src/share/vm/opto/runtime.cpp

Sat, 09 Nov 2019 20:29:45 +0800

author
aoqi
date
Sat, 09 Nov 2019 20:29:45 +0800
changeset 9756
2be326848943
parent 9572
624a0741915c
parent 9713
c4567d28f31f
child 9806
758c07667682
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/compiledIC.hpp"
    35 #include "code/icBuffer.hpp"
    36 #include "code/nmethod.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/compileBroker.hpp"
    41 #include "compiler/compilerOracle.hpp"
    42 #include "compiler/oopMap.hpp"
    43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    44 #include "gc_implementation/g1/heapRegion.hpp"
    45 #include "gc_interface/collectedHeap.hpp"
    46 #include "interpreter/bytecode.hpp"
    47 #include "interpreter/interpreter.hpp"
    48 #include "interpreter/linkResolver.hpp"
    49 #include "memory/barrierSet.hpp"
    50 #include "memory/gcLocker.inline.hpp"
    51 #include "memory/oopFactory.hpp"
    52 #include "oops/objArrayKlass.hpp"
    53 #include "oops/oop.inline.hpp"
    54 #include "opto/addnode.hpp"
    55 #include "opto/callnode.hpp"
    56 #include "opto/cfgnode.hpp"
    57 #include "opto/connode.hpp"
    58 #include "opto/graphKit.hpp"
    59 #include "opto/machnode.hpp"
    60 #include "opto/matcher.hpp"
    61 #include "opto/memnode.hpp"
    62 #include "opto/mulnode.hpp"
    63 #include "opto/runtime.hpp"
    64 #include "opto/subnode.hpp"
    65 #include "runtime/fprofiler.hpp"
    66 #include "runtime/handles.inline.hpp"
    67 #include "runtime/interfaceSupport.hpp"
    68 #include "runtime/javaCalls.hpp"
    69 #include "runtime/sharedRuntime.hpp"
    70 #include "runtime/signature.hpp"
    71 #include "runtime/threadCritical.hpp"
    72 #include "runtime/vframe.hpp"
    73 #include "runtime/vframeArray.hpp"
    74 #include "runtime/vframe_hp.hpp"
    75 #include "utilities/copy.hpp"
    76 #include "utilities/preserveException.hpp"
    77 #if defined AD_MD_HPP
    78 # include AD_MD_HPP
    79 #elif defined TARGET_ARCH_MODEL_x86_32
    80 # include "adfiles/ad_x86_32.hpp"
    81 #elif defined TARGET_ARCH_MODEL_x86_64
    82 # include "adfiles/ad_x86_64.hpp"
    83 #elif defined TARGET_ARCH_MODEL_sparc
    84 # include "adfiles/ad_sparc.hpp"
    85 #elif defined TARGET_ARCH_MODEL_zero
    86 # include "adfiles/ad_zero.hpp"
    87 #elif defined TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #elif defined TARGET_ARCH_MODEL_mips_64
    90 # include "adfiles/ad_mips_64.hpp"
    91 #endif
    94 // For debugging purposes:
    95 //  To force FullGCALot inside a runtime function, add the following two lines
    96 //
    97 //  Universe::release_fullgc_alot_dummy();
    98 //  MarkSweep::invoke(0, "Debugging");
    99 //
   100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   105 // Compiled code entry points
   106 address OptoRuntime::_new_instance_Java                           = NULL;
   107 address OptoRuntime::_new_array_Java                              = NULL;
   108 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   109 address OptoRuntime::_multianewarray2_Java                        = NULL;
   110 address OptoRuntime::_multianewarray3_Java                        = NULL;
   111 address OptoRuntime::_multianewarray4_Java                        = NULL;
   112 address OptoRuntime::_multianewarray5_Java                        = NULL;
   113 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   114 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   115 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   116 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   117 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   118 address OptoRuntime::_rethrow_Java                                = NULL;
   120 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   121 address OptoRuntime::_register_finalizer_Java                     = NULL;
   123 # ifdef ENABLE_ZAP_DEAD_LOCALS
   124 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   125 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   126 # endif
   128 ExceptionBlob* OptoRuntime::_exception_blob;
   130 // This should be called in an assertion at the start of OptoRuntime routines
   131 // which are entered from compiled code (all of them)
   132 #ifdef ASSERT
   133 static bool check_compiled_frame(JavaThread* thread) {
   134   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   135   RegisterMap map(thread, false);
   136   frame caller = thread->last_frame().sender(&map);
   137   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   138   return true;
   139 }
   140 #endif // ASSERT
   143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   144   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   145   if (var == NULL) { return false; }
   147 bool OptoRuntime::generate(ciEnv* env) {
   149   generate_exception_blob();
   151   // Note: tls: Means fetching the return oop out of the thread-local storage
   152   //
   153   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   154   // -------------------------------------------------------------------------------------------------------------------------------
   155   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   156   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   157   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   158   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   159   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   160   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   161   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   162   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   163   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   164   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   165   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   171 # ifdef ENABLE_ZAP_DEAD_LOCALS
   172   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   173   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   174 # endif
   175   return true;
   176 }
   178 #undef gen
   181 // Helper method to do generation of RunTimeStub's
   182 address OptoRuntime::generate_stub( ciEnv* env,
   183                                     TypeFunc_generator gen, address C_function,
   184                                     const char *name, int is_fancy_jump,
   185                                     bool pass_tls,
   186                                     bool save_argument_registers,
   187                                     bool return_pc ) {
   188   ResourceMark rm;
   189   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   190   return  C.stub_entry_point();
   191 }
   193 const char* OptoRuntime::stub_name(address entry) {
   194 #ifndef PRODUCT
   195   CodeBlob* cb = CodeCache::find_blob(entry);
   196   RuntimeStub* rs =(RuntimeStub *)cb;
   197   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   198   return rs->name();
   199 #else
   200   // Fast implementation for product mode (maybe it should be inlined too)
   201   return "runtime stub";
   202 #endif
   203 }
   206 //=============================================================================
   207 // Opto compiler runtime routines
   208 //=============================================================================
   211 //=============================allocation======================================
   212 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   213 // and try allocation again.
