*                   _nextMarkBitMap;
  3505   ConcurrentMark*             _cm;
  3506   CMTask*                     _task;
  3508 public:
  3509   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3510     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3512   bool do_bit(size_t offset) {
  3513     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3514     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3515     assert( addr < _cm->finger(), "invariant");
  3517     statsOnly( _task->increase_objs_found_on_bitmap() );
  3518     assert(addr >= _task->finger(), "invariant");
  3520     // We move that task's local finger along.
  3521     _task->move_finger_to(addr);
  3523     _task->scan_object(oop(addr));
  3524     // we only partially drain the local queue and global stack
  3525     _task->drain_local_queue(true);
  3526     _task->drain_global_stack(true);
  3528     // if the has_aborted flag has been raised, we need to bail out of
  3529     // the iteration
  3530     return !_task->has_aborted();
  3532 };
  3534 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3535                                ConcurrentMark* cm,
  3536                                CMTask* task)
  3537   : _g1h(g1h), _cm(cm), _task(task) {
  3538   assert(_ref_processor == NULL, "should be initialized to NULL");
  3540   if (G1UseConcMarkReferenceProcessing) {
  3541     _ref_processor = g1h->ref_processor_cm();
  3542     assert(_ref_processor != NULL, "should not be NULL");
  3546 void CMTask::setup_for_region(HeapRegion* hr) {
  3547   // Separated the asserts so that we know which one fires.
  3548   assert(hr != NULL,
  3549         "claim_region() should have filtered out continues humongous regions");
  3550   assert(!hr->continuesHumongous(),
  3551         "claim_region() should have filtered out continues humongous regions");
  3553   if (_cm->verbose_low()) {
  3554     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3555                            _worker_id, p2i(hr));
  3558   _curr_region  = hr;
  3559   _finger       = hr->bottom();
  3560   update_region_limit();
  3563 void CMTask::update_region_limit() {
  3564   HeapRegion* hr            = _curr_region;
  3565   HeapWord* bottom          = hr->bottom();
  3566   HeapWord* limit           = hr->next_top_at_mark_start();
  3568   if (limit == bottom) {
  3569     if (_cm->verbose_low()) {
  3570       gclog_or_tty->print_cr("[%u] found an empty region "
  3571                              "["PTR_FORMAT", "PTR_FORMAT")",
  3572                              _worker_id, p2i(bottom), p2i(limit));
  3574     // The region was collected underneath our feet.
  3575     // We set the finger to bottom to ensure that the bitmap
  3576     // iteration that will follow this will not do anything.
  3577     // (this is not a condition that holds when we set the region up,
  3578     // as the region is not supposed to be empty in the first place)
  3579     _finger = bottom;
  3580   } else if (limit >= _region_limit) {
  3581     assert(limit >= _finger, "peace of mind");
  3582   } else {
  3583     assert(limit < _region_limit, "only way to get here");
  3584     // This can happen under some pretty unusual circumstances.  An
  3585     // evacuation pause empties the region underneath our feet (NTAMS
  3586     // at bottom). We then do some allocation in the region (NTAMS
  3587     // stays at bottom), followed by the region being used as a GC
  3588     // alloc region (NTAMS will move to top() and the objects
  3589     // originally below it will be grayed). All objects now marked in
  3590     // the region are explicitly grayed, if below the global finger,
  3591     // and we do not need in fact to scan anything else. So, we simply
  3592     // set _finger to be limit to ensure that the bitmap iteration
  3593     // doesn't do anything.
  3594     _finger = limit;
  3597   _region_limit = limit;
  3600 void CMTask::giveup_current_region() {
  3601   assert(_curr_region != NULL, "invariant");
  3602   if (_cm->verbose_low()) {
  3603     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3604                            _worker_id, p2i(_curr_region));
  3606   clear_region_fields();
  3609 void CMTask::clear_region_fields() {
  3610   // Values for these three fields that indicate that we're not
  3611   // holding on to a region.
  3612   _curr_region   = NULL;
  3613   _finger        = NULL;
  3614   _region_limit  = NULL;
  3617 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3618   if (cm_oop_closure == NULL) {
  3619     assert(_cm_oop_closure != NULL, "invariant");
  3620   } else {
  3621     assert(_cm_oop_closure == NULL, "invariant");
  3623   _cm_oop_closure = cm_oop_closure;
  3626 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3627   guarantee(nextMarkBitMap != NULL, "invariant");
  3629   if (_cm->verbose_low()) {
  3630     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3633   _nextMarkBitMap                = nextMarkBitMap;
  3634   clear_region_fields();
  3636   _calls                         = 0;
  3637   _elapsed_time_ms               = 0.0;
  3638   _termination_time_ms           = 0.0;
  3639   _termination_start_time_ms     = 0.0;
  3641 #if _MARKING_STATS_
  3642   _local_pushes                  = 0;
  3643   _local_pops                    = 0;
  3644   _local_max_size                = 0;
  3645   _objs_scanned                  = 0;
  3646   _global_pushes                 = 0;
  3647   _global_pops                   = 0;
  3648   _global_max_size               = 0;
  3649   _global_transfers_to           = 0;
  3650   _global_transfers_from         = 0;
  3651   _regions_claimed               = 0;
  3652   _objs_found_on_bitmap          = 0;
  3653   _satb_buffers_processed        = 0;
  3654   _steal_attempts                = 0;
  3655   _steals                        = 0;
  3656   _aborted                       = 0;
  3657   _aborted_overflow              = 0;
  3658   _aborted_cm_aborted            = 0;
  3659   _aborted_yield                 = 0;
  3660   _aborted_timed_out             = 0;
  3661   _aborted_satb                  = 0;
  3662   _aborted_termination           = 0;
  3663 #endif // _MARKING_STATS_
  3666 bool CMTask::should_exit_termination() {
  3667   regular_clock_call();
  3668   // This is called when we are in the termination protocol. We should
  3669   // quit if, for some reason, this task wants to abort or the global
  3670   // stack is not empty (this means that we can get work from it).
