src/share/vm/c1/c1_Runtime1.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6680
78bbf4d43a14
child 7167
be56d800c946
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Defs.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_MacroAssembler.hpp"
    32 #include "c1/c1_Runtime1.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "classfile/vmSymbols.hpp"
    35 #include "code/codeBlob.hpp"
    36 #include "code/compiledIC.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "gc_interface/collectedHeap.hpp"
    42 #include "interpreter/bytecode.hpp"
    43 #include "interpreter/interpreter.hpp"
    44 #include "memory/allocation.inline.hpp"
    45 #include "memory/barrierSet.hpp"
    46 #include "memory/oopFactory.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/objArrayKlass.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/compilationPolicy.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/vframe.hpp"
    57 #include "runtime/vframeArray.hpp"
    58 #include "utilities/copy.hpp"
    59 #include "utilities/events.hpp"
    62 // Implementation of StubAssembler
    64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    65   _name = name;
    66   _must_gc_arguments = false;
    67   _frame_size = no_frame_size;
    68   _num_rt_args = 0;
    69   _stub_id = stub_id;
    70 }
    73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    74   _name = name;
    75   _must_gc_arguments = must_gc_arguments;
    76 }
    79 void StubAssembler::set_frame_size(int size) {
    80   if (_frame_size == no_frame_size) {
    81     _frame_size = size;
    82   }
    83   assert(_frame_size == size, "can't change the frame size");
    84 }
    87 void StubAssembler::set_num_rt_args(int args) {
    88   if (_num_rt_args == 0) {
    89     _num_rt_args = args;
    90   }
    91   assert(_num_rt_args == args, "can't change the number of args");
    92 }
    94 // Implementation of Runtime1
    96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    97 const char *Runtime1::_blob_names[] = {
    98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    99 };
   101 #ifndef PRODUCT
   102 // statistics
   103 int Runtime1::_generic_arraycopy_cnt = 0;
   104 int Runtime1::_primitive_arraycopy_cnt = 0;
   105 int Runtime1::_oop_arraycopy_cnt = 0;
   106 int Runtime1::_generic_arraycopystub_cnt = 0;
   107 int Runtime1::_arraycopy_slowcase_cnt = 0;
   108 int Runtime1::_arraycopy_checkcast_cnt = 0;
   109 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
   110 int Runtime1::_new_type_array_slowcase_cnt = 0;
   111 int Runtime1::_new_object_array_slowcase_cnt = 0;
   112 int Runtime1::_new_instance_slowcase_cnt = 0;
   113 int Runtime1::_new_multi_array_slowcase_cnt = 0;
   114 int Runtime1::_monitorenter_slowcase_cnt = 0;
   115 int Runtime1::_monitorexit_slowcase_cnt = 0;
   116 int Runtime1::_patch_code_slowcase_cnt = 0;
   117 int Runtime1::_throw_range_check_exception_count = 0;
   118 int Runtime1::_throw_index_exception_count = 0;
   119 int Runtime1::_throw_div0_exception_count = 0;
   120 int Runtime1::_throw_null_pointer_exception_count = 0;
   121 int Runtime1::_throw_class_cast_exception_count = 0;
   122 int Runtime1::_throw_incompatible_class_change_error_count = 0;
   123 int Runtime1::_throw_array_store_exception_count = 0;
   124 int Runtime1::_throw_count = 0;
   126 static int _byte_arraycopy_cnt = 0;
   127 static int _short_arraycopy_cnt = 0;
   128 static int _int_arraycopy_cnt = 0;
   129 static int _long_arraycopy_cnt = 0;
   130 static int _oop_arraycopy_cnt = 0;
   132 address Runtime1::arraycopy_count_address(BasicType type) {
   133   switch (type) {
   134   case T_BOOLEAN:
   135   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
   136   case T_CHAR:
   137   case T_SHORT:  return (address)&_short_arraycopy_cnt;
   138   case T_FLOAT:
   139   case T_INT:    return (address)&_int_arraycopy_cnt;
   140   case T_DOUBLE:
   141   case T_LONG:   return (address)&_long_arraycopy_cnt;
   142   case T_ARRAY:
   143   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
   144   default:
   145     ShouldNotReachHere();
   146     return NULL;
   147   }
   148 }
   151 #endif
   153 // Simple helper to see if the caller of a runtime stub which
   154 // entered the VM has been deoptimized
   156 static bool caller_is_deopted() {
   157   JavaThread* thread = JavaThread::current();
   158   RegisterMap reg_map(thread, false);
   159   frame runtime_frame = thread->last_frame();
   160   frame caller_frame = runtime_frame.sender(&reg_map);
   161   assert(caller_frame.is_compiled_frame(), "must be compiled");
   162   return caller_frame.is_deoptimized_frame();
   163 }
   165 // Stress deoptimization
   166 static void deopt_caller() {
   167   if ( !caller_is_deopted()) {
   168     JavaThread* thread = JavaThread::current();
   169     RegisterMap reg_map(thread, false);
   170     frame runtime_frame = thread->last_frame();
   171     frame caller_frame = runtime_frame.sender(&reg_map);
   172     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   173     assert(caller_is_deopted(), "Must be deoptimized");
   174   }
   175 }
   178 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   179   assert(0 <= id && id < number_of_ids, "illegal stub id");
   180   ResourceMark rm;
   181   // create code buffer for code storage
   182   CodeBuffer code(buffer_blob);
   184   Compilation::setup_code_buffer(&code, 0);
   186   // create assembler for code generation
   187   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   188   // generate code for runtime stub
   189   OopMapSet* oop_maps;
   190   oop_maps = generate_code_for(id, sasm);
   191   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   192          "if stub has an oop map it must have a valid frame size");
   194 #ifdef ASSERT
   195   // Make sure that stubs that need oopmaps have them
   196   switch (id) {
   197     // These stubs don't need to have an oopmap
   198     case dtrace_object_alloc_id:
   199     case g1_pre_barrier_slow_id:
   200     case g1_post_barrier_slow_id:
   201     case slow_subtype_check_id:
   202     case fpu2long_stub_id:
   203     case unwind_exception_id:
   204     case counter_overflow_id:
   205 #if defined(SPARC) || defined(PPC)
   206     case handle_exception_nofpu_id:  // Unused on sparc
   207 #endif
   208       break;
   210     // All other stubs should have oopmaps
   211     default:
   212       assert(oop_maps != NULL, "must have an oopmap");
   213   }
   214 #endif
   216   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   217   sasm->align(BytesPerWord);
   218   // make sure all code is in code buffer
   219   sasm->flush();
   220   // create blob - distinguish a few special cases
   221   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   222                                                  &code,
   223                                                  CodeOffsets::frame_never_safe,
   224                                                  sasm->frame_size(),
   225                                                  oop_maps,
   226                                                  sasm->must_gc_arguments());
   227   // install blob
   228   assert(blob != NULL, "blob must exist");
   229   _blobs[id] = blob;
   230 }
   233 void Runtime1::initialize(BufferBlob* blob) {
   234   // platform-dependent initialization
   235   initialize_pd();
   236   // generate stubs
   237   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   238   // printing
   239 #ifndef PRODUCT
   240   if (PrintSimpleStubs) {
   241     ResourceMark rm;
   242     for (int id = 0; id < number_of_ids; id++) {
   243       _blobs[id]->print();
   244       if (_blobs[id]->oop_maps() != NULL) {
   245         _blobs[id]->oop_maps()->print();
   246       }
   247     }
   248   }
   249 #endif
   250 }
   253 CodeBlob* Runtime1::blob_for(StubID id) {
   254   assert(0 <= id && id < number_of_ids, "illegal stub id");
   255   return _blobs[id];
   256 }
   259 const char* Runtime1::name_for(StubID id) {
   260   assert(0 <= id && id < number_of_ids, "illegal stub id");
   261   return _blob_names[id];
   262 }
   264 const char* Runtime1::name_for_address(address entry) {
   265   for (int id = 0; id < number_of_ids; id++) {
   266     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   267   }
   269 #define FUNCTION_CASE(a, f) \
   270   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   272   FUNCTION_CASE(entry, os::javaTimeMillis);
   273   FUNCTION_CASE(entry, os::javaTimeNanos);
   274   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   275   FUNCTION_CASE(entry, SharedRuntime::d2f);
   276   FUNCTION_CASE(entry, SharedRuntime::d2i);
   277   FUNCTION_CASE(entry, SharedRuntime::d2l);
   278   FUNCTION_CASE(entry, SharedRuntime::dcos);
   279   FUNCTION_CASE(entry, SharedRuntime::dexp);
   280   FUNCTION_CASE(entry, SharedRuntime::dlog);
   281   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   282   FUNCTION_CASE(entry, SharedRuntime::dpow);
   283   FUNCTION_CASE(entry, SharedRuntime::drem);
   284   FUNCTION_CASE(entry, SharedRuntime::dsin);
   285   FUNCTION_CASE(entry, SharedRuntime::dtan);
   286   FUNCTION_CASE(entry, SharedRuntime::f2i);
   287   FUNCTION_CASE(entry, SharedRuntime::f2l);
   288   FUNCTION_CASE(entry, SharedRuntime::frem);
   289   FUNCTION_CASE(entry, SharedRuntime::l2d);
   290   FUNCTION_CASE(entry, SharedRuntime::l2f);
   291   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   292   FUNCTION_CASE(entry, SharedRuntime::lmul);
   293   FUNCTION_CASE(entry, SharedRuntime::lrem);
   294   FUNCTION_CASE(entry, SharedRuntime::lrem);
   295   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   296   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   297   FUNCTION_CASE(entry, is_instance_of);
   298   FUNCTION_CASE(entry, trace_block_entry);
   299 #ifdef TRACE_HAVE_INTRINSICS
   300   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
   301 #endif
   302   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
   304 #undef FUNCTION_CASE
   306   // Soft float adds more runtime names.
   307   return pd_name_for_address(entry);
   308 }
   311 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
   312   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   314   assert(klass->is_klass(), "not a class");
   315   instanceKlassHandle h(thread, klass);
   316   h->check_valid_for_instantiation(true, CHECK);
   317   // make sure klass is initialized
   318   h->initialize(CHECK);
   319   // allocate instance and return via TLS
   320   oop obj = h->allocate_instance(CHECK);
   321   thread->set_vm_result(obj);
   322 JRT_END
   325 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
   326   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   327   // Note: no handle for klass needed since they are not used
   328   //       anymore after new_typeArray() and no GC can happen before.
   329   //       (This may have to change if this code changes!)
   330   assert(klass->is_klass(), "not a class");
   331   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
   332   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   333   thread->set_vm_result(obj);
   334   // This is pretty rare but this runtime patch is stressful to deoptimization
   335   // if we deoptimize here so force a deopt to stress the path.
   336   if (DeoptimizeALot) {
   337     deopt_caller();
   338   }
   340 JRT_END
   343 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
   344   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   346   // Note: no handle for klass needed since they are not used
   347   //       anymore after new_objArray() and no GC can happen before.
   348   //       (This may have to change if this code changes!)
   349   assert(array_klass->is_klass(), "not a class");
   350   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
   351   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   352   thread->set_vm_result(obj);
   353   // This is pretty rare but this runtime patch is stressful to deoptimization
   354   // if we deoptimize here so force a deopt to stress the path.