   215 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   216   // After any safepoint, just before going back to compiled code,
   217   // we inform the GC that we will be doing initializing writes to
   218   // this object in the future without emitting card-marks, so
   219   // GC may take any compensating steps.
   220   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   222   oop new_obj = thread->vm_result();
   223   if (new_obj == NULL)  return;
   225   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   226          "compiler must check this first");
   227   // GC may decide to give back a safer copy of new_obj.
   228   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   229   thread->set_vm_result(new_obj);
   230 }
   232 // object allocation
   233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   234   JRT_BLOCK;
   235 #ifndef PRODUCT
   236   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   237 #endif
   238   assert(check_compiled_frame(thread), "incorrect caller");
   240   // These checks are cheap to make and support reflective allocation.
   241   int lh = klass->layout_helper();
   242   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
   243     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   244     klass->check_valid_for_instantiation(false, THREAD);
   245     if (!HAS_PENDING_EXCEPTION) {
   246       InstanceKlass::cast(klass)->initialize(THREAD);
   247     }
   248   }
   250   if (!HAS_PENDING_EXCEPTION) {
   251     // Scavenge and allocate an instance.
   252     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   253     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   254     thread->set_vm_result(result);
   256     // Pass oops back through thread local storage.  Our apparent type to Java
   257     // is that we return an oop, but we can block on exit from this routine and
   258     // a GC can trash the oop in C's return register.  The generated stub will
   259     // fetch the oop from TLS after any possible GC.
   260   }
   262   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   263   JRT_BLOCK_END;
   265   if (GraphKit::use_ReduceInitialCardMarks()) {
   266     // inform GC that we won't do card marks for initializing writes.
   267     new_store_pre_barrier(thread);
   268   }
   269 JRT_END
   272 // array allocation
   273 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   274   JRT_BLOCK;
   275 #ifndef PRODUCT
   276   SharedRuntime::_new_array_ctr++;            // new array requires GC
   277 #endif
   278   assert(check_compiled_frame(thread), "incorrect caller");
   280   // Scavenge and allocate an instance.
   281   oop result;
   283   if (array_type->oop_is_typeArray()) {
   284     // The oopFactory likes to work with the element type.
   285     // (We could bypass the oopFactory, since it doesn't add much value.)
   286     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   287     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   288   } else {
   289     // Although the oopFactory likes to work with the elem_type,
   290     // the compiler prefers the array_type, since it must already have
   291     // that latter value in hand for the fast path.
   292     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
   293     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   294     result = oopFactory::new_objArray(elem_type, len, THREAD);
   295   }
   297   // Pass oops back through thread local storage.  Our apparent type to Java
   298   // is that we return an oop, but we can block on exit from this routine and
   299   // a GC can trash the oop in C's return register.  The generated stub will
   300   // fetch the oop from TLS after any possible GC.
   301   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   302   thread->set_vm_result(result);
   303   JRT_BLOCK_END;
   305   if (GraphKit::use_ReduceInitialCardMarks()) {
   306     // inform GC that we won't do card marks for initializing writes.
   307     new_store_pre_barrier(thread);
   308   }
   309 JRT_END
   311 // array allocation without zeroing
   312 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   313   JRT_BLOCK;
   314 #ifndef PRODUCT
   315   SharedRuntime::_new_array_ctr++;            // new array requires GC
   316 #endif
   317   assert(check_compiled_frame(thread), "incorrect caller");
   319   // Scavenge and allocate an instance.
   320   oop result;
   322   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   323   // The oopFactory likes to work with the element type.
   324   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   325   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   327   // Pass oops back through thread local storage.  Our apparent type to Java
   328   // is that we return an oop, but we can block on exit from this routine and
   329   // a GC can trash the oop in C's return register.  The generated stub will
   330   // fetch the oop from TLS after any possible GC.
   331   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   332   thread->set_vm_result(result);
   333   JRT_BLOCK_END;
   335   if (GraphKit::use_ReduceInitialCardMarks()) {
   336     // inform GC that we won't do card marks for initializing writes.
   337     new_store_pre_barrier(thread);
   338   }
   340   oop result = thread->vm_result();
   341   if ((len > 0) && (result != NULL) &&
   342       is_deoptimized_caller_frame(thread)) {
   343     // Zero array here if the caller is deoptimized.
   344     int size = ((typeArrayOop)result)->object_size();
   345     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   346     const size_t hs = arrayOopDesc::header_size(elem_type);
   347     // Align to next 8 bytes to avoid trashing arrays's length.
   348     const size_t aligned_hs = align_object_offset(hs);
   349     HeapWord* obj = (HeapWord*)result;
   350     if (aligned_hs > hs) {
   351       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   352     }
   353     // Optimized zeroing.