  3671   return !_cm->mark_stack_empty() || has_aborted();
  3674 void CMTask::reached_limit() {
  3675   assert(_words_scanned >= _words_scanned_limit ||
  3676          _refs_reached >= _refs_reached_limit ,
  3677          "shouldn't have been called otherwise");
  3678   regular_clock_call();
  3681 void CMTask::regular_clock_call() {
  3682   if (has_aborted()) return;
  3684   // First, we need to recalculate the words scanned and refs reached
  3685   // limits for the next clock call.
  3686   recalculate_limits();
  3688   // During the regular clock call we do the following
  3690   // (1) If an overflow has been flagged, then we abort.
  3691   if (_cm->has_overflown()) {
  3692     set_has_aborted();
  3693     return;
  3696   // If we are not concurrent (i.e. we're doing remark) we don't need
  3697   // to check anything else. The other steps are only needed during
  3698   // the concurrent marking phase.
  3699   if (!concurrent()) return;
  3701   // (2) If marking has been aborted for Full GC, then we also abort.
  3702   if (_cm->has_aborted()) {
  3703     set_has_aborted();
  3704     statsOnly( ++_aborted_cm_aborted );
  3705     return;
  3708   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3710   // (3) If marking stats are enabled, then we update the step history.
  3711 #if _MARKING_STATS_
  3712   if (_words_scanned >= _words_scanned_limit) {
  3713     ++_clock_due_to_scanning;
  3715   if (_refs_reached >= _refs_reached_limit) {
  3716     ++_clock_due_to_marking;
  3719   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3720   _interval_start_time_ms = curr_time_ms;
  3721   _all_clock_intervals_ms.add(last_interval_ms);
  3723   if (_cm->verbose_medium()) {
  3724       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3725                         "scanned = %d%s, refs reached = %d%s",
  3726                         _worker_id, last_interval_ms,
  3727                         _words_scanned,
  3728                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3729                         _refs_reached,
  3730                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3732 #endif // _MARKING_STATS_
  3734   // (4) We check whether we should yield. If we have to, then we abort.
  3735   if (SuspendibleThreadSet::should_yield()) {
  3736     // We should yield. To do this we abort the task. The caller is
  3737     // responsible for yielding.
  3738     set_has_aborted();
  3739     statsOnly( ++_aborted_yield );
  3740     return;
  3743   // (5) We check whether we've reached our time quota. If we have,
  3744   // then we abort.
  3745   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3746   if (elapsed_time_ms > _time_target_ms) {
  3747     set_has_aborted();
  3748     _has_timed_out = true;
  3749     statsOnly( ++_aborted_timed_out );
  3750     return;
  3753   // (6) Finally, we check whether there are enough completed STAB
  3754   // buffers available for processing. If there are, we abort.
  3755   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3756   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3757     if (_cm->verbose_low()) {
  3758       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3759                              _worker_id);
  3761     // we do need to process SATB buffers, we'll abort and restart
  3762     // the marking task to do so
  3763     set_has_aborted();
  3764     statsOnly( ++_aborted_satb );
  3765     return;
  3769 void CMTask::recalculate_limits() {
  3770   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3771   _words_scanned_limit      = _real_words_scanned_limit;
  3773   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3774   _refs_reached_limit       = _real_refs_reached_limit;
  3777 void CMTask::decrease_limits() {
  3778   // This is called when we believe that we're going to do an infrequent
  3779   // operation which will increase the per byte scanned cost (i.e. move
  3780   // entries to/from the global stack). It basically tries to decrease the
  3781   // scanning limit so that the clock is called earlier.
  3783   if (_cm->verbose_medium()) {
  3784     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3787   _words_scanned_limit = _real_words_scanned_limit -
  3788     3 * words_scanned_period / 4;
  3789   _refs_reached_limit  = _real_refs_reached_limit -
  3790     3 * refs_reached_period / 4;
  3793 void CMTask::move_entries_to_global_stack() {
  3794   // local array where we'll store the entries that will be popped
  3795   // from the local queue
  3796   oop buffer[global_stack_transfer_size];
  3798   int n = 0;
  3799   oop obj;
  3800   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3801     buffer[n] = obj;
  3802     ++n;
  3805   if (n > 0) {
  3806     // we popped at least one entry from the local queue
  3808     statsOnly( ++_global_transfers_to; _local_pops += n );
  3810     if (!_cm->mark_stack_push(buffer, n)) {
  3811       if (_cm->verbose_low()) {
  3812         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3813                                _worker_id);
  3815       set_has_aborted();
  3816     } else {
  3817       // the transfer was successful
  3819       if (_cm->verbose_medium()) {
  3820         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3821                                _worker_id, n);
  3823       statsOnly( int tmp_size = _cm->mark_stack_size();
  3824                  if (tmp_size > _global_max_size) {
  3825                    _global_max_size = tmp_size;
  3827                  _global_pushes += n );
  3831   // this operation was quite expensive, so decrease the limits
  3832   decrease_limits();
  3835 void CMTask::get_entries_from_global_stack() {
  3836   // local array where we'll store the entries that will be popped
  3837   // from the global stack.
  3838   oop buffer[global_stack_transfer_size];
  3839   int n;
  3840   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3841   assert(n <= global_stack_transfer_size,
  3842          "we should not pop more than the given limit");
  3843   if (n > 0) {
  3844     // yes, we did actually pop at least one entry
  3846     statsOnly( ++_global_transfers_from; _global_pops += n );
  3847     if (_cm->verbose_medium()) {
  3848       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3849                              _worker_id, n);
  3851     for (int i = 0; i < n; ++i) {
  3852       bool success = _task_queue->push(buffer[i]);
  3853       // We only call this when the local queue is empty or under a
  3854       // given target limit. So, we do not expect this push to fail.