   355   if (DeoptimizeALot) {
   356     deopt_caller();
   357   }
   358 JRT_END
   361 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
   362   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   364   assert(klass->is_klass(), "not a class");
   365   assert(rank >= 1, "rank must be nonzero");
   366   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   367   thread->set_vm_result(obj);
   368 JRT_END
   371 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   372   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   373 JRT_END
   376 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
   377   ResourceMark rm(thread);
   378   const char* klass_name = obj->klass()->external_name();
   379   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
   380 JRT_END
   383 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
   384 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
   385 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
   386 // a constant.
   387 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
   388   nmethod* osr_nm = NULL;
   389   methodHandle method(THREAD, m);
   391   RegisterMap map(THREAD, false);
   392   frame fr =  THREAD->last_frame().sender(&map);
   393   nmethod* nm = (nmethod*) fr.cb();
   394   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   395   methodHandle enclosing_method(THREAD, nm->method());
   397   CompLevel level = (CompLevel)nm->comp_level();
   398   int bci = InvocationEntryBci;
   399   if (branch_bci != InvocationEntryBci) {
   400     // Compute desination bci
   401     address pc = method()->code_base() + branch_bci;
   402     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
   403     int offset = 0;
   404     switch (branch) {
   405       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   406       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   407       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   408       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   409       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   410       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   411       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   412         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   413         break;
   414       case Bytecodes::_goto_w:
   415         offset = Bytes::get_Java_u4(pc + 1);
   416         break;
   417       default: ;
   418     }
   419     bci = branch_bci + offset;
   420   }
   421   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
   422   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
   423   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
   424   return osr_nm;
   425 }
   427 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
   428   nmethod* osr_nm;
   429   JRT_BLOCK
   430     osr_nm = counter_overflow_helper(thread, bci, method);
   431     if (osr_nm != NULL) {
   432       RegisterMap map(thread, false);
   433       frame fr =  thread->last_frame().sender(&map);
   434       Deoptimization::deoptimize_frame(thread, fr.id());
   435     }
   436   JRT_BLOCK_END
   437   return NULL;
   438 JRT_END
   440 extern void vm_exit(int code);
   442 // Enter this method from compiled code handler below. This is where we transition
   443 // to VM mode. This is done as a helper routine so that the method called directly
   444 // from compiled code does not have to transition to VM. This allows the entry
   445 // method to see if the nmethod that we have just looked up a handler for has
   446 // been deoptimized while we were in the vm. This simplifies the assembly code
   447 // cpu directories.
   448 //
   449 // We are entering here from exception stub (via the entry method below)
   450 // If there is a compiled exception handler in this method, we will continue there;
   451 // otherwise we will unwind the stack and continue at the caller of top frame method
   452 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   453 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   454 // check to see if the handler we are going to return is now in a nmethod that has
   455 // been deoptimized. If that is the case we return the deopt blob
   456 // unpack_with_exception entry instead. This makes life for the exception blob easier
   457 // because making that same check and diverting is painful from assembly language.
   458 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   459   // Reset method handle flag.
   460   thread->set_is_method_handle_return(false);
   462   Handle exception(thread, ex);
   463   nm = CodeCache::find_nmethod(pc);
   464   assert(nm != NULL, "this is not an nmethod");
   465   // Adjust the pc as needed/
   466   if (nm->is_deopt_pc(pc)) {
   467     RegisterMap map(thread, false);
   468     frame exception_frame = thread->last_frame().sender(&map);
   469     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   470     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   471     pc = exception_frame.pc();
   472   }
   473 #ifdef ASSERT
   474   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   475   assert(exception->is_oop(), "just checking");
   476   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   477   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   478     if (ExitVMOnVerifyError) vm_exit(-1);
   479     ShouldNotReachHere();
   480   }
   481 #endif
   483   // Check the stack guard pages and reenable them if necessary and there is
   484   // enough space on the stack to do so.  Use fast exceptions only if the guard
   485   // pages are enabled.
   486   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   487   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   489   if (JvmtiExport::can_post_on_exceptions()) {
   490     // To ensure correct notification of exception catches and throws
   491     // we have to deoptimize here.  If we attempted to notify the
   492     // catches and throws during this exception lookup it's possible
   493     // we could deoptimize on the way out of the VM and end back in
   494     // the interpreter at the throw site.  This would result in double
   495     // notifications since the interpreter would also notify about
   496     // these same catches and throws as it unwound the frame.
   498     RegisterMap reg_map(thread);
   499     frame stub_frame = thread->last_frame();
   500     frame caller_frame = stub_frame.sender(&reg_map);
   502     // We don't really want to deoptimize the nmethod itself since we
   503     // can actually continue in the exception handler ourselves but I
   504     // don't see an easy way to have the desired effect.
   505     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   506     assert(caller_is_deopted(), "Must be deoptimized");
   508     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   509   }
   511   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
   512   if (guard_pages_enabled) {
   513     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   514     if (fast_continuation != NULL) {
   515       // Set flag if return address is a method handle call site.
   516       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   517       return fast_continuation;
   518     }
   519   }
   521   // If the stack guard pages are enabled, check whether there is a handler in
   522   // the current method.  Otherwise (guard pages disabled), force an unwind and
   523   // skip the exception cache update (i.e., just leave continuation==NULL).
   524   address continuation = NULL;
   525   if (guard_pages_enabled) {
   527     // New exception handling mechanism can support inlined methods
   528     // with exception handlers since the mappings are from PC to PC
   530     // debugging support
   531     // tracing
   532     if (TraceExceptions) {
   533       ttyLocker ttyl;
   534       ResourceMark rm;
   535       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
   536                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
   537     }
   538     // for AbortVMOnException flag
   539     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   541     // Clear out the exception oop and pc since looking up an
   542     // exception handler can cause class loading, which might throw an
   543     // exception and those fields are expected to be clear during
   544     // normal bytecode execution.
   545     thread->clear_exception_oop_and_pc();
   547     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   548     // If an exception was thrown during exception dispatch, the exception oop may have changed
   549     thread->set_exception_oop(exception());
   550     thread->set_exception_pc(pc);
   552     // the exception cache is used only by non-implicit exceptions
   553     if (continuation != NULL) {
   554       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   555     }
   556   }
   558   thread->set_vm_result(exception());
   559   // Set flag if return address is a method handle call site.
