src/share/vm/utilities/taskqueue.hpp

Wed, 07 Oct 2009 09:48:42 -0400

author
bobv
date
Wed, 07 Oct 2009 09:48:42 -0400
changeset 1459
2c03ce058f55
parent 1342
3ee342e25e57
child 1460
1ee412f7fec9
permissions
-rw-r--r--

6888847: TaskQueue needs release_store() for correctness on RMO machines
Summary: See title.
Reviewed-by: jmasa, ysr, jcoomes, iveresov, tonyp

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class TaskQueueSuper: public CHeapObj {
    26 protected:
    27   // Internal type for indexing the queue; also used for the tag.
    28   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
    30   // The first free element after the last one pushed (mod N).
    31   volatile uint _bottom;
    33   enum {
    34     N = 1 << NOT_LP64(14) LP64_ONLY(17), // Queue size: 16K or 128K
    35     MOD_N_MASK = N - 1                   // To compute x mod N efficiently.
    36   };
    38   class Age {
    39   public:
    40     Age(size_t data = 0)         { _data = data; }
    41     Age(const Age& age)          { _data = age._data; }
    42     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
    44     Age   get()        const volatile { return _data; }
    45     void  set(Age age) volatile       { _data = age._data; }
    47     idx_t top()        const volatile { return _fields._top; }
    48     idx_t tag()        const volatile { return _fields._tag; }
    50     // Increment top; if it wraps, increment tag also.
    51     void increment() {
    52       _fields._top = increment_index(_fields._top);
    53       if (_fields._top == 0) ++_fields._tag;
    54     }
    56     Age cmpxchg(const Age new_age, const Age old_age) volatile {
    57       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
    58                                           (volatile intptr_t *)&_data,
    59                                           (intptr_t)old_age._data);
    60     }
    62     bool operator ==(const Age& other) const { return _data == other._data; }
    64   private:
    65     struct fields {
    66       idx_t _top;
    67       idx_t _tag;
    68     };
    69     union {
    70       size_t _data;
    71       fields _fields;
    72     };
    73   };
    75   volatile Age _age;
    77   // These both operate mod N.
    78   static uint increment_index(uint ind) {
    79     return (ind + 1) & MOD_N_MASK;
    80   }
    81   static uint decrement_index(uint ind) {
    82     return (ind - 1) & MOD_N_MASK;
    83   }
    85   // Returns a number in the range [0..N).  If the result is "N-1", it should be
    86   // interpreted as 0.
    87   uint dirty_size(uint bot, uint top) {
    88     return (bot - top) & MOD_N_MASK;
    89   }
    91   // Returns the size corresponding to the given "bot" and "top".
    92   uint size(uint bot, uint top) {
    93     uint sz = dirty_size(bot, top);
    94     // Has the queue "wrapped", so that bottom is less than top?  There's a
    95     // complicated special case here.  A pair of threads could perform pop_local
    96     // and pop_global operations concurrently, starting from a state in which
    97     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
    98     // and the pop_global in incrementing _top (in which case the pop_global
    99     // will be awarded the contested queue element.)  The resulting state must
   100     // be interpreted as an empty queue.  (We only need to worry about one such
   101     // event: only the queue owner performs pop_local's, and several concurrent
   102     // threads attempting to perform the pop_global will all perform the same
   103     // CAS, and only one can succeed.)  Any stealing thread that reads after
   104     // either the increment or decrement will see an empty queue, and will not
   105     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   106     // modified by concurrent queues, so the owner thread can reset the state to
   107     // _bottom == top so subsequent pushes will be performed normally.
   108     return (sz == N - 1) ? 0 : sz;
   109   }
   111 public:
   112   TaskQueueSuper() : _bottom(0), _age() {}
   114   // Return "true" if the TaskQueue contains any tasks.
   115   bool peek();
   117   // Return an estimate of the number of elements in the queue.
   118   // The "careful" version admits the possibility of pop_local/pop_global
   119   // races.
