src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6982
4c1b88a53c74
child 7476
c2844108a708
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    28 #include "gc_implementation/shared/gcHeapSummary.hpp"
    29 #include "gc_implementation/shared/gSpaceCounters.hpp"
    30 #include "gc_implementation/shared/gcStats.hpp"
    31 #include "gc_implementation/shared/gcWhen.hpp"
    32 #include "gc_implementation/shared/generationCounters.hpp"
    33 #include "memory/freeBlockDictionary.hpp"
    34 #include "memory/generation.hpp"
    35 #include "memory/iterator.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "runtime/virtualspace.hpp"
    38 #include "services/memoryService.hpp"
    39 #include "utilities/bitMap.inline.hpp"
    40 #include "utilities/stack.inline.hpp"
    41 #include "utilities/taskqueue.hpp"
    42 #include "utilities/yieldingWorkgroup.hpp"
    44 // ConcurrentMarkSweepGeneration is in support of a concurrent
    45 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
    46 // style. We assume, for now, that this generation is always the
    47 // seniormost generation and for simplicity
    48 // in the first implementation, that this generation is a single compactible
    49 // space. Neither of these restrictions appears essential, and will be
    50 // relaxed in the future when more time is available to implement the
    51 // greater generality (and there's a need for it).
    52 //
    53 // Concurrent mode failures are currently handled by
    54 // means of a sliding mark-compact.
    56 class CMSAdaptiveSizePolicy;
    57 class CMSConcMarkingTask;
    58 class CMSGCAdaptivePolicyCounters;
    59 class CMSTracer;
    60 class ConcurrentGCTimer;
    61 class ConcurrentMarkSweepGeneration;
    62 class ConcurrentMarkSweepPolicy;
    63 class ConcurrentMarkSweepThread;
    64 class CompactibleFreeListSpace;
    65 class FreeChunk;
    66 class PromotionInfo;
    67 class ScanMarkedObjectsAgainCarefullyClosure;
    68 class TenuredGeneration;
    69 class SerialOldTracer;
    71 // A generic CMS bit map. It's the basis for both the CMS marking bit map
    72 // as well as for the mod union table (in each case only a subset of the
    73 // methods are used). This is essentially a wrapper around the BitMap class,
    74 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
    75 // we have _shifter == 0. and for the mod union table we have
    76 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
    77 // XXX 64-bit issues in BitMap?
    78 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
    79   friend class VMStructs;
    81   HeapWord* _bmStartWord;   // base address of range covered by map
    82   size_t    _bmWordSize;    // map size (in #HeapWords covered)
    83   const int _shifter;       // shifts to convert HeapWord to bit position
    84   VirtualSpace _virtual_space; // underlying the bit map
    85   BitMap    _bm;            // the bit map itself
    86  public:
    87   Mutex* const _lock;       // mutex protecting _bm;
    89  public:
    90   // constructor
    91   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
    93   // allocates the actual storage for the map
    94   bool allocate(MemRegion mr);
    95   // field getter
    96   Mutex* lock() const { return _lock; }
    97   // locking verifier convenience function
    98   void assert_locked() const PRODUCT_RETURN;
   100   // inquiries
   101   HeapWord* startWord()   const { return _bmStartWord; }
   102   size_t    sizeInWords() const { return _bmWordSize;  }
   103   size_t    sizeInBits()  const { return _bm.size();   }
   104   // the following is one past the last word in space
   105   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
   107   // reading marks
   108   bool isMarked(HeapWord* addr) const;
   109   bool par_isMarked(HeapWord* addr) const; // do not lock checks
   110   bool isUnmarked(HeapWord* addr) const;
   111   bool isAllClear() const;
   113   // writing marks
   114   void mark(HeapWord* addr);
   115   // For marking by parallel GC threads;
   116   // returns true if we did, false if another thread did
   117   bool par_mark(HeapWord* addr);
   119   void mark_range(MemRegion mr);
   120   void par_mark_range(MemRegion mr);
   121   void mark_large_range(MemRegion mr);
   122   void par_mark_large_range(MemRegion mr);
   123   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
   124   void clear_range(MemRegion mr);
   125   void par_clear_range(MemRegion mr);
   126   void clear_large_range(MemRegion mr);
   127   void par_clear_large_range(MemRegion mr);
   128   void clear_all();
   129   void clear_all_incrementally();  // Not yet implemented!!
   131   NOT_PRODUCT(
   132     // checks the memory region for validity
   133     void region_invariant(MemRegion mr);
   134   )
   136   // iteration
   137   void iterate(BitMapClosure* cl) {
   138     _bm.iterate(cl);
   139   }
   140   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
   141   void dirty_range_iterate_clear(MemRegionClosure* cl);
   142   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
   144   // auxiliary support for iteration
   145   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
   146   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
   147                                             HeapWord* end_addr) const;
   148   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
   149   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
   150                                               HeapWord* end_addr) const;
   151   MemRegion getAndClearMarkedRegion(HeapWord* addr);
   152   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
   153                                            HeapWord* end_addr);
   155   // conversion utilities
   156   HeapWord* offsetToHeapWord(size_t offset) const;
   157   size_t    heapWordToOffset(HeapWord* addr) const;
   158   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
   160   void print_on_error(outputStream* st, const char* prefix) const;
   162   // debugging
   163   // is this address range covered by the bit-map?
   164   NOT_PRODUCT(
   165     bool covers(MemRegion mr) const;
   166     bool covers(HeapWord* start, size_t size = 0) const;
   167   )
   168   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
   169 };
   171 // Represents a marking stack used by the CMS collector.
   172 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   173 class CMSMarkStack: public CHeapObj<mtGC>  {
   174   //
   175   friend class CMSCollector;   // to get at expasion stats further below
   176   //
   178   VirtualSpace _virtual_space;  // space for the stack
   179   oop*   _base;      // bottom of stack
   180   size_t _index;     // one more than last occupied index
   181   size_t _capacity;  // max #elements
   182   Mutex  _par_lock;  // an advisory lock used in case of parallel access
   183   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
   185  protected:
   186   size_t _hit_limit;      // we hit max stack size limit
   187   size_t _failed_double;  // we failed expansion before hitting limit
   189  public:
   190   CMSMarkStack():
   191     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
   192     _hit_limit(0),
   193     _failed_double(0) {}
   195   bool allocate(size_t size);
   197   size_t capacity() const { return _capacity; }
   199   oop pop() {
   200     if (!isEmpty()) {
   201       return _base[--_index] ;
   202     }
   203     return NULL;
   204   }
   206   bool push(oop ptr) {
   207     if (isFull()) {
   208       return false;
   209     } else {
   210       _base[_index++] = ptr;
   211       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   212       return true;
   213     }
   214   }
   216   bool isEmpty() const { return _index == 0; }
   217   bool isFull()  const {
   218     assert(_index <= _capacity, "buffer overflow");
   219     return _index == _capacity;
   220   }
   222   size_t length() { return _index; }
   224   // "Parallel versions" of some of the above
   225   oop par_pop() {
   226     // lock and pop
   227     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   228     return pop();
   229   }
   231   bool par_push(oop ptr) {
   232     // lock and push
   233     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   234     return push(ptr);
   235   }
   237   // Forcibly reset the stack, losing all of its contents.
   238   void reset() {
   239     _index = 0;
   240   }
   242   // Expand the stack, typically in response to an overflow condition
   243   void expand();
   245   // Compute the least valued stack element.
   246   oop least_value(HeapWord* low) {
   247      oop least = (oop)low;
   248      for (size_t i = 0; i < _index; i++) {
   249        least = MIN2(least, _base[i]);
   250      }
   251      return least;
   252   }
   254   // Exposed here to allow stack expansion in || case
   255   Mutex* par_lock() { return &_par_lock; }
   256 };
   258 class CardTableRS;
   259 class CMSParGCThreadState;
   261 class ModUnionClosure: public MemRegionClosure {
   262  protected:
   263   CMSBitMap* _t;
   264  public:
   265   ModUnionClosure(CMSBitMap* t): _t(t) { }
   266   void do_MemRegion(MemRegion mr);
   267 };
   269 class ModUnionClosurePar: public ModUnionClosure {
   270  public:
   271   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
   272   void do_MemRegion(MemRegion mr);
   273 };
   275 // Survivor Chunk Array in support of parallelization of
   276 // Survivor Space rescan.