  3855       assert(success, "invariant");
  3858     statsOnly( int tmp_size = _task_queue->size();
  3859                if (tmp_size > _local_max_size) {
  3860                  _local_max_size = tmp_size;
  3862                _local_pushes += n );
  3865   // this operation was quite expensive, so decrease the limits
  3866   decrease_limits();
  3869 void CMTask::drain_local_queue(bool partially) {
  3870   if (has_aborted()) return;
  3872   // Decide what the target size is, depending whether we're going to
  3873   // drain it partially (so that other tasks can steal if they run out
  3874   // of things to do) or totally (at the very end).
  3875   size_t target_size;
  3876   if (partially) {
  3877     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3878   } else {
  3879     target_size = 0;
  3882   if (_task_queue->size() > target_size) {
  3883     if (_cm->verbose_high()) {
  3884       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3885                              _worker_id, target_size);
  3888     oop obj;
  3889     bool ret = _task_queue->pop_local(obj);
  3890     while (ret) {
  3891       statsOnly( ++_local_pops );
  3893       if (_cm->verbose_high()) {
  3894         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3895                                p2i((void*) obj));
  3898       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3899       assert(!_g1h->is_on_master_free_list(
  3900                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3902       scan_object(obj);
  3904       if (_task_queue->size() <= target_size || has_aborted()) {
  3905         ret = false;
  3906       } else {
  3907         ret = _task_queue->pop_local(obj);
  3911     if (_cm->verbose_high()) {
  3912       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3913                              _worker_id, _task_queue->size());
  3918 void CMTask::drain_global_stack(bool partially) {
  3919   if (has_aborted()) return;
  3921   // We have a policy to drain the local queue before we attempt to
  3922   // drain the global stack.
  3923   assert(partially || _task_queue->size() == 0, "invariant");
  3925   // Decide what the target size is, depending whether we're going to
  3926   // drain it partially (so that other tasks can steal if they run out
  3927   // of things to do) or totally (at the very end).  Notice that,
  3928   // because we move entries from the global stack in chunks or
  3929   // because another task might be doing the same, we might in fact
  3930   // drop below the target. But, this is not a problem.
  3931   size_t target_size;
  3932   if (partially) {
  3933     target_size = _cm->partial_mark_stack_size_target();
  3934   } else {
  3935     target_size = 0;
  3938   if (_cm->mark_stack_size() > target_size) {
  3939     if (_cm->verbose_low()) {
  3940       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3941                              _worker_id, target_size);
  3944     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3945       get_entries_from_global_stack();
  3946       drain_local_queue(partially);
  3949     if (_cm->verbose_low()) {
  3950       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3951                              _worker_id, _cm->mark_stack_size());
  3956 // SATB Queue has several assumptions on whether to call the par or
  3957 // non-par versions of the methods. this is why some of the code is
  3958 // replicated. We should really get rid of the single-threaded version
  3959 // of the code to simplify things.
  3960 void CMTask::drain_satb_buffers() {
  3961   if (has_aborted()) return;
  3963   // We set this so that the regular clock knows that we're in the
  3964   // middle of draining buffers and doesn't set the abort flag when it
  3965   // notices that SATB buffers are available for draining. It'd be
  3966   // very counter productive if it did that. :-)
  3967   _draining_satb_buffers = true;
  3969   CMObjectClosure oc(this);
  3970   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3971   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3972     satb_mq_set.set_par_closure(_worker_id, &oc);
  3973   } else {
  3974     satb_mq_set.set_closure(&oc);
  3977   // This keeps claiming and applying the closure to completed buffers
  3978   // until we run out of buffers or we need to abort.
  3979   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3980     while (!has_aborted() &&
  3981            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  3982       if (_cm->verbose_medium()) {
  3983         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3985       statsOnly( ++_satb_buffers_processed );
  3986       regular_clock_call();
  3988   } else {
  3989     while (!has_aborted() &&
  3990            satb_mq_set.apply_closure_to_completed_buffer()) {
  3991       if (_cm->verbose_medium()) {
  3992         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3994       statsOnly( ++_satb_buffers_processed );
  3995       regular_clock_call();
  3999   _draining_satb_buffers = false;
  4001   assert(has_aborted() ||
  4002          concurrent() ||
  4003          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4005   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4006     satb_mq_set.set_par_closure(_worker_id, NULL);
  4007   } else {
  4008     satb_mq_set.set_closure(NULL);
  4011   // again, this was a potentially expensive operation, decrease the
  4012   // limits to get the regular clock call early
  4013   decrease_limits();
  4016 void CMTask::print_stats() {
  4017   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4018                          _worker_id, _calls);
  4019   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4020                          _elapsed_time_ms, _termination_time_ms);
  4021   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4022                          _step_times_ms.num(), _step_times_ms.avg(),
  4023                          _step_times_ms.sd());
  4024   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4025                          _step_times_ms.maximum(), _step_times_ms.sum());
  4027 #if _MARKING_STATS_
  4028   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4029                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4030                          _all_clock_intervals_ms.sd());
  4031   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4032                          _all_clock_intervals_ms.maximum(),
  4033                          _all_clock_intervals_ms.sum());
  4034   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4035                          _clock_due_to_scanning, _clock_due_to_marking);
  4036   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4037                          _objs_scanned, _objs_found_on_bitmap);
  4038   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4039                          _local_pushes, _local_pops, _local_max_size);
  4040   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4041                          _global_pushes, _global_pops, _global_max_size);
  4042   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4043                          _global_transfers_to,_global_transfers_from);
  4044   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4045   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4046   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4047                          _steal_attempts, _steals);
  4048   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4049   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4050                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4051   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4052                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4053 #endif // _MARKING_STATS_
  4056 /*****************************************************************************
  4058     The do_marking_step(time_target_ms, ...) method is the building
  4059     block of the parallel marking framework. It can be called in parallel
  4060     with other invocations of do_marking_step() on different tasks
  4061     (but only one per task, obviously) and concurrently with the
  4062     mutator threads, or during remark, hence it eliminates the need
  4063     for two versions of the code. When called during remark, it will
  4064     pick up from where the task left off during the concurrent marking
  4065     phase. Interestingly, tasks are also claimable during evacuation
  4066     pauses too, since do_marking_step() ensures that it aborts before
  4067     it needs to yield.
