src/share/vm/code/compiledIC.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6991
882004b9e7e1
child 7146
aff6ccb506cb
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "memory/metadataFactory.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "oops/method.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/icache.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "runtime/stubRoutines.hpp"
    42 #include "utilities/events.hpp"
    45 // Every time a compiled IC is changed or its type is being accessed,
    46 // either the CompiledIC_lock must be set or we must be at a safe point.
    48 //-----------------------------------------------------------------------------
    49 // Low-level access to an inline cache. Private, since they might not be
    50 // MT-safe to use.
    52 void* CompiledIC::cached_value() const {
    53   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    54   assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
    56   if (!is_in_transition_state()) {
    57     void* data = (void*)_value->data();
    58     // If we let the metadata value here be initialized to zero...
    59     assert(data != NULL || Universe::non_oop_word() == NULL,
    60            "no raw nulls in CompiledIC metadatas, because of patching races");
    61     return (data == (void*)Universe::non_oop_word()) ? NULL : data;
    62   } else {
    63     return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
    64   }
    65 }
    68 void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
    69   assert(entry_point != NULL, "must set legal entry point");
    70   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    71   assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
    72   assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
    74   assert(!is_icholder || is_icholder_entry(entry_point), "must be");
    76   // Don't use ic_destination for this test since that forwards
    77   // through ICBuffer instead of returning the actual current state of
    78   // the CompiledIC.
    79   if (is_icholder_entry(_ic_call->destination())) {
    80     // When patching for the ICStub case the cached value isn't
    81     // overwritten until the ICStub copied into the CompiledIC during
    82     // the next safepoint.  Make sure that the CompiledICHolder* is
    83     // marked for release at this point since it won't be identifiable
    84     // once the entry point is overwritten.
    85     InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
    86   }
    88   if (TraceCompiledIC) {
    89     tty->print("  ");
    90     print_compiled_ic();
    91     tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
    92     if (!is_optimized()) {
    93       tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
    94     }
    95     if (is_icstub) {
    96       tty->print(" (icstub)");
    97     }
    98     tty->cr();
    99   }
   101   {
   102     MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
   103 #ifdef ASSERT
   104     CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
   105     assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   106 #endif
   107      _ic_call->set_destination_mt_safe(entry_point);
   108   }
   110   if (is_optimized() || is_icstub) {
   111     // Optimized call sites don't have a cache value and ICStub call
   112     // sites only change the entry point.  Changing the value in that
   113     // case could lead to MT safety issues.
   114     assert(cache == NULL, "must be null");
   115     return;
   116   }
   118   if (cache == NULL)  cache = (void*)Universe::non_oop_word();
   120   _value->set_data((intptr_t)cache);
   121 }
   124 void CompiledIC::set_ic_destination(ICStub* stub) {
   125   internal_set_ic_destination(stub->code_begin(), true, NULL, false);
   126 }
   130 address CompiledIC::ic_destination() const {
   131  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   132  if (!is_in_transition_state()) {
   133    return _ic_call->destination();
   134  } else {
   135    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
   136  }
   137 }
   140 bool CompiledIC::is_in_transition_state() const {
   141   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   142   return InlineCacheBuffer::contains(_ic_call->destination());
   143 }
   146 bool CompiledIC::is_icholder_call() const {
   147   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   148   return !_is_optimized && is_icholder_entry(ic_destination());
   149 }
   151 // Returns native address of 'call' instruction in inline-cache. Used by
   152 // the InlineCacheBuffer when it needs to find the stub.
   153 address CompiledIC::stub_address() const {
   154   assert(is_in_transition_state(), "should only be called when we are in a transition state");
   155   return _ic_call->destination();
   156 }
   159 //-----------------------------------------------------------------------------
   160 // High-level access to an inline cache. Guaranteed to be MT-safe.