   277 class ChunkArray: public CHeapObj<mtGC> {
   278   size_t _index;
   279   size_t _capacity;
   280   size_t _overflows;
   281   HeapWord** _array;   // storage for array
   283  public:
   284   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
   285   ChunkArray(HeapWord** a, size_t c):
   286     _index(0), _capacity(c), _overflows(0), _array(a) {}
   288   HeapWord** array() { return _array; }
   289   void set_array(HeapWord** a) { _array = a; }
   291   size_t capacity() { return _capacity; }
   292   void set_capacity(size_t c) { _capacity = c; }
   294   size_t end() {
   295     assert(_index <= capacity(),
   296            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
   297                    _index, _capacity));
   298     return _index;
   299   }  // exclusive
   301   HeapWord* nth(size_t n) {
   302     assert(n < end(), "Out of bounds access");
   303     return _array[n];
   304   }
   306   void reset() {
   307     _index = 0;
   308     if (_overflows > 0 && PrintCMSStatistics > 1) {
   309       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
   310               _capacity, _overflows);
   311     }
   312     _overflows = 0;
   313   }
   315   void record_sample(HeapWord* p, size_t sz) {
   316     // For now we do not do anything with the size
   317     if (_index < _capacity) {
   318       _array[_index++] = p;
   319     } else {
   320       ++_overflows;
   321       assert(_index == _capacity,
   322              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
   323                      "): out of bounds at overflow#" SIZE_FORMAT,
   324                      _index, _capacity, _overflows));
   325     }
   326   }
   327 };
   329 //
   330 // Timing, allocation and promotion statistics for gc scheduling and incremental
   331 // mode pacing.  Most statistics are exponential averages.
   332 //
   333 class CMSStats VALUE_OBJ_CLASS_SPEC {
   334  private:
   335   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
   337   // The following are exponential averages with factor alpha:
   338   //   avg = (100 - alpha) * avg + alpha * cur_sample
   339   //
   340   //   The durations measure:  end_time[n] - start_time[n]
   341   //   The periods measure:    start_time[n] - start_time[n-1]
   342   //
   343   // The cms period and duration include only concurrent collections; time spent
   344   // in foreground cms collections due to System.gc() or because of a failure to
   345   // keep up are not included.
   346   //
   347   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
   348   // real value, but is used only after the first period.  A value of 100 is
   349   // used for the first sample so it gets the entire weight.
   350   unsigned int _saved_alpha; // 0-100
   351   unsigned int _gc0_alpha;
   352   unsigned int _cms_alpha;
   354   double _gc0_duration;
   355   double _gc0_period;
   356   size_t _gc0_promoted;         // bytes promoted per gc0
   357   double _cms_duration;
   358   double _cms_duration_pre_sweep; // time from initiation to start of sweep
   359   double _cms_duration_per_mb;
   360   double _cms_period;
   361   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
   363   // Timers.
   364   elapsedTimer _cms_timer;
   365   TimeStamp    _gc0_begin_time;
   366   TimeStamp    _cms_begin_time;
   367   TimeStamp    _cms_end_time;
   369   // Snapshots of the amount used in the CMS generation.
   370   size_t _cms_used_at_gc0_begin;
   371   size_t _cms_used_at_gc0_end;
   372   size_t _cms_used_at_cms_begin;
   374   // Used to prevent the duty cycle from being reduced in the middle of a cms
   375   // cycle.
   376   bool _allow_duty_cycle_reduction;
   378   enum {
   379     _GC0_VALID = 0x1,
   380     _CMS_VALID = 0x2,
   381     _ALL_VALID = _GC0_VALID | _CMS_VALID
   382   };
   384   unsigned int _valid_bits;
   386   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
   388  protected:
   390   // Return a duty cycle that avoids wild oscillations, by limiting the amount
   391   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
   392   // as a recommended value).
   393   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
   394                                              unsigned int new_duty_cycle);
   395   unsigned int icms_update_duty_cycle_impl();
   397   // In support of adjusting of cms trigger ratios based on history
   398   // of concurrent mode failure.
   399   double cms_free_adjustment_factor(size_t free) const;
   400   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
   402  public:
   403   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
   404            unsigned int alpha = CMSExpAvgFactor);
   406   // Whether or not the statistics contain valid data; higher level statistics
   407   // cannot be called until this returns true (they require at least one young
   408   // gen and one cms cycle to have completed).
   409   bool valid() const;
   411   // Record statistics.
   412   void record_gc0_begin();
   413   void record_gc0_end(size_t cms_gen_bytes_used);
   414   void record_cms_begin();
   415   void record_cms_end();
   417   // Allow management of the cms timer, which must be stopped/started around
   418   // yield points.
   419   elapsedTimer& cms_timer()     { return _cms_timer; }
   420   void start_cms_timer()        { _cms_timer.start(); }
   421   void stop_cms_timer()         { _cms_timer.stop(); }
   423   // Basic statistics; units are seconds or bytes.
   424   double gc0_period() const     { return _gc0_period; }
   425   double gc0_duration() const   { return _gc0_duration; }
   426   size_t gc0_promoted() const   { return _gc0_promoted; }
   427   double cms_period() const          { return _cms_period; }
   428   double cms_duration() const        { return _cms_duration; }
   429   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
   430   size_t cms_allocated() const       { return _cms_allocated; }
   432   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
   434   // Seconds since the last background cms cycle began or ended.
   435   double cms_time_since_begin() const;
   436   double cms_time_since_end() const;
   438   // Higher level statistics--caller must check that valid() returns true before
   439   // calling.
   441   // Returns bytes promoted per second of wall clock time.
   442   double promotion_rate() const;
   444   // Returns bytes directly allocated per second of wall clock time.
   445   double cms_allocation_rate() const;
   447   // Rate at which space in the cms generation is being consumed (sum of the
   448   // above two).
   449   double cms_consumption_rate() const;
   451   // Returns an estimate of the number of seconds until the cms generation will
   452   // fill up, assuming no collection work is done.
   453   double time_until_cms_gen_full() const;
   455   // Returns an estimate of the number of seconds remaining until
   456   // the cms generation collection should start.
   457   double time_until_cms_start() const;
   459   // End of higher level statistics.
   461   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
   462   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
   464   // Update the duty cycle and return the new value.
   465   unsigned int icms_update_duty_cycle();
   467   // Debugging.
   468   void print_on(outputStream* st) const PRODUCT_RETURN;
   469   void print() const { print_on(gclog_or_tty); }
   470 };
   472 // A closure related to weak references processing which
   473 // we embed in the CMSCollector, since we need to pass
   474 // it to the reference processor for secondary filtering
   475 // of references based on reachability of referent;
   476 // see role of _is_alive_non_header closure in the
   477 // ReferenceProcessor class.
   478 // For objects in the CMS generation, this closure checks
   479 // if the object is "live" (reachable). Used in weak
   480 // reference processing.
   481 class CMSIsAliveClosure: public BoolObjectClosure {
   482   const MemRegion  _span;
   483   const CMSBitMap* _bit_map;
   485   friend class CMSCollector;
   486  public:
   487   CMSIsAliveClosure(MemRegion span,
   488                     CMSBitMap* bit_map):
   489     _span(span),
   490     _bit_map(bit_map) {
   491     assert(!span.is_empty(), "Empty span could spell trouble");
   492   }
   494   bool do_object_b(oop obj);
   495 };
   498 // Implements AbstractRefProcTaskExecutor for CMS.
   499 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   500 public:
   502   CMSRefProcTaskExecutor(CMSCollector& collector)
   503     : _collector(collector)
   504   { }
   506   // Executes a task using worker threads.
   507   virtual void execute(ProcessTask& task);
   508   virtual void execute(EnqueueTask& task);
   509 private:
   510   CMSCollector& _collector;
   511 };
   514 class CMSCollector: public CHeapObj<mtGC> {
   515   friend class VMStructs;
   516   friend class ConcurrentMarkSweepThread;
   517   friend class ConcurrentMarkSweepGeneration;
   518   friend class CompactibleFreeListSpace;
   519   friend class CMSParMarkTask;
   520   friend class CMSParInitialMarkTask;
   521   friend class CMSParRemarkTask;
   522   friend class CMSConcMarkingTask;
   523   friend class CMSRefProcTaskProxy;
   524   friend class CMSRefProcTaskExecutor;
   525   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
   526   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
   527   friend class PushOrMarkClosure;             // to access _restart_addr
   528   friend class Par_PushOrMarkClosure;             // to access _restart_addr
   529   friend class MarkFromRootsClosure;          //  -- ditto --
   530                                               // ... and for clearing cards
   531   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
   532                                               // ... and for clearing cards
   533   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
   534   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
   535   friend class PushAndMarkVerifyClosure;      //  -- ditto --
   536   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
   537   friend class PushAndMarkClosure;            //  -- ditto --
   538   friend class Par_PushAndMarkClosure;        //  -- ditto --
   539   friend class CMSKeepAliveClosure;           //  -- ditto --
   540   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
   541   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
   542   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
   543   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
   544   friend class VM_CMS_Operation;
   545   friend class VM_CMS_Initial_Mark;
   546   friend class VM_CMS_Final_Remark;
   547   friend class TraceCMSMemoryManagerStats;
   549  private:
   550   jlong _time_of_last_gc;
   551   void update_time_of_last_gc(jlong now) {
   552     _time_of_last_gc = now;
   553   }
   555   OopTaskQueueSet* _task_queues;
   557   // Overflow list of grey objects, threaded through mark-word
   558   // Manipulated with CAS in the parallel/multi-threaded case.