  4069     The data structures that it uses to do marking work are the
  4070     following:
  4072       (1) Marking Bitmap. If there are gray objects that appear only
  4073       on the bitmap (this happens either when dealing with an overflow
  4074       or when the initial marking phase has simply marked the roots
  4075       and didn't push them on the stack), then tasks claim heap
  4076       regions whose bitmap they then scan to find gray objects. A
  4077       global finger indicates where the end of the last claimed region
  4078       is. A local finger indicates how far into the region a task has
  4079       scanned. The two fingers are used to determine how to gray an
  4080       object (i.e. whether simply marking it is OK, as it will be
  4081       visited by a task in the future, or whether it needs to be also
  4082       pushed on a stack).
  4084       (2) Local Queue. The local queue of the task which is accessed
  4085       reasonably efficiently by the task. Other tasks can steal from
  4086       it when they run out of work. Throughout the marking phase, a
  4087       task attempts to keep its local queue short but not totally
  4088       empty, so that entries are available for stealing by other
  4089       tasks. Only when there is no more work, a task will totally
  4090       drain its local queue.
  4092       (3) Global Mark Stack. This handles local queue overflow. During
  4093       marking only sets of entries are moved between it and the local
  4094       queues, as access to it requires a mutex and more fine-grain
  4095       interaction with it which might cause contention. If it
  4096       overflows, then the marking phase should restart and iterate
  4097       over the bitmap to identify gray objects. Throughout the marking
  4098       phase, tasks attempt to keep the global mark stack at a small
  4099       length but not totally empty, so that entries are available for
  4100       popping by other tasks. Only when there is no more work, tasks
  4101       will totally drain the global mark stack.
  4103       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4104       made available. Buffers are regularly removed from this queue
  4105       and scanned for roots, so that the queue doesn't get too
  4106       long. During remark, all completed buffers are processed, as
  4107       well as the filled in parts of any uncompleted buffers.
  4109     The do_marking_step() method tries to abort when the time target
  4110     has been reached. There are a few other cases when the
  4111     do_marking_step() method also aborts:
  4113       (1) When the marking phase has been aborted (after a Full GC).
  4115       (2) When a global overflow (on the global stack) has been
  4116       triggered. Before the task aborts, it will actually sync up with
  4117       the other tasks to ensure that all the marking data structures
  4118       (local queues, stacks, fingers etc.)  are re-initialized so that
  4119       when do_marking_step() completes, the marking phase can
  4120       immediately restart.
  4122       (3) When enough completed SATB buffers are available. The
  4123       do_marking_step() method only tries to drain SATB buffers right
  4124       at the beginning. So, if enough buffers are available, the
  4125       marking step aborts and the SATB buffers are processed at
  4126       the beginning of the next invocation.
  4128       (4) To yield. when we have to yield then we abort and yield
  4129       right at the end of do_marking_step(). This saves us from a lot
  4130       of hassle as, by yielding we might allow a Full GC. If this
  4131       happens then objects will be compacted underneath our feet, the
  4132       heap might shrink, etc. We save checking for this by just
  4133       aborting and doing the yield right at the end.
  4135     From the above it follows that the do_marking_step() method should
  4136     be called in a loop (or, otherwise, regularly) until it completes.
  4138     If a marking step completes without its has_aborted() flag being
  4139     true, it means it has completed the current marking phase (and
  4140     also all other marking tasks have done so and have all synced up).
  4142     A method called regular_clock_call() is invoked "regularly" (in
  4143     sub ms intervals) throughout marking. It is this clock method that
  4144     checks all the abort conditions which were mentioned above and
  4145     decides when the task should abort. A work-based scheme is used to
  4146     trigger this clock method: when the number of object words the
  4147     marking phase has scanned or the number of references the marking
  4148     phase has visited reach a given limit. Additional invocations to
  4149     the method clock have been planted in a few other strategic places
  4150     too. The initial reason for the clock method was to avoid calling
  4151     vtime too regularly, as it is quite expensive. So, once it was in
  4152     place, it was natural to piggy-back all the other conditions on it
  4153     too and not constantly check them throughout the code.
  4155     If do_termination is true then do_marking_step will enter its
  4156     termination protocol.
  4158     The value of is_serial must be true when do_marking_step is being
  4159     called serially (i.e. by the VMThread) and do_marking_step should
  4160     skip any synchronization in the termination and overflow code.
  4161     Examples include the serial remark code and the serial reference
  4162     processing closures.
  4164     The value of is_serial must be false when do_marking_step is
  4165     being called by any of the worker threads in a work gang.
  4166     Examples include the concurrent marking code (CMMarkingTask),
  4167     the MT remark code, and the MT reference processing closures.