   162 void CompiledIC::initialize_from_iter(RelocIterator* iter) {
   163   assert(iter->addr() == _ic_call->instruction_address(), "must find ic_call");
   165   if (iter->type() == relocInfo::virtual_call_type) {
   166     virtual_call_Relocation* r = iter->virtual_call_reloc();
   167     _is_optimized = false;
   168     _value = nativeMovConstReg_at(r->cached_value());
   169   } else {
   170     assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   171     _is_optimized = true;
   172     _value = NULL;
   173   }
   174 }
   176 CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
   177   : _ic_call(call)
   178 {
   179   address ic_call = _ic_call->instruction_address();
   181   assert(ic_call != NULL, "ic_call address must be set");
   182   assert(nm != NULL, "must pass nmethod");
   183   assert(nm->contains(ic_call), "must be in nmethod");
   185   // Search for the ic_call at the given address.
   186   RelocIterator iter(nm, ic_call, ic_call+1);
   187   bool ret = iter.next();
   188   assert(ret == true, "relocInfo must exist at this address");
   189   assert(iter.addr() == ic_call, "must find ic_call");
   191   initialize_from_iter(&iter);
   192 }
   194 CompiledIC::CompiledIC(RelocIterator* iter)
   195   : _ic_call(nativeCall_at(iter->addr()))
   196 {
   197   address ic_call = _ic_call->instruction_address();
   199   nmethod* nm = iter->code();
   200   assert(ic_call != NULL, "ic_call address must be set");
   201   assert(nm != NULL, "must pass nmethod");
   202   assert(nm->contains(ic_call), "must be in nmethod");
   204   initialize_from_iter(iter);
   205 }
   207 bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
   208   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   209   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
   210   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
   212   address entry;
   213   if (call_info->call_kind() == CallInfo::itable_call) {
   214     assert(bytecode == Bytecodes::_invokeinterface, "");
   215     int itable_index = call_info->itable_index();
   216     entry = VtableStubs::find_itable_stub(itable_index);
   217     if (entry == false) {
   218       return false;
   219     }
   220 #ifdef ASSERT
   221     int index = call_info->resolved_method()->itable_index();
   222     assert(index == itable_index, "CallInfo pre-computes this");
   223 #endif //ASSERT
   224     InstanceKlass* k = call_info->resolved_method()->method_holder();
   225     assert(k->verify_itable_index(itable_index), "sanity check");
   226     InlineCacheBuffer::create_transition_stub(this, k, entry);
   227   } else {
   228     assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
   229     // Can be different than selected_method->vtable_index(), due to package-private etc.
   230     int vtable_index = call_info->vtable_index();
   231     assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
   232     entry = VtableStubs::find_vtable_stub(vtable_index);
   233     if (entry == NULL) {
   234       return false;
   235     }
   236     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   237   }
   239   if (TraceICs) {
   240     ResourceMark rm;
   241     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
   242                    p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
   243   }
   245   // We can't check this anymore. With lazy deopt we could have already
   246   // cleaned this IC entry before we even return. This is possible if
   247   // we ran out of space in the inline cache buffer trying to do the
   248   // set_next and we safepointed to free up space. This is a benign
   249   // race because the IC entry was complete when we safepointed so
   250   // cleaning it immediately is harmless.
   251   // assert(is_megamorphic(), "sanity check");
   252   return true;
   253 }
   256 // true if destination is megamorphic stub
   257 bool CompiledIC::is_megamorphic() const {
   258   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   259   assert(!is_optimized(), "an optimized call cannot be megamorphic");
   261   // Cannot rely on cached_value. It is either an interface or a method.
   262   return VtableStubs::is_entry_point(ic_destination());
   263 }
   265 bool CompiledIC::is_call_to_compiled() const {
   266   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   268   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
   269   // method is guaranteed to still exist, since we only remove methods after all inline caches
   270   // has been cleaned up
   271   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   272   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
   273   // Check that the cached_value is a klass for non-optimized monomorphic calls
   274   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
   275   // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
   276 #ifdef ASSERT
   277   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
   278   bool is_c1_method = caller->is_compiled_by_c1();
   279   assert( is_c1_method ||
   280          !is_monomorphic ||
   281          is_optimized() ||
   282          (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
   283 #endif // ASSERT
   284   return is_monomorphic;
   285 }
   288 bool CompiledIC::is_call_to_interpreted() const {
   289   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   290   // Call to interpreter if destination is either calling to a stub (if it
   291   // is optimized), or calling to an I2C blob
   292   bool is_call_to_interpreted = false;
   293   if (!is_optimized()) {
   294     // must use unsafe because the destination can be a zombie (and we're cleaning)
   295     // and the print_compiled_ic code wants to know if site (in the non-zombie)
   296     // is to the interpreter.