   559   oop _overflow_list;
   560   // The following array-pair keeps track of mark words
   561   // displaced for accomodating overflow list above.
   562   // This code will likely be revisited under RFE#4922830.
   563   Stack<oop, mtGC>     _preserved_oop_stack;
   564   Stack<markOop, mtGC> _preserved_mark_stack;
   566   int*             _hash_seed;
   568   // In support of multi-threaded concurrent phases
   569   YieldingFlexibleWorkGang* _conc_workers;
   571   // Performance Counters
   572   CollectorCounters* _gc_counters;
   574   // Initialization Errors
   575   bool _completed_initialization;
   577   // In support of ExplicitGCInvokesConcurrent
   578   static bool _full_gc_requested;
   579   static GCCause::Cause _full_gc_cause;
   580   unsigned int _collection_count_start;
   582   // Should we unload classes this concurrent cycle?
   583   bool _should_unload_classes;
   584   unsigned int  _concurrent_cycles_since_last_unload;
   585   unsigned int concurrent_cycles_since_last_unload() const {
   586     return _concurrent_cycles_since_last_unload;
   587   }
   588   // Did we (allow) unload classes in the previous concurrent cycle?
   589   bool unloaded_classes_last_cycle() const {
   590     return concurrent_cycles_since_last_unload() == 0;
   591   }
   592   // Root scanning options for perm gen
   593   int _roots_scanning_options;
   594   int roots_scanning_options() const      { return _roots_scanning_options; }
   595   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
   596   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
   598   // Verification support
   599   CMSBitMap     _verification_mark_bm;
   600   void verify_after_remark_work_1();
   601   void verify_after_remark_work_2();
   603   // true if any verification flag is on.
   604   bool _verifying;
   605   bool verifying() const { return _verifying; }
   606   void set_verifying(bool v) { _verifying = v; }
   608   // Collector policy
   609   ConcurrentMarkSweepPolicy* _collector_policy;
   610   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
   612   void set_did_compact(bool v);
   614   // XXX Move these to CMSStats ??? FIX ME !!!
   615   elapsedTimer _inter_sweep_timer;   // time between sweeps
   616   elapsedTimer _intra_sweep_timer;   // time _in_ sweeps
   617   // padded decaying average estimates of the above
   618   AdaptivePaddedAverage _inter_sweep_estimate;
   619   AdaptivePaddedAverage _intra_sweep_estimate;
   621   CMSTracer* _gc_tracer_cm;
   622   ConcurrentGCTimer* _gc_timer_cm;
   624   bool _cms_start_registered;
   626   GCHeapSummary _last_heap_summary;
   627   MetaspaceSummary _last_metaspace_summary;
   629   void register_foreground_gc_start(GCCause::Cause cause);
   630   void register_gc_start(GCCause::Cause cause);
   631   void register_gc_end();
   632   void save_heap_summary();
   633   void report_heap_summary(GCWhen::Type when);
   635  protected:
   636   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
   637   MemRegion                      _span;    // span covering above two
   638   CardTableRS*                   _ct;      // card table
   640   // CMS marking support structures
   641   CMSBitMap     _markBitMap;
   642   CMSBitMap     _modUnionTable;
   643   CMSMarkStack  _markStack;
   645   HeapWord*     _restart_addr; // in support of marking stack overflow
   646   void          lower_restart_addr(HeapWord* low);
   648   // Counters in support of marking stack / work queue overflow handling:
   649   // a non-zero value indicates certain types of overflow events during
   650   // the current CMS cycle and could lead to stack resizing efforts at
   651   // an opportune future time.
   652   size_t        _ser_pmc_preclean_ovflw;
   653   size_t        _ser_pmc_remark_ovflw;
   654   size_t        _par_pmc_remark_ovflw;
   655   size_t        _ser_kac_preclean_ovflw;
   656   size_t        _ser_kac_ovflw;
   657   size_t        _par_kac_ovflw;
   658   NOT_PRODUCT(ssize_t _num_par_pushes;)
   660   // ("Weak") Reference processing support
   661   ReferenceProcessor*            _ref_processor;
   662   CMSIsAliveClosure              _is_alive_closure;
   663       // keep this textually after _markBitMap and _span; c'tor dependency
   665   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
   666   ModUnionClosure    _modUnionClosure;
   667   ModUnionClosurePar _modUnionClosurePar;
   669   // CMS abstract state machine
   670   // initial_state: Idling
   671   // next_state(Idling)            = {Marking}
   672   // next_state(Marking)           = {Precleaning, Sweeping}
   673   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
   674   // next_state(AbortablePreclean) = {FinalMarking}
   675   // next_state(FinalMarking)      = {Sweeping}
   676   // next_state(Sweeping)          = {Resizing}
   677   // next_state(Resizing)          = {Resetting}
   678   // next_state(Resetting)         = {Idling}
   679   // The numeric values below are chosen so that:
   680   // . _collectorState <= Idling ==  post-sweep && pre-mark
   681   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
   682   //                                            precleaning || abortablePrecleanb
   683  public:
   684   enum CollectorState {
   685     Resizing            = 0,
   686     Resetting           = 1,
   687     Idling              = 2,
   688     InitialMarking      = 3,
   689     Marking             = 4,
   690     Precleaning         = 5,
   691     AbortablePreclean   = 6,
   692     FinalMarking        = 7,
   693     Sweeping            = 8
   694   };
   695  protected:
   696   static CollectorState _collectorState;
   698   // State related to prologue/epilogue invocation for my generations
   699   bool _between_prologue_and_epilogue;
   701   // Signalling/State related to coordination between fore- and backgroud GC
   702   // Note: When the baton has been passed from background GC to foreground GC,
   703   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
   704   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
   705                                  // wants to go active
   706   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
   707                                  // yet passed the baton to the foreground GC
   709   // Support for CMSScheduleRemark (abortable preclean)
   710   bool _abort_preclean;
   711   bool _start_sampling;
   713   int    _numYields;
   714   size_t _numDirtyCards;
   715   size_t _sweep_count;
   716   // number of full gc's since the last concurrent gc.
   717   uint   _full_gcs_since_conc_gc;
   719   // occupancy used for bootstrapping stats
   720   double _bootstrap_occupancy;
   722   // timer
   723   elapsedTimer _timer;
   725   // Timing, allocation and promotion statistics, used for scheduling.
   726   CMSStats      _stats;
   728   // Allocation limits installed in the young gen, used only in
   729   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
   730   // these limits, the cms generation is notified and the cms thread is started
   731   // or stopped, respectively.
