src/os/bsd/vm/perfMemory_bsd.cpp

Sat, 09 Nov 2019 20:29:45 +0800

author
aoqi
date
Sat, 09 Nov 2019 20:29:45 +0800
changeset 9756
2be326848943
parent 9572
624a0741915c
parent 9711
0f2fe7d37d8c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_bsd.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "services/memTracker.hpp"
    34 #include "utilities/exceptions.hpp"
    36 // put OS-includes here
    37 # include <sys/types.h>
    38 # include <sys/mman.h>
    39 # include <errno.h>
    40 # include <stdio.h>
    41 # include <unistd.h>
    42 # include <sys/stat.h>
    43 # include <signal.h>
    44 # include <pwd.h>
    46 static char* backing_store_file_name = NULL;  // name of the backing store
    47                                               // file, if successfully created.
    49 // Standard Memory Implementation Details
    51 // create the PerfData memory region in standard memory.
    52 //
    53 static char* create_standard_memory(size_t size) {
    55   // allocate an aligned chuck of memory
    56   char* mapAddress = os::reserve_memory(size);
    58   if (mapAddress == NULL) {
    59     return NULL;
    60   }
    62   // commit memory
    63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    64     if (PrintMiscellaneous && Verbose) {
    65       warning("Could not commit PerfData memory\n");
    66     }
    67     os::release_memory(mapAddress, size);
    68     return NULL;
    69   }
    71   return mapAddress;
    72 }
    74 // delete the PerfData memory region
    75 //
    76 static void delete_standard_memory(char* addr, size_t size) {
    78   // there are no persistent external resources to cleanup for standard
    79   // memory. since DestroyJavaVM does not support unloading of the JVM,
    80   // cleanup of the memory resource is not performed. The memory will be
    81   // reclaimed by the OS upon termination of the process.
    82   //
    83   return;
    84 }
    86 // save the specified memory region to the given file
    87 //
    88 // Note: this function might be called from signal handler (by os::abort()),
    89 // don't allocate heap memory.
    90 //
    91 static void save_memory_to_file(char* addr, size_t size) {
    93  const char* destfile = PerfMemory::get_perfdata_file_path();
    94  assert(destfile[0] != '\0', "invalid PerfData file path");
    96   int result;
    98   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
    99               result);;
   100   if (result == OS_ERR) {
   101     if (PrintMiscellaneous && Verbose) {
   102       warning("Could not create Perfdata save file: %s: %s\n",
   103               destfile, strerror(errno));
   104     }
   105   } else {
   106     int fd = result;
   108     for (size_t remaining = size; remaining > 0;) {
   110       RESTARTABLE(::write(fd, addr, remaining), result);
   111       if (result == OS_ERR) {
   112         if (PrintMiscellaneous && Verbose) {
   113           warning("Could not write Perfdata save file: %s: %s\n",
   114                   destfile, strerror(errno));
   115         }
   116         break;
   117       }
   119       remaining -= (size_t)result;
   120       addr += result;
   121     }
   123     result = ::close(fd);
   124     if (PrintMiscellaneous && Verbose) {
   125       if (result == OS_ERR) {
   126         warning("Could not close %s: %s\n", destfile, strerror(errno));
   127       }
   128     }
   129   }
   130   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
   131 }
   134 // Shared Memory Implementation Details
   136 // Note: the solaris and bsd shared memory implementation uses the mmap
   137 // interface with a backing store file to implement named shared memory.
   138 // Using the file system as the name space for shared memory allows a
   139 // common name space to be supported across a variety of platforms. It
   140 // also provides a name space that Java applications can deal with through
   141 // simple file apis.
   142 //
   143 // The solaris and bsd implementations store the backing store file in
   144 // a user specific temporary directory located in the /tmp file system,
   145 // which is always a local file system and is sometimes a RAM based file
   146 // system.
   148 // return the user specific temporary directory name.
   149 //
   150 // the caller is expected to free the allocated memory.
   151 //
   152 static char* get_user_tmp_dir(const char* user) {
   154   const char* tmpdir = os::get_temp_directory();
   155   const char* perfdir = PERFDATA_NAME;
   156   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   157   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   159   // construct the path name to user specific tmp directory
   160   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
   162   return dirname;
   163 }
   165 // convert the given file name into a process id. if the file
   166 // does not meet the file naming constraints, return 0.
   167 //
   168 static pid_t filename_to_pid(const char* filename) {
   170   // a filename that doesn't begin with a digit is not a
   171   // candidate for conversion.
   172   //
   173   if (!isdigit(*filename)) {
   174     return 0;
   175   }
   177   // check if file name can be converted to an integer without
   178   // any leftover characters.
