src/os/bsd/vm/os_bsd.cpp

Wed, 02 Oct 2013 20:58:44 +0400

author
dsamersoff
date
Wed, 02 Oct 2013 20:58:44 +0400
changeset 5830
2bd38d594b9a
parent 5701
40136aa2cdb1
child 5834
faff125a1ead
permissions
-rw-r--r--

8025283: Nits in os_bsd file breaks compilation of open hotspot
Summary: Couple of nits in os_bsd.cpp brake compilation of open hotspot on non-apple platforms
Reviewed-by: sla, sspitsyn

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_bsd.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_bsd.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_bsd.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/thread.inline.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/memTracker.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    68 // put OS-includes here
    69 # include <sys/types.h>
    70 # include <sys/mman.h>
    71 # include <sys/stat.h>
    72 # include <sys/select.h>
    73 # include <pthread.h>
    74 # include <signal.h>
    75 # include <errno.h>
    76 # include <dlfcn.h>
    77 # include <stdio.h>
    78 # include <unistd.h>
    79 # include <sys/resource.h>
    80 # include <pthread.h>
    81 # include <sys/stat.h>
    82 # include <sys/time.h>
    83 # include <sys/times.h>
    84 # include <sys/utsname.h>
    85 # include <sys/socket.h>
    86 # include <sys/wait.h>
    87 # include <time.h>
    88 # include <pwd.h>
    89 # include <poll.h>
    90 # include <semaphore.h>
    91 # include <fcntl.h>
    92 # include <string.h>
    93 # include <sys/param.h>
    94 # include <sys/sysctl.h>
    95 # include <sys/ipc.h>
    96 # include <sys/shm.h>
    97 #ifndef __APPLE__
    98 # include <link.h>
    99 #endif
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   103 # include <sys/syscall.h>
   105 #if defined(__FreeBSD__) || defined(__NetBSD__)
   106 # include <elf.h>
   107 #endif
   109 #ifdef __APPLE__
   110 # include <mach/mach.h> // semaphore_* API
   111 # include <mach-o/dyld.h>
   112 # include <sys/proc_info.h>
   113 # include <objc/objc-auto.h>
   114 #endif
   116 #ifndef MAP_ANONYMOUS
   117 #define MAP_ANONYMOUS MAP_ANON
   118 #endif
   120 #define MAX_PATH    (2 * K)
   122 // for timer info max values which include all bits
   123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   125 #define LARGEPAGES_BIT (1 << 6)
   126 ////////////////////////////////////////////////////////////////////////////////
   127 // global variables
   128 julong os::Bsd::_physical_memory = 0;
   131 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   132 pthread_t os::Bsd::_main_thread;
   133 int os::Bsd::_page_size = -1;
   135 static jlong initial_time_count=0;
   137 static int clock_tics_per_sec = 100;
   139 // For diagnostics to print a message once. see run_periodic_checks
   140 static sigset_t check_signal_done;
   141 static bool check_signals = true;
   143 static pid_t _initial_pid = 0;
   145 /* Signal number used to suspend/resume a thread */
   147 /* do not use any signal number less than SIGSEGV, see 4355769 */
   148 static int SR_signum = SIGUSR2;
   149 sigset_t SR_sigset;
   152 ////////////////////////////////////////////////////////////////////////////////
   153 // utility functions
   155 static int SR_initialize();
   156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   158 julong os::available_memory() {
   159   return Bsd::available_memory();
   160 }
   162 julong os::Bsd::available_memory() {
   163   // XXXBSD: this is just a stopgap implementation
   164   return physical_memory() >> 2;
   165 }
   167 julong os::physical_memory() {
   168   return Bsd::physical_memory();
   169 }
   171 ////////////////////////////////////////////////////////////////////////////////
   172 // environment support
   174 bool os::getenv(const char* name, char* buf, int len) {
   175   const char* val = ::getenv(name);
   176   if (val != NULL && strlen(val) < (size_t)len) {
   177     strcpy(buf, val);
   178     return true;
   179   }
   180   if (len > 0) buf[0] = 0;  // return a null string
   181   return false;
   182 }
   185 // Return true if user is running as root.
   187 bool os::have_special_privileges() {
   188   static bool init = false;
   189   static bool privileges = false;
   190   if (!init) {
   191     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   192     init = true;
   193   }
   194   return privileges;
   195 }
   199 // Cpu architecture string
   200 #if   defined(ZERO)
   201 static char cpu_arch[] = ZERO_LIBARCH;
   202 #elif defined(IA64)
   203 static char cpu_arch[] = "ia64";
   204 #elif defined(IA32)
   205 static char cpu_arch[] = "i386";
   206 #elif defined(AMD64)
   207 static char cpu_arch[] = "amd64";
   208 #elif defined(ARM)
   209 static char cpu_arch[] = "arm";
   210 #elif defined(PPC)
   211 static char cpu_arch[] = "ppc";
   212 #elif defined(SPARC)
   213 #  ifdef _LP64
   214 static char cpu_arch[] = "sparcv9";
   215 #  else
   216 static char cpu_arch[] = "sparc";
   217 #  endif
   218 #else
   219 #error Add appropriate cpu_arch setting
   220 #endif
   222 // Compiler variant
   223 #ifdef COMPILER2
   224 #define COMPILER_VARIANT "server"
   225 #else
   226 #define COMPILER_VARIANT "client"
   227 #endif
   230 void os::Bsd::initialize_system_info() {
   231   int mib[2];
   232   size_t len;
   233   int cpu_val;
   234   julong mem_val;
   236   /* get processors count via hw.ncpus sysctl */
   237   mib[0] = CTL_HW;
   238   mib[1] = HW_NCPU;
   239   len = sizeof(cpu_val);
   240   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
   241        assert(len == sizeof(cpu_val), "unexpected data size");
   242        set_processor_count(cpu_val);
   243   }
   244   else {
   245        set_processor_count(1);   // fallback
   246   }
   248   /* get physical memory via hw.memsize sysctl (hw.memsize is used
   249    * since it returns a 64 bit value)
   250    */
   251   mib[0] = CTL_HW;
   253 #if defined (HW_MEMSIZE) // Apple
   254   mib[1] = HW_MEMSIZE;
   255 #elif defined(HW_PHYSMEM) // Most of BSD
   256   mib[1] = HW_PHYSMEM;
   257 #elif defined(HW_REALMEM) // Old FreeBSD
   258   mib[1] = HW_REALMEM;
   259 #else
   260   #error No ways to get physmem
   261 #endif
   263   len = sizeof(mem_val);
   264   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
   265        assert(len == sizeof(mem_val), "unexpected data size");
   266        _physical_memory = mem_val;
   267   } else {
   268        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
   269   }
   271 #ifdef __OpenBSD__
   272   {
   273        // limit _physical_memory memory view on OpenBSD since
   274        // datasize rlimit restricts us anyway.
   275        struct rlimit limits;
   276        getrlimit(RLIMIT_DATA, &limits);
   277        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
   278   }
   279 #endif
   280 }
   282 #ifdef __APPLE__
   283 static const char *get_home() {
   284   const char *home_dir = ::getenv("HOME");
   285   if ((home_dir == NULL) || (*home_dir == '\0')) {
   286     struct passwd *passwd_info = getpwuid(geteuid());
   287     if (passwd_info != NULL) {
   288       home_dir = passwd_info->pw_dir;
   289     }
   290   }
   292   return home_dir;
   293 }
   294 #endif
   296 void os::init_system_properties_values() {
   297 //  char arch[12];
   298 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   300   // The next steps are taken in the product version:
   301   //
   302   // Obtain the JAVA_HOME value from the location of libjvm.so.
   303   // This library should be located at:
   304   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   305   //
   306   // If "/jre/lib/" appears at the right place in the path, then we
   307   // assume libjvm.so is installed in a JDK and we use this path.
   308   //
   309   // Otherwise exit with message: "Could not create the Java virtual machine."
   310   //
   311   // The following extra steps are taken in the debugging version:
   312   //
   313   // If "/jre/lib/" does NOT appear at the right place in the path
   314   // instead of exit check for $JAVA_HOME environment variable.
   315   //
   316   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   317   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   318   // it looks like libjvm.so is installed there
   319   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   320   //
   321   // Otherwise exit.
   322   //
   323   // Important note: if the location of libjvm.so changes this
   324   // code needs to be changed accordingly.
   326   // The next few definitions allow the code to be verbatim:
   327 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   328 #define getenv(n) ::getenv(n)
   330 /*
   331  * See ld(1):
   332  *      The linker uses the following search paths to locate required
   333  *      shared libraries:
   334  *        1: ...
   335  *        ...
   336  *        7: The default directories, normally /lib and /usr/lib.
   337  */
   338 #ifndef DEFAULT_LIBPATH
   339 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   340 #endif
   342 #define EXTENSIONS_DIR  "/lib/ext"
   343 #define ENDORSED_DIR    "/lib/endorsed"
   344 #define REG_DIR         "/usr/java/packages"
   346 #ifdef __APPLE__
   347 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
   348 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
   349         const char *user_home_dir = get_home();
   350         // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
   351         int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
   352             sizeof(SYS_EXTENSIONS_DIRS);
   353 #endif
   355   {
   356     /* sysclasspath, java_home, dll_dir */
   357     {
   358         char *home_path;
   359         char *dll_path;
   360         char *pslash;
   361         char buf[MAXPATHLEN];
   362         os::jvm_path(buf, sizeof(buf));
   364         // Found the full path to libjvm.so.
   365         // Now cut the path to <java_home>/jre if we can.
   366         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   367         pslash = strrchr(buf, '/');
   368         if (pslash != NULL)
   369             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   370         dll_path = malloc(strlen(buf) + 1);
   371         if (dll_path == NULL)
   372             return;
   373         strcpy(dll_path, buf);
   374         Arguments::set_dll_dir(dll_path);
   376         if (pslash != NULL) {
   377             pslash = strrchr(buf, '/');
   378             if (pslash != NULL) {
   379                 *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
   380 #ifndef __APPLE__
   381                 pslash = strrchr(buf, '/');
   382                 if (pslash != NULL)
   383                     *pslash = '\0';   /* get rid of /lib */
   384 #endif
   385             }
   386         }
   388         home_path = malloc(strlen(buf) + 1);
   389         if (home_path == NULL)
   390             return;
   391         strcpy(home_path, buf);
   392         Arguments::set_java_home(home_path);
   394         if (!set_boot_path('/', ':'))
   395             return;
   396     }
   398     /*
   399      * Where to look for native libraries
   400      *
   401      * Note: Due to a legacy implementation, most of the library path
   402      * is set in the launcher.  This was to accomodate linking restrictions
   403      * on legacy Bsd implementations (which are no longer supported).
   404      * Eventually, all the library path setting will be done here.
   405      *
   406      * However, to prevent the proliferation of improperly built native
   407      * libraries, the new path component /usr/java/packages is added here.
   408      * Eventually, all the library path setting will be done here.
   409      */
   410     {
   411         char *ld_library_path;
   413         /*
   414          * Construct the invariant part of ld_library_path. Note that the
   415          * space for the colon and the trailing null are provided by the
   416          * nulls included by the sizeof operator (so actually we allocate
   417          * a byte more than necessary).
   418          */
   419 #ifdef __APPLE__
   420         ld_library_path = (char *) malloc(system_ext_size);
   421         sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
   422 #else
   423         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   424             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   425         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   426 #endif
   428         /*
   429          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   430          * should always exist (until the legacy problem cited above is
   431          * addressed).
   432          */
   433 #ifdef __APPLE__
   434         // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
   435         char *l = getenv("JAVA_LIBRARY_PATH");
   436         if (l != NULL) {
   437             char *t = ld_library_path;
   438             /* That's +1 for the colon and +1 for the trailing '\0' */
   439             ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
   440             sprintf(ld_library_path, "%s:%s", l, t);
   441             free(t);
   442         }
   444         char *v = getenv("DYLD_LIBRARY_PATH");
   445 #else
   446         char *v = getenv("LD_LIBRARY_PATH");
   447 #endif
   448         if (v != NULL) {
   449             char *t = ld_library_path;
   450             /* That's +1 for the colon and +1 for the trailing '\0' */
   451             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   452             sprintf(ld_library_path, "%s:%s", v, t);
   453             free(t);
   454         }
   456 #ifdef __APPLE__
   457         // Apple's Java6 has "." at the beginning of java.library.path.
   458         // OpenJDK on Windows has "." at the end of java.library.path.
   459         // OpenJDK on Linux and Solaris don't have "." in java.library.path
   460         // at all. To ease the transition from Apple's Java6 to OpenJDK7,
   461         // "." is appended to the end of java.library.path. Yes, this
   462         // could cause a change in behavior, but Apple's Java6 behavior
   463         // can be achieved by putting "." at the beginning of the
   464         // JAVA_LIBRARY_PATH environment variable.
   465         {
   466             char *t = ld_library_path;
   467             // that's +3 for appending ":." and the trailing '\0'
   468             ld_library_path = (char *) malloc(strlen(t) + 3);
   469             sprintf(ld_library_path, "%s:%s", t, ".");
   470             free(t);
   471         }
   472 #endif
   474         Arguments::set_library_path(ld_library_path);
   475     }
   477     /*
   478      * Extensions directories.
   479      *
   480      * Note that the space for the colon and the trailing null are provided
   481      * by the nulls included by the sizeof operator (so actually one byte more
   482      * than necessary is allocated).