   560   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   562   if (TraceExceptions) {
   563     ttyLocker ttyl;
   564     ResourceMark rm;
   565     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   566                   p2i(thread), p2i(continuation), p2i(pc));
   567   }
   569   return continuation;
   570 JRT_END
   572 // Enter this method from compiled code only if there is a Java exception handler
   573 // in the method handling the exception.
   574 // We are entering here from exception stub. We don't do a normal VM transition here.
   575 // We do it in a helper. This is so we can check to see if the nmethod we have just
   576 // searched for an exception handler has been deoptimized in the meantime.
   577 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
   578   oop exception = thread->exception_oop();
   579   address pc = thread->exception_pc();
   580   // Still in Java mode
   581   DEBUG_ONLY(ResetNoHandleMark rnhm);
   582   nmethod* nm = NULL;
   583   address continuation = NULL;
   584   {
   585     // Enter VM mode by calling the helper
   586     ResetNoHandleMark rnhm;
   587     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   588   }
   589   // Back in JAVA, use no oops DON'T safepoint
   591   // Now check to see if the nmethod we were called from is now deoptimized.
   592   // If so we must return to the deopt blob and deoptimize the nmethod
   593   if (nm != NULL && caller_is_deopted()) {
   594     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   595   }
   597   assert(continuation != NULL, "no handler found");
   598   return continuation;
   599 }
   602 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   603   NOT_PRODUCT(_throw_range_check_exception_count++;)
   604   char message[jintAsStringSize];
   605   sprintf(message, "%d", index);
   606   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   607 JRT_END
   610 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   611   NOT_PRODUCT(_throw_index_exception_count++;)
   612   char message[16];
   613   sprintf(message, "%d", index);
   614   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   615 JRT_END
   618 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   619   NOT_PRODUCT(_throw_div0_exception_count++;)
   620   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   621 JRT_END
   624 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   625   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   626   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   627 JRT_END
   630 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   631   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   632   ResourceMark rm(thread);
   633   char* message = SharedRuntime::generate_class_cast_message(
   634     thread, object->klass()->external_name());
   635   SharedRuntime::throw_and_post_jvmti_exception(
   636     thread, vmSymbols::java_lang_ClassCastException(), message);
   637 JRT_END
   640 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   641   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   642   ResourceMark rm(thread);
   643   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   644 JRT_END
   647 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   648   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   649   if (PrintBiasedLockingStatistics) {
   650     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   651   }
   652   Handle h_obj(thread, obj);
   653   assert(h_obj()->is_oop(), "must be NULL or an object");
   654   if (UseBiasedLocking) {
   655     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   656     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   657   } else {
   658     if (UseFastLocking) {
   659       // When using fast locking, the compiled code has already tried the fast case
   660       assert(obj == lock->obj(), "must match");
   661       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   662     } else {
   663       lock->set_obj(obj);
   664       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   665     }
   666   }
   667 JRT_END
   670 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   671   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   672   assert(thread == JavaThread::current(), "threads must correspond");
   673   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   674   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   675   EXCEPTION_MARK;
   677   oop obj = lock->obj();
   678   assert(obj->is_oop(), "must be NULL or an object");
   679   if (UseFastLocking) {
   680     // When using fast locking, the compiled code has already tried the fast case
   681     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   682   } else {
   683     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   684   }
   685 JRT_END
   687 // Cf. OptoRuntime::deoptimize_caller_frame
   688 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
   689   // Called from within the owner thread, so no need for safepoint
   690   RegisterMap reg_map(thread, false);
   691   frame stub_frame = thread->last_frame();
   692   assert(stub_frame.is_runtime_frame(), "sanity check");
   693   frame caller_frame = stub_frame.sender(&reg_map);
   695   // We are coming from a compiled method; check this is true.
   696   assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
   698   // Deoptimize the caller frame.
   699   Deoptimization::deoptimize_frame(thread, caller_frame.id());
   701   // Return to the now deoptimized frame.
   702 JRT_END
   705 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   706   Bytecode_field field_access(caller, bci);
   707   // This can be static or non-static field access
   708   Bytecodes::Code code       = field_access.code();
   710   // We must load class, initialize class and resolvethe field
   711   fieldDescriptor result; // initialize class if needed
   712   constantPoolHandle constants(THREAD, caller->constants());
   713   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
   714   return result.field_holder();
   715 }
   718 //
   719 // This routine patches sites where a class wasn't loaded or
   720 // initialized at the time the code was generated.  It handles
   721 // references to classes, fields and forcing of initialization.  Most
   722 // of the cases are straightforward and involving simply forcing
   723 // resolution of a class, rewriting the instruction stream with the
   724 // needed constant and replacing the call in this function with the
   725 // patched code.  The case for static field is more complicated since
   726 // the thread which is in the process of initializing a class can
   727 // access it's static fields but other threads can't so the code
   728 // either has to deoptimize when this case is detected or execute a
   729 // check that the current thread is the initializing thread.  The
   730 // current
   731 //
   732 // Patches basically look like this:
   733 //
   734 //
   735 // patch_site: jmp patch stub     ;; will be patched
   736 // continue:   ...
   737 //             ...
   738 //             ...
   739 //             ...
   740 //
   741 // They have a stub which looks like this:
   742 //
   743 //             ;; patch body
   744 //             movl <const>, reg           (for class constants)
   745 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   746 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   747 //             <being_init offset> <bytes to copy> <bytes to skip>
   748 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   749 //             jmp patch_site
   750 //
   751 //
   752 // A normal patch is done by rewriting the patch body, usually a move,
   753 // and then copying it into place over top of the jmp instruction
   754 // being careful to flush caches and doing it in an MP-safe way.  The
   755 // constants following the patch body are used to find various pieces
   756 // of the patch relative to the call site for Runtime1::patch_code.