  4169  *****************************************************************************/
  4171 void CMTask::do_marking_step(double time_target_ms,
  4172                              bool do_termination,
  4173                              bool is_serial) {
  4174   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4175   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4177   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4178   assert(_task_queues != NULL, "invariant");
  4179   assert(_task_queue != NULL, "invariant");
  4180   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4182   assert(!_claimed,
  4183          "only one thread should claim this task at any one time");
  4185   // OK, this doesn't safeguard again all possible scenarios, as it is
  4186   // possible for two threads to set the _claimed flag at the same
  4187   // time. But it is only for debugging purposes anyway and it will
  4188   // catch most problems.
  4189   _claimed = true;
  4191   _start_time_ms = os::elapsedVTime() * 1000.0;
  4192   statsOnly( _interval_start_time_ms = _start_time_ms );
  4194   // If do_stealing is true then do_marking_step will attempt to
  4195   // steal work from the other CMTasks. It only makes sense to
  4196   // enable stealing when the termination protocol is enabled
  4197   // and do_marking_step() is not being called serially.
  4198   bool do_stealing = do_termination && !is_serial;
  4200   double diff_prediction_ms =
  4201     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4202   _time_target_ms = time_target_ms - diff_prediction_ms;
  4204   // set up the variables that are used in the work-based scheme to
  4205   // call the regular clock method
  4206   _words_scanned = 0;
  4207   _refs_reached  = 0;
  4208   recalculate_limits();
  4210   // clear all flags
  4211   clear_has_aborted();
  4212   _has_timed_out = false;
  4213   _draining_satb_buffers = false;
  4215   ++_calls;
  4217   if (_cm->verbose_low()) {
  4218     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4219                            "target = %1.2lfms >>>>>>>>>>",
  4220                            _worker_id, _calls, _time_target_ms);
  4223   // Set up the bitmap and oop closures. Anything that uses them is
  4224   // eventually called from this method, so it is OK to allocate these
  4225   // statically.
  4226   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4227   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4228   set_cm_oop_closure(&cm_oop_closure);
  4230   if (_cm->has_overflown()) {
  4231     // This can happen if the mark stack overflows during a GC pause
  4232     // and this task, after a yield point, restarts. We have to abort
  4233     // as we need to get into the overflow protocol which happens
  4234     // right at the end of this task.
  4235     set_has_aborted();
  4238   // First drain any available SATB buffers. After this, we will not
  4239   // look at SATB buffers before the next invocation of this method.
  4240   // If enough completed SATB buffers are queued up, the regular clock
  4241   // will abort this task so that it restarts.
  4242   drain_satb_buffers();
  4243   // ...then partially drain the local queue and the global stack
  4244   drain_local_queue(true);
  4245   drain_global_stack(true);
  4247   do {
  4248     if (!has_aborted() && _curr_region != NULL) {
  4249       // This means that we're already holding on to a region.
  4250       assert(_finger != NULL, "if region is not NULL, then the finger "
  4251              "should not be NULL either");
  4253       // We might have restarted this task after an evacuation pause
  4254       // which might have evacuated the region we're holding on to
  4255       // underneath our feet. Let's read its limit again to make sure
  4256       // that we do not iterate over a region of the heap that
  4257       // contains garbage (update_region_limit() will also move
  4258       // _finger to the start of the region if it is found empty).
  4259       update_region_limit();
  4260       // We will start from _finger not from the start of the region,
  4261       // as we might be restarting this task after aborting half-way
  4262       // through scanning this region. In this case, _finger points to
  4263       // the address where we last found a marked object. If this is a
  4264       // fresh region, _finger points to start().
  4265       MemRegion mr = MemRegion(_finger, _region_limit);
  4267       if (_cm->verbose_low()) {
  4268         gclog_or_tty->print_cr("[%u] we're scanning part "
  4269                                "["PTR_FORMAT", "PTR_FORMAT") "
  4270                                "of region "HR_FORMAT,
  4271                                _worker_id, p2i(_finger), p2i(_region_limit),
  4272                                HR_FORMAT_PARAMS(_curr_region));
  4275       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4276              "humongous regions should go around loop once only");
  4278       // Some special cases:
  4279       // If the memory region is empty, we can just give up the region.
  4280       // If the current region is humongous then we only need to check
  4281       // the bitmap for the bit associated with the start of the object,
  4282       // scan the object if it's live, and give up the region.
  4283       // Otherwise, let's iterate over the bitmap of the part of the region
  4284       // that is left.
  4285       // If the iteration is successful, give up the region.
  4286       if (mr.is_empty()) {
  4287         giveup_current_region();
  4288         regular_clock_call();
  4289       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4290         if (_nextMarkBitMap->isMarked(mr.start())) {
  4291           // The object is marked - apply the closure
  4292           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4293           bitmap_closure.do_bit(offset);
  4295         // Even if this task aborted while scanning the humongous object
  4296         // we can (and should) give up the current region.
  4297         giveup_current_region();
  4298         regular_clock_call();
  4299       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4300         giveup_current_region();
  4301         regular_clock_call();
  4302       } else {
  4303         assert(has_aborted(), "currently the only way to do so");
  4304         // The only way to abort the bitmap iteration is to return
  4305         // false from the do_bit() method. However, inside the
  4306         // do_bit() method we move the _finger to point to the
  4307         // object currently being looked at. So, if we bail out, we
  4308         // have definitely set _finger to something non-null.
  4309         assert(_finger != NULL, "invariant");
  4311         // Region iteration was actually aborted. So now _finger
  4312         // points to the address of the object we last scanned. If we
  4313         // leave it there, when we restart this task, we will rescan
  4314         // the object. It is easy to avoid this. We move the finger by
  4315         // enough to point to the next possible object header (the
  4316         // bitmap knows by how much we need to move it as it knows its
  4317         // granularity).
  4318         assert(_finger < _region_limit, "invariant");
  4319         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4320         // Check if bitmap iteration was aborted while scanning the last object
  4321         if (new_finger >= _region_limit) {
  4322           giveup_current_region();
  4323         } else {
  4324           move_finger_to(new_finger);
  4328     // At this point we have either completed iterating over the
  4329     // region we were holding on to, or we have aborted.