   179   //
   180   char* remainder = NULL;
   181   errno = 0;
   182   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
   184   if (errno != 0) {
   185     return 0;
   186   }
   188   // check for left over characters. If any, then the filename is
   189   // not a candidate for conversion.
   190   //
   191   if (remainder != NULL && *remainder != '\0') {
   192     return 0;
   193   }
   195   // successful conversion, return the pid
   196   return pid;
   197 }
   200 // Check if the given statbuf is considered a secure directory for
   201 // the backing store files. Returns true if the directory is considered
   202 // a secure location. Returns false if the statbuf is a symbolic link or
   203 // if an error occurred.
   204 //
   205 static bool is_statbuf_secure(struct stat *statp) {
   206   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
   207     // The path represents a link or some non-directory file type,
   208     // which is not what we expected. Declare it insecure.
   209     //
   210     return false;
   211   }
   212   // We have an existing directory, check if the permissions are safe.
   213   //
   214   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
   215     // The directory is open for writing and could be subjected
   216     // to a symlink or a hard link attack. Declare it insecure.
   217     //
   218     return false;
   219   }
   220   // If user is not root then see if the uid of the directory matches the effective uid of the process.
   221   uid_t euid = geteuid();
   222   if ((euid != 0) && (statp->st_uid != euid)) {
   223     // The directory was not created by this user, declare it insecure.
   224     //
   225     return false;
   226   }
   227   return true;
   228 }
   231 // Check if the given path is considered a secure directory for
   232 // the backing store files. Returns true if the directory exists
   233 // and is considered a secure location. Returns false if the path
   234 // is a symbolic link or if an error occurred.
   235 //
   236 static bool is_directory_secure(const char* path) {
   237   struct stat statbuf;
   238   int result = 0;
   240   RESTARTABLE(::lstat(path, &statbuf), result);
   241   if (result == OS_ERR) {
   242     return false;
   243   }
   245   // The path exists, see if it is secure.
   246   return is_statbuf_secure(&statbuf);
   247 }
   250 // Check if the given directory file descriptor is considered a secure
   251 // directory for the backing store files. Returns true if the directory
   252 // exists and is considered a secure location. Returns false if the path
   253 // is a symbolic link or if an error occurred.
   254 //
   255 static bool is_dirfd_secure(int dir_fd) {
   256   struct stat statbuf;
   257   int result = 0;
   259   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
   260   if (result == OS_ERR) {
   261     return false;
   262   }
   264   // The path exists, now check its mode.
   265   return is_statbuf_secure(&statbuf);
   266 }
   269 // Check to make sure fd1 and fd2 are referencing the same file system object.
   270 //
   271 static bool is_same_fsobject(int fd1, int fd2) {
   272   struct stat statbuf1;
   273   struct stat statbuf2;
   274   int result = 0;
   276   RESTARTABLE(::fstat(fd1, &statbuf1), result);
   277   if (result == OS_ERR) {
   278     return false;
   279   }
   280   RESTARTABLE(::fstat(fd2, &statbuf2), result);
   281   if (result == OS_ERR) {
   282     return false;
   283   }
   285   if ((statbuf1.st_ino == statbuf2.st_ino) &&
   286       (statbuf1.st_dev == statbuf2.st_dev)) {
   287     return true;
   288   } else {
   289     return false;
   290   }
   291 }
   294 // Open the directory of the given path and validate it.
   295 // Return a DIR * of the open directory.
   296 //
   297 static DIR *open_directory_secure(const char* dirname) {
   298   // Open the directory using open() so that it can be verified
   299   // to be secure by calling is_dirfd_secure(), opendir() and then check
   300   // to see if they are the same file system object.  This method does not
   301   // introduce a window of opportunity for the directory to be attacked that
   302   // calling opendir() and is_directory_secure() does.
   303   int result;
   304   DIR *dirp = NULL;
   305   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
   306   if (result == OS_ERR) {
   307     // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
   308     if (PrintMiscellaneous && Verbose) {
   309       if (errno == ELOOP) {
   310         warning("directory %s is a symlink and is not secure\n", dirname);
   311       } else {
   312         warning("could not open directory %s: %s\n", dirname, strerror(errno));
   313       }
   314     }
   315     return dirp;
   316   }
   317   int fd = result;
   319   // Determine if the open directory is secure.
   320   if (!is_dirfd_secure(fd)) {
   321     // The directory is not a secure directory.
   322     os::close(fd);
   323     return dirp;
   324   }
   326   // Open the directory.