   354     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   355   }
   357 JRT_END
   359 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   361 // multianewarray for 2 dimensions
   362 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   363 #ifndef PRODUCT
   364   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   365 #endif
   366   assert(check_compiled_frame(thread), "incorrect caller");
   367   assert(elem_type->is_klass(), "not a class");
   368   jint dims[2];
   369   dims[0] = len1;
   370   dims[1] = len2;
   371   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   374   thread->set_vm_result(obj);
   375 JRT_END
   377 // multianewarray for 3 dimensions
   378 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   379 #ifndef PRODUCT
   380   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   381 #endif
   382   assert(check_compiled_frame(thread), "incorrect caller");
   383   assert(elem_type->is_klass(), "not a class");
   384   jint dims[3];
   385   dims[0] = len1;
   386   dims[1] = len2;
   387   dims[2] = len3;
   388   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   389   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   391   thread->set_vm_result(obj);
   392 JRT_END
   394 // multianewarray for 4 dimensions
   395 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   396 #ifndef PRODUCT
   397   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   398 #endif
   399   assert(check_compiled_frame(thread), "incorrect caller");
   400   assert(elem_type->is_klass(), "not a class");
   401   jint dims[4];
   402   dims[0] = len1;
   403   dims[1] = len2;
   404   dims[2] = len3;
   405   dims[3] = len4;
   406   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   409   thread->set_vm_result(obj);
   410 JRT_END
   412 // multianewarray for 5 dimensions
   413 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   414 #ifndef PRODUCT
   415   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   416 #endif
   417   assert(check_compiled_frame(thread), "incorrect caller");
   418   assert(elem_type->is_klass(), "not a class");
   419   jint dims[5];
   420   dims[0] = len1;
   421   dims[1] = len2;
   422   dims[2] = len3;
   423   dims[3] = len4;
   424   dims[4] = len5;
   425   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   426   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   427   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   428   thread->set_vm_result(obj);
   429 JRT_END
   431 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   432   assert(check_compiled_frame(thread), "incorrect caller");
   433   assert(elem_type->is_klass(), "not a class");
   434   assert(oop(dims)->is_typeArray(), "not an array");
   436   ResourceMark rm;
   437   jint len = dims->length();
   438   assert(len > 0, "Dimensions array should contain data");
   439   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   440   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   441   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   443   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   444   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   445   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   446   thread->set_vm_result(obj);
   447 JRT_END
   450 const TypeFunc *OptoRuntime::new_instance_Type() {
   451   // create input type (domain)
   452   const Type **fields = TypeTuple::fields(1);
   453   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   454   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   456   // create result type (range)
   457   fields = TypeTuple::fields(1);
   458   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   460   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   462   return TypeFunc::make(domain, range);
   463 }
   466 const TypeFunc *OptoRuntime::athrow_Type() {
   467   // create input type (domain)
   468   const Type **fields = TypeTuple::fields(1);
   469   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   470   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   472   // create result type (range)
   473   fields = TypeTuple::fields(0);
   475   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   477   return TypeFunc::make(domain, range);
   478 }
   481 const TypeFunc *OptoRuntime::new_array_Type() {
   482   // create input type (domain)
   483   const Type **fields = TypeTuple::fields(2);
   484   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   485   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   486   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   488   // create result type (range)
   489   fields = TypeTuple::fields(1);
   490   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   494   return TypeFunc::make(domain, range);
   495 }
   497 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   498   // create input type (domain)
   499   const int nargs = ndim + 1;
   500   const Type **fields = TypeTuple::fields(nargs);
   501   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   502   for( int i = 1; i < nargs; i++ )
   503     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   504   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   506   // create result type (range)
   507   fields = TypeTuple::fields(1);
   508   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   509   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   511   return TypeFunc::make(domain, range);
   512 }
   514 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   515   return multianewarray_Type(2);
   516 }
   518 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   519   return multianewarray_Type(3);
   520 }
   522 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   523   return multianewarray_Type(4);
   524 }
   526 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   527   return multianewarray_Type(5);
   528 }
   530 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   531   // create input type (domain)
   532   const Type **fields = TypeTuple::fields(2);
   533   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   534   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   535   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   537   // create result type (range)
   538   fields = TypeTuple::fields(1);
   539   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   540   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   542   return TypeFunc::make(domain, range);
   543 }
   545 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   546   const Type **fields = TypeTuple::fields(2);
   547   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   548   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   549   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   551   // create result type (range)
   552   fields = TypeTuple::fields(0);
   553   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   555   return TypeFunc::make(domain, range);
   556 }
   558 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   560   const Type **fields = TypeTuple::fields(2);
   561   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   562   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   563   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   565   // create result type (range)
   566   fields = TypeTuple::fields(0);
   567   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   569   return TypeFunc::make(domain, range);
   570 }
   572 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   573   // create input type (domain)
   574   const Type **fields = TypeTuple::fields(1);
   575   // Symbol* name of class to be loaded
   576   fields[TypeFunc::Parms+0] = TypeInt::INT;
   577   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   579   // create result type (range)
   580   fields = TypeTuple::fields(0);
   581   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   583   return TypeFunc::make(domain, range);
   584 }
   586 # ifdef ENABLE_ZAP_DEAD_LOCALS
   587 // Type used for stub generation for zap_dead_locals.
   588 // No inputs or outputs