  4331     // We then partially drain the local queue and the global stack.
  4332     // (Do we really need this?)
  4333     drain_local_queue(true);
  4334     drain_global_stack(true);
  4336     // Read the note on the claim_region() method on why it might
  4337     // return NULL with potentially more regions available for
  4338     // claiming and why we have to check out_of_regions() to determine
  4339     // whether we're done or not.
  4340     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4341       // We are going to try to claim a new region. We should have
  4342       // given up on the previous one.
  4343       // Separated the asserts so that we know which one fires.
  4344       assert(_curr_region  == NULL, "invariant");
  4345       assert(_finger       == NULL, "invariant");
  4346       assert(_region_limit == NULL, "invariant");
  4347       if (_cm->verbose_low()) {
  4348         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4350       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4351       if (claimed_region != NULL) {
  4352         // Yes, we managed to claim one
  4353         statsOnly( ++_regions_claimed );
  4355         if (_cm->verbose_low()) {
  4356           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4357                                  "region "PTR_FORMAT,
  4358                                  _worker_id, p2i(claimed_region));
  4361         setup_for_region(claimed_region);
  4362         assert(_curr_region == claimed_region, "invariant");
  4364       // It is important to call the regular clock here. It might take
  4365       // a while to claim a region if, for example, we hit a large
  4366       // block of empty regions. So we need to call the regular clock
  4367       // method once round the loop to make sure it's called
  4368       // frequently enough.
  4369       regular_clock_call();
  4372     if (!has_aborted() && _curr_region == NULL) {
  4373       assert(_cm->out_of_regions(),
  4374              "at this point we should be out of regions");
  4376   } while ( _curr_region != NULL && !has_aborted());
  4378   if (!has_aborted()) {
  4379     // We cannot check whether the global stack is empty, since other
  4380     // tasks might be pushing objects to it concurrently.
  4381     assert(_cm->out_of_regions(),
  4382            "at this point we should be out of regions");
  4384     if (_cm->verbose_low()) {
  4385       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4388     // Try to reduce the number of available SATB buffers so that
  4389     // remark has less work to do.
  4390     drain_satb_buffers();
  4393   // Since we've done everything else, we can now totally drain the
  4394   // local queue and global stack.
  4395   drain_local_queue(false);
  4396   drain_global_stack(false);
  4398   // Attempt at work stealing from other task's queues.
  4399   if (do_stealing && !has_aborted()) {
  4400     // We have not aborted. This means that we have finished all that
  4401     // we could. Let's try to do some stealing...
  4403     // We cannot check whether the global stack is empty, since other
  4404     // tasks might be pushing objects to it concurrently.
  4405     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4406            "only way to reach here");
  4408     if (_cm->verbose_low()) {
  4409       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4412     while (!has_aborted()) {
  4413       oop obj;
  4414       statsOnly( ++_steal_attempts );
  4416       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4417         if (_cm->verbose_medium()) {
  4418           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4419                                  _worker_id, p2i((void*) obj));
  4422         statsOnly( ++_steals );
  4424         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4425                "any stolen object should be marked");
  4426         scan_object(obj);
  4428         // And since we're towards the end, let's totally drain the
  4429         // local queue and global stack.
  4430         drain_local_queue(false);
  4431         drain_global_stack(false);
  4432       } else {
  4433         break;
  4438   // If we are about to wrap up and go into termination, check if we
  4439   // should raise the overflow flag.
  4440   if (do_termination && !has_aborted()) {
  4441     if (_cm->force_overflow()->should_force()) {
  4442       _cm->set_has_overflown();
  4443       regular_clock_call();
  4447   // We still haven't aborted. Now, let's try to get into the
  4448   // termination protocol.
  4449   if (do_termination && !has_aborted()) {
  4450     // We cannot check whether the global stack is empty, since other
  4451     // tasks might be concurrently pushing objects on it.
  4452     // Separated the asserts so that we know which one fires.
  4453     assert(_cm->out_of_regions(), "only way to reach here");
  4454     assert(_task_queue->size() == 0, "only way to reach here");
  4456     if (_cm->verbose_low()) {
  4457       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4460     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4462     // The CMTask class also extends the TerminatorTerminator class,
  4463     // hence its should_exit_termination() method will also decide
  4464     // whether to exit the termination protocol or not.
  4465     bool finished = (is_serial ||
  4466                      _cm->terminator()->offer_termination(this));
  4467     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4468     _termination_time_ms +=
  4469       termination_end_time_ms - _termination_start_time_ms;
  4471     if (finished) {
  4472       // We're all done.
  4474       if (_worker_id == 0) {
  4475         // let's allow task 0 to do this
  4476         if (concurrent()) {
  4477           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4478           // we need to set this to false before the next
  4479           // safepoint. This way we ensure that the marking phase
  4480           // doesn't observe any more heap expansions.
  4481           _cm->clear_concurrent_marking_in_progress();
  4485       // We can now guarantee that the global stack is empty, since
  4486       // all other tasks have finished. We separated the guarantees so
  4487       // that, if a condition is false, we can immediately find out
  4488       // which one.
  4489       guarantee(_cm->out_of_regions(), "only way to reach here");
  4490       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4491       guarantee(_task_queue->size() == 0, "only way to reach here");
  4492       guarantee(!_cm->has_overflown(), "only way to reach here");
  4493       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4495       if (_cm->verbose_low()) {
  4496         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4498     } else {
  4499       // Apparently there's more work to do. Let's abort this task. It
  4500       // will restart it and we can hopefully find more things to do.