   732   HeapWord*     _icms_start_limit;
   733   HeapWord*     _icms_stop_limit;
   735   enum CMS_op_type {
   736     CMS_op_checkpointRootsInitial,
   737     CMS_op_checkpointRootsFinal
   738   };
   740   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
   741   bool stop_world_and_do(CMS_op_type op);
   743   OopTaskQueueSet* task_queues() { return _task_queues; }
   744   int*             hash_seed(int i) { return &_hash_seed[i]; }
   745   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
   747   // Support for parallelizing Eden rescan in CMS remark phase
   748   void sample_eden(); // ... sample Eden space top
   750  private:
   751   // Support for parallelizing young gen rescan in CMS remark phase
   752   Generation* _young_gen;  // the younger gen
   753   HeapWord** _top_addr;    // ... Top of Eden
   754   HeapWord** _end_addr;    // ... End of Eden
   755   Mutex*     _eden_chunk_lock;
   756   HeapWord** _eden_chunk_array; // ... Eden partitioning array
   757   size_t     _eden_chunk_index; // ... top (exclusive) of array
   758   size_t     _eden_chunk_capacity;  // ... max entries in array
   760   // Support for parallelizing survivor space rescan
   761   HeapWord** _survivor_chunk_array;
   762   size_t     _survivor_chunk_index;
   763   size_t     _survivor_chunk_capacity;
   764   size_t*    _cursor;
   765   ChunkArray* _survivor_plab_array;
   767   // Support for marking stack overflow handling
   768   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
   769   bool par_take_from_overflow_list(size_t num,
   770                                    OopTaskQueue* to_work_q,
   771                                    int no_of_gc_threads);
   772   void push_on_overflow_list(oop p);
   773   void par_push_on_overflow_list(oop p);
   774   // the following is, obviously, not, in general, "MT-stable"
   775   bool overflow_list_is_empty() const;
   777   void preserve_mark_if_necessary(oop p);
   778   void par_preserve_mark_if_necessary(oop p);
   779   void preserve_mark_work(oop p, markOop m);
   780   void restore_preserved_marks_if_any();
   781   NOT_PRODUCT(bool no_preserved_marks() const;)
   782   // in support of testing overflow code
   783   NOT_PRODUCT(int _overflow_counter;)
   784   NOT_PRODUCT(bool simulate_overflow();)       // sequential
   785   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
   787   // CMS work methods
   788   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
   790   // a return value of false indicates failure due to stack overflow
   791   bool markFromRootsWork(bool asynch);  // concurrent marking work
   793  public:   // FIX ME!!! only for testing
   794   bool do_marking_st(bool asynch);      // single-threaded marking
   795   bool do_marking_mt(bool asynch);      // multi-threaded  marking
   797  private:
   799   // concurrent precleaning work
   800   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
   801                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
   802   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
   803                              ScanMarkedObjectsAgainCarefullyClosure* cl);
   804   // Does precleaning work, returning a quantity indicative of
   805   // the amount of "useful work" done.
   806   size_t preclean_work(bool clean_refs, bool clean_survivors);
   807   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
   808   void abortable_preclean(); // Preclean while looking for possible abort
   809   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
   810   // Helper function for above; merge-sorts the per-thread plab samples
   811   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
   812   // Resets (i.e. clears) the per-thread plab sample vectors
   813   void reset_survivor_plab_arrays();
   815   // final (second) checkpoint work
   816   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
   817                                 bool init_mark_was_synchronous);
   818   // work routine for parallel version of remark
   819   void do_remark_parallel();
   820   // work routine for non-parallel version of remark
   821   void do_remark_non_parallel();
   822   // reference processing work routine (during second checkpoint)
   823   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
   825   // concurrent sweeping work
   826   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
   828   // (concurrent) resetting of support data structures
   829   void reset(bool asynch);
   831   // Clear _expansion_cause fields of constituent generations
   832   void clear_expansion_cause();
   834   // An auxilliary method used to record the ends of
   835   // used regions of each generation to limit the extent of sweep
   836   void save_sweep_limits();
   838   // A work method used by foreground collection to determine
   839   // what type of collection (compacting or not, continuing or fresh)
   840   // it should do.
   841   void decide_foreground_collection_type(bool clear_all_soft_refs,
   842     bool* should_compact, bool* should_start_over);
   844   // A work method used by the foreground collector to do
   845   // a mark-sweep-compact.
   846   void do_compaction_work(bool clear_all_soft_refs);
   848   // A work method used by the foreground collector to do
   849   // a mark-sweep, after taking over from a possibly on-going
   850   // concurrent mark-sweep collection.
   851   void do_mark_sweep_work(bool clear_all_soft_refs,
   852     CollectorState first_state, bool should_start_over);
   854   // Work methods for reporting concurrent mode interruption or failure
   855   bool is_external_interruption();
   856   void report_concurrent_mode_interruption();
   858   // If the backgrould GC is active, acquire control from the background
   859   // GC and do the collection.
   860   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
   862   // For synchronizing passing of control from background to foreground
   863   // GC.  waitForForegroundGC() is called by the background
   864   // collector.  It if had to wait for a foreground collection,
   865   // it returns true and the background collection should assume
   866   // that the collection was finished by the foreground
   867   // collector.
   868   bool waitForForegroundGC();
   870   // Incremental mode triggering:  recompute the icms duty cycle and set the
   871   // allocation limits in the young gen.
   872   void icms_update_allocation_limits();
   874   size_t block_size_using_printezis_bits(HeapWord* addr) const;
   875   size_t block_size_if_printezis_bits(HeapWord* addr) const;
   876   HeapWord* next_card_start_after_block(HeapWord* addr) const;
   878   void setup_cms_unloading_and_verification_state();
   879  public:
   880   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   881                CardTableRS*                   ct,
   882                ConcurrentMarkSweepPolicy*     cp);
   883   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
   885   ReferenceProcessor* ref_processor() { return _ref_processor; }
   886   void ref_processor_init();
   888   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
   889   static CollectorState abstract_state() { return _collectorState;  }
   891   bool should_abort_preclean() const; // Whether preclean should be aborted.
   892   size_t get_eden_used() const;
   893   size_t get_eden_capacity() const;
   895   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
   897   // locking checks
   898   NOT_PRODUCT(static bool have_cms_token();)
   900   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
   901   bool shouldConcurrentCollect();
   903   void collect(bool   full,
   904                bool   clear_all_soft_refs,
   905                size_t size,
   906                bool   tlab);
   907   void collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause);
   908   void collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause);
   910   // In support of ExplicitGCInvokesConcurrent
   911   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
   912   // Should we unload classes in a particular concurrent cycle?
   913   bool should_unload_classes() const {
   914     return _should_unload_classes;
   915   }
   916   void update_should_unload_classes();
   918   void direct_allocated(HeapWord* start, size_t size);
   920   // Object is dead if not marked and current phase is sweeping.
   921   bool is_dead_obj(oop obj) const;
   923   // After a promotion (of "start"), do any necessary marking.
   924   // If "par", then it's being done by a parallel GC thread.
   925   // The last two args indicate if we need precise marking
   926   // and if so the size of the object so it can be dirtied
   927   // in its entirety.
   928   void promoted(bool par, HeapWord* start,
   929                 bool is_obj_array, size_t obj_size);
   931   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   932                                      size_t word_size);
   934   void getFreelistLocks() const;
   935   void releaseFreelistLocks() const;
   936   bool haveFreelistLocks() const;
   938   // Adjust size of underlying generation
   939   void compute_new_size();
   941   // GC prologue and epilogue
   942   void gc_prologue(bool full);
   943   void gc_epilogue(bool full);
   945   jlong time_of_last_gc(jlong now) {
   946     if (_collectorState <= Idling) {
   947       // gc not in progress
   948       return _time_of_last_gc;
   949     } else {
   950       // collection in progress
   951       return now;
   952     }
   953   }
   955   // Support for parallel remark of survivor space
   956   void* get_data_recorder(int thr_num);
   957   void sample_eden_chunk();
   959   CMSBitMap* markBitMap()  { return &_markBitMap; }
   960   void directAllocated(HeapWord* start, size_t size);
   962   // main CMS steps and related support
   963   void checkpointRootsInitial(bool asynch);
   964   bool markFromRoots(bool asynch);  // a return value of false indicates failure
   965                                     // due to stack overflow
   966   void preclean();
   967   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
   968                             bool init_mark_was_synchronous);
   969   void sweep(bool asynch);
   971   // Check that the currently executing thread is the expected
   972   // one (foreground collector or background collector).
   973   static void check_correct_thread_executing() PRODUCT_RETURN;
   974   // XXXPERM void print_statistics()           PRODUCT_RETURN;
   976   bool is_cms_reachable(HeapWord* addr);
   978   // Performance Counter Support
   979   CollectorCounters* counters()    { return _gc_counters; }
   981   // timer stuff
   982   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
   983   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
   984   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
   985   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
   987   int  yields()          { return _numYields; }
   988   void resetYields()     { _numYields = 0;    }
   989   void incrementYields() { _numYields++;      }
   990   void resetNumDirtyCards()               { _numDirtyCards = 0; }
   991   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
   992   size_t  numDirtyCards()                 { return _numDirtyCards; }
   994   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
   995   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
   996   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
   997   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
   998   size_t sweep_count() const             { return _sweep_count; }
   999   void   increment_sweep_count()         { _sweep_count++; }
  1001   // Timers/stats for gc scheduling and incremental mode pacing.