   327   dirp = ::opendir(dirname);
   328   if (dirp == NULL) {
   329     // The directory doesn't exist, close fd and return.
   330     os::close(fd);
   331     return dirp;
   332   }
   334   // Check to make sure fd and dirp are referencing the same file system object.
   335   if (!is_same_fsobject(fd, dirfd(dirp))) {
   336     // The directory is not secure.
   337     os::close(fd);
   338     os::closedir(dirp);
   339     dirp = NULL;
   340     return dirp;
   341   }
   343   // Close initial open now that we know directory is secure
   344   os::close(fd);
   346   return dirp;
   347 }
   349 // NOTE: The code below uses fchdir(), open() and unlink() because
   350 // fdopendir(), openat() and unlinkat() are not supported on all
   351 // versions.  Once the support for fdopendir(), openat() and unlinkat()
   352 // is available on all supported versions the code can be changed
   353 // to use these functions.
   355 // Open the directory of the given path, validate it and set the
   356 // current working directory to it.
   357 // Return a DIR * of the open directory and the saved cwd fd.
   358 //
   359 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
   361   // Open the directory.
   362   DIR* dirp = open_directory_secure(dirname);
   363   if (dirp == NULL) {
   364     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
   365     return dirp;
   366   }
   367   int fd = dirfd(dirp);
   369   // Open a fd to the cwd and save it off.
   370   int result;
   371   RESTARTABLE(::open(".", O_RDONLY), result);
   372   if (result == OS_ERR) {
   373     *saved_cwd_fd = -1;
   374   } else {
   375     *saved_cwd_fd = result;
   376   }
   378   // Set the current directory to dirname by using the fd of the directory and
   379   // handle errors, otherwise shared memory files will be created in cwd.
   380   result = fchdir(fd);
   381   if (result == OS_ERR) {
   382     if (PrintMiscellaneous && Verbose) {
   383       warning("could not change to directory %s", dirname);
   384     }
   385     if (*saved_cwd_fd != -1) {
   386       ::close(*saved_cwd_fd);
   387       *saved_cwd_fd = -1;
   388     }
   389     // Close the directory.
   390     os::closedir(dirp);
   391     return NULL;
   392   } else {
   393     return dirp;
   394   }
   395 }
   397 // Close the directory and restore the current working directory.
   398 //
   399 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
   401   int result;
   402   // If we have a saved cwd change back to it and close the fd.
   403   if (saved_cwd_fd != -1) {
   404     result = fchdir(saved_cwd_fd);
   405     ::close(saved_cwd_fd);
   406   }
   408   // Close the directory.
   409   os::closedir(dirp);
   410 }
   412 // Check if the given file descriptor is considered a secure.
   413 //
   414 static bool is_file_secure(int fd, const char *filename) {
   416   int result;
   417   struct stat statbuf;
   419   // Determine if the file is secure.
   420   RESTARTABLE(::fstat(fd, &statbuf), result);
   421   if (result == OS_ERR) {
   422     if (PrintMiscellaneous && Verbose) {
   423       warning("fstat failed on %s: %s\n", filename, strerror(errno));
   424     }
   425     return false;
   426   }
   427   if (statbuf.st_nlink > 1) {
   428     // A file with multiple links is not expected.
   429     if (PrintMiscellaneous && Verbose) {
   430       warning("file %s has multiple links\n", filename);
   431     }
   432     return false;
   433   }
   434   return true;
   435 }
   437 // return the user name for the given user id
   438 //
   439 // the caller is expected to free the allocated memory.
   440 //
   441 static char* get_user_name(uid_t uid) {
   443   struct passwd pwent;
   445   // determine the max pwbuf size from sysconf, and hardcode
   446   // a default if this not available through sysconf.
   447   //
   448   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
   449   if (bufsize == -1)
   450     bufsize = 1024;
   452   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   454   // POSIX interface to getpwuid_r is used on LINUX
   455   struct passwd* p;
   456   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
   458   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
   459     if (PrintMiscellaneous && Verbose) {
   460       if (result != 0) {
   461         warning("Could not retrieve passwd entry: %s\n",
   462                 strerror(result));
   463       }
   464       else if (p == NULL) {
   465         // this check is added to protect against an observed problem
   466         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
   467         // indicating success, but has p == NULL. This was observed when
   468         // inserting a file descriptor exhaustion fault prior to the call
   469         // getpwuid_r() call. In this case, error is set to the appropriate
   470         // error condition, but this is undocumented behavior. This check
   471         // is safe under any condition, but the use of errno in the output
   472         // message may result in an erroneous message.