   589 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   590   // create input type (domain)
   591   const Type **fields = TypeTuple::fields(0);
   592   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   594   // create result type (range)
   595   fields = TypeTuple::fields(0);
   596   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   598   return TypeFunc::make(domain,range);
   599 }
   600 # endif
   603 //-----------------------------------------------------------------------------
   604 // Monitor Handling
   605 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   606   // create input type (domain)
   607   const Type **fields = TypeTuple::fields(2);
   608   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   609   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   610   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   612   // create result type (range)
   613   fields = TypeTuple::fields(0);
   615   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   617   return TypeFunc::make(domain,range);
   618 }
   621 //-----------------------------------------------------------------------------
   622 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   623   // create input type (domain)
   624   const Type **fields = TypeTuple::fields(2);
   625   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   626   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   627   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   629   // create result type (range)
   630   fields = TypeTuple::fields(0);
   632   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   634   return TypeFunc::make(domain,range);
   635 }
   637 const TypeFunc* OptoRuntime::flush_windows_Type() {
   638   // create input type (domain)
   639   const Type** fields = TypeTuple::fields(1);
   640   fields[TypeFunc::Parms+0] = NULL; // void
   641   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   643   // create result type
   644   fields = TypeTuple::fields(1);
   645   fields[TypeFunc::Parms+0] = NULL; // void
   646   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   648   return TypeFunc::make(domain, range);
   649 }
   651 const TypeFunc* OptoRuntime::l2f_Type() {
   652   // create input type (domain)
   653   const Type **fields = TypeTuple::fields(2);
   654   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   655   fields[TypeFunc::Parms+1] = Type::HALF;
   656   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   658   // create result type (range)
   659   fields = TypeTuple::fields(1);
   660   fields[TypeFunc::Parms+0] = Type::FLOAT;
   661   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   663   return TypeFunc::make(domain, range);
   664 }
   666 const TypeFunc* OptoRuntime::modf_Type() {
   667   const Type **fields = TypeTuple::fields(2);
   668   fields[TypeFunc::Parms+0] = Type::FLOAT;
   669   fields[TypeFunc::Parms+1] = Type::FLOAT;
   670   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   672   // create result type (range)
   673   fields = TypeTuple::fields(1);
   674   fields[TypeFunc::Parms+0] = Type::FLOAT;
   676   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   678   return TypeFunc::make(domain, range);
   679 }
   681 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   682   // create input type (domain)
   683   const Type **fields = TypeTuple::fields(2);
   684   // Symbol* name of class to be loaded
   685   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   686   fields[TypeFunc::Parms+1] = Type::HALF;
   687   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   689   // create result type (range)
   690   fields = TypeTuple::fields(2);
   691   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   692   fields[TypeFunc::Parms+1] = Type::HALF;
   693   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   695   return TypeFunc::make(domain, range);
   696 }
   698 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   699   const Type **fields = TypeTuple::fields(4);
   700   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   701   fields[TypeFunc::Parms+1] = Type::HALF;
   702   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   703   fields[TypeFunc::Parms+3] = Type::HALF;
   704   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   706   // create result type (range)
   707   fields = TypeTuple::fields(2);
   708   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   709   fields[TypeFunc::Parms+1] = Type::HALF;
   710   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   712   return TypeFunc::make(domain, range);
   713 }
   715 //-------------- currentTimeMillis, currentTimeNanos, etc
   717 const TypeFunc* OptoRuntime::void_long_Type() {
   718   // create input type (domain)
   719   const Type **fields = TypeTuple::fields(0);
   720   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   722   // create result type (range)
   723   fields = TypeTuple::fields(2);
   724   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   725   fields[TypeFunc::Parms+1] = Type::HALF;
   726   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   728   return TypeFunc::make(domain, range);
   729 }
   731 // arraycopy stub variations:
   732 enum ArrayCopyType {
   733   ac_fast,                      // void(ptr, ptr, size_t)
   734   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   735   ac_slow,                      // void(ptr, int, ptr, int, int)
   736   ac_generic                    //  int(ptr, int, ptr, int, int)
   737 };
   739 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   740   // create input type (domain)
   741   int num_args      = (act == ac_fast ? 3 : 5);
   742   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   743   int argcnt = num_args;
   744   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   745   const Type** fields = TypeTuple::fields(argcnt);
   746   int argp = TypeFunc::Parms;
   747   fields[argp++] = TypePtr::NOTNULL;    // src
   748   if (num_size_args == 0) {
   749     fields[argp++] = TypeInt::INT;      // src_pos
   750   }
   751   fields[argp++] = TypePtr::NOTNULL;    // dest
   752   if (num_size_args == 0) {
   753     fields[argp++] = TypeInt::INT;      // dest_pos
   754     fields[argp++] = TypeInt::INT;      // length
   755   }
   756   while (num_size_args-- > 0) {
   757     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   758     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   759   }
   760   if (act == ac_checkcast) {
   761     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   762   }
   763   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   764   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   766   // create result type if needed
   767   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   768   fields = TypeTuple::fields(1);
   769   if (retcnt == 0)
   770     fields[TypeFunc::Parms+0] = NULL; // void
   771   else
   772     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   773   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   774   return TypeFunc::make(domain, range);
   775 }
   777 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   778   // This signature is simple:  Two base pointers and a size_t.
   779   return make_arraycopy_Type(ac_fast);
   780 }
   782 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   783   // An extension of fast_arraycopy_Type which adds type checking.
   784   return make_arraycopy_Type(ac_checkcast);
   785 }
   787 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   788   // This signature is exactly the same as System.arraycopy.
   789   // There are no intptr_t (int/long) arguments.
   790   return make_arraycopy_Type(ac_slow);
   791 }
   793 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   794   // This signature is like System.arraycopy, except that it returns status.
   795   return make_arraycopy_Type(ac_generic);
   796 }
   799 const TypeFunc* OptoRuntime::array_fill_Type() {
   800   const Type** fields;
   801   int argp = TypeFunc::Parms;
   802   if (CCallingConventionRequiresIntsAsLongs) {
   803   // create input type (domain): pointer, int, size_t