   483      */
   484     {
   485 #ifdef __APPLE__
   486         char *buf = malloc(strlen(Arguments::get_java_home()) +
   487             sizeof(EXTENSIONS_DIR) + system_ext_size);
   488         sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
   489             SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
   490 #else
   491         char *buf = malloc(strlen(Arguments::get_java_home()) +
   492             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   493         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   494             Arguments::get_java_home());
   495 #endif
   497         Arguments::set_ext_dirs(buf);
   498     }
   500     /* Endorsed standards default directory. */
   501     {
   502         char * buf;
   503         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   504         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   505         Arguments::set_endorsed_dirs(buf);
   506     }
   507   }
   509 #ifdef __APPLE__
   510 #undef SYS_EXTENSIONS_DIR
   511 #endif
   512 #undef malloc
   513 #undef getenv
   514 #undef EXTENSIONS_DIR
   515 #undef ENDORSED_DIR
   517   // Done
   518   return;
   519 }
   521 ////////////////////////////////////////////////////////////////////////////////
   522 // breakpoint support
   524 void os::breakpoint() {
   525   BREAKPOINT;
   526 }
   528 extern "C" void breakpoint() {
   529   // use debugger to set breakpoint here
   530 }
   532 ////////////////////////////////////////////////////////////////////////////////
   533 // signal support
   535 debug_only(static bool signal_sets_initialized = false);
   536 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   538 bool os::Bsd::is_sig_ignored(int sig) {
   539       struct sigaction oact;
   540       sigaction(sig, (struct sigaction*)NULL, &oact);
   541       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   542                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   543       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   544            return true;
   545       else
   546            return false;
   547 }
   549 void os::Bsd::signal_sets_init() {
   550   // Should also have an assertion stating we are still single-threaded.
   551   assert(!signal_sets_initialized, "Already initialized");
   552   // Fill in signals that are necessarily unblocked for all threads in
   553   // the VM. Currently, we unblock the following signals:
   554   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   555   //                         by -Xrs (=ReduceSignalUsage));
   556   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   557   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   558   // the dispositions or masks wrt these signals.
   559   // Programs embedding the VM that want to use the above signals for their
   560   // own purposes must, at this time, use the "-Xrs" option to prevent
   561   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   562   // (See bug 4345157, and other related bugs).
   563   // In reality, though, unblocking these signals is really a nop, since
   564   // these signals are not blocked by default.
   565   sigemptyset(&unblocked_sigs);
   566   sigemptyset(&allowdebug_blocked_sigs);
   567   sigaddset(&unblocked_sigs, SIGILL);
   568   sigaddset(&unblocked_sigs, SIGSEGV);
   569   sigaddset(&unblocked_sigs, SIGBUS);
   570   sigaddset(&unblocked_sigs, SIGFPE);
   571   sigaddset(&unblocked_sigs, SR_signum);
   573   if (!ReduceSignalUsage) {
   574    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   575       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   576       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   577    }
   578    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   579       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   580       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   581    }
   582    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   583       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   584       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   585    }
   586   }
   587   // Fill in signals that are blocked by all but the VM thread.
   588   sigemptyset(&vm_sigs);
   589   if (!ReduceSignalUsage)
   590     sigaddset(&vm_sigs, BREAK_SIGNAL);
   591   debug_only(signal_sets_initialized = true);
   593 }
   595 // These are signals that are unblocked while a thread is running Java.
   596 // (For some reason, they get blocked by default.)
   597 sigset_t* os::Bsd::unblocked_signals() {
   598   assert(signal_sets_initialized, "Not initialized");
   599   return &unblocked_sigs;
   600 }
   602 // These are the signals that are blocked while a (non-VM) thread is
   603 // running Java. Only the VM thread handles these signals.
   604 sigset_t* os::Bsd::vm_signals() {
   605   assert(signal_sets_initialized, "Not initialized");
   606   return &vm_sigs;
   607 }
   609 // These are signals that are blocked during cond_wait to allow debugger in
   610 sigset_t* os::Bsd::allowdebug_blocked_signals() {
   611   assert(signal_sets_initialized, "Not initialized");
   612   return &allowdebug_blocked_sigs;
   613 }
   615 void os::Bsd::hotspot_sigmask(Thread* thread) {
   617   //Save caller's signal mask before setting VM signal mask
   618   sigset_t caller_sigmask;
   619   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   621   OSThread* osthread = thread->osthread();
   622   osthread->set_caller_sigmask(caller_sigmask);
   624   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
   626   if (!ReduceSignalUsage) {
   627     if (thread->is_VM_thread()) {
   628       // Only the VM thread handles BREAK_SIGNAL ...
   629       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   630     } else {
   631       // ... all other threads block BREAK_SIGNAL
   632       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   633     }
   634   }
   635 }
   638 //////////////////////////////////////////////////////////////////////////////
   639 // create new thread
   641 // check if it's safe to start a new thread
   642 static bool _thread_safety_check(Thread* thread) {
   643   return true;
   644 }
   646 #ifdef __APPLE__
   647 // library handle for calling objc_registerThreadWithCollector()
   648 // without static linking to the libobjc library
   649 #define OBJC_LIB "/usr/lib/libobjc.dylib"
   650 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
   651 typedef void (*objc_registerThreadWithCollector_t)();
   652 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
   653 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
   654 #endif
   656 #ifdef __APPLE__
   657 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
   658   // Additional thread_id used to correlate threads in SA
   659   thread_identifier_info_data_t     m_ident_info;
   660   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
   662   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
   663               (thread_info_t) &m_ident_info, &count);
   665   return m_ident_info.thread_id;
   666 }
   667 #endif
   669 // Thread start routine for all newly created threads
   670 static void *java_start(Thread *thread) {
   671   // Try to randomize the cache line index of hot stack frames.
   672   // This helps when threads of the same stack traces evict each other's
   673   // cache lines. The threads can be either from the same JVM instance, or
   674   // from different JVM instances. The benefit is especially true for
   675   // processors with hyperthreading technology.
   676   static int counter = 0;
   677   int pid = os::current_process_id();
   678   alloca(((pid ^ counter++) & 7) * 128);
   680   ThreadLocalStorage::set_thread(thread);
   682   OSThread* osthread = thread->osthread();
   683   Monitor* sync = osthread->startThread_lock();
   685   // non floating stack BsdThreads needs extra check, see above
   686   if (!_thread_safety_check(thread)) {
   687     // notify parent thread
   688     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   689     osthread->set_state(ZOMBIE);
   690     sync->notify_all();
   691     return NULL;
   692   }
   694 #ifdef __APPLE__
   695   // thread_id is mach thread on macos, which pthreads graciously caches and provides for us
   696   mach_port_t thread_id = ::pthread_mach_thread_np(::pthread_self());
   697   guarantee(thread_id != 0, "thread id missing from pthreads");
   698   osthread->set_thread_id(thread_id);
   700   uint64_t unique_thread_id = locate_unique_thread_id(thread_id);
   701   guarantee(unique_thread_id != 0, "unique thread id was not found");
   702   osthread->set_unique_thread_id(unique_thread_id);
   703 #else
   704   // thread_id is pthread_id on BSD
   705   osthread->set_thread_id(::pthread_self());
   706 #endif
   707   // initialize signal mask for this thread
   708   os::Bsd::hotspot_sigmask(thread);
   710   // initialize floating point control register
   711   os::Bsd::init_thread_fpu_state();
   713 #ifdef __APPLE__
   714   // register thread with objc gc
   715   if (objc_registerThreadWithCollectorFunction != NULL) {
   716     objc_registerThreadWithCollectorFunction();
   717   }
   718 #endif
   720   // handshaking with parent thread
   721   {
   722     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   724     // notify parent thread
   725     osthread->set_state(INITIALIZED);
   726     sync->notify_all();
   728     // wait until os::start_thread()
   729     while (osthread->get_state() == INITIALIZED) {
   730       sync->wait(Mutex::_no_safepoint_check_flag);
   731     }
   732   }
   734   // call one more level start routine
   735   thread->run();
   737   return 0;
   738 }
   740 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   741   assert(thread->osthread() == NULL, "caller responsible");
   743   // Allocate the OSThread object
   744   OSThread* osthread = new OSThread(NULL, NULL);
   745   if (osthread == NULL) {
   746     return false;
   747   }
   749   // set the correct thread state
   750   osthread->set_thread_type(thr_type);
   752   // Initial state is ALLOCATED but not INITIALIZED
   753   osthread->set_state(ALLOCATED);
   755   thread->set_osthread(osthread);
   757   // init thread attributes
   758   pthread_attr_t attr;
   759   pthread_attr_init(&attr);
   760   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   762   // stack size
   763   if (os::Bsd::supports_variable_stack_size()) {
   764     // calculate stack size if it's not specified by caller
   765     if (stack_size == 0) {
   766       stack_size = os::Bsd::default_stack_size(thr_type);
   768       switch (thr_type) {
   769       case os::java_thread:
   770         // Java threads use ThreadStackSize which default value can be
   771         // changed with the flag -Xss
   772         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   773         stack_size = JavaThread::stack_size_at_create();
   774         break;
   775       case os::compiler_thread:
   776         if (CompilerThreadStackSize > 0) {
   777           stack_size = (size_t)(CompilerThreadStackSize * K);
   778           break;
   779         } // else fall through:
   780           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   781       case os::vm_thread:
   782       case os::pgc_thread:
   783       case os::cgc_thread:
   784       case os::watcher_thread:
   785         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   786         break;
   787       }
   788     }
   790     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
   791     pthread_attr_setstacksize(&attr, stack_size);
   792   } else {
   793     // let pthread_create() pick the default value.
   794   }
   796   ThreadState state;
   798   {
   799     pthread_t tid;
   800     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   802     pthread_attr_destroy(&attr);
   804     if (ret != 0) {
   805       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   806         perror("pthread_create()");
   807       }
   808       // Need to clean up stuff we've allocated so far
   809       thread->set_osthread(NULL);
   810       delete osthread;
   811       return false;
   812     }
   814     // Store pthread info into the OSThread
   815     osthread->set_pthread_id(tid);
   817     // Wait until child thread is either initialized or aborted
   818     {
   819       Monitor* sync_with_child = osthread->startThread_lock();
   820       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   821       while ((state = osthread->get_state()) == ALLOCATED) {
   822         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   823       }
   824     }
   826   }
   828   // Aborted due to thread limit being reached
   829   if (state == ZOMBIE) {
   830       thread->set_osthread(NULL);
   831       delete osthread;
   832       return false;
   833   }
   835   // The thread is returned suspended (in state INITIALIZED),
   836   // and is started higher up in the call chain
   837   assert(state == INITIALIZED, "race condition");
   838   return true;
   839 }
   841 /////////////////////////////////////////////////////////////////////////////
   842 // attach existing thread
   844 // bootstrap the main thread
   845 bool os::create_main_thread(JavaThread* thread) {
   846   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
   847   return create_attached_thread(thread);
   848 }
   850 bool os::create_attached_thread(JavaThread* thread) {
   851 #ifdef ASSERT
   852     thread->verify_not_published();
   853 #endif
   855   // Allocate the OSThread object
   856   OSThread* osthread = new OSThread(NULL, NULL);
   858   if (osthread == NULL) {
   859     return false;
   860   }
   862   // Store pthread info into the OSThread
   863 #ifdef __APPLE__
   864   // thread_id is mach thread on macos, which pthreads graciously caches and provides for us
   865   mach_port_t thread_id = ::pthread_mach_thread_np(::pthread_self());
   866   guarantee(thread_id != 0, "just checking");
   867   osthread->set_thread_id(thread_id);
   869   uint64_t unique_thread_id = locate_unique_thread_id(thread_id);
   870   guarantee(unique_thread_id != 0, "just checking");
   871   osthread->set_unique_thread_id(unique_thread_id);
   872 #else
   873   osthread->set_thread_id(::pthread_self());
   874 #endif
   875   osthread->set_pthread_id(::pthread_self());
   877   // initialize floating point control register
   878   os::Bsd::init_thread_fpu_state();
   880   // Initial thread state is RUNNABLE
   881   osthread->set_state(RUNNABLE);
   883   thread->set_osthread(osthread);
   885   // initialize signal mask for this thread
   886   // and save the caller's signal mask
   887   os::Bsd::hotspot_sigmask(thread);
   889   return true;
   890 }
   892 void os::pd_start_thread(Thread* thread) {
   893   OSThread * osthread = thread->osthread();
   894   assert(osthread->get_state() != INITIALIZED, "just checking");
   895   Monitor* sync_with_child = osthread->startThread_lock();
   896   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   897   sync_with_child->notify();
   898 }
   900 // Free Bsd resources related to the OSThread
   901 void os::free_thread(OSThread* osthread) {
   902   assert(osthread != NULL, "osthread not set");
   904   if (Thread::current()->osthread() == osthread) {
   905     // Restore caller's signal mask
   906     sigset_t sigmask = osthread->caller_sigmask();
   907     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   908    }
   910   delete osthread;
   911 }
   913 //////////////////////////////////////////////////////////////////////////////
   914 // thread local storage
   916 int os::allocate_thread_local_storage() {
   917   pthread_key_t key;
   918   int rslt = pthread_key_create(&key, NULL);
   919   assert(rslt == 0, "cannot allocate thread local storage");
   920   return (int)key;
   921 }
   923 // Note: This is currently not used by VM, as we don't destroy TLS key
   924 // on VM exit.
   925 void os::free_thread_local_storage(int index) {
   926   int rslt = pthread_key_delete((pthread_key_t)index);
   927   assert(rslt == 0, "invalid index");
   928 }
   930 void os::thread_local_storage_at_put(int index, void* value) {
   931   int rslt = pthread_setspecific((pthread_key_t)index, value);
   932   assert(rslt == 0, "pthread_setspecific failed");
   933 }
   935 extern "C" Thread* get_thread() {
   936   return ThreadLocalStorage::thread();
   937 }
   940 ////////////////////////////////////////////////////////////////////////////////
   941 // time support
   943 // Time since start-up in seconds to a fine granularity.
   944 // Used by VMSelfDestructTimer and the MemProfiler.