  4502       if (_cm->verbose_low()) {
  4503         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4504                                _worker_id);
  4507       set_has_aborted();
  4508       statsOnly( ++_aborted_termination );
  4512   // Mainly for debugging purposes to make sure that a pointer to the
  4513   // closure which was statically allocated in this frame doesn't
  4514   // escape it by accident.
  4515   set_cm_oop_closure(NULL);
  4516   double end_time_ms = os::elapsedVTime() * 1000.0;
  4517   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4518   // Update the step history.
  4519   _step_times_ms.add(elapsed_time_ms);
  4521   if (has_aborted()) {
  4522     // The task was aborted for some reason.
  4524     statsOnly( ++_aborted );
  4526     if (_has_timed_out) {
  4527       double diff_ms = elapsed_time_ms - _time_target_ms;
  4528       // Keep statistics of how well we did with respect to hitting
  4529       // our target only if we actually timed out (if we aborted for
  4530       // other reasons, then the results might get skewed).
  4531       _marking_step_diffs_ms.add(diff_ms);
  4534     if (_cm->has_overflown()) {
  4535       // This is the interesting one. We aborted because a global
  4536       // overflow was raised. This means we have to restart the
  4537       // marking phase and start iterating over regions. However, in
  4538       // order to do this we have to make sure that all tasks stop
  4539       // what they are doing and re-initialise in a safe manner. We
  4540       // will achieve this with the use of two barrier sync points.
  4542       if (_cm->verbose_low()) {
  4543         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4546       if (!is_serial) {
  4547         // We only need to enter the sync barrier if being called
  4548         // from a parallel context
  4549         _cm->enter_first_sync_barrier(_worker_id);
  4551         // When we exit this sync barrier we know that all tasks have
  4552         // stopped doing marking work. So, it's now safe to
  4553         // re-initialise our data structures. At the end of this method,
  4554         // task 0 will clear the global data structures.
  4557       statsOnly( ++_aborted_overflow );
  4559       // We clear the local state of this task...
  4560       clear_region_fields();
  4562       if (!is_serial) {
  4563         // ...and enter the second barrier.
  4564         _cm->enter_second_sync_barrier(_worker_id);
  4566       // At this point, if we're during the concurrent phase of
  4567       // marking, everything has been re-initialized and we're
  4568       // ready to restart.
  4571     if (_cm->verbose_low()) {
  4572       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4573                              "elapsed = %1.2lfms <<<<<<<<<<",
  4574                              _worker_id, _time_target_ms, elapsed_time_ms);
  4575       if (_cm->has_aborted()) {
  4576         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4577                                _worker_id);
  4580   } else {
  4581     if (_cm->verbose_low()) {
  4582       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4583                              "elapsed = %1.2lfms <<<<<<<<<<",
  4584                              _worker_id, _time_target_ms, elapsed_time_ms);
  4588   _claimed = false;
  4591 CMTask::CMTask(uint worker_id,
  4592                ConcurrentMark* cm,
  4593                size_t* marked_bytes,
  4594                BitMap* card_bm,
  4595                CMTaskQueue* task_queue,
  4596                CMTaskQueueSet* task_queues)
  4597   : _g1h(G1CollectedHeap::heap()),
  4598     _worker_id(worker_id), _cm(cm),
  4599     _claimed(false),
  4600     _nextMarkBitMap(NULL), _hash_seed(17),
  4601     _task_queue(task_queue),
  4602     _task_queues(task_queues),
  4603     _cm_oop_closure(NULL),
  4604     _marked_bytes_array(marked_bytes),
  4605     _card_bm(card_bm) {
  4606   guarantee(task_queue != NULL, "invariant");
  4607   guarantee(task_queues != NULL, "invariant");
  4609   statsOnly( _clock_due_to_scanning = 0;
  4610              _clock_due_to_marking  = 0 );
  4612   _marking_step_diffs_ms.add(0.5);
  4615 // These are formatting macros that are used below to ensure
  4616 // consistent formatting. The *_H_* versions are used to format the
  4617 // header for a particular value and they should be kept consistent
  4618 // with the corresponding macro. Also note that most of the macros add
  4619 // the necessary white space (as a prefix) which makes them a bit
  4620 // easier to compose.
  4622 // All the output lines are prefixed with this string to be able to
  4623 // identify them easily in a large log file.
  4624 #define G1PPRL_LINE_PREFIX            "###"
  4626 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4627 #ifdef _LP64
  4628 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4629 #else // _LP64
  4630 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4631 #endif // _LP64
  4633 // For per-region info
  4634 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4635 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4636 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4637 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4638 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4639 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4641 // For summary info
  4642 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4643 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4644 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4645 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4647 G1PrintRegionLivenessInfoClosure::
  4648 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4649   : _out(out),
  4650     _total_used_bytes(0), _total_capacity_bytes(0),
  4651     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4652     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4653     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4654     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4655   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4656   MemRegion g1_committed = g1h->g1_committed();
  4657   MemRegion g1_reserved = g1h->g1_reserved();
  4658   double now = os::elapsedTime();
  4660   // Print the header of the output.