   804     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   805     fields[argp++] = TypePtr::NOTNULL;
   806     fields[argp++] = TypeLong::LONG;
   807     fields[argp++] = Type::HALF;
   808   } else {
   809     // create input type (domain): pointer, int, size_t
   810     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   811     fields[argp++] = TypePtr::NOTNULL;
   812     fields[argp++] = TypeInt::INT;
   813   }
   814   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   815   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   816   const TypeTuple *domain = TypeTuple::make(argp, fields);
   818   // create result type
   819   fields = TypeTuple::fields(1);
   820   fields[TypeFunc::Parms+0] = NULL; // void
   821   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   823   return TypeFunc::make(domain, range);
   824 }
   826 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   827 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   828   // create input type (domain)
   829   int num_args      = 3;
   830   if (Matcher::pass_original_key_for_aes()) {
   831     num_args = 4;
   832   }
   833   int argcnt = num_args;
   834   const Type** fields = TypeTuple::fields(argcnt);
   835   int argp = TypeFunc::Parms;
   836   fields[argp++] = TypePtr::NOTNULL;    // src
   837   fields[argp++] = TypePtr::NOTNULL;    // dest
   838   fields[argp++] = TypePtr::NOTNULL;    // k array
   839   if (Matcher::pass_original_key_for_aes()) {
   840     fields[argp++] = TypePtr::NOTNULL;    // original k array
   841   }
   842   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   843   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   845   // no result type needed
   846   fields = TypeTuple::fields(1);
   847   fields[TypeFunc::Parms+0] = NULL; // void
   848   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   849   return TypeFunc::make(domain, range);
   850 }
   852 /**
   853  * int updateBytesCRC32(int crc, byte* b, int len)
   854  */
   855 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   856   // create input type (domain)
   857   int num_args = 3;
   858   int argcnt = num_args;
   859   if (CCallingConventionRequiresIntsAsLongs) {
   860     argcnt += 2;
   861   }
   862   const Type** fields = TypeTuple::fields(argcnt);
   863   int argp = TypeFunc::Parms;
   864   if (CCallingConventionRequiresIntsAsLongs) {
   865     fields[argp++] = TypeLong::LONG;   // crc
   866     fields[argp++] = Type::HALF;
   867     fields[argp++] = TypePtr::NOTNULL; // src
   868     fields[argp++] = TypeLong::LONG;   // len
   869     fields[argp++] = Type::HALF;
   870   } else {
   871     fields[argp++] = TypeInt::INT;     // crc
   872     fields[argp++] = TypePtr::NOTNULL; // src
   873     fields[argp++] = TypeInt::INT;     // len
   874   }
   875   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   876   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   878   // result type needed
   879   fields = TypeTuple::fields(1);
   880   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   881   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   882   return TypeFunc::make(domain, range);
   883 }
   885 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   886 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   887   // create input type (domain)
   888   int num_args      = 5;
   889   if (Matcher::pass_original_key_for_aes()) {
   890     num_args = 6;
   891   }
   892   int argcnt = num_args;
   893   const Type** fields = TypeTuple::fields(argcnt);
   894   int argp = TypeFunc::Parms;
   895   fields[argp++] = TypePtr::NOTNULL;    // src
   896   fields[argp++] = TypePtr::NOTNULL;    // dest
   897   fields[argp++] = TypePtr::NOTNULL;    // k array
   898   fields[argp++] = TypePtr::NOTNULL;    // r array
   899   fields[argp++] = TypeInt::INT;        // src len
   900   if (Matcher::pass_original_key_for_aes()) {
   901     fields[argp++] = TypePtr::NOTNULL;    // original k array
   902   }
   903   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   904   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   906   // returning cipher len (int)
   907   fields = TypeTuple::fields(1);
   908   fields[TypeFunc::Parms+0] = TypeInt::INT;
   909   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   910   return TypeFunc::make(domain, range);
   911 }
   913 /*
   914  * void implCompress(byte[] buf, int ofs)
   915  */
   916 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
   917   // create input type (domain)
   918   int num_args = 2;
   919   int argcnt = num_args;
   920   const Type** fields = TypeTuple::fields(argcnt);
   921   int argp = TypeFunc::Parms;
   922   fields[argp++] = TypePtr::NOTNULL; // buf
   923   fields[argp++] = TypePtr::NOTNULL; // state
   924   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   925   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   927   // no result type needed
   928   fields = TypeTuple::fields(1);
   929   fields[TypeFunc::Parms+0] = NULL; // void
   930   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   931   return TypeFunc::make(domain, range);
   932 }
   934 /*
   935  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
   936  */
   937 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
   938   // create input type (domain)
   939   int num_args = 4;
   940   int argcnt = num_args;
   941   if(CCallingConventionRequiresIntsAsLongs) {
   942     argcnt += 2;
   943   }
   944   const Type** fields = TypeTuple::fields(argcnt);
   945   int argp = TypeFunc::Parms;
   946   if(CCallingConventionRequiresIntsAsLongs) {
   947     fields[argp++] = TypePtr::NOTNULL; // buf
   948     fields[argp++] = TypePtr::NOTNULL; // state
   949     fields[argp++] = TypeLong::LONG;   // ofs
   950     fields[argp++] = Type::HALF;
   951     fields[argp++] = TypeLong::LONG;   // limit
   952     fields[argp++] = Type::HALF;
   953   } else {
   954     fields[argp++] = TypePtr::NOTNULL; // buf
   955     fields[argp++] = TypePtr::NOTNULL; // state
   956     fields[argp++] = TypeInt::INT;     // ofs
   957     fields[argp++] = TypeInt::INT;     // limit
   958   }
   959   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   960   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   962   // returning ofs (int)
   963   fields = TypeTuple::fields(1);
   964   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
   965   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   966   return TypeFunc::make(domain, range);
   967 }
   969 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
   970   // create input type (domain)
   971   int num_args      = 6;
   972   int argcnt = num_args;
   973   const Type** fields = TypeTuple::fields(argcnt);
   974   int argp = TypeFunc::Parms;
   975   fields[argp++] = TypePtr::NOTNULL;    // x
   976   fields[argp++] = TypeInt::INT;        // xlen
   977   fields[argp++] = TypePtr::NOTNULL;    // y
   978   fields[argp++] = TypeInt::INT;        // ylen
   979   fields[argp++] = TypePtr::NOTNULL;    // z
   980   fields[argp++] = TypeInt::INT;        // zlen
   981   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   982   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   984   // no result type needed
   985   fields = TypeTuple::fields(1);
   986   fields[TypeFunc::Parms+0] = NULL;
   987   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   988   return TypeFunc::make(domain, range);
   989 }
   991 const TypeFunc* OptoRuntime::squareToLen_Type() {
   992   // create input type (domain)
   993   int num_args      = 4;
   994   int argcnt = num_args;
   995   const Type** fields = TypeTuple::fields(argcnt);
   996   int argp = TypeFunc::Parms;
   997   fields[argp++] = TypePtr::NOTNULL;    // x
   998   fields[argp++] = TypeInt::INT;        // len
   999   fields[argp++] = TypePtr::NOTNULL;    // z
  1000   fields[argp++] = TypeInt::INT;        // zlen
  1001   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1002   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1004   // no result type needed
  1005   fields = TypeTuple::fields(1);
  1006   fields[TypeFunc::Parms+0] = NULL;