   757 // The case for getstatic and putstatic is more complicated because
   758 // getstatic and putstatic have special semantics when executing while
   759 // the class is being initialized.  getstatic/putstatic on a class
   760 // which is being_initialized may be executed by the initializing
   761 // thread but other threads have to block when they execute it.  This
   762 // is accomplished in compiled code by executing a test of the current
   763 // thread against the initializing thread of the class.  It's emitted
   764 // as boilerplate in their stub which allows the patched code to be
   765 // executed before it's copied back into the main body of the nmethod.
   766 //
   767 // being_init: get_thread(<tmp reg>
   768 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   769 //             jne patch_stub
   770 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   771 //             movl reg, [reg1 + <const>]  (for field offsets)
   772 //             jmp continue
   773 //             <being_init offset> <bytes to copy> <bytes to skip>
   774 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   775 //             jmp patch_site
   776 //
   777 // If the class is being initialized the patch body is rewritten and
   778 // the patch site is rewritten to jump to being_init, instead of
   779 // patch_stub.  Whenever this code is executed it checks the current
   780 // thread against the intializing thread so other threads will enter
   781 // the runtime and end up blocked waiting the class to finish
   782 // initializing inside the calls to resolve_field below.  The
   783 // initializing class will continue on it's way.  Once the class is
   784 // fully_initialized, the intializing_thread of the class becomes
   785 // NULL, so the next thread to execute this code will fail the test,
   786 // call into patch_code and complete the patching process by copying
   787 // the patch body back into the main part of the nmethod and resume
   788 // executing.
   789 //
   790 //
   792 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   793   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   795   ResourceMark rm(thread);
   796   RegisterMap reg_map(thread, false);
   797   frame runtime_frame = thread->last_frame();
   798   frame caller_frame = runtime_frame.sender(&reg_map);
   800   // last java frame on stack
   801   vframeStream vfst(thread, true);
   802   assert(!vfst.at_end(), "Java frame must exist");
   804   methodHandle caller_method(THREAD, vfst.method());
   805   // Note that caller_method->code() may not be same as caller_code because of OSR's
   806   // Note also that in the presence of inlining it is not guaranteed
   807   // that caller_method() == caller_code->method()
   809   int bci = vfst.bci();
   810   Bytecodes::Code code = caller_method()->java_code_at(bci);
   812 #ifndef PRODUCT
   813   // this is used by assertions in the access_field_patching_id
   814   BasicType patch_field_type = T_ILLEGAL;
   815 #endif // PRODUCT
   816   bool deoptimize_for_volatile = false;
   817   int patch_field_offset = -1;
   818   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
   819   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
   820   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
   821   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
   822   bool load_klass_or_mirror_patch_id =
   823     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
   825   if (stub_id == Runtime1::access_field_patching_id) {
   827     Bytecode_field field_access(caller_method, bci);
   828     fieldDescriptor result; // initialize class if needed
   829     Bytecodes::Code code = field_access.code();
   830     constantPoolHandle constants(THREAD, caller_method->constants());
   831     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
   832     patch_field_offset = result.offset();
   834     // If we're patching a field which is volatile then at compile it
   835     // must not have been know to be volatile, so the generated code
   836     // isn't correct for a volatile reference.  The nmethod has to be
   837     // deoptimized so that the code can be regenerated correctly.
   838     // This check is only needed for access_field_patching since this
   839     // is the path for patching field offsets.  load_klass is only
   840     // used for patching references to oops which don't need special
   841     // handling in the volatile case.
   842     deoptimize_for_volatile = result.access_flags().is_volatile();
   844 #ifndef PRODUCT
   845     patch_field_type = result.field_type();
   846 #endif
   847   } else if (load_klass_or_mirror_patch_id) {
   848     Klass* k = NULL;
   849     switch (code) {
   850       case Bytecodes::_putstatic:
   851       case Bytecodes::_getstatic:
   852         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
   853           init_klass = KlassHandle(THREAD, klass);
   854           mirror = Handle(THREAD, klass->java_mirror());
   855         }
   856         break;
   857       case Bytecodes::_new:
   858         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
   859           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
   860         }
   861         break;
   862       case Bytecodes::_multianewarray:
   863         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
   864           k = caller_method->constants()->klass_at(mna.index(), CHECK);
   865         }
   866         break;
   867       case Bytecodes::_instanceof:
   868         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
   869           k = caller_method->constants()->klass_at(io.index(), CHECK);
   870         }
   871         break;
   872       case Bytecodes::_checkcast:
   873         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
   874           k = caller_method->constants()->klass_at(cc.index(), CHECK);
   875         }
   876         break;
   877       case Bytecodes::_anewarray:
   878         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
   879           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
   880           k = ek->array_klass(CHECK);
   881         }
   882         break;
   883       case Bytecodes::_ldc:
   884       case Bytecodes::_ldc_w:
   885         {
   886           Bytecode_loadconstant cc(caller_method, bci);
   887           oop m = cc.resolve_constant(CHECK);
   888           mirror = Handle(THREAD, m);
   889         }
   890         break;
   891       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
   892     }
   893     // convert to handle
   894     load_klass = KlassHandle(THREAD, k);
   895   } else if (stub_id == load_appendix_patching_id) {
   896     Bytecode_invoke bytecode(caller_method, bci);
   897     Bytecodes::Code bc = bytecode.invoke_code();
   899     CallInfo info;
   900     constantPoolHandle pool(thread, caller_method->constants());
   901     int index = bytecode.index();
   902     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
   903     appendix = info.resolved_appendix();
   904     switch (bc) {
   905       case Bytecodes::_invokehandle: {
   906         int cache_index = ConstantPool::decode_cpcache_index(index, true);
   907         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
   908         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
   909         break;
   910       }
   911       case Bytecodes::_invokedynamic: {
   912         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
   913         break;
   914       }
   915       default: fatal("unexpected bytecode for load_appendix_patching_id");
   916     }
   917   } else {
   918     ShouldNotReachHere();
   919   }
   921   if (deoptimize_for_volatile) {
   922     // At compile time we assumed the field wasn't volatile but after
   923     // loading it turns out it was volatile so we have to throw the
   924     // compiled code out and let it be regenerated.