   120   uint size() {
   121     return size(_bottom, _age.top());
   122   }
   124   uint dirty_size() {
   125     return dirty_size(_bottom, _age.top());
   126   }
   128   void set_empty() {
   129     _bottom = 0;
   130     _age.set(0);
   131   }
   133   // Maximum number of elements allowed in the queue.  This is two less
   134   // than the actual queue size, for somewhat complicated reasons.
   135   uint max_elems() { return N - 2; }
   136 };
   138 template<class E> class GenericTaskQueue: public TaskQueueSuper {
   139 private:
   140   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   141   bool push_slow(E t, uint dirty_n_elems);
   142   bool pop_local_slow(uint localBot, Age oldAge);
   144 public:
   145   // Initializes the queue to empty.
   146   GenericTaskQueue();
   148   void initialize();
   150   // Push the task "t" on the queue.  Returns "false" iff the queue is
   151   // full.
   152   inline bool push(E t);
   154   // If succeeds in claiming a task (from the 'local' end, that is, the
   155   // most recently pushed task), returns "true" and sets "t" to that task.
   156   // Otherwise, the queue is empty and returns false.
   157   inline bool pop_local(E& t);
   159   // If succeeds in claiming a task (from the 'global' end, that is, the
   160   // least recently pushed task), returns "true" and sets "t" to that task.
   161   // Otherwise, the queue is empty and returns false.
   162   bool pop_global(E& t);
   164   // Delete any resource associated with the queue.
   165   ~GenericTaskQueue();
   167   // apply the closure to all elements in the task queue
   168   void oops_do(OopClosure* f);
   170 private:
   171   // Element array.
   172   volatile E* _elems;
   173 };
   175 template<class E>
   176 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
   177   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   178 }
   180 template<class E>
   181 void GenericTaskQueue<E>::initialize() {
   182   _elems = NEW_C_HEAP_ARRAY(E, N);
   183   guarantee(_elems != NULL, "Allocation failed.");
   184 }
   186 template<class E>
   187 void GenericTaskQueue<E>::oops_do(OopClosure* f) {
   188   // tty->print_cr("START OopTaskQueue::oops_do");
   189   uint iters = size();
   190   uint index = _bottom;
   191   for (uint i = 0; i < iters; ++i) {
   192     index = decrement_index(index);
   193     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   194     //            index, &_elems[index], _elems[index]);
   195     E* t = (E*)&_elems[index];      // cast away volatility
   196     oop* p = (oop*)t;
   197     assert((*t)->is_oop_or_null(), "Not an oop or null");
   198     f->do_oop(p);
   199   }
   200   // tty->print_cr("END OopTaskQueue::oops_do");
   201 }
   204 template<class E>
   205 bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
   206   if (dirty_n_elems == N - 1) {
   207     // Actually means 0, so do the push.
   208     uint localBot = _bottom;
   209     _elems[localBot] = t;
   210     OrderAccess::release_store(&_bottom, increment_index(localBot));
   211     return true;
   212   }
   213   return false;
   214 }
   216 template<class E>
   217 bool GenericTaskQueue<E>::
   218 pop_local_slow(uint localBot, Age oldAge) {
   219   // This queue was observed to contain exactly one element; either this
   220   // thread will claim it, or a competing "pop_global".  In either case,
   221   // the queue will be logically empty afterwards.  Create a new Age value
   222   // that represents the empty queue for the given value of "_bottom".  (We
   223   // must also increment "tag" because of the case where "bottom == 1",
   224   // "top == 0".  A pop_global could read the queue element in that case,
   225   // then have the owner thread do a pop followed by another push.  Without
   226   // the incrementing of "tag", the pop_global's CAS could succeed,
   227   // allowing it to believe it has claimed the stale element.)
   228   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   229   // Perhaps a competing pop_global has already incremented "top", in which
   230   // case it wins the element.