   473         // Bug Id 89052 was opened with RedHat.
   474         //
   475         warning("Could not retrieve passwd entry: %s\n",
   476                 strerror(errno));
   477       }
   478       else {
   479         warning("Could not determine user name: %s\n",
   480                 p->pw_name == NULL ? "pw_name = NULL" :
   481                                      "pw_name zero length");
   482       }
   483     }
   484     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   485     return NULL;
   486   }
   488   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
   489   strcpy(user_name, p->pw_name);
   491   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   492   return user_name;
   493 }
   495 // return the name of the user that owns the process identified by vmid.
   496 //
   497 // This method uses a slow directory search algorithm to find the backing
   498 // store file for the specified vmid and returns the user name, as determined
   499 // by the user name suffix of the hsperfdata_<username> directory name.
   500 //
   501 // the caller is expected to free the allocated memory.
   502 //
   503 static char* get_user_name_slow(int vmid, TRAPS) {
   505   // short circuit the directory search if the process doesn't even exist.
   506   if (kill(vmid, 0) == OS_ERR) {
   507     if (errno == ESRCH) {
   508       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
   509                   "Process not found");
   510     }
   511     else /* EPERM */ {
   512       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
   513     }
   514   }
   516   // directory search
   517   char* oldest_user = NULL;
   518   time_t oldest_ctime = 0;
   520   const char* tmpdirname = os::get_temp_directory();
   522   // open the temp directory
   523   DIR* tmpdirp = os::opendir(tmpdirname);
   525   if (tmpdirp == NULL) {
   526     // Cannot open the directory to get the user name, return.
   527     return NULL;
   528   }
   530   // for each entry in the directory that matches the pattern hsperfdata_*,
   531   // open the directory and check if the file for the given vmid exists.
   532   // The file with the expected name and the latest creation date is used
   533   // to determine the user name for the process id.
   534   //
   535   struct dirent* dentry;
   536   errno = 0;
   537   while ((dentry = os::readdir(tmpdirp)) != NULL) {
   539     // check if the directory entry is a hsperfdata file
   540     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   541       continue;
   542     }
   544     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   545                  strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
   546     strcpy(usrdir_name, tmpdirname);
   547     strcat(usrdir_name, "/");
   548     strcat(usrdir_name, dentry->d_name);
   550     // open the user directory
   551     DIR* subdirp = open_directory_secure(usrdir_name);
   553     if (subdirp == NULL) {
   554       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   555       continue;
   556     }
   558     struct dirent* udentry;
   559     errno = 0;
   560     while ((udentry = os::readdir(subdirp)) != NULL) {
   562       if (filename_to_pid(udentry->d_name) == vmid) {
   563         struct stat statbuf;
   564         int result;
   566         char* filename = NEW_C_HEAP_ARRAY(char,
   567                  strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
   569         strcpy(filename, usrdir_name);
   570         strcat(filename, "/");
   571         strcat(filename, udentry->d_name);
   573         // don't follow symbolic links for the file
   574         RESTARTABLE(::lstat(filename, &statbuf), result);
   575         if (result == OS_ERR) {
   576            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   577            continue;
   578         }
   580         // skip over files that are not regular files.
   581         if (!S_ISREG(statbuf.st_mode)) {
   582           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   583           continue;
   584         }
   586         // compare and save filename with latest creation time
   587         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
   589           if (statbuf.st_ctime > oldest_ctime) {
   590             char* user = strchr(dentry->d_name, '_') + 1;
   592             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
   593             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
   595             strcpy(oldest_user, user);
   596             oldest_ctime = statbuf.st_ctime;
   597           }
   598         }
   600         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   601       }
   602     }
   603     os::closedir(subdirp);
   604     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   605   }
   606   os::closedir(tmpdirp);
   608   return(oldest_user);
   609 }
   611 // return the name of the user that owns the JVM indicated by the given vmid.
   612 //
   613 static char* get_user_name(int vmid, TRAPS) {
   614   return get_user_name_slow(vmid, THREAD);
   615 }
   617 // return the file name of the backing store file for the named
   618 // shared memory region for the given user name and vmid.
   619 //
   620 // the caller is expected to free the allocated memory.
   621 //
   622 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   624   // add 2 for the file separator and a null terminator.
   625   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   627   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   628   snprintf(name, nbytes, "%s/%d", dirname, vmid);
   630   return name;
   631 }
   634 // remove file
   635 //
   636 // this method removes the file specified by the given path
   637 //
   638 static void remove_file(const char* path) {
   640   int result;
   642   // if the file is a directory, the following unlink will fail. since
   643   // we don't expect to find directories in the user temp directory, we
   644   // won't try to handle this situation. even if accidentially or
   645   // maliciously planted, the directory's presence won't hurt anything.