   945 double os::elapsedTime() {
   947   return (double)(os::elapsed_counter()) * 0.000001;
   948 }
   950 jlong os::elapsed_counter() {
   951   timeval time;
   952   int status = gettimeofday(&time, NULL);
   953   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
   954 }
   956 jlong os::elapsed_frequency() {
   957   return (1000 * 1000);
   958 }
   960 bool os::supports_vtime() { return true; }
   961 bool os::enable_vtime()   { return false; }
   962 bool os::vtime_enabled()  { return false; }
   964 double os::elapsedVTime() {
   965   // better than nothing, but not much
   966   return elapsedTime();
   967 }
   969 jlong os::javaTimeMillis() {
   970   timeval time;
   971   int status = gettimeofday(&time, NULL);
   972   assert(status != -1, "bsd error");
   973   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
   974 }
   976 #ifndef CLOCK_MONOTONIC
   977 #define CLOCK_MONOTONIC (1)
   978 #endif
   980 #ifdef __APPLE__
   981 void os::Bsd::clock_init() {
   982         // XXXDARWIN: Investigate replacement monotonic clock
   983 }
   984 #else
   985 void os::Bsd::clock_init() {
   986   struct timespec res;
   987   struct timespec tp;
   988   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
   989       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
   990     // yes, monotonic clock is supported
   991     _clock_gettime = ::clock_gettime;
   992   }
   993 }
   994 #endif
   997 jlong os::javaTimeNanos() {
   998   if (Bsd::supports_monotonic_clock()) {
   999     struct timespec tp;
  1000     int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
  1001     assert(status == 0, "gettime error");
  1002     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1003     return result;
  1004   } else {
  1005     timeval time;
  1006     int status = gettimeofday(&time, NULL);
  1007     assert(status != -1, "bsd error");
  1008     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1009     return 1000 * usecs;
  1013 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1014   if (Bsd::supports_monotonic_clock()) {
  1015     info_ptr->max_value = ALL_64_BITS;
  1017     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1018     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1019     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1020   } else {
  1021     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1022     info_ptr->max_value = ALL_64_BITS;
  1024     // gettimeofday is a real time clock so it skips
  1025     info_ptr->may_skip_backward = true;
  1026     info_ptr->may_skip_forward = true;
  1029   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1032 // Return the real, user, and system times in seconds from an
  1033 // arbitrary fixed point in the past.
  1034 bool os::getTimesSecs(double* process_real_time,
  1035                       double* process_user_time,
  1036                       double* process_system_time) {
  1037   struct tms ticks;
  1038   clock_t real_ticks = times(&ticks);
  1040   if (real_ticks == (clock_t) (-1)) {
  1041     return false;
  1042   } else {
  1043     double ticks_per_second = (double) clock_tics_per_sec;
  1044     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1045     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1046     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1048     return true;
  1053 char * os::local_time_string(char *buf, size_t buflen) {
  1054   struct tm t;
  1055   time_t long_time;
  1056   time(&long_time);
  1057   localtime_r(&long_time, &t);
  1058   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1059                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1060                t.tm_hour, t.tm_min, t.tm_sec);
  1061   return buf;
  1064 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1065   return localtime_r(clock, res);
  1068 ////////////////////////////////////////////////////////////////////////////////
  1069 // runtime exit support
  1071 // Note: os::shutdown() might be called very early during initialization, or
  1072 // called from signal handler. Before adding something to os::shutdown(), make
  1073 // sure it is async-safe and can handle partially initialized VM.
  1074 void os::shutdown() {
  1076   // allow PerfMemory to attempt cleanup of any persistent resources
  1077   perfMemory_exit();
  1079   // needs to remove object in file system
  1080   AttachListener::abort();
  1082   // flush buffered output, finish log files
  1083   ostream_abort();
  1085   // Check for abort hook
  1086   abort_hook_t abort_hook = Arguments::abort_hook();
  1087   if (abort_hook != NULL) {
  1088     abort_hook();
  1093 // Note: os::abort() might be called very early during initialization, or
  1094 // called from signal handler. Before adding something to os::abort(), make
  1095 // sure it is async-safe and can handle partially initialized VM.
  1096 void os::abort(bool dump_core) {
  1097   os::shutdown();
  1098   if (dump_core) {
  1099 #ifndef PRODUCT
  1100     fdStream out(defaultStream::output_fd());
  1101     out.print_raw("Current thread is ");
  1102     char buf[16];
  1103     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1104     out.print_raw_cr(buf);
  1105     out.print_raw_cr("Dumping core ...");
  1106 #endif
  1107     ::abort(); // dump core
  1110   ::exit(1);
  1113 // Die immediately, no exit hook, no abort hook, no cleanup.
  1114 void os::die() {
  1115   // _exit() on BsdThreads only kills current thread
  1116   ::abort();
  1119 // unused on bsd for now.
  1120 void os::set_error_file(const char *logfile) {}
  1123 // This method is a copy of JDK's sysGetLastErrorString
  1124 // from src/solaris/hpi/src/system_md.c
  1126 size_t os::lasterror(char *buf, size_t len) {
  1128   if (errno == 0)  return 0;
  1130   const char *s = ::strerror(errno);
  1131   size_t n = ::strlen(s);
  1132   if (n >= len) {
  1133     n = len - 1;
  1135   ::strncpy(buf, s, n);
  1136   buf[n] = '\0';
  1137   return n;
  1140 intx os::current_thread_id() {
  1141 #ifdef __APPLE__
  1142   return (intx)::pthread_mach_thread_np(::pthread_self());
  1143 #else
  1144   return (intx)::pthread_self();
  1145 #endif
  1147 int os::current_process_id() {
  1149   // Under the old bsd thread library, bsd gives each thread
  1150   // its own process id. Because of this each thread will return
  1151   // a different pid if this method were to return the result
  1152   // of getpid(2). Bsd provides no api that returns the pid
  1153   // of the launcher thread for the vm. This implementation
  1154   // returns a unique pid, the pid of the launcher thread
  1155   // that starts the vm 'process'.
  1157   // Under the NPTL, getpid() returns the same pid as the
  1158   // launcher thread rather than a unique pid per thread.
  1159   // Use gettid() if you want the old pre NPTL behaviour.
  1161   // if you are looking for the result of a call to getpid() that
  1162   // returns a unique pid for the calling thread, then look at the
  1163   // OSThread::thread_id() method in osThread_bsd.hpp file
  1165   return (int)(_initial_pid ? _initial_pid : getpid());
  1168 // DLL functions
  1170 #define JNI_LIB_PREFIX "lib"
  1171 #ifdef __APPLE__
  1172 #define JNI_LIB_SUFFIX ".dylib"
  1173 #else
  1174 #define JNI_LIB_SUFFIX ".so"
  1175 #endif
  1177 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
  1179 // This must be hard coded because it's the system's temporary
  1180 // directory not the java application's temp directory, ala java.io.tmpdir.
  1181 #ifdef __APPLE__
  1182 // macosx has a secure per-user temporary directory
  1183 char temp_path_storage[PATH_MAX];
  1184 const char* os::get_temp_directory() {
  1185   static char *temp_path = NULL;
  1186   if (temp_path == NULL) {
  1187     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
  1188     if (pathSize == 0 || pathSize > PATH_MAX) {
  1189       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
  1191     temp_path = temp_path_storage;
  1193   return temp_path;
  1195 #else /* __APPLE__ */
  1196 const char* os::get_temp_directory() { return "/tmp"; }
  1197 #endif /* __APPLE__ */
  1199 static bool file_exists(const char* filename) {
  1200   struct stat statbuf;
  1201   if (filename == NULL || strlen(filename) == 0) {
  1202     return false;
  1204   return os::stat(filename, &statbuf) == 0;
  1207 bool os::dll_build_name(char* buffer, size_t buflen,
  1208                         const char* pname, const char* fname) {
  1209   bool retval = false;
  1210   // Copied from libhpi
  1211   const size_t pnamelen = pname ? strlen(pname) : 0;
  1213   // Return error on buffer overflow.
  1214   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
  1215     return retval;
  1218   if (pnamelen == 0) {
  1219     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
  1220     retval = true;
  1221   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1222     int n;
  1223     char** pelements = split_path(pname, &n);
  1224     if (pelements == NULL) {
  1225       return false;
  1227     for (int i = 0 ; i < n ; i++) {
  1228       // Really shouldn't be NULL, but check can't hurt
  1229       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1230         continue; // skip the empty path values
  1232       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
  1233           pelements[i], fname);
  1234       if (file_exists(buffer)) {
  1235         retval = true;
  1236         break;
  1239     // release the storage
  1240     for (int i = 0 ; i < n ; i++) {
  1241       if (pelements[i] != NULL) {
  1242         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1245     if (pelements != NULL) {
  1246       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1248   } else {
  1249     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
  1250     retval = true;
  1252   return retval;
  1255 // check if addr is inside libjvm.so
  1256 bool os::address_is_in_vm(address addr) {
  1257   static address libjvm_base_addr;
  1258   Dl_info dlinfo;
  1260   if (libjvm_base_addr == NULL) {
  1261     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1262       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1264     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1267   if (dladdr((void *)addr, &dlinfo) != 0) {
  1268     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1271   return false;
  1275 #define MACH_MAXSYMLEN 256
  1277 bool os::dll_address_to_function_name(address addr, char *buf,
  1278                                       int buflen, int *offset) {
  1279   // buf is not optional, but offset is optional
  1280   assert(buf != NULL, "sanity check");
  1282   Dl_info dlinfo;
  1283   char localbuf[MACH_MAXSYMLEN];
  1285   if (dladdr((void*)addr, &dlinfo) != 0) {
  1286     // see if we have a matching symbol
  1287     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1288       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1289         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1291       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1292       return true;
  1294     // no matching symbol so try for just file info
  1295     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1296       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1297                           buf, buflen, offset, dlinfo.dli_fname)) {
  1298          return true;
  1302     // Handle non-dynamic manually:
  1303     if (dlinfo.dli_fbase != NULL &&
  1304         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
  1305                         dlinfo.dli_fbase)) {
  1306       if (!Decoder::demangle(localbuf, buf, buflen)) {
  1307         jio_snprintf(buf, buflen, "%s", localbuf);
  1309       return true;
  1312   buf[0] = '\0';
  1313   if (offset != NULL) *offset = -1;
  1314   return false;
  1317 // ported from solaris version
  1318 bool os::dll_address_to_library_name(address addr, char* buf,
  1319                                      int buflen, int* offset) {
  1320   // buf is not optional, but offset is optional
  1321   assert(buf != NULL, "sanity check");
  1323   Dl_info dlinfo;
  1325   if (dladdr((void*)addr, &dlinfo) != 0) {
  1326     if (dlinfo.dli_fname != NULL) {
  1327       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1329     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1330       *offset = addr - (address)dlinfo.dli_fbase;
  1332     return true;
  1335   buf[0] = '\0';
  1336   if (offset) *offset = -1;
  1337   return false;
  1340 // Loads .dll/.so and
  1341 // in case of error it checks if .dll/.so was built for the
  1342 // same architecture as Hotspot is running on
  1344 #ifdef __APPLE__
  1345 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
  1346   void * result= ::dlopen(filename, RTLD_LAZY);
  1347   if (result != NULL) {
  1348     // Successful loading
  1349     return result;
  1352   // Read system error message into ebuf
  1353   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1354   ebuf[ebuflen-1]='\0';
  1356   return NULL;
  1358 #else
  1359 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1361   void * result= ::dlopen(filename, RTLD_LAZY);
  1362   if (result != NULL) {
  1363     // Successful loading
  1364     return result;
  1367   Elf32_Ehdr elf_head;
  1369   // Read system error message into ebuf
  1370   // It may or may not be overwritten below
  1371   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1372   ebuf[ebuflen-1]='\0';
  1373   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1374   char* diag_msg_buf=ebuf+strlen(ebuf);
  1376   if (diag_msg_max_length==0) {
  1377     // No more space in ebuf for additional diagnostics message
  1378     return NULL;
  1382   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1384   if (file_descriptor < 0) {
  1385     // Can't open library, report dlerror() message
  1386     return NULL;
  1389   bool failed_to_read_elf_head=
  1390     (sizeof(elf_head)!=
  1391         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1393   ::close(file_descriptor);
  1394   if (failed_to_read_elf_head) {
  1395     // file i/o error - report dlerror() msg
  1396     return NULL;
  1399   typedef struct {
  1400     Elf32_Half  code;         // Actual value as defined in elf.h
  1401     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1402     char        elf_class;    // 32 or 64 bit
  1403     char        endianess;    // MSB or LSB
  1404     char*       name;         // String representation
  1405   } arch_t;
  1407   #ifndef EM_486
  1408   #define EM_486          6               /* Intel 80486 */
  1409   #endif
  1411   #ifndef EM_MIPS_RS3_LE
  1412   #define EM_MIPS_RS3_LE  10              /* MIPS */
  1413   #endif
  1415   #ifndef EM_PPC64
  1416   #define EM_PPC64        21              /* PowerPC64 */
  1417   #endif
  1419   #ifndef EM_S390
  1420   #define EM_S390         22              /* IBM System/390 */
  1421   #endif
  1423   #ifndef EM_IA_64
  1424   #define EM_IA_64        50              /* HP/Intel IA-64 */
  1425   #endif
  1427   #ifndef EM_X86_64
  1428   #define EM_X86_64       62              /* AMD x86-64 */
  1429   #endif
  1431   static const arch_t arch_array[]={
  1432     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1433     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1434     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1435     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1436     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1437     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1438     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1439     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1440     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1441     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1442     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1443     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1444     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1445     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1446     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1447     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1448   };
  1450   #if  (defined IA32)
  1451     static  Elf32_Half running_arch_code=EM_386;
  1452   #elif   (defined AMD64)
  1453     static  Elf32_Half running_arch_code=EM_X86_64;
  1454   #elif  (defined IA64)
  1455     static  Elf32_Half running_arch_code=EM_IA_64;
  1456   #elif  (defined __sparc) && (defined _LP64)
  1457     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1458   #elif  (defined __sparc) && (!defined _LP64)
  1459     static  Elf32_Half running_arch_code=EM_SPARC;
  1460   #elif  (defined __powerpc64__)
  1461     static  Elf32_Half running_arch_code=EM_PPC64;
  1462   #elif  (defined __powerpc__)
  1463     static  Elf32_Half running_arch_code=EM_PPC;
  1464   #elif  (defined ARM)
  1465     static  Elf32_Half running_arch_code=EM_ARM;
  1466   #elif  (defined S390)
  1467     static  Elf32_Half running_arch_code=EM_S390;
  1468   #elif  (defined ALPHA)
  1469     static  Elf32_Half running_arch_code=EM_ALPHA;
  1470   #elif  (defined MIPSEL)
  1471     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1472   #elif  (defined PARISC)
  1473     static  Elf32_Half running_arch_code=EM_PARISC;
  1474   #elif  (defined MIPS)
  1475     static  Elf32_Half running_arch_code=EM_MIPS;
  1476   #elif  (defined M68K)
  1477     static  Elf32_Half running_arch_code=EM_68K;
  1478   #else
  1479     #error Method os::dll_load requires that one of following is defined:\
  1480          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1481   #endif
  1483   // Identify compatability class for VM's architecture and library's architecture
  1484   // Obtain string descriptions for architectures
  1486   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1487   int running_arch_index=-1;
  1489   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1490     if (running_arch_code == arch_array[i].code) {
  1491       running_arch_index    = i;
  1493     if (lib_arch.code == arch_array[i].code) {
  1494       lib_arch.compat_class = arch_array[i].compat_class;
  1495       lib_arch.name         = arch_array[i].name;
  1499   assert(running_arch_index != -1,
  1500     "Didn't find running architecture code (running_arch_code) in arch_array");
  1501   if (running_arch_index == -1) {
  1502     // Even though running architecture detection failed
  1503     // we may still continue with reporting dlerror() message
  1504     return NULL;
  1507   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1508     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1509     return NULL;
  1512 #ifndef S390
  1513   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1514     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1515     return NULL;
  1517 #endif // !S390
  1519   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1520     if ( lib_arch.name!=NULL ) {
  1521       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1522         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1523         lib_arch.name, arch_array[running_arch_index].name);
  1524     } else {
  1525       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1526       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1527         lib_arch.code,
  1528         arch_array[running_arch_index].name);
  1532   return NULL;
  1534 #endif /* !__APPLE__ */
  1536 // XXX: Do we need a lock around this as per Linux?