   231   if (localBot == oldAge.top()) {
   232     // No competing pop_global has yet incremented "top"; we'll try to
   233     // install new_age, thus claiming the element.
   234     Age tempAge = _age.cmpxchg(newAge, oldAge);
   235     if (tempAge == oldAge) {
   236       // We win.
   237       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   238       return true;
   239     }
   240   }
   241   // We lose; a completing pop_global gets the element.  But the queue is empty
   242   // and top is greater than bottom.  Fix this representation of the empty queue
   243   // to become the canonical one.
   244   _age.set(newAge);
   245   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   246   return false;
   247 }
   249 template<class E>
   250 bool GenericTaskQueue<E>::pop_global(E& t) {
   251   Age oldAge = _age.get();
   252   uint localBot = _bottom;
   253   uint n_elems = size(localBot, oldAge.top());
   254   if (n_elems == 0) {
   255     return false;
   256   }
   258   t = _elems[oldAge.top()];
   259   Age newAge(oldAge);
   260   newAge.increment();
   261   Age resAge = _age.cmpxchg(newAge, oldAge);
   263   // Note that using "_bottom" here might fail, since a pop_local might
   264   // have decremented it.
   265   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   266   return resAge == oldAge;
   267 }
   269 template<class E>
   270 GenericTaskQueue<E>::~GenericTaskQueue() {
   271   FREE_C_HEAP_ARRAY(E, _elems);
   272 }
   274 // Inherits the typedef of "Task" from above.
   275 class TaskQueueSetSuper: public CHeapObj {
   276 protected:
   277   static int randomParkAndMiller(int* seed0);
   278 public:
   279   // Returns "true" if some TaskQueue in the set contains a task.
   280   virtual bool peek() = 0;
   281 };
   283 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
   284 private:
   285   uint _n;
   286   GenericTaskQueue<E>** _queues;
   288 public:
   289   GenericTaskQueueSet(int n) : _n(n) {
   290     typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
   291     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   292     guarantee(_queues != NULL, "Allocation failure.");
   293     for (int i = 0; i < n; i++) {
   294       _queues[i] = NULL;
   295     }
   296   }
   298   bool steal_1_random(uint queue_num, int* seed, E& t);
   299   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   300   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   302   void register_queue(uint i, GenericTaskQueue<E>* q);
   304   GenericTaskQueue<E>* queue(uint n);
   306   // The thread with queue number "queue_num" (and whose random number seed
   307   // is at "seed") is trying to steal a task from some other queue.  (It
   308   // may try several queues, according to some configuration parameter.)
   309   // If some steal succeeds, returns "true" and sets "t" the stolen task,
   310   // otherwise returns false.
   311   bool steal(uint queue_num, int* seed, E& t);
   313   bool peek();
   314 };
   316 template<class E>
   317 void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
   318   assert(i < _n, "index out of range.");
   319   _queues[i] = q;
   320 }
   322 template<class E>
   323 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
   324   return _queues[i];
   325 }
   327 template<class E>
   328 bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
   329   for (uint i = 0; i < 2 * _n; i++)
   330     if (steal_best_of_2(queue_num, seed, t))
   331       return true;
   332   return false;
   333 }
   335 template<class E>
   336 bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   337   if (_n > 2) {
   338     int best_k;
   339     uint best_sz = 0;
   340     for (uint k = 0; k < _n; k++) {
   341       if (k == queue_num) continue;
   342       uint sz = _queues[k]->size();
   343       if (sz > best_sz) {
   344         best_sz = sz;
   345         best_k = k;
   346       }
   347     }
   348     return best_sz > 0 && _queues[best_k]->pop_global(t);
   349   } else if (_n == 2) {
   350     // Just try the other one.
   351     int k = (queue_num + 1) % 2;
   352     return _queues[k]->pop_global(t);
   353   } else {
   354     assert(_n == 1, "can't be zero.");
   355     return false;
   356   }
   357 }
   359 template<class E>
   360 bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
   361   if (_n > 2) {
   362     uint k = queue_num;
   363     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   364     return _queues[2]->pop_global(t);
   365   } else if (_n == 2) {
   366     // Just try the other one.