   646   //
   647   RESTARTABLE(::unlink(path), result);
   648   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
   649     if (errno != ENOENT) {
   650       warning("Could not unlink shared memory backing"
   651               " store file %s : %s\n", path, strerror(errno));
   652     }
   653   }
   654 }
   657 // cleanup stale shared memory resources
   658 //
   659 // This method attempts to remove all stale shared memory files in
   660 // the named user temporary directory. It scans the named directory
   661 // for files matching the pattern ^$[0-9]*$. For each file found, the
   662 // process id is extracted from the file name and a test is run to
   663 // determine if the process is alive. If the process is not alive,
   664 // any stale file resources are removed.
   665 //
   666 static void cleanup_sharedmem_resources(const char* dirname) {
   668   int saved_cwd_fd;
   669   // open the directory and set the current working directory to it
   670   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   671   if (dirp == NULL) {
   672     // directory doesn't exist or is insecure, so there is nothing to cleanup
   673     return;
   674   }
   676   // for each entry in the directory that matches the expected file
   677   // name pattern, determine if the file resources are stale and if
   678   // so, remove the file resources. Note, instrumented HotSpot processes
   679   // for this user may start and/or terminate during this search and
   680   // remove or create new files in this directory. The behavior of this
   681   // loop under these conditions is dependent upon the implementation of
   682   // opendir/readdir.
   683   //
   684   struct dirent* entry;
   685   errno = 0;
   686   while ((entry = os::readdir(dirp)) != NULL) {
   688     pid_t pid = filename_to_pid(entry->d_name);
   690     if (pid == 0) {
   692       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   694         // attempt to remove all unexpected files, except "." and ".."
   695         unlink(entry->d_name);
   696       }
   698       errno = 0;
   699       continue;
   700     }
   702     // we now have a file name that converts to a valid integer
   703     // that could represent a process id . if this process id
   704     // matches the current process id or the process is not running,
   705     // then remove the stale file resources.
   706     //
   707     // process liveness is detected by sending signal number 0 to
   708     // the process id (see kill(2)). if kill determines that the
   709     // process does not exist, then the file resources are removed.
   710     // if kill determines that that we don't have permission to
   711     // signal the process, then the file resources are assumed to
   712     // be stale and are removed because the resources for such a
   713     // process should be in a different user specific directory.
   714     //
   715     if ((pid == os::current_process_id()) ||
   716         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
   718         unlink(entry->d_name);
   719     }
   720     errno = 0;
   721   }
   723   // close the directory and reset the current working directory
   724   close_directory_secure_cwd(dirp, saved_cwd_fd);
   726 }
   728 // make the user specific temporary directory. Returns true if
   729 // the directory exists and is secure upon return. Returns false
   730 // if the directory exists but is either a symlink, is otherwise
   731 // insecure, or if an error occurred.
   732 //
   733 static bool make_user_tmp_dir(const char* dirname) {
   735   // create the directory with 0755 permissions. note that the directory
   736   // will be owned by euid::egid, which may not be the same as uid::gid.
   737   //
   738   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
   739     if (errno == EEXIST) {
   740       // The directory already exists and was probably created by another
   741       // JVM instance. However, this could also be the result of a
   742       // deliberate symlink. Verify that the existing directory is safe.
   743       //
   744       if (!is_directory_secure(dirname)) {
   745         // directory is not secure
   746         if (PrintMiscellaneous && Verbose) {
   747           warning("%s directory is insecure\n", dirname);
   748         }
   749         return false;
   750       }
   751     }
   752     else {
   753       // we encountered some other failure while attempting
   754       // to create the directory
   755       //
   756       if (PrintMiscellaneous && Verbose) {
   757         warning("could not create directory %s: %s\n",
   758                 dirname, strerror(errno));
   759       }
   760       return false;
   761     }
   762   }
   763   return true;
   764 }
   766 // create the shared memory file resources
   767 //
   768 // This method creates the shared memory file with the given size
   769 // This method also creates the user specific temporary directory, if
   770 // it does not yet exist.
   771 //
   772 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
   774   // make the user temporary directory
   775   if (!make_user_tmp_dir(dirname)) {
   776     // could not make/find the directory or the found directory
   777     // was not secure
   778     return -1;
   779   }
   781   int saved_cwd_fd;
   782   // open the directory and set the current working directory to it
   783   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   784   if (dirp == NULL) {
   785     // Directory doesn't exist or is insecure, so cannot create shared
   786     // memory file.