  1007   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1008   return TypeFunc::make(domain, range);
  1011 // for mulAdd calls, 2 pointers and 3 ints, returning int
  1012 const TypeFunc* OptoRuntime::mulAdd_Type() {
  1013   // create input type (domain)
  1014   int num_args      = 5;
  1015   int argcnt = num_args;
  1016   const Type** fields = TypeTuple::fields(argcnt);
  1017   int argp = TypeFunc::Parms;
  1018   fields[argp++] = TypePtr::NOTNULL;    // out
  1019   fields[argp++] = TypePtr::NOTNULL;    // in
  1020   fields[argp++] = TypeInt::INT;        // offset
  1021   fields[argp++] = TypeInt::INT;        // len
  1022   fields[argp++] = TypeInt::INT;        // k
  1023   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1024   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1026   // returning carry (int)
  1027   fields = TypeTuple::fields(1);
  1028   fields[TypeFunc::Parms+0] = TypeInt::INT;
  1029   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1030   return TypeFunc::make(domain, range);
  1033 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
  1034   // create input type (domain)
  1035   int num_args      = 7;
  1036   int argcnt = num_args;
  1037   if (CCallingConventionRequiresIntsAsLongs) {
  1038     argcnt++;                           // additional placeholder
  1040   const Type** fields = TypeTuple::fields(argcnt);
  1041   int argp = TypeFunc::Parms;
  1042   fields[argp++] = TypePtr::NOTNULL;    // a
  1043   fields[argp++] = TypePtr::NOTNULL;    // b
  1044   fields[argp++] = TypePtr::NOTNULL;    // n
  1045   if (CCallingConventionRequiresIntsAsLongs) {
  1046     fields[argp++] = TypeLong::LONG;    // len
  1047     fields[argp++] = TypeLong::HALF;    // placeholder
  1048   } else {
  1049     fields[argp++] = TypeInt::INT;      // len
  1051   fields[argp++] = TypeLong::LONG;      // inv
  1052   fields[argp++] = Type::HALF;
  1053   fields[argp++] = TypePtr::NOTNULL;    // result
  1054   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1055   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1057   // result type needed
  1058   fields = TypeTuple::fields(1);
  1059   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1061   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1062   return TypeFunc::make(domain, range);
  1065 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
  1066   // create input type (domain)
  1067   int num_args      = 6;
  1068   int argcnt = num_args;
  1069   if (CCallingConventionRequiresIntsAsLongs) {
  1070     argcnt++;                           // additional placeholder
  1072   const Type** fields = TypeTuple::fields(argcnt);
  1073   int argp = TypeFunc::Parms;
  1074   fields[argp++] = TypePtr::NOTNULL;    // a
  1075   fields[argp++] = TypePtr::NOTNULL;    // n
  1076   if (CCallingConventionRequiresIntsAsLongs) {
  1077     fields[argp++] = TypeLong::LONG;    // len
  1078     fields[argp++] = TypeLong::HALF;    // placeholder
  1079   } else {
  1080     fields[argp++] = TypeInt::INT;      // len
  1082   fields[argp++] = TypeLong::LONG;      // inv
  1083   fields[argp++] = Type::HALF;
  1084   fields[argp++] = TypePtr::NOTNULL;    // result
  1085   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1086   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1088   // result type needed
  1089   fields = TypeTuple::fields(1);
  1090   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1092   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1093   return TypeFunc::make(domain, range);
  1097 //------------- Interpreter state access for on stack replacement
  1098 const TypeFunc* OptoRuntime::osr_end_Type() {
  1099   // create input type (domain)
  1100   const Type **fields = TypeTuple::fields(1);
  1101   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
  1102   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
  1104   // create result type
  1105   fields = TypeTuple::fields(1);
  1106   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
  1107   fields[TypeFunc::Parms+0] = NULL; // void
  1108   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1109   return TypeFunc::make(domain, range);
  1112 //-------------- methodData update helpers
  1114 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
  1115   // create input type (domain)
  1116   const Type **fields = TypeTuple::fields(2);
  1117   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
  1118   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
  1119   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  1121   // create result type
  1122   fields = TypeTuple::fields(1);
  1123   fields[TypeFunc::Parms+0] = NULL; // void
  1124   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1125   return TypeFunc::make(domain,range);
  1128 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
  1129   if (receiver == NULL) return;
  1130   Klass* receiver_klass = receiver->klass();
  1132   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
  1133   int empty_row = -1;           // free row, if any is encountered
  1135   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
  1136   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
  1137     // if (vc->receiver(row) == receiver_klass)
  1138     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
  1139     intptr_t row_recv = *(mdp + receiver_off);
  1140     if (row_recv == (intptr_t) receiver_klass) {
  1141       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
  1142       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
  1143       *(mdp + count_off) += DataLayout::counter_increment;
  1144       return;
  1145     } else if (row_recv == 0) {
  1146       // else if (vc->receiver(row) == NULL)
  1147       empty_row = (int) row;
  1151   if (empty_row != -1) {
  1152     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
  1153     // vc->set_receiver(empty_row, receiver_klass);
  1154     *(mdp + receiver_off) = (intptr_t) receiver_klass;
  1155     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
  1156     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
  1157     *(mdp + count_off) = DataLayout::counter_increment;
  1158   } else {
  1159     // Receiver did not match any saved receiver and there is no empty row for it.
  1160     // Increment total counter to indicate polymorphic case.
  1161     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
  1162     *count_p += DataLayout::counter_increment;
  1164 JRT_END
  1166 //-------------------------------------------------------------------------------------
  1167 // register policy
  1169 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  1170   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  1171   switch (register_save_policy[reg]) {
  1172     case 'C': return false; //SOC
  1173     case 'E': return true ; //SOE
  1174     case 'N': return false; //NS
  1175     case 'A': return false; //AS
  1177   ShouldNotReachHere();
  1178   return false;
  1181 //-----------------------------------------------------------------------
  1182 // Exceptions
  1183 //
  1185 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1187 // The method is an entry that is always called by a C++ method not
  1188 // directly from compiled code. Compiled code will call the C++ method following.
  1189 // We can't allow async exception to be installed during  exception processing.
  1190 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1192   // Do not confuse exception_oop with pending_exception. The exception_oop
  1193   // is only used to pass arguments into the method. Not for general
  1194   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1195   // the runtime stubs checks this on exit.
  1196   assert(thread->exception_oop() != NULL, "exception oop is found");
  1197   address handler_address = NULL;
  1199   Handle exception(thread, thread->exception_oop());
  1200   address pc = thread->exception_pc();
  1202   // Clear out the exception oop and pc since looking up an
  1203   // exception handler can cause class loading, which might throw an
  1204   // exception and those fields are expected to be clear during
  1205   // normal bytecode execution.