  1537 void* os::dll_lookup(void* handle, const char* name) {
  1538   return dlsym(handle, name);
  1542 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1543   int fd = ::open(filename, O_RDONLY);
  1544   if (fd == -1) {
  1545      return false;
  1548   char buf[32];
  1549   int bytes;
  1550   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  1551     st->print_raw(buf, bytes);
  1554   ::close(fd);
  1556   return true;
  1559 void os::print_dll_info(outputStream *st) {
  1560   st->print_cr("Dynamic libraries:");
  1561 #ifdef RTLD_DI_LINKMAP
  1562   Dl_info dli;
  1563   void *handle;
  1564   Link_map *map;
  1565   Link_map *p;
  1567   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
  1568       dli.dli_fname == NULL) {
  1569     st->print_cr("Error: Cannot print dynamic libraries.");
  1570     return;
  1572   handle = dlopen(dli.dli_fname, RTLD_LAZY);
  1573   if (handle == NULL) {
  1574     st->print_cr("Error: Cannot print dynamic libraries.");
  1575     return;
  1577   dlinfo(handle, RTLD_DI_LINKMAP, &map);
  1578   if (map == NULL) {
  1579     st->print_cr("Error: Cannot print dynamic libraries.");
  1580     return;
  1583   while (map->l_prev != NULL)
  1584     map = map->l_prev;
  1586   while (map != NULL) {
  1587     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  1588     map = map->l_next;
  1591   dlclose(handle);
  1592 #elif defined(__APPLE__)
  1593   uint32_t count;
  1594   uint32_t i;
  1596   count = _dyld_image_count();
  1597   for (i = 1; i < count; i++) {
  1598     const char *name = _dyld_get_image_name(i);
  1599     intptr_t slide = _dyld_get_image_vmaddr_slide(i);
  1600     st->print_cr(PTR_FORMAT " \t%s", slide, name);
  1602 #else
  1603   st->print_cr("Error: Cannot print dynamic libraries.");
  1604 #endif
  1607 void os::print_os_info_brief(outputStream* st) {
  1608   st->print("Bsd");
  1610   os::Posix::print_uname_info(st);
  1613 void os::print_os_info(outputStream* st) {
  1614   st->print("OS:");
  1615   st->print("Bsd");
  1617   os::Posix::print_uname_info(st);
  1619   os::Posix::print_rlimit_info(st);
  1621   os::Posix::print_load_average(st);
  1624 void os::pd_print_cpu_info(outputStream* st) {
  1625   // Nothing to do for now.
  1628 void os::print_memory_info(outputStream* st) {
  1630   st->print("Memory:");
  1631   st->print(" %dk page", os::vm_page_size()>>10);
  1633   st->print(", physical " UINT64_FORMAT "k",
  1634             os::physical_memory() >> 10);
  1635   st->print("(" UINT64_FORMAT "k free)",
  1636             os::available_memory() >> 10);
  1637   st->cr();
  1639   // meminfo
  1640   st->print("\n/proc/meminfo:\n");
  1641   _print_ascii_file("/proc/meminfo", st);
  1642   st->cr();
  1645 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  1646 // but they're the same for all the bsd arch that we support
  1647 // and they're the same for solaris but there's no common place to put this.
  1648 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  1649                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  1650                           "ILL_COPROC", "ILL_BADSTK" };
  1652 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  1653                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  1654                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  1656 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  1658 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  1660 void os::print_siginfo(outputStream* st, void* siginfo) {
  1661   st->print("siginfo:");
  1663   const int buflen = 100;
  1664   char buf[buflen];
  1665   siginfo_t *si = (siginfo_t*)siginfo;
  1666   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  1667   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  1668     st->print("si_errno=%s", buf);
  1669   } else {
  1670     st->print("si_errno=%d", si->si_errno);
  1672   const int c = si->si_code;
  1673   assert(c > 0, "unexpected si_code");
  1674   switch (si->si_signo) {
  1675   case SIGILL:
  1676     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  1677     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1678     break;
  1679   case SIGFPE:
  1680     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  1681     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1682     break;
  1683   case SIGSEGV:
  1684     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  1685     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1686     break;
  1687   case SIGBUS:
  1688     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  1689     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1690     break;
  1691   default:
  1692     st->print(", si_code=%d", si->si_code);
  1693     // no si_addr
  1696   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  1697       UseSharedSpaces) {
  1698     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1699     if (mapinfo->is_in_shared_space(si->si_addr)) {
  1700       st->print("\n\nError accessing class data sharing archive."   \
  1701                 " Mapped file inaccessible during execution, "      \
  1702                 " possible disk/network problem.");
  1705   st->cr();
  1709 static void print_signal_handler(outputStream* st, int sig,
  1710                                  char* buf, size_t buflen);
  1712 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1713   st->print_cr("Signal Handlers:");
  1714   print_signal_handler(st, SIGSEGV, buf, buflen);
  1715   print_signal_handler(st, SIGBUS , buf, buflen);
  1716   print_signal_handler(st, SIGFPE , buf, buflen);
  1717   print_signal_handler(st, SIGPIPE, buf, buflen);
  1718   print_signal_handler(st, SIGXFSZ, buf, buflen);
  1719   print_signal_handler(st, SIGILL , buf, buflen);
  1720   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  1721   print_signal_handler(st, SR_signum, buf, buflen);
  1722   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  1723   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  1724   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  1725   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  1728 static char saved_jvm_path[MAXPATHLEN] = {0};
  1730 // Find the full path to the current module, libjvm
  1731 void os::jvm_path(char *buf, jint buflen) {
  1732   // Error checking.
  1733   if (buflen < MAXPATHLEN) {
  1734     assert(false, "must use a large-enough buffer");
  1735     buf[0] = '\0';
  1736     return;
  1738   // Lazy resolve the path to current module.
  1739   if (saved_jvm_path[0] != 0) {
  1740     strcpy(buf, saved_jvm_path);
  1741     return;
  1744   char dli_fname[MAXPATHLEN];
  1745   bool ret = dll_address_to_library_name(
  1746                 CAST_FROM_FN_PTR(address, os::jvm_path),
  1747                 dli_fname, sizeof(dli_fname), NULL);
  1748   assert(ret, "cannot locate libjvm");
  1749   char *rp = NULL;
  1750   if (ret && dli_fname[0] != '\0') {
  1751     rp = realpath(dli_fname, buf);
  1753   if (rp == NULL)
  1754     return;
  1756   if (Arguments::created_by_gamma_launcher()) {
  1757     // Support for the gamma launcher.  Typical value for buf is
  1758     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
  1759     // the right place in the string, then assume we are installed in a JDK and
  1760     // we're done.  Otherwise, check for a JAVA_HOME environment variable and
  1761     // construct a path to the JVM being overridden.
  1763     const char *p = buf + strlen(buf) - 1;
  1764     for (int count = 0; p > buf && count < 5; ++count) {
  1765       for (--p; p > buf && *p != '/'; --p)
  1766         /* empty */ ;
  1769     if (strncmp(p, "/jre/lib/", 9) != 0) {
  1770       // Look for JAVA_HOME in the environment.
  1771       char* java_home_var = ::getenv("JAVA_HOME");
  1772       if (java_home_var != NULL && java_home_var[0] != 0) {
  1773         char* jrelib_p;
  1774         int len;
  1776         // Check the current module name "libjvm"
  1777         p = strrchr(buf, '/');
  1778         assert(strstr(p, "/libjvm") == p, "invalid library name");
  1780         rp = realpath(java_home_var, buf);
  1781         if (rp == NULL)
  1782           return;
  1784         // determine if this is a legacy image or modules image
  1785         // modules image doesn't have "jre" subdirectory
  1786         len = strlen(buf);
  1787         jrelib_p = buf + len;
  1789         // Add the appropriate library subdir
  1790         snprintf(jrelib_p, buflen-len, "/jre/lib");
  1791         if (0 != access(buf, F_OK)) {
  1792           snprintf(jrelib_p, buflen-len, "/lib");
  1795         // Add the appropriate client or server subdir
  1796         len = strlen(buf);
  1797         jrelib_p = buf + len;
  1798         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
  1799         if (0 != access(buf, F_OK)) {
  1800           snprintf(jrelib_p, buflen-len, "");
  1803         // If the path exists within JAVA_HOME, add the JVM library name
  1804         // to complete the path to JVM being overridden.  Otherwise fallback
  1805         // to the path to the current library.
  1806         if (0 == access(buf, F_OK)) {
  1807           // Use current module name "libjvm"
  1808           len = strlen(buf);
  1809           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
  1810         } else {
  1811           // Fall back to path of current library
  1812           rp = realpath(dli_fname, buf);
  1813           if (rp == NULL)
  1814             return;
  1820   strcpy(saved_jvm_path, buf);
  1823 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1824   // no prefix required, not even "_"
  1827 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1828   // no suffix required
  1831 ////////////////////////////////////////////////////////////////////////////////
  1832 // sun.misc.Signal support
  1834 static volatile jint sigint_count = 0;
  1836 static void
  1837 UserHandler(int sig, void *siginfo, void *context) {
  1838   // 4511530 - sem_post is serialized and handled by the manager thread. When
  1839   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  1840   // don't want to flood the manager thread with sem_post requests.
  1841   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  1842       return;
  1844   // Ctrl-C is pressed during error reporting, likely because the error
  1845   // handler fails to abort. Let VM die immediately.
  1846   if (sig == SIGINT && is_error_reported()) {
  1847      os::die();
  1850   os::signal_notify(sig);
  1853 void* os::user_handler() {
  1854   return CAST_FROM_FN_PTR(void*, UserHandler);
  1857 extern "C" {
  1858   typedef void (*sa_handler_t)(int);
  1859   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  1862 void* os::signal(int signal_number, void* handler) {
  1863   struct sigaction sigAct, oldSigAct;
  1865   sigfillset(&(sigAct.sa_mask));
  1866   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  1867   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  1869   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  1870     // -1 means registration failed
  1871     return (void *)-1;
  1874   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  1877 void os::signal_raise(int signal_number) {
  1878   ::raise(signal_number);
  1881 /*
  1882  * The following code is moved from os.cpp for making this
  1883  * code platform specific, which it is by its very nature.
  1884  */
  1886 // Will be modified when max signal is changed to be dynamic
  1887 int os::sigexitnum_pd() {
  1888   return NSIG;
  1891 // a counter for each possible signal value
  1892 static volatile jint pending_signals[NSIG+1] = { 0 };
  1894 // Bsd(POSIX) specific hand shaking semaphore.