   787     return -1;
   788   }
   790   // Open the filename in the current directory.
   791   // Cannot use O_TRUNC here; truncation of an existing file has to happen
   792   // after the is_file_secure() check below.
   793   int result;
   794   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
   795   if (result == OS_ERR) {
   796     if (PrintMiscellaneous && Verbose) {
   797       if (errno == ELOOP) {
   798         warning("file %s is a symlink and is not secure\n", filename);
   799       } else {
   800         warning("could not create file %s: %s\n", filename, strerror(errno));
   801       }
   802     }
   803     // close the directory and reset the current working directory
   804     close_directory_secure_cwd(dirp, saved_cwd_fd);
   806     return -1;
   807   }
   808   // close the directory and reset the current working directory
   809   close_directory_secure_cwd(dirp, saved_cwd_fd);
   811   // save the file descriptor
   812   int fd = result;
   814   // check to see if the file is secure
   815   if (!is_file_secure(fd, filename)) {
   816     ::close(fd);
   817     return -1;
   818   }
   820   // truncate the file to get rid of any existing data
   821   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
   822   if (result == OS_ERR) {
   823     if (PrintMiscellaneous && Verbose) {
   824       warning("could not truncate shared memory file: %s\n", strerror(errno));
   825     }
   826     ::close(fd);
   827     return -1;
   828   }
   829   // set the file size
   830   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
   831   if (result == OS_ERR) {
   832     if (PrintMiscellaneous && Verbose) {
   833       warning("could not set shared memory file size: %s\n", strerror(errno));
   834     }
   835     ::close(fd);
   836     return -1;
   837   }
   839   // Verify that we have enough disk space for this file.
   840   // We'll get random SIGBUS crashes on memory accesses if
   841   // we don't.
   843   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
   844     int zero_int = 0;
   845     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
   846     if (result == -1 ) break;
   847     RESTARTABLE(::write(fd, &zero_int, 1), result);
   848     if (result != 1) {
   849       if (errno == ENOSPC) {
   850         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
   851       }
   852       break;
   853     }
   854   }
   856   if (result != -1) {
   857     return fd;
   858   } else {
   859     ::close(fd);
   860     return -1;
   861   }
   862 }
   864 // open the shared memory file for the given user and vmid. returns
   865 // the file descriptor for the open file or -1 if the file could not
   866 // be opened.
   867 //
   868 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
   870   // open the file
   871   int result;
   872   RESTARTABLE(::open(filename, oflags), result);
   873   if (result == OS_ERR) {
   874     if (errno == ENOENT) {
   875       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   876                   "Process not found", OS_ERR);
   877     }
   878     else if (errno == EACCES) {
   879       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   880                   "Permission denied", OS_ERR);
   881     }
   882     else {
   883       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
   884     }
   885   }
   886   int fd = result;
   888   // check to see if the file is secure
   889   if (!is_file_secure(fd, filename)) {
   890     ::close(fd);
   891     return -1;
   892   }
   894   return fd;
   895 }
   897 // create a named shared memory region. returns the address of the
   898 // memory region on success or NULL on failure. A return value of
   899 // NULL will ultimately disable the shared memory feature.
   900 //
   901 // On Solaris and Bsd, the name space for shared memory objects
   902 // is the file system name space.
   903 //
   904 // A monitoring application attaching to a JVM does not need to know
   905 // the file system name of the shared memory object. However, it may
   906 // be convenient for applications to discover the existence of newly
   907 // created and terminating JVMs by watching the file system name space
   908 // for files being created or removed.
   909 //
   910 static char* mmap_create_shared(size_t size) {
   912   int result;
   913   int fd;
   914   char* mapAddress;
   916   int vmid = os::current_process_id();
   918   char* user_name = get_user_name(geteuid());
   920   if (user_name == NULL)
   921     return NULL;
   923   char* dirname = get_user_tmp_dir(user_name);
   924   char* filename = get_sharedmem_filename(dirname, vmid);
   926   // get the short filename
   927   char* short_filename = strrchr(filename, '/');
   928   if (short_filename == NULL) {
   929     short_filename = filename;
   930   } else {
   931     short_filename++;
   932   }
   934   // cleanup any stale shared memory files
   935   cleanup_sharedmem_resources(dirname);
   937   assert(((size > 0) && (size % os::vm_page_size() == 0)),
   938          "unexpected PerfMemory region size");
   940   fd = create_sharedmem_resources(dirname, short_filename, size);
   942   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
   943   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
   945   if (fd == -1) {
   946     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   947     return NULL;
   948   }
   950   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
   952   result = ::close(fd);
   953   assert(result != OS_ERR, "could not close file");
   955   if (mapAddress == MAP_FAILED) {
   956     if (PrintMiscellaneous && Verbose) {
   957       warning("mmap failed -  %s\n", strerror(errno));
   958     }
   959     remove_file(filename);
   960     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   961     return NULL;
   962   }
   964   // save the file name for use in delete_shared_memory()
   965   backing_store_file_name = filename;
   967   // clear the shared memory region
   968   (void)::memset((void*) mapAddress, 0, size);
   970   // it does not go through os api, the operation has to record from here
   971   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
   973   return mapAddress;
   974 }
   976 // release a named shared memory region
   977 //
   978 static void unmap_shared(char* addr, size_t bytes) {
   979   os::release_memory(addr, bytes);
   980 }
   982 // create the PerfData memory region in shared memory.