   925     if (TracePatching) {
   926       tty->print_cr("Deoptimizing for patching volatile field reference");
   927     }
   928     // It's possible the nmethod was invalidated in the last
   929     // safepoint, but if it's still alive then make it not_entrant.
   930     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   931     if (nm != NULL) {
   932       nm->make_not_entrant();
   933     }
   935     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   937     // Return to the now deoptimized frame.
   938   }
   940   // Now copy code back
   942   {
   943     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   944     //
   945     // Deoptimization may have happened while we waited for the lock.
   946     // In that case we don't bother to do any patching we just return
   947     // and let the deopt happen
   948     if (!caller_is_deopted()) {
   949       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   950       address instr_pc = jump->jump_destination();
   951       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   952       if (ni->is_jump() ) {
   953         // the jump has not been patched yet
   954         // The jump destination is slow case and therefore not part of the stubs
   955         // (stubs are only for StaticCalls)
   957         // format of buffer
   958         //    ....
   959         //    instr byte 0     <-- copy_buff
   960         //    instr byte 1
   961         //    ..
   962         //    instr byte n-1
   963         //      n
   964         //    ....             <-- call destination
   966         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   967         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   968         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   969         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   970         address copy_buff = stub_location - *byte_skip - *byte_count;
   971         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   972         if (TracePatching) {
   973           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
   974                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   975           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   976           assert(caller_code != NULL, "nmethod not found");
   978           // NOTE we use pc() not original_pc() because we already know they are
   979           // identical otherwise we'd have never entered this block of code
   981           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   982           assert(map != NULL, "null check");
   983           map->print();
   984           tty->cr();
   986           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   987         }
   988         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   989         bool do_patch = true;
   990         if (stub_id == Runtime1::access_field_patching_id) {
   991           // The offset may not be correct if the class was not loaded at code generation time.
   992           // Set it now.
   993           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   994           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   995           assert(patch_field_offset >= 0, "illegal offset");
   996           n_move->add_offset_in_bytes(patch_field_offset);
   997         } else if (load_klass_or_mirror_patch_id) {
   998           // If a getstatic or putstatic is referencing a klass which
   999           // isn't fully initialized, the patch body isn't copied into
  1000           // place until initialization is complete.  In this case the
  1001           // patch site is setup so that any threads besides the
  1002           // initializing thread are forced to come into the VM and
  1003           // block.
  1004           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
  1005                      InstanceKlass::cast(init_klass())->is_initialized();
  1006           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
  1007           if (jump->jump_destination() == being_initialized_entry) {
  1008             assert(do_patch == true, "initialization must be complete at this point");
  1009           } else {
  1010             // patch the instruction <move reg, klass>
  1011             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
  1013             assert(n_copy->data() == 0 ||
  1014                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
  1015                    "illegal init value");
  1016             if (stub_id == Runtime1::load_klass_patching_id) {
  1017               assert(load_klass() != NULL, "klass not set");
  1018               n_copy->set_data((intx) (load_klass()));
  1019             } else {
  1020               assert(mirror() != NULL, "klass not set");
  1021               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
  1022               n_copy->set_data(cast_from_oop<intx>(mirror()));
  1025             if (TracePatching) {
  1026               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
  1029         } else if (stub_id == Runtime1::load_appendix_patching_id) {
  1030           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
  1031           assert(n_copy->data() == 0 ||
  1032                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
  1033                  "illegal init value");
  1034           n_copy->set_data(cast_from_oop<intx>(appendix()));
  1036           if (TracePatching) {
  1037             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
  1039         } else {
  1040           ShouldNotReachHere();
  1043 #if defined(SPARC) || defined(PPC)
  1044         if (load_klass_or_mirror_patch_id ||
  1045             stub_id == Runtime1::load_appendix_patching_id) {
  1046           // Update the location in the nmethod with the proper
  1047           // metadata.  When the code was generated, a NULL was stuffed
  1048           // in the metadata table and that table needs to be update to
  1049           // have the right value.  On intel the value is kept
  1050           // directly in the instruction instead of in the metadata
  1051           // table, so set_data above effectively updated the value.