   367     int k = (queue_num + 1) % 2;
   368     return _queues[k]->pop_global(t);
   369   } else {
   370     assert(_n == 1, "can't be zero.");
   371     return false;
   372   }
   373 }
   375 template<class E>
   376 bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   377   if (_n > 2) {
   378     uint k1 = queue_num;
   379     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   380     uint k2 = queue_num;
   381     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   382     // Sample both and try the larger.
   383     uint sz1 = _queues[k1]->size();
   384     uint sz2 = _queues[k2]->size();
   385     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   386     else return _queues[k1]->pop_global(t);
   387   } else if (_n == 2) {
   388     // Just try the other one.
   389     uint k = (queue_num + 1) % 2;
   390     return _queues[k]->pop_global(t);
   391   } else {
   392     assert(_n == 1, "can't be zero.");
   393     return false;
   394   }
   395 }
   397 template<class E>
   398 bool GenericTaskQueueSet<E>::peek() {
   399   // Try all the queues.
   400   for (uint j = 0; j < _n; j++) {
   401     if (_queues[j]->peek())
   402       return true;
   403   }
   404   return false;
   405 }
   407 // When to terminate from the termination protocol.
   408 class TerminatorTerminator: public CHeapObj {
   409 public:
   410   virtual bool should_exit_termination() = 0;
   411 };
   413 // A class to aid in the termination of a set of parallel tasks using
   414 // TaskQueueSet's for work stealing.
   416 #undef TRACESPINNING
   418 class ParallelTaskTerminator: public StackObj {
   419 private:
   420   int _n_threads;
   421   TaskQueueSetSuper* _queue_set;
   422   int _offered_termination;
   424 #ifdef TRACESPINNING
   425   static uint _total_yields;
   426   static uint _total_spins;
   427   static uint _total_peeks;
   428 #endif
   430   bool peek_in_queue_set();
   431 protected:
   432   virtual void yield();
   433   void sleep(uint millis);
   435 public:
   437   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   438   // queue sets of work queues of other threads.
   439   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   441   // The current thread has no work, and is ready to terminate if everyone
   442   // else is.  If returns "true", all threads are terminated.  If returns
   443   // "false", available work has been observed in one of the task queues,
   444   // so the global task is not complete.
   445   bool offer_termination() {
   446     return offer_termination(NULL);
   447   }
   449   // As above, but it also terminates if the should_exit_termination()
   450   // method of the terminator parameter returns true. If terminator is
   451   // NULL, then it is ignored.
   452   bool offer_termination(TerminatorTerminator* terminator);
   454   // Reset the terminator, so that it may be reused again.
   455   // The caller is responsible for ensuring that this is done
   456   // in an MT-safe manner, once the previous round of use of
   457   // the terminator is finished.
   458   void reset_for_reuse();
   460 #ifdef TRACESPINNING
   461   static uint total_yields() { return _total_yields; }
   462   static uint total_spins() { return _total_spins; }
   463   static uint total_peeks() { return _total_peeks; }
   464   static void print_termination_counts();
   465 #endif
   466 };
   468 #define SIMPLE_STACK 0
   470 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
   471 #if SIMPLE_STACK
   472   uint localBot = _bottom;
   473   if (_bottom < max_elems()) {
   474     _elems[localBot] = t;
   475     _bottom = localBot + 1;
   476     return true;
   477   } else {
   478     return false;
   479   }
   480 #else
   481   uint localBot = _bottom;
   482   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   483   idx_t top = _age.top();
   484   uint dirty_n_elems = dirty_size(localBot, top);
   485   assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
   486   if (dirty_n_elems < max_elems()) {
   487     _elems[localBot] = t;
   488     OrderAccess::release_store(&_bottom, increment_index(localBot));
   489     return true;
   490   } else {
   491     return push_slow(t, dirty_n_elems);
   492   }
   493 #endif
   494 }
   496 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
   497 #if SIMPLE_STACK
   498   uint localBot = _bottom;
   499   assert(localBot > 0, "precondition.");
   500   localBot--;
   501   t = _elems[localBot];
   502   _bottom = localBot;
   503   return true;
   504 #else
   505   uint localBot = _bottom;
   506   // This value cannot be N-1.  That can only occur as a result of
   507   // the assignment to bottom in this method.  If it does, this method
   508   // resets the size( to 0 before the next call (which is sequential,
   509   // since this is pop_local.)