  1002   CMSStats& stats() { return _stats; }
  1004   // Convenience methods that check whether CMSIncrementalMode is enabled and
  1005   // forward to the corresponding methods in ConcurrentMarkSweepThread.
  1006   static void start_icms();
  1007   static void stop_icms();    // Called at the end of the cms cycle.
  1008   static void disable_icms(); // Called before a foreground collection.
  1009   static void enable_icms();  // Called after a foreground collection.
  1010   void icms_wait();          // Called at yield points.
  1012   // Adaptive size policy
  1013   CMSAdaptiveSizePolicy* size_policy();
  1014   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1016   static void print_on_error(outputStream* st);
  1018   // debugging
  1019   void verify();
  1020   bool verify_after_remark(bool silent = VerifySilently);
  1021   void verify_ok_to_terminate() const PRODUCT_RETURN;
  1022   void verify_work_stacks_empty() const PRODUCT_RETURN;
  1023   void verify_overflow_empty() const PRODUCT_RETURN;
  1025   // convenience methods in support of debugging
  1026   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
  1027   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
  1029   // accessors
  1030   CMSMarkStack* verification_mark_stack() { return &_markStack; }
  1031   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
  1033   // Initialization errors
  1034   bool completed_initialization() { return _completed_initialization; }
  1036   void print_eden_and_survivor_chunk_arrays();
  1037 };
  1039 class CMSExpansionCause : public AllStatic  {
  1040  public:
  1041   enum Cause {
  1042     _no_expansion,
  1043     _satisfy_free_ratio,
  1044     _satisfy_promotion,
  1045     _satisfy_allocation,
  1046     _allocate_par_lab,
  1047     _allocate_par_spooling_space,
  1048     _adaptive_size_policy
  1049   };
  1050   // Return a string describing the cause of the expansion.
  1051   static const char* to_string(CMSExpansionCause::Cause cause);
  1052 };
  1054 class ConcurrentMarkSweepGeneration: public CardGeneration {
  1055   friend class VMStructs;
  1056   friend class ConcurrentMarkSweepThread;
  1057   friend class ConcurrentMarkSweep;
  1058   friend class CMSCollector;
  1059  protected:
  1060   static CMSCollector*       _collector; // the collector that collects us
  1061   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
  1063   // Performance Counters
  1064   GenerationCounters*      _gen_counters;
  1065   GSpaceCounters*          _space_counters;
  1067   // Words directly allocated, used by CMSStats.
  1068   size_t _direct_allocated_words;
  1070   // Non-product stat counters
  1071   NOT_PRODUCT(
  1072     size_t _numObjectsPromoted;
  1073     size_t _numWordsPromoted;
  1074     size_t _numObjectsAllocated;
  1075     size_t _numWordsAllocated;
  1078   // Used for sizing decisions
  1079   bool _incremental_collection_failed;
  1080   bool incremental_collection_failed() {
  1081     return _incremental_collection_failed;
  1083   void set_incremental_collection_failed() {
  1084     _incremental_collection_failed = true;
  1086   void clear_incremental_collection_failed() {
  1087     _incremental_collection_failed = false;
  1090   // accessors
  1091   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
  1092   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
  1094  private:
  1095   // For parallel young-gen GC support.
  1096   CMSParGCThreadState** _par_gc_thread_states;
  1098   // Reason generation was expanded
  1099   CMSExpansionCause::Cause _expansion_cause;
  1101   // In support of MinChunkSize being larger than min object size
  1102   const double _dilatation_factor;
  1104   enum CollectionTypes {
  1105     Concurrent_collection_type          = 0,
  1106     MS_foreground_collection_type       = 1,
  1107     MSC_foreground_collection_type      = 2,
  1108     Unknown_collection_type             = 3
  1109   };
  1111   CollectionTypes _debug_collection_type;
  1113   // True if a compactiing collection was done.
  1114   bool _did_compact;
  1115   bool did_compact() { return _did_compact; }
  1117   // Fraction of current occupancy at which to start a CMS collection which
  1118   // will collect this generation (at least).
  1119   double _initiating_occupancy;
  1121  protected:
  1122   // Shrink generation by specified size (returns false if unable to shrink)
  1123   void shrink_free_list_by(size_t bytes);
  1125   // Update statistics for GC
  1126   virtual void update_gc_stats(int level, bool full);
  1128   // Maximum available space in the generation (including uncommitted)
  1129   // space.
  1130   size_t max_available() const;
  1132   // getter and initializer for _initiating_occupancy field.
  1133   double initiating_occupancy() const { return _initiating_occupancy; }
  1134   void   init_initiating_occupancy(intx io, uintx tr);
  1136  public:
  1137   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1138                                 int level, CardTableRS* ct,
  1139                                 bool use_adaptive_freelists,
  1140                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
  1142   // Accessors
  1143   CMSCollector* collector() const { return _collector; }
  1144   static void set_collector(CMSCollector* collector) {
  1145     assert(_collector == NULL, "already set");
  1146     _collector = collector;
  1148   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
  1150   Mutex* freelistLock() const;
  1152   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
  1154   // Adaptive size policy
  1155   CMSAdaptiveSizePolicy* size_policy();
  1157   void set_did_compact(bool v) { _did_compact = v; }
  1159   bool refs_discovery_is_atomic() const { return false; }
  1160   bool refs_discovery_is_mt()     const {
  1161     // Note: CMS does MT-discovery during the parallel-remark
  1162     // phases. Use ReferenceProcessorMTMutator to make refs
  1163     // discovery MT-safe during such phases or other parallel
  1164     // discovery phases in the future. This may all go away
  1165     // if/when we decide that refs discovery is sufficiently
  1166     // rare that the cost of the CAS's involved is in the
  1167     // noise. That's a measurement that should be done, and
  1168     // the code simplified if that turns out to be the case.
  1169     return ConcGCThreads > 1;
  1172   // Override
  1173   virtual void ref_processor_init();
  1175   // Grow generation by specified size (returns false if unable to grow)
  1176   bool grow_by(size_t bytes);
  1177   // Grow generation to reserved size.
  1178   bool grow_to_reserved();
  1180   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
  1182   // Space enquiries
  1183   size_t capacity() const;
  1184   size_t used() const;
  1185   size_t free() const;
  1186   double occupancy() const { return ((double)used())/((double)capacity()); }
  1187   size_t contiguous_available() const;
  1188   size_t unsafe_max_alloc_nogc() const;
  1190   // over-rides
  1191   MemRegion used_region() const;
  1192   MemRegion used_region_at_save_marks() const;
  1194   // Does a "full" (forced) collection invoked on this generation collect
  1195   // all younger generations as well? Note that the second conjunct is a
  1196   // hack to allow the collection of the younger gen first if the flag is
  1197   // set. This is better than using th policy's should_collect_gen0_first()
  1198   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
  1199   virtual bool full_collects_younger_generations() const {
  1200     return UseCMSCompactAtFullCollection && !CollectGen0First;
  1203   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  1205   // Support for compaction
  1206   CompactibleSpace* first_compaction_space() const;
  1207   // Adjust quantites in the generation affected by
  1208   // the compaction.
  1209   void reset_after_compaction();
  1211   // Allocation support
  1212   HeapWord* allocate(size_t size, bool tlab);
  1213   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
  1214   oop       promote(oop obj, size_t obj_size);
  1215   HeapWord* par_allocate(size_t size, bool tlab) {
  1216     return allocate(size, tlab);
  1219   // Incremental mode triggering.
  1220   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
  1221                                      size_t word_size);
  1223   // Used by CMSStats to track direct allocation.  The value is sampled and
  1224   // reset after each young gen collection.
  1225   size_t direct_allocated_words() const { return _direct_allocated_words; }
  1226   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
  1228   // Overrides for parallel promotion.
  1229   virtual oop par_promote(int thread_num,
  1230                           oop obj, markOop m, size_t word_sz);
  1231   // This one should not be called for CMS.
  1232   virtual void par_promote_alloc_undo(int thread_num,
  1233                                       HeapWord* obj, size_t word_sz);
  1234   virtual void par_promote_alloc_done(int thread_num);
  1235   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
  1237   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
  1239   // Inform this (non-young) generation that a promotion failure was
  1240   // encountered during a collection of a younger generation that
  1241   // promotes into this generation.