  1052           nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1053           assert(nm != NULL, "invalid nmethod_pc");
  1054           RelocIterator mds(nm, copy_buff, copy_buff + 1);
  1055           bool found = false;
  1056           while (mds.next() && !found) {
  1057             if (mds.type() == relocInfo::oop_type) {
  1058               assert(stub_id == Runtime1::load_mirror_patching_id ||
  1059                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
  1060               oop_Relocation* r = mds.oop_reloc();
  1061               oop* oop_adr = r->oop_addr();
  1062               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
  1063               r->fix_oop_relocation();
  1064               found = true;
  1065             } else if (mds.type() == relocInfo::metadata_type) {
  1066               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
  1067               metadata_Relocation* r = mds.metadata_reloc();
  1068               Metadata** metadata_adr = r->metadata_addr();
  1069               *metadata_adr = load_klass();
  1070               r->fix_metadata_relocation();
  1071               found = true;
  1074           assert(found, "the metadata must exist!");
  1076 #endif
  1077         if (do_patch) {
  1078           // replace instructions
  1079           // first replace the tail, then the call
  1080 #ifdef ARM
  1081           if((load_klass_or_mirror_patch_id ||
  1082               stub_id == Runtime1::load_appendix_patching_id) &&
  1083              !VM_Version::supports_movw()) {
  1084             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1085             address addr = NULL;
  1086             assert(nm != NULL, "invalid nmethod_pc");
  1087             RelocIterator mds(nm, copy_buff, copy_buff + 1);
  1088             while (mds.next()) {
  1089               if (mds.type() == relocInfo::oop_type) {
  1090                 assert(stub_id == Runtime1::load_mirror_patching_id ||
  1091                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
  1092                 oop_Relocation* r = mds.oop_reloc();
  1093                 addr = (address)r->oop_addr();
  1094                 break;
  1095               } else if (mds.type() == relocInfo::metadata_type) {
  1096                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
  1097                 metadata_Relocation* r = mds.metadata_reloc();
  1098                 addr = (address)r->metadata_addr();
  1099                 break;
  1102             assert(addr != NULL, "metadata relocation must exist");
  1103             copy_buff -= *byte_count;
  1104             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
  1105             n_copy2->set_pc_relative_offset(addr, instr_pc);
  1107 #endif
  1109           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
  1110             address ptr = copy_buff + i;
  1111             int a_byte = (*ptr) & 0xFF;
  1112             address dst = instr_pc + i;
  1113             *(unsigned char*)dst = (unsigned char) a_byte;
  1115           ICache::invalidate_range(instr_pc, *byte_count);
  1116           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
  1118           if (load_klass_or_mirror_patch_id ||
  1119               stub_id == Runtime1::load_appendix_patching_id) {
  1120             relocInfo::relocType rtype =
  1121               (stub_id == Runtime1::load_klass_patching_id) ?
  1122                                    relocInfo::metadata_type :
  1123                                    relocInfo::oop_type;
  1124             // update relocInfo to metadata
  1125             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1126             assert(nm != NULL, "invalid nmethod_pc");
  1128             // The old patch site is now a move instruction so update
  1129             // the reloc info so that it will get updated during
  1130             // future GCs.
  1131             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
  1132             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
  1133                                                      relocInfo::none, rtype);
  1134 #ifdef SPARC
  1135             // Sparc takes two relocations for an metadata so update the second one.
  1136             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
  1137             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1138             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1139                                                      relocInfo::none, rtype);
  1140 #endif
  1141 #ifdef PPC
  1142           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1143             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1144             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1145                                                      relocInfo::none, rtype);
  1147 #endif
  1150         } else {
  1151           ICache::invalidate_range(copy_buff, *byte_count);
  1152           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1158   // If we are patching in a non-perm oop, make sure the nmethod
  1159   // is on the right list.
  1160   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
  1161                               (appendix.not_null() && appendix->is_scavengable()))) {
  1162     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1163     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
  1164     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
  1165     if (!nm->on_scavenge_root_list()) {
  1166       CodeCache::add_scavenge_root_nmethod(nm);
  1169     // Since we've patched some oops in the nmethod,
  1170     // (re)register it with the heap.
  1171     Universe::heap()->register_nmethod(nm);
  1173 JRT_END
  1175 //
  1176 // Entry point for compiled code. We want to patch a nmethod.
  1177 // We don't do a normal VM transition here because we want to
  1178 // know after the patching is complete and any safepoint(s) are taken
  1179 // if the calling nmethod was deoptimized. We do this by calling a
  1180 // helper method which does the normal VM transition and when it
  1181 // completes we can check for deoptimization. This simplifies the
  1182 // assembly code in the cpu directories.
  1183 //
  1184 int Runtime1::move_klass_patching(JavaThread* thread) {
  1185 //
  1186 // NOTE: we are still in Java
  1187 //
  1188   Thread* THREAD = thread;
  1189   debug_only(NoHandleMark nhm;)
  1191     // Enter VM mode
  1193     ResetNoHandleMark rnhm;
  1194     patch_code(thread, load_klass_patching_id);
  1196   // Back in JAVA, use no oops DON'T safepoint
  1198   // Return true if calling code is deoptimized
  1200   return caller_is_deopted();
  1203 int Runtime1::move_mirror_patching(JavaThread* thread) {
  1204 //
  1205 // NOTE: we are still in Java
  1206 //
  1207   Thread* THREAD = thread;
  1208   debug_only(NoHandleMark nhm;)
  1210     // Enter VM mode
  1212     ResetNoHandleMark rnhm;
  1213     patch_code(thread, load_mirror_patching_id);
  1215   // Back in JAVA, use no oops DON'T safepoint
  1217   // Return true if calling code is deoptimized
  1219   return caller_is_deopted();
  1222 int Runtime1::move_appendix_patching(JavaThread* thread) {
  1223 //
  1224 // NOTE: we are still in Java
  1225 //
  1226   Thread* THREAD = thread;
  1227   debug_only(NoHandleMark nhm;)
  1229     // Enter VM mode
  1231     ResetNoHandleMark rnhm;
  1232     patch_code(thread, load_appendix_patching_id);
  1234   // Back in JAVA, use no oops DON'T safepoint
  1236   // Return true if calling code is deoptimized
  1238   return caller_is_deopted();
  1240 //
  1241 // Entry point for compiled code. We want to patch a nmethod.
  1242 // We don't do a normal VM transition here because we want to
  1243 // know after the patching is complete and any safepoint(s) are taken
  1244 // if the calling nmethod was deoptimized. We do this by calling a
  1245 // helper method which does the normal VM transition and when it
  1246 // completes we can check for deoptimization. This simplifies the
  1247 // assembly code in the cpu directories.
  1248 //
  1250 int Runtime1::access_field_patching(JavaThread* thread) {
  1251 //
  1252 // NOTE: we are still in Java
  1253 //
  1254   Thread* THREAD = thread;
  1255   debug_only(NoHandleMark nhm;)
  1257     // Enter VM mode
  1259     ResetNoHandleMark rnhm;
  1260     patch_code(thread, access_field_patching_id);
  1262   // Back in JAVA, use no oops DON'T safepoint
  1264   // Return true if calling code is deoptimized
  1266   return caller_is_deopted();
  1267 JRT_END
  1270 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1271   // for now we just print out the block id
  1272   tty->print("%d ", block_id);
  1273 JRT_END
  1276 // Array copy return codes.