   297     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   298     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
   299     assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
   300   } else {
   301     // Check if we are calling into our own codeblob (i.e., to a stub)
   302     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
   303     address dest = ic_destination();
   304 #ifdef ASSERT
   305     {
   306       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
   307       assert(!db->is_adapter_blob(), "must use stub!");
   308     }
   309 #endif /* ASSERT */
   310     is_call_to_interpreted = cb->contains(dest);
   311   }
   312   return is_call_to_interpreted;
   313 }
   316 void CompiledIC::set_to_clean() {
   317   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
   318   if (TraceInlineCacheClearing || TraceICs) {
   319     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
   320     print();
   321   }
   323   address entry;
   324   if (is_optimized()) {
   325     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
   326   } else {
   327     entry = SharedRuntime::get_resolve_virtual_call_stub();
   328   }
   330   // A zombie transition will always be safe, since the metadata has already been set to NULL, so
   331   // we only need to patch the destination
   332   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
   334   if (safe_transition) {
   335     // Kill any leftover stub we might have too
   336     if (is_in_transition_state()) {
   337       ICStub* old_stub = ICStub_from_destination_address(stub_address());
   338       old_stub->clear();
   339     }
   340     if (is_optimized()) {
   341     set_ic_destination(entry);
   342   } else {
   343       set_ic_destination_and_value(entry, (void*)NULL);
   344     }
   345   } else {
   346     // Unsafe transition - create stub.
   347     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   348   }
   349   // We can't check this anymore. With lazy deopt we could have already
   350   // cleaned this IC entry before we even return. This is possible if
   351   // we ran out of space in the inline cache buffer trying to do the
   352   // set_next and we safepointed to free up space. This is a benign
   353   // race because the IC entry was complete when we safepointed so
   354   // cleaning it immediately is harmless.
   355   // assert(is_clean(), "sanity check");
   356 }
   359 bool CompiledIC::is_clean() const {
   360   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   361   bool is_clean = false;
   362   address dest = ic_destination();
   363   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
   364              dest == SharedRuntime::get_resolve_virtual_call_stub();
   365   assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
   366   return is_clean;
   367 }
   370 void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
   371   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   372   // Updating a cache to the wrong entry can cause bugs that are very hard
   373   // to track down - if cache entry gets invalid - we just clean it. In
   374   // this way it is always the same code path that is responsible for
   375   // updating and resolving an inline cache
   376   //
   377   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
   378   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
   379   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
   380   //
   381   // In both of these cases the only thing being modifed is the jump/call target and these
   382   // transitions are mt_safe
   384   Thread *thread = Thread::current();
   385   if (info.to_interpreter()) {
   386     // Call to interpreter
   387     if (info.is_optimized() && is_optimized()) {
   388        assert(is_clean(), "unsafe IC path");
   389        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   390       // the call analysis (callee structure) specifies that the call is optimized
   391       // (either because of CHA or the static target is final)
   392       // At code generation time, this call has been emitted as static call
   393       // Call via stub
   394       assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
   395       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
   396       methodHandle method (thread, (Method*)info.cached_metadata());
   397       csc->set_to_interpreted(method, info.entry());
   398       if (TraceICs) {
   399          ResourceMark rm(thread);
   400          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
   401            p2i(instruction_address()),
   402            method->print_value_string());
   403       }
   404     } else {
   405       // Call via method-klass-holder
   406       InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
   407       if (TraceICs) {
   408          ResourceMark rm(thread);
   409          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
   410       }
   411     }
   412   } else {
   413     // Call to compiled code
   414     bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
   415 #ifdef ASSERT
   416     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
   417     assert (cb->is_nmethod(), "must be compiled!");
   418 #endif /* ASSERT */
   420     // This is MT safe if we come from a clean-cache and go through a
   421     // non-verified entry point
   422     bool safe = SafepointSynchronize::is_at_safepoint() ||
   423                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
   425     if (!safe) {
   426       InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
   427     } else {
   428       if (is_optimized()) {
   429       set_ic_destination(info.entry());
   430       } else {
   431         set_ic_destination_and_value(info.entry(), info.cached_metadata());
   432       }
   433     }
   435     if (TraceICs) {
   436       ResourceMark rm(thread);
   437       assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
   438       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
   439         p2i(instruction_address()),
   440         ((Klass*)info.cached_metadata())->print_value_string(),
   441         (safe) ? "" : "via stub");
   442     }
   443   }
   444   // We can't check this anymore. With lazy deopt we could have already
   445   // cleaned this IC entry before we even return. This is possible if
   446   // we ran out of space in the inline cache buffer trying to do the
   447   // set_next and we safepointed to free up space. This is a benign
   448   // race because the IC entry was complete when we safepointed so
   449   // cleaning it immediately is harmless.