  1242   virtual void promotion_failure_occurred();
  1244   bool should_collect(bool full, size_t size, bool tlab);
  1245   virtual bool should_concurrent_collect() const;
  1246   virtual bool is_too_full() const;
  1247   void collect(bool   full,
  1248                bool   clear_all_soft_refs,
  1249                size_t size,
  1250                bool   tlab);
  1252   HeapWord* expand_and_allocate(size_t word_size,
  1253                                 bool tlab,
  1254                                 bool parallel = false);
  1256   // GC prologue and epilogue
  1257   void gc_prologue(bool full);
  1258   void gc_prologue_work(bool full, bool registerClosure,
  1259                         ModUnionClosure* modUnionClosure);
  1260   void gc_epilogue(bool full);
  1261   void gc_epilogue_work(bool full);
  1263   // Time since last GC of this generation
  1264   jlong time_of_last_gc(jlong now) {
  1265     return collector()->time_of_last_gc(now);
  1267   void update_time_of_last_gc(jlong now) {
  1268     collector()-> update_time_of_last_gc(now);
  1271   // Allocation failure
  1272   void expand(size_t bytes, size_t expand_bytes,
  1273     CMSExpansionCause::Cause cause);
  1274   virtual bool expand(size_t bytes, size_t expand_bytes);
  1275   void shrink(size_t bytes);
  1276   void shrink_by(size_t bytes);
  1277   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
  1278   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
  1280   // Iteration support and related enquiries
  1281   void save_marks();
  1282   bool no_allocs_since_save_marks();
  1283   void younger_refs_iterate(OopsInGenClosure* cl);
  1285   // Iteration support specific to CMS generations
  1286   void save_sweep_limit();
  1288   // More iteration support
  1289   virtual void oop_iterate(ExtendedOopClosure* cl);
  1290   virtual void safe_object_iterate(ObjectClosure* cl);
  1291   virtual void object_iterate(ObjectClosure* cl);
  1293   // Need to declare the full complement of closures, whether we'll
  1294   // override them or not, or get message from the compiler:
  1295   //   oop_since_save_marks_iterate_nv hides virtual function...
  1296   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
  1297     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  1298   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
  1300   // Smart allocation  XXX -- move to CFLSpace?
  1301   void setNearLargestChunk();
  1302   bool isNearLargestChunk(HeapWord* addr);
  1304   // Get the chunk at the end of the space.  Delagates to
  1305   // the space.
  1306   FreeChunk* find_chunk_at_end();
  1308   void post_compact();
  1310   // Debugging
  1311   void prepare_for_verify();
  1312   void verify();
  1313   void print_statistics()               PRODUCT_RETURN;
  1315   // Performance Counters support
  1316   virtual void update_counters();
  1317   virtual void update_counters(size_t used);
  1318   void initialize_performance_counters();
  1319   CollectorCounters* counters()  { return collector()->counters(); }
  1321   // Support for parallel remark of survivor space
  1322   void* get_data_recorder(int thr_num) {
  1323     //Delegate to collector
  1324     return collector()->get_data_recorder(thr_num);
  1326   void sample_eden_chunk() {
  1327     //Delegate to collector
  1328     return collector()->sample_eden_chunk();
  1331   // Printing
  1332   const char* name() const;
  1333   virtual const char* short_name() const { return "CMS"; }
  1334   void        print() const;
  1335   void printOccupancy(const char* s);
  1336   bool must_be_youngest() const { return false; }
  1337   bool must_be_oldest()   const { return true; }
  1339   // Resize the generation after a compacting GC.  The
  1340   // generation can be treated as a contiguous space
  1341   // after the compaction.
  1342   virtual void compute_new_size();
  1343   // Resize the generation after a non-compacting
  1344   // collection.
  1345   void compute_new_size_free_list();
  1347   CollectionTypes debug_collection_type() { return _debug_collection_type; }
  1348   void rotate_debug_collection_type();
  1349 };
  1351 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
  1353   // Return the size policy from the heap's collector
  1354   // policy casted to CMSAdaptiveSizePolicy*.
  1355   CMSAdaptiveSizePolicy* cms_size_policy() const;
  1357   // Resize the generation based on the adaptive size
  1358   // policy.
  1359   void resize(size_t cur_promo, size_t desired_promo);
  1361   // Return the GC counters from the collector policy
  1362   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1364   virtual void shrink_by(size_t bytes);
  1366  public:
  1367   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1368                                   int level, CardTableRS* ct,
  1369                                   bool use_adaptive_freelists,
  1370                                   FreeBlockDictionary<FreeChunk>::DictionaryChoice
  1371                                     dictionaryChoice) :
  1372     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
  1373       use_adaptive_freelists, dictionaryChoice) {}
  1375   virtual const char* short_name() const { return "ASCMS"; }
  1376   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
  1378   virtual void update_counters();
  1379   virtual void update_counters(size_t used);
  1380 };
  1382 //
  1383 // Closures of various sorts used by CMS to accomplish its work
  1384 //
  1386 // This closure is used to do concurrent marking from the roots
  1387 // following the first checkpoint.
  1388 class MarkFromRootsClosure: public BitMapClosure {
  1389   CMSCollector*  _collector;
  1390   MemRegion      _span;
  1391   CMSBitMap*     _bitMap;
  1392   CMSBitMap*     _mut;
  1393   CMSMarkStack*  _markStack;
  1394   bool           _yield;
  1395   int            _skipBits;
  1396   HeapWord*      _finger;
  1397   HeapWord*      _threshold;
  1398   DEBUG_ONLY(bool _verifying;)
  1400  public:
  1401   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
  1402                        CMSBitMap* bitMap,
  1403                        CMSMarkStack*  markStack,
  1404                        bool should_yield, bool verifying = false);
  1405   bool do_bit(size_t offset);
  1406   void reset(HeapWord* addr);
  1407   inline void do_yield_check();
  1409  private:
  1410   void scanOopsInOop(HeapWord* ptr);
  1411   void do_yield_work();
  1412 };
  1414 // This closure is used to do concurrent multi-threaded
  1415 // marking from the roots following the first checkpoint.
  1416 // XXX This should really be a subclass of The serial version
  1417 // above, but i have not had the time to refactor things cleanly.
  1418 // That willbe done for Dolphin.
  1419 class Par_MarkFromRootsClosure: public BitMapClosure {
  1420   CMSCollector*  _collector;
  1421   MemRegion      _whole_span;
  1422   MemRegion      _span;
  1423   CMSBitMap*     _bit_map;
  1424   CMSBitMap*     _mut;
  1425   OopTaskQueue*  _work_queue;
  1426   CMSMarkStack*  _overflow_stack;
  1427   bool           _yield;
  1428   int            _skip_bits;
  1429   HeapWord*      _finger;
  1430   HeapWord*      _threshold;
  1431   CMSConcMarkingTask* _task;
  1432  public:
  1433   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
  1434                        MemRegion span,
  1435                        CMSBitMap* bit_map,
  1436                        OopTaskQueue* work_queue,
  1437                        CMSMarkStack*  overflow_stack,
  1438                        bool should_yield);
  1439   bool do_bit(size_t offset);
  1440   inline void do_yield_check();
  1442  private:
  1443   void scan_oops_in_oop(HeapWord* ptr);
  1444   void do_yield_work();
  1445   bool get_work_from_overflow_stack();
  1446 };
  1448 // The following closures are used to do certain kinds of verification of
  1449 // CMS marking.
  1450 class PushAndMarkVerifyClosure: public MetadataAwareOopClosure {
  1451   CMSCollector*    _collector;
  1452   MemRegion        _span;
  1453   CMSBitMap*       _verification_bm;
  1454   CMSBitMap*       _cms_bm;
  1455   CMSMarkStack*    _mark_stack;
  1456  protected:
  1457   void do_oop(oop p);
  1458   template <class T> inline void do_oop_work(T *p) {
  1459     oop obj = oopDesc::load_decode_heap_oop(p);
  1460     do_oop(obj);
  1462  public:
  1463   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
  1464                            MemRegion span,
  1465                            CMSBitMap* verification_bm,
  1466                            CMSBitMap* cms_bm,
  1467                            CMSMarkStack*  mark_stack);
  1468   void do_oop(oop* p);
  1469   void do_oop(narrowOop* p);
  1471   // Deal with a stack overflow condition
  1472   void handle_stack_overflow(HeapWord* lost);
  1473 };
  1475 class MarkFromRootsVerifyClosure: public BitMapClosure {
  1476   CMSCollector*  _collector;
  1477   MemRegion      _span;
  1478   CMSBitMap*     _verification_bm;
  1479   CMSBitMap*     _cms_bm;
  1480   CMSMarkStack*  _mark_stack;
  1481   HeapWord*      _finger;
  1482   PushAndMarkVerifyClosure _pam_verify_closure;
  1483  public:
  1484   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
  1485                              CMSBitMap* verification_bm,
  1486                              CMSBitMap* cms_bm,
  1487                              CMSMarkStack*  mark_stack);
  1488   bool do_bit(size_t offset);
  1489   void reset(HeapWord* addr);
  1490 };
  1493 // This closure is used to check that a certain set of bits is
  1494 // "empty" (i.e. the bit vector doesn't have any 1-bits).