  4661   _out->cr();
  4662   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4663   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4664                  G1PPRL_SUM_ADDR_FORMAT("committed")
  4665                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4666                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4667                  p2i(g1_committed.start()), p2i(g1_committed.end()),
  4668                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4669                  HeapRegion::GrainBytes);
  4670   _out->print_cr(G1PPRL_LINE_PREFIX);
  4671   _out->print_cr(G1PPRL_LINE_PREFIX
  4672                 G1PPRL_TYPE_H_FORMAT
  4673                 G1PPRL_ADDR_BASE_H_FORMAT
  4674                 G1PPRL_BYTE_H_FORMAT
  4675                 G1PPRL_BYTE_H_FORMAT
  4676                 G1PPRL_BYTE_H_FORMAT
  4677                 G1PPRL_DOUBLE_H_FORMAT
  4678                 G1PPRL_BYTE_H_FORMAT
  4679                 G1PPRL_BYTE_H_FORMAT,
  4680                 "type", "address-range",
  4681                 "used", "prev-live", "next-live", "gc-eff",
  4682                 "remset", "code-roots");
  4683   _out->print_cr(G1PPRL_LINE_PREFIX
  4684                 G1PPRL_TYPE_H_FORMAT
  4685                 G1PPRL_ADDR_BASE_H_FORMAT
  4686                 G1PPRL_BYTE_H_FORMAT
  4687                 G1PPRL_BYTE_H_FORMAT
  4688                 G1PPRL_BYTE_H_FORMAT
  4689                 G1PPRL_DOUBLE_H_FORMAT
  4690                 G1PPRL_BYTE_H_FORMAT
  4691                 G1PPRL_BYTE_H_FORMAT,
  4692                 "", "",
  4693                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4694                 "(bytes)", "(bytes)");
  4697 // It takes as a parameter a reference to one of the _hum_* fields, it
  4698 // deduces the corresponding value for a region in a humongous region
  4699 // series (either the region size, or what's left if the _hum_* field
  4700 // is < the region size), and updates the _hum_* field accordingly.
  4701 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4702   size_t bytes = 0;
  4703   // The > 0 check is to deal with the prev and next live bytes which
  4704   // could be 0.
  4705   if (*hum_bytes > 0) {
  4706     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4707     *hum_bytes -= bytes;
  4709   return bytes;
  4712 // It deduces the values for a region in a humongous region series
  4713 // from the _hum_* fields and updates those accordingly. It assumes
  4714 // that that _hum_* fields have already been set up from the "starts
  4715 // humongous" region and we visit the regions in address order.
  4716 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4717                                                      size_t* capacity_bytes,
  4718                                                      size_t* prev_live_bytes,
  4719                                                      size_t* next_live_bytes) {
  4720   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4721   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4722   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4723   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4724   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4727 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4728   const char* type = "";
  4729   HeapWord* bottom       = r->bottom();
  4730   HeapWord* end          = r->end();
  4731   size_t capacity_bytes  = r->capacity();
  4732   size_t used_bytes      = r->used();
  4733   size_t prev_live_bytes = r->live_bytes();
  4734   size_t next_live_bytes = r->next_live_bytes();
  4735   double gc_eff          = r->gc_efficiency();
  4736   size_t remset_bytes    = r->rem_set()->mem_size();
  4737   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4739   if (r->used() == 0) {
  4740     type = "FREE";
  4741   } else if (r->is_survivor()) {
  4742     type = "SURV";
  4743   } else if (r->is_young()) {
  4744     type = "EDEN";
  4745   } else if (r->startsHumongous()) {
  4746     type = "HUMS";
  4748     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4749            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4750            "they should have been zeroed after the last time we used them");
  4751     // Set up the _hum_* fields.
  4752     _hum_capacity_bytes  = capacity_bytes;
  4753     _hum_used_bytes      = used_bytes;
  4754     _hum_prev_live_bytes = prev_live_bytes;
  4755     _hum_next_live_bytes = next_live_bytes;
  4756     get_hum_bytes(&used_bytes, &capacity_bytes,
  4757                   &prev_live_bytes, &next_live_bytes);
  4758     end = bottom + HeapRegion::GrainWords;
  4759   } else if (r->continuesHumongous()) {
  4760     type = "HUMC";
  4761     get_hum_bytes(&used_bytes, &capacity_bytes,
  4762                   &prev_live_bytes, &next_live_bytes);
  4763     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4764   } else {
  4765     type = "OLD";
  4768   _total_used_bytes      += used_bytes;
  4769   _total_capacity_bytes  += capacity_bytes;
  4770   _total_prev_live_bytes += prev_live_bytes;
  4771   _total_next_live_bytes += next_live_bytes;
  4772   _total_remset_bytes    += remset_bytes;
  4773   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4775   // Print a line for this particular region.
  4776   _out->print_cr(G1PPRL_LINE_PREFIX
  4777                  G1PPRL_TYPE_FORMAT
  4778                  G1PPRL_ADDR_BASE_FORMAT
  4779                  G1PPRL_BYTE_FORMAT
  4780                  G1PPRL_BYTE_FORMAT
  4781                  G1PPRL_BYTE_FORMAT
  4782                  G1PPRL_DOUBLE_FORMAT
  4783                  G1PPRL_BYTE_FORMAT
  4784                  G1PPRL_BYTE_FORMAT,
  4785                  type, p2i(bottom), p2i(end),
  4786                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4787                  remset_bytes, strong_code_roots_bytes);
  4789   return false;
  4792 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4793   // add static memory usages to remembered set sizes
  4794   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4795   // Print the footer of the output.
  4796   _out->print_cr(G1PPRL_LINE_PREFIX);
  4797   _out->print_cr(G1PPRL_LINE_PREFIX
  4798                  " SUMMARY"
  4799                  G1PPRL_SUM_MB_FORMAT("capacity")
  4800                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4801                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4802                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4803                  G1PPRL_SUM_MB_FORMAT("remset")
  4804                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4805                  bytes_to_mb(_total_capacity_bytes),
  4806                  bytes_to_mb(_total_used_bytes),
  4807                  perc(_total_used_bytes, _total_capacity_bytes),
  4808                  bytes_to_mb(_total_prev_live_bytes),
  4809                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4810                  bytes_to_mb(_total_next_live_bytes),
  4811                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4812                  bytes_to_mb(_total_remset_bytes),
  4813                  bytes_to_mb(_total_strong_code_roots_bytes));
  4814   _out->cr();

mercurial