  1895 #ifdef __APPLE__
  1896 typedef semaphore_t os_semaphore_t;
  1897 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
  1898 #define SEM_WAIT(sem)           semaphore_wait(sem)
  1899 #define SEM_POST(sem)           semaphore_signal(sem)
  1900 #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
  1901 #else
  1902 typedef sem_t os_semaphore_t;
  1903 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
  1904 #define SEM_WAIT(sem)           sem_wait(&sem)
  1905 #define SEM_POST(sem)           sem_post(&sem)
  1906 #define SEM_DESTROY(sem)        sem_destroy(&sem)
  1907 #endif
  1909 class Semaphore : public StackObj {
  1910   public:
  1911     Semaphore();
  1912     ~Semaphore();
  1913     void signal();
  1914     void wait();
  1915     bool trywait();
  1916     bool timedwait(unsigned int sec, int nsec);
  1917   private:
  1918     jlong currenttime() const;
  1919     os_semaphore_t _semaphore;
  1920 };
  1922 Semaphore::Semaphore() : _semaphore(0) {
  1923   SEM_INIT(_semaphore, 0);
  1926 Semaphore::~Semaphore() {
  1927   SEM_DESTROY(_semaphore);
  1930 void Semaphore::signal() {
  1931   SEM_POST(_semaphore);
  1934 void Semaphore::wait() {
  1935   SEM_WAIT(_semaphore);
  1938 jlong Semaphore::currenttime() const {
  1939     struct timeval tv;
  1940     gettimeofday(&tv, NULL);
  1941     return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
  1944 #ifdef __APPLE__
  1945 bool Semaphore::trywait() {
  1946   return timedwait(0, 0);
  1949 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  1950   kern_return_t kr = KERN_ABORTED;
  1951   mach_timespec_t waitspec;
  1952   waitspec.tv_sec = sec;
  1953   waitspec.tv_nsec = nsec;
  1955   jlong starttime = currenttime();
  1957   kr = semaphore_timedwait(_semaphore, waitspec);
  1958   while (kr == KERN_ABORTED) {
  1959     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
  1961     jlong current = currenttime();
  1962     jlong passedtime = current - starttime;
  1964     if (passedtime >= totalwait) {
  1965       waitspec.tv_sec = 0;
  1966       waitspec.tv_nsec = 0;
  1967     } else {
  1968       jlong waittime = totalwait - (current - starttime);
  1969       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
  1970       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
  1973     kr = semaphore_timedwait(_semaphore, waitspec);
  1976   return kr == KERN_SUCCESS;
  1979 #else
  1981 bool Semaphore::trywait() {
  1982   return sem_trywait(&_semaphore) == 0;
  1985 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  1986   struct timespec ts;
  1987   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  1989   while (1) {
  1990     int result = sem_timedwait(&_semaphore, &ts);
  1991     if (result == 0) {
  1992       return true;
  1993     } else if (errno == EINTR) {
  1994       continue;
  1995     } else if (errno == ETIMEDOUT) {
  1996       return false;
  1997     } else {
  1998       return false;
  2003 #endif // __APPLE__
  2005 static os_semaphore_t sig_sem;
  2006 static Semaphore sr_semaphore;
  2008 void os::signal_init_pd() {
  2009   // Initialize signal structures
  2010   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2012   // Initialize signal semaphore
  2013   ::SEM_INIT(sig_sem, 0);
  2016 void os::signal_notify(int sig) {
  2017   Atomic::inc(&pending_signals[sig]);
  2018   ::SEM_POST(sig_sem);
  2021 static int check_pending_signals(bool wait) {
  2022   Atomic::store(0, &sigint_count);
  2023   for (;;) {
  2024     for (int i = 0; i < NSIG + 1; i++) {
  2025       jint n = pending_signals[i];
  2026       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2027         return i;
  2030     if (!wait) {
  2031       return -1;
  2033     JavaThread *thread = JavaThread::current();
  2034     ThreadBlockInVM tbivm(thread);
  2036     bool threadIsSuspended;
  2037     do {
  2038       thread->set_suspend_equivalent();
  2039       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2040       ::SEM_WAIT(sig_sem);
  2042       // were we externally suspended while we were waiting?
  2043       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2044       if (threadIsSuspended) {
  2045         //
  2046         // The semaphore has been incremented, but while we were waiting
  2047         // another thread suspended us. We don't want to continue running
  2048         // while suspended because that would surprise the thread that
  2049         // suspended us.
  2050         //
  2051         ::SEM_POST(sig_sem);
  2053         thread->java_suspend_self();
  2055     } while (threadIsSuspended);
  2059 int os::signal_lookup() {
  2060   return check_pending_signals(false);
  2063 int os::signal_wait() {
  2064   return check_pending_signals(true);
  2067 ////////////////////////////////////////////////////////////////////////////////
  2068 // Virtual Memory
  2070 int os::vm_page_size() {
  2071   // Seems redundant as all get out
  2072   assert(os::Bsd::page_size() != -1, "must call os::init");
  2073   return os::Bsd::page_size();
  2076 // Solaris allocates memory by pages.
  2077 int os::vm_allocation_granularity() {
  2078   assert(os::Bsd::page_size() != -1, "must call os::init");
  2079   return os::Bsd::page_size();
  2082 // Rationale behind this function:
  2083 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2084 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2085 //  samples for JITted code. Here we create private executable mapping over the code cache
  2086 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2087 //  info for the reporting script by storing timestamp and location of symbol
  2088 void bsd_wrap_code(char* base, size_t size) {
  2089   static volatile jint cnt = 0;
  2091   if (!UseOprofile) {
  2092     return;
  2095   char buf[PATH_MAX + 1];
  2096   int num = Atomic::add(1, &cnt);
  2098   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
  2099            os::get_temp_directory(), os::current_process_id(), num);
  2100   unlink(buf);
  2102   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2104   if (fd != -1) {
  2105     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2106     if (rv != (off_t)-1) {
  2107       if (::write(fd, "", 1) == 1) {
  2108         mmap(base, size,
  2109              PROT_READ|PROT_WRITE|PROT_EXEC,
  2110              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2113     ::close(fd);
  2114     unlink(buf);
  2118 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2119                                     int err) {
  2120   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2121           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2122           strerror(err), err);
  2125 // NOTE: Bsd kernel does not really reserve the pages for us.
  2126 //       All it does is to check if there are enough free pages
  2127 //       left at the time of mmap(). This could be a potential
  2128 //       problem.
  2129 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2130   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2131 #ifdef __OpenBSD__
  2132   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2133   if (::mprotect(addr, size, prot) == 0) {
  2134     return true;
  2136 #else
  2137   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2138                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2139   if (res != (uintptr_t) MAP_FAILED) {
  2140     return true;
  2142 #endif
  2144   // Warn about any commit errors we see in non-product builds just
  2145   // in case mmap() doesn't work as described on the man page.
  2146   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
  2148   return false;
  2151 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2152                        bool exec) {
  2153   // alignment_hint is ignored on this OS
  2154   return pd_commit_memory(addr, size, exec);
  2157 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2158                                   const char* mesg) {
  2159   assert(mesg != NULL, "mesg must be specified");
  2160   if (!pd_commit_memory(addr, size, exec)) {
  2161     // add extra info in product mode for vm_exit_out_of_memory():
  2162     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
  2163     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2167 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2168                                   size_t alignment_hint, bool exec,
  2169                                   const char* mesg) {
  2170   // alignment_hint is ignored on this OS
  2171   pd_commit_memory_or_exit(addr, size, exec, mesg);
  2174 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2177 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2178   ::madvise(addr, bytes, MADV_DONTNEED);
  2181 void os::numa_make_global(char *addr, size_t bytes) {
  2184 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2187 bool os::numa_topology_changed()   { return false; }
  2189 size_t os::numa_get_groups_num() {
  2190   return 1;
  2193 int os::numa_get_group_id() {
  2194   return 0;
  2197 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2198   if (size > 0) {
  2199     ids[0] = 0;
  2200     return 1;
  2202   return 0;
  2205 bool os::get_page_info(char *start, page_info* info) {
  2206   return false;
  2209 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2210   return end;
  2214 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2215 #ifdef __OpenBSD__
  2216   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2217   return ::mprotect(addr, size, PROT_NONE) == 0;
  2218 #else
  2219   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2220                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2221   return res  != (uintptr_t) MAP_FAILED;
  2222 #endif
  2225 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2226   return os::commit_memory(addr, size, !ExecMem);
  2229 // If this is a growable mapping, remove the guard pages entirely by
  2230 // munmap()ping them.  If not, just call uncommit_memory().
  2231 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2232   return os::uncommit_memory(addr, size);
  2235 static address _highest_vm_reserved_address = NULL;
  2237 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2238 // at 'requested_addr'. If there are existing memory mappings at the same
  2239 // location, however, they will be overwritten. If 'fixed' is false,
  2240 // 'requested_addr' is only treated as a hint, the return value may or
  2241 // may not start from the requested address. Unlike Bsd mmap(), this
  2242 // function returns NULL to indicate failure.
  2243 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2244   char * addr;
  2245   int flags;
  2247   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2248   if (fixed) {
  2249     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
  2250     flags |= MAP_FIXED;
  2253   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  2254   // touch an uncommitted page. Otherwise, the read/write might
  2255   // succeed if we have enough swap space to back the physical page.
  2256   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  2257                        flags, -1, 0);
  2259   if (addr != MAP_FAILED) {
  2260     // anon_mmap() should only get called during VM initialization,
  2261     // don't need lock (actually we can skip locking even it can be called
  2262     // from multiple threads, because _highest_vm_reserved_address is just a
  2263     // hint about the upper limit of non-stack memory regions.)
  2264     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2265       _highest_vm_reserved_address = (address)addr + bytes;
  2269   return addr == MAP_FAILED ? NULL : addr;
  2272 // Don't update _highest_vm_reserved_address, because there might be memory
  2273 // regions above addr + size. If so, releasing a memory region only creates
  2274 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2275 //
  2276 static int anon_munmap(char * addr, size_t size) {
  2277   return ::munmap(addr, size) == 0;
  2280 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2281                          size_t alignment_hint) {
  2282   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2285 bool os::pd_release_memory(char* addr, size_t size) {
  2286   return anon_munmap(addr, size);
  2289 static bool bsd_mprotect(char* addr, size_t size, int prot) {
  2290   // Bsd wants the mprotect address argument to be page aligned.
  2291   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
  2293   // According to SUSv3, mprotect() should only be used with mappings
  2294   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2295   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2296   // protection of malloc'ed or statically allocated memory). Check the
  2297   // caller if you hit this assert.
  2298   assert(addr == bottom, "sanity check");
  2300   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
  2301   return ::mprotect(bottom, size, prot) == 0;
  2304 // Set protections specified
  2305 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2306                         bool is_committed) {
  2307   unsigned int p = 0;
  2308   switch (prot) {
  2309   case MEM_PROT_NONE: p = PROT_NONE; break;
  2310   case MEM_PROT_READ: p = PROT_READ; break;
  2311   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2312   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2313   default:
  2314     ShouldNotReachHere();
  2316   // is_committed is unused.
  2317   return bsd_mprotect(addr, bytes, p);
  2320 bool os::guard_memory(char* addr, size_t size) {
  2321   return bsd_mprotect(addr, size, PROT_NONE);
  2324 bool os::unguard_memory(char* addr, size_t size) {
  2325   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2328 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2329   return false;
  2332 // Large page support
  2334 static size_t _large_page_size = 0;
  2336 void os::large_page_init() {
  2340 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  2341   fatal("This code is not used or maintained.");
  2343   // "exec" is passed in but not used.  Creating the shared image for
  2344   // the code cache doesn't have an SHM_X executable permission to check.
  2345   assert(UseLargePages && UseSHM, "only for SHM large pages");
  2347   key_t key = IPC_PRIVATE;
  2348   char *addr;
  2350   bool warn_on_failure = UseLargePages &&
  2351                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2352                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2353                         );
  2354   char msg[128];
  2356   // Create a large shared memory region to attach to based on size.
  2357   // Currently, size is the total size of the heap
  2358   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
  2359   if (shmid == -1) {
  2360      // Possible reasons for shmget failure:
  2361      // 1. shmmax is too small for Java heap.
  2362      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2363      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2364      // 2. not enough large page memory.
  2365      //    > check available large pages: cat /proc/meminfo
  2366      //    > increase amount of large pages:
  2367      //          echo new_value > /proc/sys/vm/nr_hugepages
  2368      //      Note 1: different Bsd may use different name for this property,
  2369      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2370      //      Note 2: it's possible there's enough physical memory available but
  2371      //            they are so fragmented after a long run that they can't
  2372      //            coalesce into large pages. Try to reserve large pages when
  2373      //            the system is still "fresh".
  2374      if (warn_on_failure) {
  2375        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2376        warning(msg);
  2378      return NULL;
  2381   // attach to the region
  2382   addr = (char*)shmat(shmid, req_addr, 0);
  2383   int err = errno;
  2385   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2386   // will be deleted when it's detached by shmdt() or when the process
  2387   // terminates. If shmat() is not successful this will remove the shared
  2388   // segment immediately.
  2389   shmctl(shmid, IPC_RMID, NULL);
  2391   if ((intptr_t)addr == -1) {
  2392      if (warn_on_failure) {
  2393        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2394        warning(msg);
  2396      return NULL;
  2399   // The memory is committed
  2400   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
  2402   return addr;
  2405 bool os::release_memory_special(char* base, size_t bytes) {
  2406   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  2407   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2408   int rslt = shmdt(base);
  2409   if (rslt == 0) {
  2410     tkr.record((address)base, bytes);
  2411     return true;
  2412   } else {
  2413     tkr.discard();
  2414     return false;
  2419 size_t os::large_page_size() {
  2420   return _large_page_size;
  2423 // HugeTLBFS allows application to commit large page memory on demand;
  2424 // with SysV SHM the entire memory region must be allocated as shared
  2425 // memory.
  2426 bool os::can_commit_large_page_memory() {
  2427   return UseHugeTLBFS;
  2430 bool os::can_execute_large_page_memory() {
  2431   return UseHugeTLBFS;
  2434 // Reserve memory at an arbitrary address, only if that area is
  2435 // available (and not reserved for something else).
  2437 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2438   const int max_tries = 10;
  2439   char* base[max_tries];
  2440   size_t size[max_tries];
  2441   const size_t gap = 0x000000;
  2443   // Assert only that the size is a multiple of the page size, since
  2444   // that's all that mmap requires, and since that's all we really know
  2445   // about at this low abstraction level.  If we need higher alignment,
  2446   // we can either pass an alignment to this method or verify alignment
  2447   // in one of the methods further up the call chain.  See bug 5044738.
  2448   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2450   // Repeatedly allocate blocks until the block is allocated at the
  2451   // right spot. Give up after max_tries. Note that reserve_memory() will
  2452   // automatically update _highest_vm_reserved_address if the call is
  2453   // successful. The variable tracks the highest memory address every reserved
  2454   // by JVM. It is used to detect heap-stack collision if running with
  2455   // fixed-stack BsdThreads. Because here we may attempt to reserve more
  2456   // space than needed, it could confuse the collision detecting code. To
  2457   // solve the problem, save current _highest_vm_reserved_address and
  2458   // calculate the correct value before return.