  1206   thread->clear_exception_oop_and_pc();
  1208   if (TraceExceptions) {
  1209     trace_exception(exception(), pc, "");
  1212   // for AbortVMOnException flag
  1213   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1215 #ifdef ASSERT
  1216   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1217     // should throw an exception here
  1218     ShouldNotReachHere();
  1220 #endif
  1222   // new exception handling: this method is entered only from adapters
  1223   // exceptions from compiled java methods are handled in compiled code
  1224   // using rethrow node
  1226   nm = CodeCache::find_nmethod(pc);
  1227   assert(nm != NULL, "No NMethod found");
  1228   if (nm->is_native_method()) {
  1229     fatal("Native method should not have path to exception handling");
  1230   } else {
  1231     // we are switching to old paradigm: search for exception handler in caller_frame
  1232     // instead in exception handler of caller_frame.sender()
  1234     if (JvmtiExport::can_post_on_exceptions()) {
  1235       // "Full-speed catching" is not necessary here,
  1236       // since we're notifying the VM on every catch.
  1237       // Force deoptimization and the rest of the lookup
  1238       // will be fine.
  1239       deoptimize_caller_frame(thread);
  1242     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1243     // otherwise, forcibly unwind the frame.
  1244     //
  1245     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1246     bool force_unwind = !thread->reguard_stack();
  1247     bool deopting = false;
  1248     if (nm->is_deopt_pc(pc)) {
  1249       deopting = true;
  1250       RegisterMap map(thread, false);
  1251       frame deoptee = thread->last_frame().sender(&map);
  1252       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1253       // Adjust the pc back to the original throwing pc
  1254       pc = deoptee.pc();
  1257     // If we are forcing an unwind because of stack overflow then deopt is
  1258     // irrelevant since we are throwing the frame away anyway.
  1260     if (deopting && !force_unwind) {
  1261       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1262     } else {
  1264       handler_address =
  1265         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1267       if (handler_address == NULL) {
  1268         bool recursive_exception = false;
  1269         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
  1270         assert (handler_address != NULL, "must have compiled handler");
  1271         // Update the exception cache only when the unwind was not forced
  1272         // and there didn't happen another exception during the computation of the
  1273         // compiled exception handler. Checking for exception oop equality is not
  1274         // sufficient because some exceptions are pre-allocated and reused.
  1275         if (!force_unwind && !recursive_exception) {
  1276           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1278       } else {
  1279 #ifdef ASSERT
  1280         bool recursive_exception = false;
  1281         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
  1282         assert(recursive_exception || (handler_address == computed_address), err_msg("Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
  1283                  p2i(handler_address), p2i(computed_address)));
  1284 #endif
  1288     thread->set_exception_pc(pc);
  1289     thread->set_exception_handler_pc(handler_address);
  1291     // Check if the exception PC is a MethodHandle call site.
  1292     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1295   // Restore correct return pc.  Was saved above.
  1296   thread->set_exception_oop(exception());
  1297   return handler_address;
  1299 JRT_END
  1301 // We are entering here from exception_blob
  1302 // If there is a compiled exception handler in this method, we will continue there;
  1303 // otherwise we will unwind the stack and continue at the caller of top frame method
  1304 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1305 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1306 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1307 // we must not use the handler and instead return the deopt blob.
  1308 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1309 //
  1310 // We are in Java not VM and in debug mode we have a NoHandleMark
  1311 //
  1312 #ifndef PRODUCT
  1313   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1314 #endif
  1315   debug_only(NoHandleMark __hm;)
  1316   nmethod* nm = NULL;
  1317   address handler_address = NULL;
  1319     // Enter the VM
  1321     ResetNoHandleMark rnhm;
  1322     handler_address = handle_exception_C_helper(thread, nm);
  1325   // Back in java: Use no oops, DON'T safepoint
  1327   // Now check to see if the handler we are returning is in a now
  1328   // deoptimized frame
  1330   if (nm != NULL) {
  1331     RegisterMap map(thread, false);
  1332     frame caller = thread->last_frame().sender(&map);
  1333 #ifdef ASSERT
  1334     assert(caller.is_compiled_frame(), "must be");
  1335 #endif // ASSERT
  1336     if (caller.is_deoptimized_frame()) {
  1337       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1340   return handler_address;
  1343 //------------------------------rethrow----------------------------------------
  1344 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1345 // is either throwing or rethrowing an exception.  The callee-save registers
  1346 // have been restored, synchronized objects have been unlocked and the callee
  1347 // stack frame has been removed.  The return address was passed in.
  1348 // Exception oop is passed as the 1st argument.  This routine is then called
  1349 // from the stub.  On exit, we know where to jump in the caller's code.
  1350 // After this C code exits, the stub will pop his frame and end in a jump
  1351 // (instead of a return).  We enter the caller's default handler.
  1352 //
  1353 // This must be JRT_LEAF:
  1354 //     - caller will not change its state as we cannot block on exit,
  1355 //       therefore raw_exception_handler_for_return_address is all it takes
  1356 //       to handle deoptimized blobs
  1357 //
  1358 // However, there needs to be a safepoint check in the middle!  So compiled
  1359 // safepoints are completely watertight.
  1360 //
  1361 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1362 //
  1363 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1364 //
  1365 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1366 #ifndef PRODUCT
  1367   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1368 #endif
  1369   assert (exception != NULL, "should have thrown a NULLPointerException");
  1370 #ifdef ASSERT
  1371   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1372     // should throw an exception here
  1373     ShouldNotReachHere();
  1375 #endif
  1377   thread->set_vm_result(exception);
  1378   // Frame not compiled (handles deoptimization blob)
  1379   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1383 const TypeFunc *OptoRuntime::rethrow_Type() {
  1384   // create input type (domain)
  1385   const Type **fields = TypeTuple::fields(1);
  1386   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1387   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1389   // create result type (range)
  1390   fields = TypeTuple::fields(1);
  1391   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1392   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1394   return TypeFunc::make(domain, range);
  1398 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1399   // Deoptimize the caller before continuing, as the compiled
  1400   // exception handler table may not be valid.
  1401   if (!StressCompiledExceptionHandlers && doit) {
  1402     deoptimize_caller_frame(thread);
  1406 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1407   // Called from within the owner thread, so no need for safepoint
  1408   RegisterMap reg_map(thread);
  1409   frame stub_frame = thread->last_frame();
  1410   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1411   frame caller_frame = stub_frame.sender(&reg_map);
  1413   // Deoptimize the caller frame.