  1277 enum {
  1278   ac_failed = -1, // arraycopy failed
  1279   ac_ok = 0       // arraycopy succeeded
  1280 };
  1283 // Below length is the # elements copied.
  1284 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1285                                           oopDesc* dst, T* dst_addr,
  1286                                           int length) {
  1288   // For performance reasons, we assume we are using a card marking write
  1289   // barrier. The assert will fail if this is not the case.
  1290   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1291   BarrierSet* bs = Universe::heap()->barrier_set();
  1292   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1293   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1294   if (src == dst) {
  1295     // same object, no check
  1296     bs->write_ref_array_pre(dst_addr, length);
  1297     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1298     bs->write_ref_array((HeapWord*)dst_addr, length);
  1299     return ac_ok;
  1300   } else {
  1301     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
  1302     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
  1303     if (stype == bound || stype->is_subtype_of(bound)) {
  1304       // Elements are guaranteed to be subtypes, so no check necessary
  1305       bs->write_ref_array_pre(dst_addr, length);
  1306       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1307       bs->write_ref_array((HeapWord*)dst_addr, length);
  1308       return ac_ok;
  1311   return ac_failed;
  1314 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1315 // and we did not copy anything
  1316 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1317 #ifndef PRODUCT
  1318   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1319 #endif
  1321   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1322   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1323   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1324   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1326   if (length == 0) return ac_ok;
  1327   if (src->is_typeArray()) {
  1328     Klass* klass_oop = src->klass();
  1329     if (klass_oop != dst->klass()) return ac_failed;
  1330     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
  1331     const int l2es = klass->log2_element_size();
  1332     const int ihs = klass->array_header_in_bytes() / wordSize;
  1333     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1334     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1335     // Potential problem: memmove is not guaranteed to be word atomic
  1336     // Revisit in Merlin
  1337     memmove(dst_addr, src_addr, length << l2es);
  1338     return ac_ok;
  1339   } else if (src->is_objArray() && dst->is_objArray()) {
  1340     if (UseCompressedOops) {
  1341       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1342       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1343       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1344     } else {
  1345       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1346       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1347       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1350   return ac_failed;
  1351 JRT_END
  1354 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1355 #ifndef PRODUCT
  1356   _primitive_arraycopy_cnt++;
  1357 #endif
  1359   if (length == 0) return;
  1360   // Not guaranteed to be word atomic, but that doesn't matter
  1361   // for anything but an oop array, which is covered by oop_arraycopy.
  1362   Copy::conjoint_jbytes(src, dst, length);
  1363 JRT_END
  1365 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1366 #ifndef PRODUCT
  1367   _oop_arraycopy_cnt++;
  1368 #endif
  1370   if (num == 0) return;
  1371   BarrierSet* bs = Universe::heap()->barrier_set();
  1372   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1373   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1374   if (UseCompressedOops) {
  1375     bs->write_ref_array_pre((narrowOop*)dst, num);
  1376     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
  1377   } else {
  1378     bs->write_ref_array_pre((oop*)dst, num);
  1379     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1381   bs->write_ref_array(dst, num);
  1382 JRT_END
  1385 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
  1386   // had to return int instead of bool, otherwise there may be a mismatch
  1387   // between the C calling convention and the Java one.
  1388   // e.g., on x86, GCC may clear only %al when returning a bool false, but
  1389   // JVM takes the whole %eax as the return value, which may misinterpret
  1390   // the return value as a boolean true.
  1392   assert(mirror != NULL, "should null-check on mirror before calling");
  1393   Klass* k = java_lang_Class::as_Klass(mirror);
  1394   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
  1395 JRT_END
  1397 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
  1398   ResourceMark rm;
  1400   assert(!TieredCompilation, "incompatible with tiered compilation");
  1402   RegisterMap reg_map(thread, false);
  1403   frame runtime_frame = thread->last_frame();
  1404   frame caller_frame = runtime_frame.sender(&reg_map);
  1406   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
  1407   assert (nm != NULL, "no more nmethod?");
  1408   nm->make_not_entrant();
  1410   methodHandle m(nm->method());
  1411   MethodData* mdo = m->method_data();
  1413   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
  1414     // Build an MDO.  Ignore errors like OutOfMemory;
  1415     // that simply means we won't have an MDO to update.
  1416     Method::build_interpreter_method_data(m, THREAD);
  1417     if (HAS_PENDING_EXCEPTION) {
  1418       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1419       CLEAR_PENDING_EXCEPTION;
  1421     mdo = m->method_data();
  1424   if (mdo != NULL) {
  1425     mdo->inc_trap_count(Deoptimization::Reason_none);
  1428   if (TracePredicateFailedTraps) {
  1429     stringStream ss1, ss2;
  1430     vframeStream vfst(thread);
  1431     methodHandle inlinee = methodHandle(vfst.method());
  1432     inlinee->print_short_name(&ss1);
  1433     m->print_short_name(&ss2);
  1434     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
  1438   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1440 JRT_END
  1442 #ifndef PRODUCT
  1443 void Runtime1::print_statistics() {
  1444   tty->print_cr("C1 Runtime statistics:");
  1445   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1446   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1447   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1448   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1449   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1450   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1451   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
  1452   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
  1453   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
  1454   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
  1455   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
  1456   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1457   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
  1458   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
  1459   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1460   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
  1461   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
  1463   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1464   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1465   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1466   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1467   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1468   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1469   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1471   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1472   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1473   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1474   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1475   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1476   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1477   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1478   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1480   SharedRuntime::print_ic_miss_histogram();
  1481   tty->cr();
  1483 #endif // PRODUCT

mercurial