  2459   address old_highest = _highest_vm_reserved_address;
  2461   // Bsd mmap allows caller to pass an address as hint; give it a try first,
  2462   // if kernel honors the hint then we can return immediately.
  2463   char * addr = anon_mmap(requested_addr, bytes, false);
  2464   if (addr == requested_addr) {
  2465      return requested_addr;
  2468   if (addr != NULL) {
  2469      // mmap() is successful but it fails to reserve at the requested address
  2470      anon_munmap(addr, bytes);
  2473   int i;
  2474   for (i = 0; i < max_tries; ++i) {
  2475     base[i] = reserve_memory(bytes);
  2477     if (base[i] != NULL) {
  2478       // Is this the block we wanted?
  2479       if (base[i] == requested_addr) {
  2480         size[i] = bytes;
  2481         break;
  2484       // Does this overlap the block we wanted? Give back the overlapped
  2485       // parts and try again.
  2487       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2488       if (top_overlap >= 0 && top_overlap < bytes) {
  2489         unmap_memory(base[i], top_overlap);
  2490         base[i] += top_overlap;
  2491         size[i] = bytes - top_overlap;
  2492       } else {
  2493         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2494         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2495           unmap_memory(requested_addr, bottom_overlap);
  2496           size[i] = bytes - bottom_overlap;
  2497         } else {
  2498           size[i] = bytes;
  2504   // Give back the unused reserved pieces.
  2506   for (int j = 0; j < i; ++j) {
  2507     if (base[j] != NULL) {
  2508       unmap_memory(base[j], size[j]);
  2512   if (i < max_tries) {
  2513     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2514     return requested_addr;
  2515   } else {
  2516     _highest_vm_reserved_address = old_highest;
  2517     return NULL;
  2521 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2522   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
  2525 // TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
  2526 // Solaris uses poll(), bsd uses park().
  2527 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2528 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2529 // SIGSEGV, see 4355769.
  2531 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2532   assert(thread == Thread::current(),  "thread consistency check");
  2534   ParkEvent * const slp = thread->_SleepEvent ;
  2535   slp->reset() ;
  2536   OrderAccess::fence() ;
  2538   if (interruptible) {
  2539     jlong prevtime = javaTimeNanos();
  2541     for (;;) {
  2542       if (os::is_interrupted(thread, true)) {
  2543         return OS_INTRPT;
  2546       jlong newtime = javaTimeNanos();
  2548       if (newtime - prevtime < 0) {
  2549         // time moving backwards, should only happen if no monotonic clock
  2550         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2551         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  2552       } else {
  2553         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  2556       if(millis <= 0) {
  2557         return OS_OK;
  2560       prevtime = newtime;
  2563         assert(thread->is_Java_thread(), "sanity check");
  2564         JavaThread *jt = (JavaThread *) thread;
  2565         ThreadBlockInVM tbivm(jt);
  2566         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  2568         jt->set_suspend_equivalent();
  2569         // cleared by handle_special_suspend_equivalent_condition() or
  2570         // java_suspend_self() via check_and_wait_while_suspended()
  2572         slp->park(millis);
  2574         // were we externally suspended while we were waiting?
  2575         jt->check_and_wait_while_suspended();
  2578   } else {
  2579     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  2580     jlong prevtime = javaTimeNanos();
  2582     for (;;) {
  2583       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  2584       // the 1st iteration ...
  2585       jlong newtime = javaTimeNanos();
  2587       if (newtime - prevtime < 0) {
  2588         // time moving backwards, should only happen if no monotonic clock
  2589         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2590         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  2591       } else {
  2592         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  2595       if(millis <= 0) break ;
  2597       prevtime = newtime;
  2598       slp->park(millis);
  2600     return OS_OK ;
  2604 int os::naked_sleep() {
  2605   // %% make the sleep time an integer flag. for now use 1 millisec.
  2606   return os::sleep(Thread::current(), 1, false);
  2609 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2610 void os::infinite_sleep() {
  2611   while (true) {    // sleep forever ...
  2612     ::sleep(100);   // ... 100 seconds at a time
  2616 // Used to convert frequent JVM_Yield() to nops
  2617 bool os::dont_yield() {
  2618   return DontYieldALot;
  2621 void os::yield() {
  2622   sched_yield();
  2625 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  2627 void os::yield_all(int attempts) {
  2628   // Yields to all threads, including threads with lower priorities
  2629   // Threads on Bsd are all with same priority. The Solaris style
  2630   // os::yield_all() with nanosleep(1ms) is not necessary.
  2631   sched_yield();
  2634 // Called from the tight loops to possibly influence time-sharing heuristics
  2635 void os::loop_breaker(int attempts) {
  2636   os::yield_all(attempts);
  2639 ////////////////////////////////////////////////////////////////////////////////
  2640 // thread priority support
  2642 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
  2643 // only supports dynamic priority, static priority must be zero. For real-time
  2644 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
  2645 // However, for large multi-threaded applications, SCHED_RR is not only slower
  2646 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  2647 // of 5 runs - Sep 2005).
  2648 //
  2649 // The following code actually changes the niceness of kernel-thread/LWP. It
  2650 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  2651 // not the entire user process, and user level threads are 1:1 mapped to kernel
  2652 // threads. It has always been the case, but could change in the future. For
  2653 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  2654 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  2656 #if !defined(__APPLE__)
  2657 int os::java_to_os_priority[CriticalPriority + 1] = {
  2658   19,              // 0 Entry should never be used
  2660    0,              // 1 MinPriority
  2661    3,              // 2
  2662    6,              // 3
  2664   10,              // 4
  2665   15,              // 5 NormPriority
  2666   18,              // 6
  2668   21,              // 7
  2669   25,              // 8
  2670   28,              // 9 NearMaxPriority
  2672   31,              // 10 MaxPriority
  2674   31               // 11 CriticalPriority
  2675 };
  2676 #else
  2677 /* Using Mach high-level priority assignments */
  2678 int os::java_to_os_priority[CriticalPriority + 1] = {
  2679    0,              // 0 Entry should never be used (MINPRI_USER)
  2681   27,              // 1 MinPriority
  2682   28,              // 2
  2683   29,              // 3
  2685   30,              // 4
  2686   31,              // 5 NormPriority (BASEPRI_DEFAULT)
  2687   32,              // 6
  2689   33,              // 7
  2690   34,              // 8
  2691   35,              // 9 NearMaxPriority
  2693   36,              // 10 MaxPriority
  2695   36               // 11 CriticalPriority
  2696 };
  2697 #endif
  2699 static int prio_init() {
  2700   if (ThreadPriorityPolicy == 1) {
  2701     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  2702     // if effective uid is not root. Perhaps, a more elegant way of doing
  2703     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  2704     if (geteuid() != 0) {
  2705       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  2706         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
  2708       ThreadPriorityPolicy = 0;
  2711   if (UseCriticalJavaThreadPriority) {
  2712     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  2714   return 0;
  2717 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  2718   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  2720 #ifdef __OpenBSD__
  2721   // OpenBSD pthread_setprio starves low priority threads
  2722   return OS_OK;
  2723 #elif defined(__FreeBSD__)
  2724   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
  2725 #elif defined(__APPLE__) || defined(__NetBSD__)
  2726   struct sched_param sp;
  2727   int policy;
  2728   pthread_t self = pthread_self();
  2730   if (pthread_getschedparam(self, &policy, &sp) != 0)
  2731     return OS_ERR;
  2733   sp.sched_priority = newpri;
  2734   if (pthread_setschedparam(self, policy, &sp) != 0)
  2735     return OS_ERR;
  2737   return OS_OK;
  2738 #else
  2739   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  2740   return (ret == 0) ? OS_OK : OS_ERR;
  2741 #endif
  2744 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  2745   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  2746     *priority_ptr = java_to_os_priority[NormPriority];
  2747     return OS_OK;
  2750   errno = 0;
  2751 #if defined(__OpenBSD__) || defined(__FreeBSD__)
  2752   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
  2753 #elif defined(__APPLE__) || defined(__NetBSD__)
  2754   int policy;
  2755   struct sched_param sp;
  2757   pthread_getschedparam(pthread_self(), &policy, &sp);
  2758   *priority_ptr = sp.sched_priority;
  2759 #else
  2760   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  2761 #endif
  2762   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  2765 // Hint to the underlying OS that a task switch would not be good.
  2766 // Void return because it's a hint and can fail.
  2767 void os::hint_no_preempt() {}
  2769 ////////////////////////////////////////////////////////////////////////////////
  2770 // suspend/resume support
  2772 //  the low-level signal-based suspend/resume support is a remnant from the
  2773 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  2774 //  within hotspot. Now there is a single use-case for this:
  2775 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  2776 //      that runs in the watcher thread.
  2777 //  The remaining code is greatly simplified from the more general suspension
  2778 //  code that used to be used.
  2779 //
  2780 //  The protocol is quite simple:
  2781 //  - suspend:
  2782 //      - sends a signal to the target thread
  2783 //      - polls the suspend state of the osthread using a yield loop
  2784 //      - target thread signal handler (SR_handler) sets suspend state
  2785 //        and blocks in sigsuspend until continued
  2786 //  - resume:
  2787 //      - sets target osthread state to continue
  2788 //      - sends signal to end the sigsuspend loop in the SR_handler
  2789 //
  2790 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  2791 //
  2793 static void resume_clear_context(OSThread *osthread) {
  2794   osthread->set_ucontext(NULL);
  2795   osthread->set_siginfo(NULL);
  2798 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  2799   osthread->set_ucontext(context);
  2800   osthread->set_siginfo(siginfo);
  2803 //
  2804 // Handler function invoked when a thread's execution is suspended or
  2805 // resumed. We have to be careful that only async-safe functions are
  2806 // called here (Note: most pthread functions are not async safe and
  2807 // should be avoided.)
  2808 //
  2809 // Note: sigwait() is a more natural fit than sigsuspend() from an
  2810 // interface point of view, but sigwait() prevents the signal hander
  2811 // from being run. libpthread would get very confused by not having
  2812 // its signal handlers run and prevents sigwait()'s use with the
  2813 // mutex granting granting signal.
  2814 //
  2815 // Currently only ever called on the VMThread or JavaThread
  2816 //
  2817 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  2818   // Save and restore errno to avoid confusing native code with EINTR
  2819   // after sigsuspend.
  2820   int old_errno = errno;
  2822   Thread* thread = Thread::current();
  2823   OSThread* osthread = thread->osthread();
  2824   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  2826   os::SuspendResume::State current = osthread->sr.state();
  2827   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  2828     suspend_save_context(osthread, siginfo, context);
  2830     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  2831     os::SuspendResume::State state = osthread->sr.suspended();
  2832     if (state == os::SuspendResume::SR_SUSPENDED) {
  2833       sigset_t suspend_set;  // signals for sigsuspend()
  2835       // get current set of blocked signals and unblock resume signal
  2836       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  2837       sigdelset(&suspend_set, SR_signum);
  2839       sr_semaphore.signal();
  2840       // wait here until we are resumed
  2841       while (1) {
  2842         sigsuspend(&suspend_set);
  2844         os::SuspendResume::State result = osthread->sr.running();
  2845         if (result == os::SuspendResume::SR_RUNNING) {
  2846           sr_semaphore.signal();
  2847           break;
  2848         } else if (result != os::SuspendResume::SR_SUSPENDED) {
  2849           ShouldNotReachHere();
  2853     } else if (state == os::SuspendResume::SR_RUNNING) {
  2854       // request was cancelled, continue
  2855     } else {
  2856       ShouldNotReachHere();
  2859     resume_clear_context(osthread);
  2860   } else if (current == os::SuspendResume::SR_RUNNING) {
  2861     // request was cancelled, continue
  2862   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  2863     // ignore
  2864   } else {
  2865     // ignore
  2868   errno = old_errno;
  2872 static int SR_initialize() {
  2873   struct sigaction act;
  2874   char *s;
  2875   /* Get signal number to use for suspend/resume */
  2876   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  2877     int sig = ::strtol(s, 0, 10);
  2878     if (sig > 0 || sig < NSIG) {
  2879         SR_signum = sig;
  2883   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  2884         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  2886   sigemptyset(&SR_sigset);
  2887   sigaddset(&SR_sigset, SR_signum);
  2889   /* Set up signal handler for suspend/resume */
  2890   act.sa_flags = SA_RESTART|SA_SIGINFO;
  2891   act.sa_handler = (void (*)(int)) SR_handler;
  2893   // SR_signum is blocked by default.
  2894   // 4528190 - We also need to block pthread restart signal (32 on all
  2895   // supported Bsd platforms). Note that BsdThreads need to block
  2896   // this signal for all threads to work properly. So we don't have
  2897   // to use hard-coded signal number when setting up the mask.
  2898   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  2900   if (sigaction(SR_signum, &act, 0) == -1) {
  2901     return -1;
  2904   // Save signal flag
  2905   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
  2906   return 0;
  2909 static int sr_notify(OSThread* osthread) {
  2910   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  2911   assert_status(status == 0, status, "pthread_kill");
  2912   return status;
  2915 // "Randomly" selected value for how long we want to spin
  2916 // before bailing out on suspending a thread, also how often
  2917 // we send a signal to a thread we want to resume
  2918 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  2919 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  2921 // returns true on success and false on error - really an error is fatal
  2922 // but this seems the normal response to library errors
  2923 static bool do_suspend(OSThread* osthread) {
  2924   assert(osthread->sr.is_running(), "thread should be running");
  2925   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  2927   // mark as suspended and send signal
  2928   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  2929     // failed to switch, state wasn't running?