   983 //
   984 static char* create_shared_memory(size_t size) {
   986   // create the shared memory region.
   987   return mmap_create_shared(size);
   988 }
   990 // delete the shared PerfData memory region
   991 //
   992 static void delete_shared_memory(char* addr, size_t size) {
   994   // cleanup the persistent shared memory resources. since DestroyJavaVM does
   995   // not support unloading of the JVM, unmapping of the memory resource is
   996   // not performed. The memory will be reclaimed by the OS upon termination of
   997   // the process. The backing store file is deleted from the file system.
   999   assert(!PerfDisableSharedMem, "shouldn't be here");
  1001   if (backing_store_file_name != NULL) {
  1002     remove_file(backing_store_file_name);
  1003     // Don't.. Free heap memory could deadlock os::abort() if it is called
  1004     // from signal handler. OS will reclaim the heap memory.
  1005     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
  1006     backing_store_file_name = NULL;
  1010 // return the size of the file for the given file descriptor
  1011 // or 0 if it is not a valid size for a shared memory file
  1012 //
  1013 static size_t sharedmem_filesize(int fd, TRAPS) {
  1015   struct stat statbuf;
  1016   int result;
  1018   RESTARTABLE(::fstat(fd, &statbuf), result);
  1019   if (result == OS_ERR) {
  1020     if (PrintMiscellaneous && Verbose) {
  1021       warning("fstat failed: %s\n", strerror(errno));
  1023     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1024                 "Could not determine PerfMemory size");
  1027   if ((statbuf.st_size == 0) ||
  1028      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
  1029     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1030                 "Invalid PerfMemory size");
  1033   return (size_t)statbuf.st_size;
  1036 // attach to a named shared memory region.
  1037 //
  1038 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
  1040   char* mapAddress;
  1041   int result;
  1042   int fd;
  1043   size_t size = 0;
  1044   const char* luser = NULL;
  1046   int mmap_prot;
  1047   int file_flags;
  1049   ResourceMark rm;
  1051   // map the high level access mode to the appropriate permission
  1052   // constructs for the file and the shared memory mapping.
  1053   if (mode == PerfMemory::PERF_MODE_RO) {
  1054     mmap_prot = PROT_READ;
  1055     file_flags = O_RDONLY | O_NOFOLLOW;
  1057   else if (mode == PerfMemory::PERF_MODE_RW) {
  1058 #ifdef LATER
  1059     mmap_prot = PROT_READ | PROT_WRITE;
  1060     file_flags = O_RDWR | O_NOFOLLOW;
  1061 #else
  1062     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1063               "Unsupported access mode");
  1064 #endif
  1066   else {
  1067     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1068               "Illegal access mode");
  1071   if (user == NULL || strlen(user) == 0) {
  1072     luser = get_user_name(vmid, CHECK);
  1074   else {
  1075     luser = user;
  1078   if (luser == NULL) {
  1079     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1080               "Could not map vmid to user Name");
  1083   char* dirname = get_user_tmp_dir(luser);
  1085   // since we don't follow symbolic links when creating the backing
  1086   // store file, we don't follow them when attaching either.
  1087   //
  1088   if (!is_directory_secure(dirname)) {
  1089     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1090     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1091               "Process not found");
  1094   char* filename = get_sharedmem_filename(dirname, vmid);
  1096   // copy heap memory to resource memory. the open_sharedmem_file
  1097   // method below need to use the filename, but could throw an
  1098   // exception. using a resource array prevents the leak that
  1099   // would otherwise occur.