  1495 class FalseBitMapClosure: public BitMapClosure {
  1496  public:
  1497   bool do_bit(size_t offset) {
  1498     guarantee(false, "Should not have a 1 bit");
  1499     return true;
  1501 };
  1503 // A version of ObjectClosure with "memory" (see _previous_address below)
  1504 class UpwardsObjectClosure: public BoolObjectClosure {
  1505   HeapWord* _previous_address;
  1506  public:
  1507   UpwardsObjectClosure() : _previous_address(NULL) { }
  1508   void set_previous(HeapWord* addr) { _previous_address = addr; }
  1509   HeapWord* previous()              { return _previous_address; }
  1510   // A return value of "true" can be used by the caller to decide
  1511   // if this object's end should *NOT* be recorded in
  1512   // _previous_address above.
  1513   virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
  1514 };
  1516 // This closure is used during the second checkpointing phase
  1517 // to rescan the marked objects on the dirty cards in the mod
  1518 // union table and the card table proper. It's invoked via
  1519 // MarkFromDirtyCardsClosure below. It uses either
  1520 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
  1521 // declared in genOopClosures.hpp to accomplish some of its work.
  1522 // In the parallel case the bitMap is shared, so access to
  1523 // it needs to be suitably synchronized for updates by embedded
  1524 // closures that update it; however, this closure itself only
  1525 // reads the bit_map and because it is idempotent, is immune to
  1526 // reading stale values.
  1527 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
  1528   #ifdef ASSERT
  1529     CMSCollector*          _collector;
  1530     MemRegion              _span;
  1531     union {
  1532       CMSMarkStack*        _mark_stack;
  1533       OopTaskQueue*        _work_queue;
  1534     };
  1535   #endif // ASSERT
  1536   bool                       _parallel;
  1537   CMSBitMap*                 _bit_map;
  1538   union {
  1539     MarkRefsIntoAndScanClosure*     _scan_closure;
  1540     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
  1541   };
  1543  public:
  1544   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1545                                 MemRegion span,
  1546                                 ReferenceProcessor* rp,
  1547                                 CMSBitMap* bit_map,
  1548                                 CMSMarkStack*  mark_stack,
  1549                                 MarkRefsIntoAndScanClosure* cl):
  1550     #ifdef ASSERT
  1551       _collector(collector),
  1552       _span(span),
  1553       _mark_stack(mark_stack),
  1554     #endif // ASSERT
  1555     _parallel(false),
  1556     _bit_map(bit_map),
  1557     _scan_closure(cl) { }
  1559   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1560                                 MemRegion span,
  1561                                 ReferenceProcessor* rp,
  1562                                 CMSBitMap* bit_map,
  1563                                 OopTaskQueue* work_queue,
  1564                                 Par_MarkRefsIntoAndScanClosure* cl):
  1565     #ifdef ASSERT
  1566       _collector(collector),
  1567       _span(span),
  1568       _work_queue(work_queue),
  1569     #endif // ASSERT
  1570     _parallel(true),
  1571     _bit_map(bit_map),
  1572     _par_scan_closure(cl) { }
  1574   bool do_object_b(oop obj) {
  1575     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
  1576     return false;
  1578   bool do_object_bm(oop p, MemRegion mr);
  1579 };
  1581 // This closure is used during the second checkpointing phase
  1582 // to rescan the marked objects on the dirty cards in the mod
  1583 // union table and the card table proper. It invokes
  1584 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
  1585 // In the parallel case, the bit map is shared and requires
  1586 // synchronized access.
  1587 class MarkFromDirtyCardsClosure: public MemRegionClosure {
  1588   CompactibleFreeListSpace*      _space;
  1589   ScanMarkedObjectsAgainClosure  _scan_cl;
  1590   size_t                         _num_dirty_cards;
  1592  public:
  1593   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1594                             MemRegion span,
  1595                             CompactibleFreeListSpace* space,
  1596                             CMSBitMap* bit_map,
  1597                             CMSMarkStack* mark_stack,
  1598                             MarkRefsIntoAndScanClosure* cl):
  1599     _space(space),
  1600     _num_dirty_cards(0),
  1601     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1602                  mark_stack, cl) { }
  1604   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1605                             MemRegion span,
  1606                             CompactibleFreeListSpace* space,
  1607                             CMSBitMap* bit_map,
  1608                             OopTaskQueue* work_queue,
  1609                             Par_MarkRefsIntoAndScanClosure* cl):
  1610     _space(space),
  1611     _num_dirty_cards(0),
  1612     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1613              work_queue, cl) { }
  1615   void do_MemRegion(MemRegion mr);
  1616   void set_space(CompactibleFreeListSpace* space) { _space = space; }
  1617   size_t num_dirty_cards() { return _num_dirty_cards; }
  1618 };
  1620 // This closure is used in the non-product build to check
  1621 // that there are no MemRegions with a certain property.
  1622 class FalseMemRegionClosure: public MemRegionClosure {
  1623   void do_MemRegion(MemRegion mr) {
  1624     guarantee(!mr.is_empty(), "Shouldn't be empty");
  1625     guarantee(false, "Should never be here");
  1627 };
  1629 // This closure is used during the precleaning phase
  1630 // to "carefully" rescan marked objects on dirty cards.
  1631 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
  1632 // to accomplish some of its work.
  1633 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
  1634   CMSCollector*                  _collector;
  1635   MemRegion                      _span;
  1636   bool                           _yield;
  1637   Mutex*                         _freelistLock;
  1638   CMSBitMap*                     _bitMap;
  1639   CMSMarkStack*                  _markStack;
  1640   MarkRefsIntoAndScanClosure*    _scanningClosure;
  1642  public:
  1643   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
  1644                                          MemRegion     span,
  1645                                          CMSBitMap* bitMap,
  1646                                          CMSMarkStack*  markStack,
  1647                                          MarkRefsIntoAndScanClosure* cl,
  1648                                          bool should_yield):
  1649     _collector(collector),
  1650     _span(span),
  1651     _yield(should_yield),
  1652     _bitMap(bitMap),
  1653     _markStack(markStack),
  1654     _scanningClosure(cl) {
  1657   void do_object(oop p) {
  1658     guarantee(false, "call do_object_careful instead");
  1661   size_t      do_object_careful(oop p) {
  1662     guarantee(false, "Unexpected caller");
  1663     return 0;
  1666   size_t      do_object_careful_m(oop p, MemRegion mr);
  1668   void setFreelistLock(Mutex* m) {
  1669     _freelistLock = m;
  1670     _scanningClosure->set_freelistLock(m);
  1673  private:
  1674   inline bool do_yield_check();
  1676   void do_yield_work();
  1677 };
  1679 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
  1680   CMSCollector*                  _collector;
  1681   MemRegion                      _span;
  1682   bool                           _yield;
  1683   CMSBitMap*                     _bit_map;
  1684   CMSMarkStack*                  _mark_stack;
  1685   PushAndMarkClosure*            _scanning_closure;
  1686   unsigned int                   _before_count;
  1688  public:
  1689   SurvivorSpacePrecleanClosure(CMSCollector* collector,
  1690                                MemRegion     span,
  1691                                CMSBitMap*    bit_map,
  1692                                CMSMarkStack* mark_stack,
  1693                                PushAndMarkClosure* cl,
  1694                                unsigned int  before_count,
  1695                                bool          should_yield):
  1696     _collector(collector),
  1697     _span(span),
  1698     _yield(should_yield),
  1699     _bit_map(bit_map),
  1700     _mark_stack(mark_stack),
  1701     _scanning_closure(cl),
  1702     _before_count(before_count)
  1703   { }
  1705   void do_object(oop p) {
  1706     guarantee(false, "call do_object_careful instead");
  1709   size_t      do_object_careful(oop p);
  1711   size_t      do_object_careful_m(oop p, MemRegion mr) {
  1712     guarantee(false, "Unexpected caller");
  1713     return 0;
  1716  private:
  1717   inline void do_yield_check();
  1718   void do_yield_work();
  1719 };
  1721 // This closure is used to accomplish the sweeping work
  1722 // after the second checkpoint but before the concurrent reset
  1723 // phase.