  2930     ShouldNotReachHere();
  2931     return false;
  2934   if (sr_notify(osthread) != 0) {
  2935     ShouldNotReachHere();
  2938   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  2939   while (true) {
  2940     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  2941       break;
  2942     } else {
  2943       // timeout
  2944       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  2945       if (cancelled == os::SuspendResume::SR_RUNNING) {
  2946         return false;
  2947       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  2948         // make sure that we consume the signal on the semaphore as well
  2949         sr_semaphore.wait();
  2950         break;
  2951       } else {
  2952         ShouldNotReachHere();
  2953         return false;
  2958   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  2959   return true;
  2962 static void do_resume(OSThread* osthread) {
  2963   assert(osthread->sr.is_suspended(), "thread should be suspended");
  2964   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  2966   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  2967     // failed to switch to WAKEUP_REQUEST
  2968     ShouldNotReachHere();
  2969     return;
  2972   while (true) {
  2973     if (sr_notify(osthread) == 0) {
  2974       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  2975         if (osthread->sr.is_running()) {
  2976           return;
  2979     } else {
  2980       ShouldNotReachHere();
  2984   guarantee(osthread->sr.is_running(), "Must be running!");
  2987 ////////////////////////////////////////////////////////////////////////////////
  2988 // interrupt support
  2990 void os::interrupt(Thread* thread) {
  2991   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  2992     "possibility of dangling Thread pointer");
  2994   OSThread* osthread = thread->osthread();
  2996   if (!osthread->interrupted()) {
  2997     osthread->set_interrupted(true);
  2998     // More than one thread can get here with the same value of osthread,
  2999     // resulting in multiple notifications.  We do, however, want the store
  3000     // to interrupted() to be visible to other threads before we execute unpark().
  3001     OrderAccess::fence();
  3002     ParkEvent * const slp = thread->_SleepEvent ;
  3003     if (slp != NULL) slp->unpark() ;
  3006   // For JSR166. Unpark even if interrupt status already was set
  3007   if (thread->is_Java_thread())
  3008     ((JavaThread*)thread)->parker()->unpark();
  3010   ParkEvent * ev = thread->_ParkEvent ;
  3011   if (ev != NULL) ev->unpark() ;
  3015 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3016   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3017     "possibility of dangling Thread pointer");
  3019   OSThread* osthread = thread->osthread();
  3021   bool interrupted = osthread->interrupted();
  3023   if (interrupted && clear_interrupted) {
  3024     osthread->set_interrupted(false);
  3025     // consider thread->_SleepEvent->reset() ... optional optimization
  3028   return interrupted;
  3031 ///////////////////////////////////////////////////////////////////////////////////
  3032 // signal handling (except suspend/resume)
  3034 // This routine may be used by user applications as a "hook" to catch signals.
  3035 // The user-defined signal handler must pass unrecognized signals to this
  3036 // routine, and if it returns true (non-zero), then the signal handler must
  3037 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3038 // routine will never retun false (zero), but instead will execute a VM panic
  3039 // routine kill the process.
  3040 //
  3041 // If this routine returns false, it is OK to call it again.  This allows
  3042 // the user-defined signal handler to perform checks either before or after
  3043 // the VM performs its own checks.  Naturally, the user code would be making
  3044 // a serious error if it tried to handle an exception (such as a null check
  3045 // or breakpoint) that the VM was generating for its own correct operation.
  3046 //
  3047 // This routine may recognize any of the following kinds of signals:
  3048 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3049 // It should be consulted by handlers for any of those signals.
  3050 //
  3051 // The caller of this routine must pass in the three arguments supplied
  3052 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3053 // field of the structure passed to sigaction().  This routine assumes that
  3054 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3055 //
  3056 // Note that the VM will print warnings if it detects conflicting signal
  3057 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3058 //
  3059 extern "C" JNIEXPORT int
  3060 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
  3061                         void* ucontext, int abort_if_unrecognized);
  3063 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3064   assert(info != NULL && uc != NULL, "it must be old kernel");
  3065   int orig_errno = errno;  // Preserve errno value over signal handler.
  3066   JVM_handle_bsd_signal(sig, info, uc, true);
  3067   errno = orig_errno;
  3071 // This boolean allows users to forward their own non-matching signals
  3072 // to JVM_handle_bsd_signal, harmlessly.
  3073 bool os::Bsd::signal_handlers_are_installed = false;
  3075 // For signal-chaining
  3076 struct sigaction os::Bsd::sigact[MAXSIGNUM];
  3077 unsigned int os::Bsd::sigs = 0;
  3078 bool os::Bsd::libjsig_is_loaded = false;
  3079 typedef struct sigaction *(*get_signal_t)(int);
  3080 get_signal_t os::Bsd::get_signal_action = NULL;
  3082 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
  3083   struct sigaction *actp = NULL;
  3085   if (libjsig_is_loaded) {
  3086     // Retrieve the old signal handler from libjsig
  3087     actp = (*get_signal_action)(sig);
  3089   if (actp == NULL) {
  3090     // Retrieve the preinstalled signal handler from jvm
  3091     actp = get_preinstalled_handler(sig);
  3094   return actp;
  3097 static bool call_chained_handler(struct sigaction *actp, int sig,
  3098                                  siginfo_t *siginfo, void *context) {
  3099   // Call the old signal handler
  3100   if (actp->sa_handler == SIG_DFL) {
  3101     // It's more reasonable to let jvm treat it as an unexpected exception
  3102     // instead of taking the default action.
  3103     return false;
  3104   } else if (actp->sa_handler != SIG_IGN) {
  3105     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3106       // automaticlly block the signal
  3107       sigaddset(&(actp->sa_mask), sig);
  3110     sa_handler_t hand;
  3111     sa_sigaction_t sa;
  3112     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3113     // retrieve the chained handler
  3114     if (siginfo_flag_set) {
  3115       sa = actp->sa_sigaction;
  3116     } else {
  3117       hand = actp->sa_handler;
  3120     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3121       actp->sa_handler = SIG_DFL;
  3124     // try to honor the signal mask
  3125     sigset_t oset;
  3126     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3128     // call into the chained handler
  3129     if (siginfo_flag_set) {
  3130       (*sa)(sig, siginfo, context);
  3131     } else {
  3132       (*hand)(sig);
  3135     // restore the signal mask
  3136     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3138   // Tell jvm's signal handler the signal is taken care of.
  3139   return true;
  3142 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3143   bool chained = false;
  3144   // signal-chaining
  3145   if (UseSignalChaining) {
  3146     struct sigaction *actp = get_chained_signal_action(sig);
  3147     if (actp != NULL) {
  3148       chained = call_chained_handler(actp, sig, siginfo, context);
  3151   return chained;
  3154 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
  3155   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3156     return &sigact[sig];
  3158   return NULL;
  3161 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3162   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3163   sigact[sig] = oldAct;
  3164   sigs |= (unsigned int)1 << sig;
  3167 // for diagnostic
  3168 int os::Bsd::sigflags[MAXSIGNUM];
  3170 int os::Bsd::get_our_sigflags(int sig) {
  3171   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3172   return sigflags[sig];
  3175 void os::Bsd::set_our_sigflags(int sig, int flags) {
  3176   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3177   sigflags[sig] = flags;
  3180 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
  3181   // Check for overwrite.
  3182   struct sigaction oldAct;
  3183   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3185   void* oldhand = oldAct.sa_sigaction
  3186                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3187                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3188   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3189       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3190       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3191     if (AllowUserSignalHandlers || !set_installed) {
  3192       // Do not overwrite; user takes responsibility to forward to us.
  3193       return;
  3194     } else if (UseSignalChaining) {
  3195       // save the old handler in jvm
  3196       save_preinstalled_handler(sig, oldAct);
  3197       // libjsig also interposes the sigaction() call below and saves the
  3198       // old sigaction on it own.
  3199     } else {
  3200       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3201                     "%#lx for signal %d.", (long)oldhand, sig));
  3205   struct sigaction sigAct;
  3206   sigfillset(&(sigAct.sa_mask));
  3207   sigAct.sa_handler = SIG_DFL;
  3208   if (!set_installed) {
  3209     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3210   } else {
  3211     sigAct.sa_sigaction = signalHandler;
  3212     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3214 #if __APPLE__
  3215   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
  3216   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
  3217   // if the signal handler declares it will handle it on alternate stack.
  3218   // Notice we only declare we will handle it on alt stack, but we are not
  3219   // actually going to use real alt stack - this is just a workaround.
  3220   // Please see ux_exception.c, method catch_mach_exception_raise for details
  3221   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
  3222   if (sig == SIGSEGV) {
  3223     sigAct.sa_flags |= SA_ONSTACK;
  3225 #endif
  3227   // Save flags, which are set by ours
  3228   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3229   sigflags[sig] = sigAct.sa_flags;
  3231   int ret = sigaction(sig, &sigAct, &oldAct);
  3232   assert(ret == 0, "check");
  3234   void* oldhand2  = oldAct.sa_sigaction
  3235                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3236                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3237   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3240 // install signal handlers for signals that HotSpot needs to
  3241 // handle in order to support Java-level exception handling.
  3243 void os::Bsd::install_signal_handlers() {
  3244   if (!signal_handlers_are_installed) {
  3245     signal_handlers_are_installed = true;
  3247     // signal-chaining
  3248     typedef void (*signal_setting_t)();
  3249     signal_setting_t begin_signal_setting = NULL;
  3250     signal_setting_t end_signal_setting = NULL;
  3251     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3252                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3253     if (begin_signal_setting != NULL) {
  3254       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3255                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3256       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3257                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3258       libjsig_is_loaded = true;
  3259       assert(UseSignalChaining, "should enable signal-chaining");
  3261     if (libjsig_is_loaded) {
  3262       // Tell libjsig jvm is setting signal handlers
  3263       (*begin_signal_setting)();
  3266     set_signal_handler(SIGSEGV, true);
  3267     set_signal_handler(SIGPIPE, true);
  3268     set_signal_handler(SIGBUS, true);
  3269     set_signal_handler(SIGILL, true);
  3270     set_signal_handler(SIGFPE, true);
  3271     set_signal_handler(SIGXFSZ, true);
  3273 #if defined(__APPLE__)
  3274     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
  3275     // signals caught and handled by the JVM. To work around this, we reset the mach task
  3276     // signal handler that's placed on our process by CrashReporter. This disables
  3277     // CrashReporter-based reporting.
  3278     //
  3279     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
  3280     // on caught fatal signals.
  3281     //
  3282     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
  3283     // handlers. By replacing the existing task exception handler, we disable gdb's mach
  3284     // exception handling, while leaving the standard BSD signal handlers functional.
  3285     kern_return_t kr;
  3286     kr = task_set_exception_ports(mach_task_self(),
  3287         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
  3288         MACH_PORT_NULL,
  3289         EXCEPTION_STATE_IDENTITY,
  3290         MACHINE_THREAD_STATE);
  3292     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
  3293 #endif
  3295     if (libjsig_is_loaded) {
  3296       // Tell libjsig jvm finishes setting signal handlers
  3297       (*end_signal_setting)();
  3300     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3301     // and if UserSignalHandler is installed all bets are off
  3302     if (CheckJNICalls) {
  3303       if (libjsig_is_loaded) {
  3304         if (PrintJNIResolving) {
  3305           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3307         check_signals = false;
  3309       if (AllowUserSignalHandlers) {
  3310         if (PrintJNIResolving) {
  3311           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3313         check_signals = false;
  3320 /////
  3321 // glibc on Bsd platform uses non-documented flag
  3322 // to indicate, that some special sort of signal
  3323 // trampoline is used.
  3324 // We will never set this flag, and we should
  3325 // ignore this flag in our diagnostic
  3326 #ifdef SIGNIFICANT_SIGNAL_MASK
  3327 #undef SIGNIFICANT_SIGNAL_MASK
  3328 #endif
  3329 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3331 static const char* get_signal_handler_name(address handler,
  3332                                            char* buf, int buflen) {
  3333   int offset;
  3334   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3335   if (found) {
  3336     // skip directory names
  3337     const char *p1, *p2;
  3338     p1 = buf;
  3339     size_t len = strlen(os::file_separator());
  3340     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3341     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3342   } else {
  3343     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3345   return buf;
  3348 static void print_signal_handler(outputStream* st, int sig,
  3349                                  char* buf, size_t buflen) {
  3350   struct sigaction sa;
  3352   sigaction(sig, NULL, &sa);
  3354   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3355   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3357   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3359   address handler = (sa.sa_flags & SA_SIGINFO)
  3360     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3361     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3363   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3364     st->print("SIG_DFL");
  3365   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3366     st->print("SIG_IGN");
  3367   } else {
  3368     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3371   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3373   address rh = VMError::get_resetted_sighandler(sig);
  3374   // May be, handler was resetted by VMError?
  3375   if(rh != NULL) {
  3376     handler = rh;
  3377     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3380   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3382   // Check: is it our handler?
  3383   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3384      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3385     // It is our signal handler
  3386     // check for flags, reset system-used one!