   450   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
   451 }
   454 // is_optimized: Compiler has generated an optimized call (i.e., no inline
   455 // cache) static_bound: The call can be static bound (i.e, no need to use
   456 // inline cache)
   457 void CompiledIC::compute_monomorphic_entry(methodHandle method,
   458                                            KlassHandle receiver_klass,
   459                                            bool is_optimized,
   460                                            bool static_bound,
   461                                            CompiledICInfo& info,
   462                                            TRAPS) {
   463   nmethod* method_code = method->code();
   464   address entry = NULL;
   465   if (method_code != NULL && method_code->is_in_use()) {
   466     // Call to compiled code
   467     if (static_bound || is_optimized) {
   468       entry      = method_code->verified_entry_point();
   469     } else {
   470       entry      = method_code->entry_point();
   471     }
   472   }
   473   if (entry != NULL) {
   474     // Call to compiled code
   475     info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
   476   } else {
   477     // Note: the following problem exists with Compiler1:
   478     //   - at compile time we may or may not know if the destination is final
   479     //   - if we know that the destination is final, we will emit an optimized
   480     //     virtual call (no inline cache), and need a Method* to make a call
   481     //     to the interpreter
   482     //   - if we do not know if the destination is final, we emit a standard
   483     //     virtual call, and use CompiledICHolder to call interpreted code
   484     //     (no static call stub has been generated)
   485     //     However in that case we will now notice it is static_bound
   486     //     and convert the call into what looks to be an optimized
   487     //     virtual call. This causes problems in verifying the IC because
   488     //     it look vanilla but is optimized. Code in is_call_to_interpreted
   489     //     is aware of this and weakens its asserts.
   491     // static_bound should imply is_optimized -- otherwise we have a
   492     // performance bug (statically-bindable method is called via
   493     // dynamically-dispatched call note: the reverse implication isn't
   494     // necessarily true -- the call may have been optimized based on compiler
   495     // analysis (static_bound is only based on "final" etc.)
   496 #ifdef COMPILER2
   497 #ifdef TIERED
   498 #if defined(ASSERT)
   499     // can't check the assert because we don't have the CompiledIC with which to
   500     // find the address if the call instruction.
   501     //
   502     // CodeBlob* cb = find_blob_unsafe(instruction_address());
   503     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
   504 #endif // ASSERT
   505 #else
   506     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
   507 #endif // TIERED
   508 #endif // COMPILER2
   509     if (is_optimized) {
   510       // Use stub entry
   511       info.set_interpreter_entry(method()->get_c2i_entry(), method());
   512     } else {
   513       // Use icholder entry
   514       CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
   515       info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
   516     }
   517   }
   518   assert(info.is_optimized() == is_optimized, "must agree");
   519 }
   522 bool CompiledIC::is_icholder_entry(address entry) {
   523   CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
   524   return (cb != NULL && cb->is_adapter_blob());
   525 }
   527 // ----------------------------------------------------------------------------
   529 void CompiledStaticCall::set_to_clean() {
   530   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   531   // Reset call site
   532   MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
   533 #ifdef ASSERT
   534   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
   535   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   536 #endif
   537   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
   539   // Do not reset stub here:  It is too expensive to call find_stub.