  1724 //
  1725 // Terminology
  1726 //   left hand chunk (LHC) - block of one or more chunks currently being
  1727 //     coalesced.  The LHC is available for coalescing with a new chunk.
  1728 //   right hand chunk (RHC) - block that is currently being swept that is
  1729 //     free or garbage that can be coalesced with the LHC.
  1730 // _inFreeRange is true if there is currently a LHC
  1731 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
  1732 // _freeRangeInFreeLists is true if the LHC is in the free lists.
  1733 // _freeFinger is the address of the current LHC
  1734 class SweepClosure: public BlkClosureCareful {
  1735   CMSCollector*                  _collector;  // collector doing the work
  1736   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
  1737   CompactibleFreeListSpace*      _sp;   // Space being swept
  1738   HeapWord*                      _limit;// the address at or above which the sweep should stop
  1739                                         // because we do not expect newly garbage blocks
  1740                                         // eligible for sweeping past that address.
  1741   Mutex*                         _freelistLock; // Free list lock (in space)
  1742   CMSBitMap*                     _bitMap;       // Marking bit map (in
  1743                                                 // generation)
  1744   bool                           _inFreeRange;  // Indicates if we are in the
  1745                                                 // midst of a free run
  1746   bool                           _freeRangeInFreeLists;
  1747                                         // Often, we have just found
  1748                                         // a free chunk and started
  1749                                         // a new free range; we do not
  1750                                         // eagerly remove this chunk from
  1751                                         // the free lists unless there is
  1752                                         // a possibility of coalescing.
  1753                                         // When true, this flag indicates
  1754                                         // that the _freeFinger below
  1755                                         // points to a potentially free chunk
  1756                                         // that may still be in the free lists
  1757   bool                           _lastFreeRangeCoalesced;
  1758                                         // free range contains chunks
  1759                                         // coalesced
  1760   bool                           _yield;
  1761                                         // Whether sweeping should be
  1762                                         // done with yields. For instance
  1763                                         // when done by the foreground
  1764                                         // collector we shouldn't yield.
  1765   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
  1766                                                 // pointer to the "left hand
  1767                                                 // chunk"
  1768   size_t                         _freeRangeSize;
  1769                                         // When _inFreeRange is set, this
  1770                                         // indicates the accumulated size
  1771                                         // of the "left hand chunk"
  1772   NOT_PRODUCT(
  1773     size_t                       _numObjectsFreed;
  1774     size_t                       _numWordsFreed;
  1775     size_t                       _numObjectsLive;
  1776     size_t                       _numWordsLive;
  1777     size_t                       _numObjectsAlreadyFree;
  1778     size_t                       _numWordsAlreadyFree;
  1779     FreeChunk*                   _last_fc;
  1781  private:
  1782   // Code that is common to a free chunk or garbage when
  1783   // encountered during sweeping.
  1784   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
  1785   // Process a free chunk during sweeping.
  1786   void do_already_free_chunk(FreeChunk *fc);
  1787   // Work method called when processing an already free or a
  1788   // freshly garbage chunk to do a lookahead and possibly a
  1789   // premptive flush if crossing over _limit.
  1790   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
  1791   // Process a garbage chunk during sweeping.
  1792   size_t do_garbage_chunk(FreeChunk *fc);
  1793   // Process a live chunk during sweeping.
  1794   size_t do_live_chunk(FreeChunk* fc);
  1796   // Accessors.
  1797   HeapWord* freeFinger() const          { return _freeFinger; }
  1798   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
  1799   bool inFreeRange()    const           { return _inFreeRange; }
  1800   void set_inFreeRange(bool v)          { _inFreeRange = v; }
  1801   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
  1802   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
  1803   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
  1804   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
  1806   // Initialize a free range.
  1807   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
  1808   // Return this chunk to the free lists.
  1809   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
  1811   // Check if we should yield and do so when necessary.
  1812   inline void do_yield_check(HeapWord* addr);
  1814   // Yield
  1815   void do_yield_work(HeapWord* addr);
  1817   // Debugging/Printing
  1818   void print_free_block_coalesced(FreeChunk* fc) const;
  1820  public:
  1821   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
  1822                CMSBitMap* bitMap, bool should_yield);
  1823   ~SweepClosure() PRODUCT_RETURN;
  1825   size_t       do_blk_careful(HeapWord* addr);
  1826   void         print() const { print_on(tty); }
  1827   void         print_on(outputStream *st) const;
  1828 };
  1830 // Closures related to weak references processing
  1832 // During CMS' weak reference processing, this is a
  1833 // work-routine/closure used to complete transitive
  1834 // marking of objects as live after a certain point
  1835 // in which an initial set has been completely accumulated.
  1836 // This closure is currently used both during the final
  1837 // remark stop-world phase, as well as during the concurrent
  1838 // precleaning of the discovered reference lists.
  1839 class CMSDrainMarkingStackClosure: public VoidClosure {
  1840   CMSCollector*        _collector;
  1841   MemRegion            _span;
  1842   CMSMarkStack*        _mark_stack;
  1843   CMSBitMap*           _bit_map;
  1844   CMSKeepAliveClosure* _keep_alive;
  1845   bool                 _concurrent_precleaning;
  1846  public:
  1847   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
  1848                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  1849                       CMSKeepAliveClosure* keep_alive,
  1850                       bool cpc):
  1851     _collector(collector),
  1852     _span(span),
  1853     _bit_map(bit_map),
  1854     _mark_stack(mark_stack),
  1855     _keep_alive(keep_alive),
  1856     _concurrent_precleaning(cpc) {
  1857     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
  1858            "Mismatch");
  1861   void do_void();
  1862 };
  1864 // A parallel version of CMSDrainMarkingStackClosure above.
  1865 class CMSParDrainMarkingStackClosure: public VoidClosure {
  1866   CMSCollector*           _collector;
  1867   MemRegion               _span;
  1868   OopTaskQueue*           _work_queue;
  1869   CMSBitMap*              _bit_map;
  1870   CMSInnerParMarkAndPushClosure _mark_and_push;
  1872  public:
  1873   CMSParDrainMarkingStackClosure(CMSCollector* collector,
  1874                                  MemRegion span, CMSBitMap* bit_map,
  1875                                  OopTaskQueue* work_queue):
  1876     _collector(collector),
  1877     _span(span),
  1878     _bit_map(bit_map),
  1879     _work_queue(work_queue),
  1880     _mark_and_push(collector, span, bit_map, work_queue) { }
  1882  public:
  1883   void trim_queue(uint max);
  1884   void do_void();
  1885 };
  1887 // Allow yielding or short-circuiting of reference list
  1888 // prelceaning work.
  1889 class CMSPrecleanRefsYieldClosure: public YieldClosure {
  1890   CMSCollector* _collector;
  1891   void do_yield_work();
  1892  public:
  1893   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
  1894     _collector(collector) {}
  1895   virtual bool should_return();
  1896 };
  1899 // Convenience class that locks free list locks for given CMS collector
  1900 class FreelistLocker: public StackObj {
  1901  private:
  1902   CMSCollector* _collector;
  1903  public:
  1904   FreelistLocker(CMSCollector* collector):
  1905     _collector(collector) {
  1906     _collector->getFreelistLocks();
  1909   ~FreelistLocker() {
  1910     _collector->releaseFreelistLocks();
  1912 };
  1914 // Mark all dead objects in a given space.
  1915 class MarkDeadObjectsClosure: public BlkClosure {
  1916   const CMSCollector*             _collector;
  1917   const CompactibleFreeListSpace* _sp;
  1918   CMSBitMap*                      _live_bit_map;
  1919   CMSBitMap*                      _dead_bit_map;
  1920 public:
  1921   MarkDeadObjectsClosure(const CMSCollector* collector,
  1922                          const CompactibleFreeListSpace* sp,
  1923                          CMSBitMap *live_bit_map,
  1924                          CMSBitMap *dead_bit_map) :
  1925     _collector(collector),
  1926     _sp(sp),
  1927     _live_bit_map(live_bit_map),
  1928     _dead_bit_map(dead_bit_map) {}
  1929   size_t do_blk(HeapWord* addr);
  1930 };
  1932 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
  1934  public:
  1935   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
  1936 };
  1939 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP

mercurial