  1100   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1101   strcpy(rfilename, filename);
  1103   // free the c heap resources that are no longer needed
  1104   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  1105   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1106   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  1108   // open the shared memory file for the give vmid
  1109   fd = open_sharedmem_file(rfilename, file_flags, CHECK);
  1110   assert(fd != OS_ERR, "unexpected value");
  1112   if (*sizep == 0) {
  1113     size = sharedmem_filesize(fd, CHECK);
  1114   } else {
  1115     size = *sizep;
  1118   assert(size > 0, "unexpected size <= 0");
  1120   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
  1122   // attempt to close the file - restart if it gets interrupted,
  1123   // but ignore other failures
  1124   result = ::close(fd);
  1125   assert(result != OS_ERR, "could not close file");
  1127   if (mapAddress == MAP_FAILED) {
  1128     if (PrintMiscellaneous && Verbose) {
  1129       warning("mmap failed: %s\n", strerror(errno));
  1131     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1132               "Could not map PerfMemory");
  1135   // it does not go through os api, the operation has to record from here
  1136   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
  1138   *addr = mapAddress;
  1139   *sizep = size;
  1141   if (PerfTraceMemOps) {
  1142     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1143                INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
  1150 // create the PerfData memory region
  1151 //
  1152 // This method creates the memory region used to store performance
  1153 // data for the JVM. The memory may be created in standard or
  1154 // shared memory.
  1155 //
  1156 void PerfMemory::create_memory_region(size_t size) {
  1158   if (PerfDisableSharedMem) {
  1159     // do not share the memory for the performance data.
  1160     _start = create_standard_memory(size);
  1162   else {
  1163     _start = create_shared_memory(size);
  1164     if (_start == NULL) {
  1166       // creation of the shared memory region failed, attempt
  1167       // to create a contiguous, non-shared memory region instead.
  1168       //
  1169       if (PrintMiscellaneous && Verbose) {
  1170         warning("Reverting to non-shared PerfMemory region.\n");
  1172       PerfDisableSharedMem = true;
  1173       _start = create_standard_memory(size);
  1177   if (_start != NULL) _capacity = size;
  1181 // delete the PerfData memory region
  1182 //
  1183 // This method deletes the memory region used to store performance
  1184 // data for the JVM. The memory region indicated by the <address, size>
  1185 // tuple will be inaccessible after a call to this method.
  1186 //
  1187 void PerfMemory::delete_memory_region() {
  1189   assert((start() != NULL && capacity() > 0), "verify proper state");
  1191   // If user specifies PerfDataSaveFile, it will save the performance data
  1192   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1193   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1194   // -XX:+PerfDataSaveToFile.
  1195   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1196     save_memory_to_file(start(), capacity());
  1199   if (PerfDisableSharedMem) {
  1200     delete_standard_memory(start(), capacity());
  1202   else {
  1203     delete_shared_memory(start(), capacity());
  1207 // attach to the PerfData memory region for another JVM
  1208 //
  1209 // This method returns an <address, size> tuple that points to
  1210 // a memory buffer that is kept reasonably synchronized with
  1211 // the PerfData memory region for the indicated JVM. This
  1212 // buffer may be kept in synchronization via shared memory
  1213 // or some other mechanism that keeps the buffer updated.
  1214 //
  1215 // If the JVM chooses not to support the attachability feature,
  1216 // this method should throw an UnsupportedOperation exception.
  1217 //
  1218 // This implementation utilizes named shared memory to map
  1219 // the indicated process's PerfData memory region into this JVMs
  1220 // address space.
  1221 //
  1222 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
  1224   if (vmid == 0 || vmid == os::current_process_id()) {
  1225      *addrp = start();
  1226      *sizep = capacity();
  1227      return;
  1230   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
  1233 // detach from the PerfData memory region of another JVM
  1234 //
  1235 // This method detaches the PerfData memory region of another
  1236 // JVM, specified as an <address, size> tuple of a buffer
  1237 // in this process's address space. This method may perform
  1238 // arbitrary actions to accomplish the detachment. The memory
  1239 // region specified by <address, size> will be inaccessible after
  1240 // a call to this method.
  1241 //
  1242 // If the JVM chooses not to support the attachability feature,
  1243 // this method should throw an UnsupportedOperation exception.
  1244 //
  1245 // This implementation utilizes named shared memory to detach
  1246 // the indicated process's PerfData memory region from this
  1247 // process's address space.
  1248 //
  1249 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1251   assert(addr != 0, "address sanity check");
  1252   assert(bytes > 0, "capacity sanity check");
  1254   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1255     // prevent accidental detachment of this process's PerfMemory region
  1256     return;
  1259   unmap_shared(addr, bytes);
  1262 char* PerfMemory::backing_store_filename() {
  1263   return backing_store_file_name;

mercurial