   540   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
   541   // both the call and its stub.
   542 }
   545 bool CompiledStaticCall::is_clean() const {
   546   return destination() == SharedRuntime::get_resolve_static_call_stub();
   547 }
   549 bool CompiledStaticCall::is_call_to_compiled() const {
   550   return CodeCache::contains(destination());
   551 }
   554 bool CompiledStaticCall::is_call_to_interpreted() const {
   555   // It is a call to interpreted, if it calls to a stub. Hence, the destination
   556   // must be in the stub part of the nmethod that contains the call
   557   nmethod* nm = CodeCache::find_nmethod(instruction_address());
   558   return nm->stub_contains(destination());
   559 }
   561 void CompiledStaticCall::set(const StaticCallInfo& info) {
   562   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   563   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   564   // Updating a cache to the wrong entry can cause bugs that are very hard
   565   // to track down - if cache entry gets invalid - we just clean it. In
   566   // this way it is always the same code path that is responsible for
   567   // updating and resolving an inline cache
   568   assert(is_clean(), "do not update a call entry - use clean");
   570   if (info._to_interpreter) {
   571     // Call to interpreted code
   572     set_to_interpreted(info.callee(), info.entry());
   573   } else {
   574     if (TraceICs) {
   575       ResourceMark rm;
   576       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
   577                     p2i(instruction_address()),
   578                     p2i(info.entry()));
   579     }
   580     // Call to compiled code
   581     assert (CodeCache::contains(info.entry()), "wrong entry point");
   582     set_destination_mt_safe(info.entry());
   583   }
   584 }
   587 // Compute settings for a CompiledStaticCall. Since we might have to set
   588 // the stub when calling to the interpreter, we need to return arguments.
   589 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
   590   nmethod* m_code = m->code();
   591   info._callee = m;
   592   if (m_code != NULL && m_code->is_in_use()) {
   593     info._to_interpreter = false;
   594     info._entry  = m_code->verified_entry_point();
   595   } else {
   596     // Callee is interpreted code.  In any case entering the interpreter
   597     // puts a converter-frame on the stack to save arguments.
   598     info._to_interpreter = true;
   599     info._entry      = m()->get_c2i_entry();
   600   }
   601 }
   603 address CompiledStaticCall::find_stub() {
   604   // Find reloc. information containing this call-site
   605   RelocIterator iter((nmethod*)NULL, instruction_address());
   606   while (iter.next()) {
   607     if (iter.addr() == instruction_address()) {
   608       switch(iter.type()) {
   609         case relocInfo::static_call_type:
   610           return iter.static_call_reloc()->static_stub();
   611         // We check here for opt_virtual_call_type, since we reuse the code
   612         // from the CompiledIC implementation
   613         case relocInfo::opt_virtual_call_type:
   614           return iter.opt_virtual_call_reloc()->static_stub();
   615         case relocInfo::poll_type:
   616         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
   617         default:
   618           ShouldNotReachHere();
   619       }
   620     }
   621   }
   622   return NULL;
   623 }
   626 //-----------------------------------------------------------------------------
   627 // Non-product mode code
   628 #ifndef PRODUCT
   630 void CompiledIC::verify() {
   631   // make sure code pattern is actually a call imm32 instruction
   632   _ic_call->verify();
   633   if (os::is_MP()) {
   634     _ic_call->verify_alignment();
   635   }
   636   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
   637           || is_optimized() || is_megamorphic(), "sanity check");
   638 }
   640 void CompiledIC::print() {
   641   print_compiled_ic();
   642   tty->cr();
   643 }
   645 void CompiledIC::print_compiled_ic() {
   646   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
   647              p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
   648 }
   650 void CompiledStaticCall::print() {
   651   tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
   652   if (is_clean()) {
   653     tty->print("clean");
   654   } else if (is_call_to_compiled()) {
   655     tty->print("compiled");
   656   } else if (is_call_to_interpreted()) {
   657     tty->print("interpreted");
   658   }
   659   tty->cr();
   660 }
   662 #endif // !PRODUCT

mercurial