   510   uint dirty_n_elems = dirty_size(localBot, _age.top());
   511   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   512   if (dirty_n_elems == 0) return false;
   513   localBot = decrement_index(localBot);
   514   _bottom = localBot;
   515   // This is necessary to prevent any read below from being reordered
   516   // before the store just above.
   517   OrderAccess::fence();
   518   t = _elems[localBot];
   519   // This is a second read of "age"; the "size()" above is the first.
   520   // If there's still at least one element in the queue, based on the
   521   // "_bottom" and "age" we've read, then there can be no interference with
   522   // a "pop_global" operation, and we're done.
   523   idx_t tp = _age.top();    // XXX
   524   if (size(localBot, tp) > 0) {
   525     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   526     return true;
   527   } else {
   528     // Otherwise, the queue contained exactly one element; we take the slow
   529     // path.
   530     return pop_local_slow(localBot, _age.get());
   531   }
   532 #endif
   533 }
   535 typedef oop Task;
   536 typedef GenericTaskQueue<Task>         OopTaskQueue;
   537 typedef GenericTaskQueueSet<Task>      OopTaskQueueSet;
   540 #define COMPRESSED_OOP_MASK  1
   542 // This is a container class for either an oop* or a narrowOop*.
   543 // Both are pushed onto a task queue and the consumer will test is_narrow()
   544 // to determine which should be processed.
   545 class StarTask {
   546   void*  _holder;        // either union oop* or narrowOop*
   547  public:
   548   StarTask(narrowOop* p) {
   549     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   550     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   551   }
   552   StarTask(oop* p)       {
   553     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   554     _holder = (void*)p;
   555   }
   556   StarTask()             { _holder = NULL; }
   557   operator oop*()        { return (oop*)_holder; }
   558   operator narrowOop*()  {
   559     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   560   }
   562   // Operators to preserve const/volatile in assignments required by gcc
   563   void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
   565   bool is_narrow() const {
   566     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   567   }
   568 };
   570 typedef GenericTaskQueue<StarTask>     OopStarTaskQueue;
   571 typedef GenericTaskQueueSet<StarTask>  OopStarTaskQueueSet;
   573 typedef size_t RegionTask;  // index for region
   574 typedef GenericTaskQueue<RegionTask>    RegionTaskQueue;
   575 typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
   577 class RegionTaskQueueWithOverflow: public CHeapObj {
   578  protected:
   579   RegionTaskQueue              _region_queue;
   580   GrowableArray<RegionTask>*   _overflow_stack;
   582  public:
   583   RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
   584   // Initialize both stealable queue and overflow
   585   void initialize();
   586   // Save first to stealable queue and then to overflow
   587   void save(RegionTask t);
   588   // Retrieve first from overflow and then from stealable queue
   589   bool retrieve(RegionTask& region_index);
   590   // Retrieve from stealable queue
   591   bool retrieve_from_stealable_queue(RegionTask& region_index);
   592   // Retrieve from overflow
   593   bool retrieve_from_overflow(RegionTask& region_index);
   594   bool is_empty();
   595   bool stealable_is_empty();
   596   bool overflow_is_empty();
   597   uint stealable_size() { return _region_queue.size(); }
   598   RegionTaskQueue* task_queue() { return &_region_queue; }
   599 };
   601 #define USE_RegionTaskQueueWithOverflow

mercurial