  1414   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1418 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1419   // Called from within the owner thread, so no need for safepoint
  1420   RegisterMap reg_map(thread);
  1421   frame stub_frame = thread->last_frame();
  1422   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1423   frame caller_frame = stub_frame.sender(&reg_map);
  1424   return caller_frame.is_deoptimized_frame();
  1428 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1429   // create input type (domain)
  1430   const Type **fields = TypeTuple::fields(1);
  1431   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1432   // // The JavaThread* is passed to each routine as the last argument
  1433   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1434   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1436   // create result type (range)
  1437   fields = TypeTuple::fields(0);
  1439   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1441   return TypeFunc::make(domain,range);
  1445 //-----------------------------------------------------------------------------
  1446 // Dtrace support.  entry and exit probes have the same signature
  1447 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1448   // create input type (domain)
  1449   const Type **fields = TypeTuple::fields(2);
  1450   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1451   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1454   // create result type (range)
  1455   fields = TypeTuple::fields(0);
  1457   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1459   return TypeFunc::make(domain,range);
  1462 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1463   // create input type (domain)
  1464   const Type **fields = TypeTuple::fields(2);
  1465   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1466   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1470   // create result type (range)
  1471   fields = TypeTuple::fields(0);
  1473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1475   return TypeFunc::make(domain,range);
  1479 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1480   assert(obj->is_oop(), "must be a valid oop");
  1481   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1482   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1483 JRT_END
  1485 //-----------------------------------------------------------------------------
  1487 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1489 //
  1490 // dump the collected NamedCounters.
  1491 //
  1492 void OptoRuntime::print_named_counters() {
  1493   int total_lock_count = 0;
  1494   int eliminated_lock_count = 0;
  1496   NamedCounter* c = _named_counters;
  1497   while (c) {
  1498     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1499       int count = c->count();
  1500       if (count > 0) {
  1501         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1502         if (Verbose) {
  1503           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1505         total_lock_count += count;
  1506         if (eliminated) {
  1507           eliminated_lock_count += count;
  1510     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1511       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1512       if (blc->nonzero()) {
  1513         tty->print_cr("%s", c->name());
  1514         blc->print_on(tty);
  1516 #if INCLUDE_RTM_OPT
  1517     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1518       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1519       if (rlc->nonzero()) {
  1520         tty->print_cr("%s", c->name());
  1521         rlc->print_on(tty);
  1523 #endif
  1525     c = c->next();
  1527   if (total_lock_count > 0) {
  1528     tty->print_cr("dynamic locks: %d", total_lock_count);
  1529     if (eliminated_lock_count) {
  1530       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1531                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1536 //
  1537 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1538 //  name which consists of method@line for the inlining tree.
  1539 //
  1541 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1542   int max_depth = youngest_jvms->depth();
  1544   // Visit scopes from youngest to oldest.
  1545   bool first = true;
  1546   stringStream st;
  1547   for (int depth = max_depth; depth >= 1; depth--) {
  1548     JVMState* jvms = youngest_jvms->of_depth(depth);
  1549     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1550     if (!first) {
  1551       st.print(" ");
  1552     } else {
  1553       first = false;
  1555     int bci = jvms->bci();
  1556     if (bci < 0) bci = 0;
  1557     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1558     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1560   NamedCounter* c;
  1561   if (tag == NamedCounter::BiasedLockingCounter) {
  1562     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1563   } else if (tag == NamedCounter::RTMLockingCounter) {
  1564     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1565   } else {
  1566     c = new NamedCounter(strdup(st.as_string()), tag);
  1569   // atomically add the new counter to the head of the list.  We only
  1570   // add counters so this is safe.
  1571   NamedCounter* head;
  1572   do {
  1573     c->set_next(NULL);
  1574     head = _named_counters;
  1575     c->set_next(head);
  1576   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1577   return c;
  1580 //-----------------------------------------------------------------------------
  1581 // Non-product code
  1582 #ifndef PRODUCT
  1584 int trace_exception_counter = 0;
  1585 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1586   ttyLocker ttyl;
  1587   trace_exception_counter++;
  1588   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1589   exception_oop->print_value();
  1590   tty->print(" in ");
  1591   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1592   if (blob->is_nmethod()) {
  1593     nmethod* nm = blob->as_nmethod_or_null();
  1594     nm->method()->print_value();
  1595   } else if (blob->is_runtime_stub()) {
  1596     tty->print("<runtime-stub>");
  1597   } else {
  1598     tty->print("<unknown>");
  1600   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1601   tty->print_cr("]");
  1604 #endif  // PRODUCT
  1607 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1608 // Called from call sites in compiled code with oop maps (actually safepoints)
  1609 // Zaps dead locals in first java frame.
  1610 // Is entry because may need to lock to generate oop maps
  1611 // Currently, only used for compiler frames, but someday may be used
  1612 // for interpreter frames, too.
  1614 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1616 // avoid pointers to member funcs with these helpers
  1617 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1618 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1621 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1622                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1623   assert(JavaThread::current() == thread, "is this needed?");
  1625   if ( !ZapDeadCompiledLocals )  return;
  1627   bool skip = false;
  1629        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1630   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1631   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1632     warning("starting zapping after skipping");
  1634        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1635   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1636   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1637     warning("about to zap last zap");
  1639   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1641   if ( skip )  return;
  1643   // find java frame and zap it
  1645   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1646     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1647       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1648       return;
  1651   warning("no frame found to zap in zap_dead_Java_locals_C");
  1654 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1655   zap_dead_java_or_native_locals(thread, is_java_frame);
  1656 JRT_END
  1658 // The following does not work because for one thing, the
  1659 // thread state is wrong; it expects java, but it is native.
  1660 // Also, the invariants in a native stub are different and
  1661 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1662 // in there.
  1663 // So for now, we do not zap in native stubs.
  1665 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1666   zap_dead_java_or_native_locals(thread, is_native_frame);
  1667 JRT_END
  1669 # endif

mercurial