src/share/vm/memory/barrierSet.hpp

Fri, 20 Sep 2013 10:53:28 +0200

author
stefank
date
Fri, 20 Sep 2013 10:53:28 +0200
changeset 5769
2c022e432e10
parent 4037
da91efe96a93
child 6493
3205e78d8193
permissions
-rw-r--r--

8024974: Incorrect use of GC_locker::is_active()
Summary: SymbolTable and StringTable can make calls to GC_locker::is_active() outside a safepoint. This isn't safe because the GC_locker active state (lock count) is only updated at a safepoint and only remains valid as long as _needs_gc is true. However, outside a safepoint_needs_gc can change to false at any time, which makes it impossible to do a correct call to is_active() in that context. In this case these calls can just be removed since the input argument to basic_add() should never be on the heap and so there's no need to check the GC_locker state. This change also adjusts the assert() in is_active() to makes sure all calls to this function are always done under a safepoint.
Reviewed-by: brutisso, dcubed
Contributed-by: per.liden@oracle.com

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
    26 #define SHARE_VM_MEMORY_BARRIERSET_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "oops/oopsHierarchy.hpp"
    31 // This class provides the interface between a barrier implementation and
    32 // the rest of the system.
    34 class BarrierSet: public CHeapObj<mtGC> {
    35   friend class VMStructs;
    36 public:
    37   enum Name {
    38     ModRef,
    39     CardTableModRef,
    40     CardTableExtension,
    41     G1SATBCT,
    42     G1SATBCTLogging,
    43     Other,
    44     Uninit
    45   };
    47   enum Flags {
    48     None                = 0,
    49     TargetUninitialized = 1
    50   };
    51 protected:
    52   int _max_covered_regions;
    53   Name _kind;
    55 public:
    57   BarrierSet() { _kind = Uninit; }
    58   // To get around prohibition on RTTI.
    59   BarrierSet::Name kind() { return _kind; }
    60   virtual bool is_a(BarrierSet::Name bsn) = 0;
    62   // These operations indicate what kind of barriers the BarrierSet has.
    63   virtual bool has_read_ref_barrier() = 0;
    64   virtual bool has_read_prim_barrier() = 0;
    65   virtual bool has_write_ref_barrier() = 0;
    66   virtual bool has_write_ref_pre_barrier() = 0;
    67   virtual bool has_write_prim_barrier() = 0;
    69   // These functions indicate whether a particular access of the given
    70   // kinds requires a barrier.
    71   virtual bool read_ref_needs_barrier(void* field) = 0;
    72   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
    73   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
    74                                         juint val1, juint val2) = 0;
    76   // The first four operations provide a direct implementation of the
    77   // barrier set.  An interpreter loop, for example, could call these
    78   // directly, as appropriate.
    80   // Invoke the barrier, if any, necessary when reading the given ref field.
    81   virtual void read_ref_field(void* field) = 0;
    83   // Invoke the barrier, if any, necessary when reading the given primitive
    84   // "field" of "bytes" bytes in "obj".
    85   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
    87   // Invoke the barrier, if any, necessary when writing "new_val" into the
    88   // ref field at "offset" in "obj".
    89   // (For efficiency reasons, this operation is specialized for certain
    90   // barrier types.  Semantically, it should be thought of as a call to the
    91   // virtual "_work" function below, which must implement the barrier.)
    92   // First the pre-write versions...
    93   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
    94 private:
    95   // Keep this private so as to catch violations at build time.
    96   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
    97 protected:
    98   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {};
    99   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
   100 public:
   102   // ...then the post-write version.
   103   inline void write_ref_field(void* field, oop new_val);
   104 protected:
   105   virtual void write_ref_field_work(void* field, oop new_val) = 0;
   106 public:
   108   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
   109   // value(s) "val1" (and "val2") into the primitive "field".
   110   virtual void write_prim_field(HeapWord* field, size_t bytes,
   111                                 juint val1, juint val2) = 0;
   113   // Operations on arrays, or general regions (e.g., for "clone") may be
   114   // optimized by some barriers.
   116   // The first six operations tell whether such an optimization exists for
   117   // the particular barrier.
   118   virtual bool has_read_ref_array_opt() = 0;
   119   virtual bool has_read_prim_array_opt() = 0;
   120   virtual bool has_write_ref_array_pre_opt() { return true; }
   121   virtual bool has_write_ref_array_opt() = 0;
   122   virtual bool has_write_prim_array_opt() = 0;
   124   virtual bool has_read_region_opt() = 0;
   125   virtual bool has_write_region_opt() = 0;
   127   // These operations should assert false unless the correponding operation
   128   // above returns true.  Otherwise, they should perform an appropriate
   129   // barrier for an array whose elements are all in the given memory region.
   130   virtual void read_ref_array(MemRegion mr) = 0;
   131   virtual void read_prim_array(MemRegion mr) = 0;
   133   // Below length is the # array elements being written
   134   virtual void write_ref_array_pre(oop* dst, int length,
   135                                    bool dest_uninitialized = false) {}
   136   virtual void write_ref_array_pre(narrowOop* dst, int length,
   137                                    bool dest_uninitialized = false) {}
   138   // Below count is the # array elements being written, starting
   139   // at the address "start", which may not necessarily be HeapWord-aligned
   140   inline void write_ref_array(HeapWord* start, size_t count);
   142   // Static versions, suitable for calling from generated code;
   143   // count is # array elements being written, starting with "start",
   144   // which may not necessarily be HeapWord-aligned.
   145   static void static_write_ref_array_pre(HeapWord* start, size_t count);
   146   static void static_write_ref_array_post(HeapWord* start, size_t count);
   148 protected:
   149   virtual void write_ref_array_work(MemRegion mr) = 0;
   150 public:
   151   virtual void write_prim_array(MemRegion mr) = 0;
   153   virtual void read_region(MemRegion mr) = 0;
   155   // (For efficiency reasons, this operation is specialized for certain
   156   // barrier types.  Semantically, it should be thought of as a call to the
   157   // virtual "_work" function below, which must implement the barrier.)
   158   inline void write_region(MemRegion mr);
   159 protected:
   160   virtual void write_region_work(MemRegion mr) = 0;
   161 public:
   163   // Some barrier sets create tables whose elements correspond to parts of
   164   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
   165   // normally reserve space for such tables, and commit parts of the table
   166   // "covering" parts of the heap that are committed.  The constructor is
   167   // passed the maximum number of independently committable subregions to
   168   // be covered, and the "resize_covoered_region" function allows the
   169   // sub-parts of the heap to inform the barrier set of changes of their
   170   // sizes.
   171   BarrierSet(int max_covered_regions) :
   172     _max_covered_regions(max_covered_regions) {}
   174   // Inform the BarrierSet that the the covered heap region that starts
   175   // with "base" has been changed to have the given size (possibly from 0,
   176   // for initialization.)
   177   virtual void resize_covered_region(MemRegion new_region) = 0;
   179   // If the barrier set imposes any alignment restrictions on boundaries
   180   // within the heap, this function tells whether they are met.
   181   virtual bool is_aligned(HeapWord* addr) = 0;
   183   // Print a description of the memory for the barrier set
   184   virtual void print_on(outputStream* st) const = 0;
   185 };
   187 #endif // SHARE_VM_MEMORY_BARRIERSET_HPP

mercurial