  3387     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  3388       st->print(
  3389                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3390                 os::Bsd::get_our_sigflags(sig));
  3393   st->cr();
  3397 #define DO_SIGNAL_CHECK(sig) \
  3398   if (!sigismember(&check_signal_done, sig)) \
  3399     os::Bsd::check_signal_handler(sig)
  3401 // This method is a periodic task to check for misbehaving JNI applications
  3402 // under CheckJNI, we can add any periodic checks here
  3404 void os::run_periodic_checks() {
  3406   if (check_signals == false) return;
  3408   // SEGV and BUS if overridden could potentially prevent
  3409   // generation of hs*.log in the event of a crash, debugging
  3410   // such a case can be very challenging, so we absolutely
  3411   // check the following for a good measure:
  3412   DO_SIGNAL_CHECK(SIGSEGV);
  3413   DO_SIGNAL_CHECK(SIGILL);
  3414   DO_SIGNAL_CHECK(SIGFPE);
  3415   DO_SIGNAL_CHECK(SIGBUS);
  3416   DO_SIGNAL_CHECK(SIGPIPE);
  3417   DO_SIGNAL_CHECK(SIGXFSZ);
  3420   // ReduceSignalUsage allows the user to override these handlers
  3421   // see comments at the very top and jvm_solaris.h
  3422   if (!ReduceSignalUsage) {
  3423     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3424     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3425     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3426     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3429   DO_SIGNAL_CHECK(SR_signum);
  3430   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3433 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3435 static os_sigaction_t os_sigaction = NULL;
  3437 void os::Bsd::check_signal_handler(int sig) {
  3438   char buf[O_BUFLEN];
  3439   address jvmHandler = NULL;
  3442   struct sigaction act;
  3443   if (os_sigaction == NULL) {
  3444     // only trust the default sigaction, in case it has been interposed
  3445     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3446     if (os_sigaction == NULL) return;
  3449   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3452   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3454   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3455     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3456     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3459   switch(sig) {
  3460   case SIGSEGV:
  3461   case SIGBUS:
  3462   case SIGFPE:
  3463   case SIGPIPE:
  3464   case SIGILL:
  3465   case SIGXFSZ:
  3466     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3467     break;
  3469   case SHUTDOWN1_SIGNAL:
  3470   case SHUTDOWN2_SIGNAL:
  3471   case SHUTDOWN3_SIGNAL:
  3472   case BREAK_SIGNAL:
  3473     jvmHandler = (address)user_handler();
  3474     break;
  3476   case INTERRUPT_SIGNAL:
  3477     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3478     break;
  3480   default:
  3481     if (sig == SR_signum) {
  3482       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3483     } else {
  3484       return;
  3486     break;
  3489   if (thisHandler != jvmHandler) {
  3490     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3491     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3492     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3493     // No need to check this sig any longer
  3494     sigaddset(&check_signal_done, sig);
  3495   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  3496     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3497     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
  3498     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3499     // No need to check this sig any longer
  3500     sigaddset(&check_signal_done, sig);
  3503   // Dump all the signal
  3504   if (sigismember(&check_signal_done, sig)) {
  3505     print_signal_handlers(tty, buf, O_BUFLEN);
  3509 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3511 extern bool signal_name(int signo, char* buf, size_t len);
  3513 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3514   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3515     // signal
  3516     if (!signal_name(exception_code, buf, size)) {
  3517       jio_snprintf(buf, size, "SIG%d", exception_code);
  3519     return buf;
  3520   } else {
  3521     return NULL;
  3525 // this is called _before_ the most of global arguments have been parsed
  3526 void os::init(void) {
  3527   char dummy;   /* used to get a guess on initial stack address */
  3528 //  first_hrtime = gethrtime();
  3530   // With BsdThreads the JavaMain thread pid (primordial thread)
  3531   // is different than the pid of the java launcher thread.
  3532   // So, on Bsd, the launcher thread pid is passed to the VM
  3533   // via the sun.java.launcher.pid property.
  3534   // Use this property instead of getpid() if it was correctly passed.
  3535   // See bug 6351349.
  3536   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3538   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3540   clock_tics_per_sec = CLK_TCK;
  3542   init_random(1234567);
  3544   ThreadCritical::initialize();
  3546   Bsd::set_page_size(getpagesize());
  3547   if (Bsd::page_size() == -1) {
  3548     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
  3549                   strerror(errno)));
  3551   init_page_sizes((size_t) Bsd::page_size());
  3553   Bsd::initialize_system_info();
  3555   // main_thread points to the aboriginal thread
  3556   Bsd::_main_thread = pthread_self();
  3558   Bsd::clock_init();
  3559   initial_time_count = os::elapsed_counter();
  3561 #ifdef __APPLE__
  3562   // XXXDARWIN
  3563   // Work around the unaligned VM callbacks in hotspot's
  3564   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
  3565   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
  3566   // alignment when doing symbol lookup. To work around this, we force early
  3567   // binding of all symbols now, thus binding when alignment is known-good.
  3568   _dyld_bind_fully_image_containing_address((const void *) &os::init);
  3569 #endif
  3572 // To install functions for atexit system call
  3573 extern "C" {
  3574   static void perfMemory_exit_helper() {
  3575     perfMemory_exit();
  3579 // this is called _after_ the global arguments have been parsed
  3580 jint os::init_2(void)
  3582   // Allocate a single page and mark it as readable for safepoint polling
  3583   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3584   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3586   os::set_polling_page( polling_page );
  3588 #ifndef PRODUCT
  3589   if(Verbose && PrintMiscellaneous)
  3590     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3591 #endif
  3593   if (!UseMembar) {
  3594     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3595     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  3596     os::set_memory_serialize_page( mem_serialize_page );
  3598 #ifndef PRODUCT
  3599     if(Verbose && PrintMiscellaneous)
  3600       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3601 #endif
  3604   // initialize suspend/resume support - must do this before signal_sets_init()
  3605   if (SR_initialize() != 0) {
  3606     perror("SR_initialize failed");
  3607     return JNI_ERR;
  3610   Bsd::signal_sets_init();
  3611   Bsd::install_signal_handlers();
  3613   // Check minimum allowable stack size for thread creation and to initialize
  3614   // the java system classes, including StackOverflowError - depends on page
  3615   // size.  Add a page for compiler2 recursion in main thread.
  3616   // Add in 2*BytesPerWord times page size to account for VM stack during
  3617   // class initialization depending on 32 or 64 bit VM.
  3618   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
  3619             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3620                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
  3622   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3623   if (threadStackSizeInBytes != 0 &&
  3624       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
  3625         tty->print_cr("\nThe stack size specified is too small, "
  3626                       "Specify at least %dk",
  3627                       os::Bsd::min_stack_allowed/ K);
  3628         return JNI_ERR;
  3631   // Make the stack size a multiple of the page size so that
  3632   // the yellow/red zones can be guarded.
  3633   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3634         vm_page_size()));
  3636   if (MaxFDLimit) {
  3637     // set the number of file descriptors to max. print out error
  3638     // if getrlimit/setrlimit fails but continue regardless.
  3639     struct rlimit nbr_files;
  3640     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3641     if (status != 0) {
  3642       if (PrintMiscellaneous && (Verbose || WizardMode))
  3643         perror("os::init_2 getrlimit failed");
  3644     } else {
  3645       nbr_files.rlim_cur = nbr_files.rlim_max;
  3647 #ifdef __APPLE__
  3648       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
  3649       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
  3650       // be used instead
  3651       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
  3652 #endif
  3654       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3655       if (status != 0) {
  3656         if (PrintMiscellaneous && (Verbose || WizardMode))
  3657           perror("os::init_2 setrlimit failed");
  3662   // at-exit methods are called in the reverse order of their registration.
  3663   // atexit functions are called on return from main or as a result of a
  3664   // call to exit(3C). There can be only 32 of these functions registered
  3665   // and atexit() does not set errno.
  3667   if (PerfAllowAtExitRegistration) {
  3668     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3669     // atexit functions can be delayed until process exit time, which
  3670     // can be problematic for embedded VM situations. Embedded VMs should
  3671     // call DestroyJavaVM() to assure that VM resources are released.
  3673     // note: perfMemory_exit_helper atexit function may be removed in
  3674     // the future if the appropriate cleanup code can be added to the
  3675     // VM_Exit VMOperation's doit method.
  3676     if (atexit(perfMemory_exit_helper) != 0) {
  3677       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  3681   // initialize thread priority policy
  3682   prio_init();
  3684 #ifdef __APPLE__
  3685   // dynamically link to objective c gc registration
  3686   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
  3687   if (handleLibObjc != NULL) {
  3688     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
  3690 #endif
  3692   return JNI_OK;
  3695 // this is called at the end of vm_initialization
  3696 void os::init_3(void) { }
  3698 // Mark the polling page as unreadable
  3699 void os::make_polling_page_unreadable(void) {
  3700   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
  3701     fatal("Could not disable polling page");
  3702 };
  3704 // Mark the polling page as readable
  3705 void os::make_polling_page_readable(void) {
  3706   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
  3707     fatal("Could not enable polling page");
  3709 };
  3711 int os::active_processor_count() {
  3712   return _processor_count;
  3715 void os::set_native_thread_name(const char *name) {
  3716 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
  3717   // This is only supported in Snow Leopard and beyond
  3718   if (name != NULL) {
  3719     // Add a "Java: " prefix to the name
  3720     char buf[MAXTHREADNAMESIZE];
  3721     snprintf(buf, sizeof(buf), "Java: %s", name);
  3722     pthread_setname_np(buf);
  3724 #endif
  3727 bool os::distribute_processes(uint length, uint* distribution) {
  3728   // Not yet implemented.
  3729   return false;
  3732 bool os::bind_to_processor(uint processor_id) {
  3733   // Not yet implemented.
  3734   return false;
  3737 void os::SuspendedThreadTask::internal_do_task() {
  3738   if (do_suspend(_thread->osthread())) {
  3739     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  3740     do_task(context);
  3741     do_resume(_thread->osthread());
  3745 ///
  3746 class PcFetcher : public os::SuspendedThreadTask {
  3747 public:
  3748   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  3749   ExtendedPC result();
  3750 protected:
  3751   void do_task(const os::SuspendedThreadTaskContext& context);
  3752 private:
  3753   ExtendedPC _epc;
  3754 };
  3756 ExtendedPC PcFetcher::result() {
  3757   guarantee(is_done(), "task is not done yet.");
  3758   return _epc;
  3761 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  3762   Thread* thread = context.thread();
  3763   OSThread* osthread = thread->osthread();
  3764   if (osthread->ucontext() != NULL) {
  3765     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
  3766   } else {
  3767     // NULL context is unexpected, double-check this is the VMThread
  3768     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  3772 // Suspends the target using the signal mechanism and then grabs the PC before
  3773 // resuming the target. Used by the flat-profiler only
  3774 ExtendedPC os::get_thread_pc(Thread* thread) {
  3775   // Make sure that it is called by the watcher for the VMThread
  3776   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  3777   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  3779   PcFetcher fetcher(thread);
  3780   fetcher.run();
  3781   return fetcher.result();
  3784 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  3786   return pthread_cond_timedwait(_cond, _mutex, _abstime);
  3789 ////////////////////////////////////////////////////////////////////////////////
  3790 // debug support
  3792 bool os::find(address addr, outputStream* st) {
  3793   Dl_info dlinfo;
  3794   memset(&dlinfo, 0, sizeof(dlinfo));
  3795   if (dladdr(addr, &dlinfo) != 0) {
  3796     st->print(PTR_FORMAT ": ", addr);
  3797     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  3798       st->print("%s+%#x", dlinfo.dli_sname,
  3799                  addr - (intptr_t)dlinfo.dli_saddr);
  3800     } else if (dlinfo.dli_fbase != NULL) {
  3801       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  3802     } else {
  3803       st->print("<absolute address>");
  3805     if (dlinfo.dli_fname != NULL) {
  3806       st->print(" in %s", dlinfo.dli_fname);
  3808     if (dlinfo.dli_fbase != NULL) {
  3809       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  3811     st->cr();
  3813     if (Verbose) {
  3814       // decode some bytes around the PC
  3815       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  3816       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  3817       address       lowest = (address) dlinfo.dli_sname;
  3818       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  3819       if (begin < lowest)  begin = lowest;
  3820       Dl_info dlinfo2;
  3821       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  3822           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  3823         end = (address) dlinfo2.dli_saddr;
  3824       Disassembler::decode(begin, end, st);
  3826     return true;
  3828   return false;
  3831 ////////////////////////////////////////////////////////////////////////////////
  3832 // misc
  3834 // This does not do anything on Bsd. This is basically a hook for being
  3835 // able to use structured exception handling (thread-local exception filters)
  3836 // on, e.g., Win32.
  3837 void
  3838 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  3839                          JavaCallArguments* args, Thread* thread) {
  3840   f(value, method, args, thread);
  3843 void os::print_statistics() {
  3846 int os::message_box(const char* title, const char* message) {
  3847   int i;
  3848   fdStream err(defaultStream::error_fd());
  3849   for (i = 0; i < 78; i++) err.print_raw("=");
  3850   err.cr();
  3851   err.print_raw_cr(title);
  3852   for (i = 0; i < 78; i++) err.print_raw("-");
  3853   err.cr();
  3854   err.print_raw_cr(message);
  3855   for (i = 0; i < 78; i++) err.print_raw("=");
  3856   err.cr();
  3858   char buf[16];
  3859   // Prevent process from exiting upon "read error" without consuming all CPU
  3860   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  3862   return buf[0] == 'y' || buf[0] == 'Y';
  3865 int os::stat(const char *path, struct stat *sbuf) {
  3866   char pathbuf[MAX_PATH];
  3867   if (strlen(path) > MAX_PATH - 1) {
  3868     errno = ENAMETOOLONG;
  3869     return -1;
  3871   os::native_path(strcpy(pathbuf, path));
  3872   return ::stat(pathbuf, sbuf);
  3875 bool os::check_heap(bool force) {
  3876   return true;
  3879 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  3880   return ::vsnprintf(buf, count, format, args);
  3883 // Is a (classpath) directory empty?
  3884 bool os::dir_is_empty(const char* path) {
  3885   DIR *dir = NULL;
  3886   struct dirent *ptr;
  3888   dir = opendir(path);
  3889   if (dir == NULL) return true;
  3891   /* Scan the directory */
  3892   bool result = true;
  3893   char buf[sizeof(struct dirent) + MAX_PATH];
  3894   while (result && (ptr = ::readdir(dir)) != NULL) {
  3895     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  3896       result = false;
  3899   closedir(dir);
  3900   return result;
  3903 // This code originates from JDK's sysOpen and open64_w
  3904 // from src/solaris/hpi/src/system_md.c
  3906 #ifndef O_DELETE
  3907 #define O_DELETE 0x10000
  3908 #endif
  3910 // Open a file. Unlink the file immediately after open returns
  3911 // if the specified oflag has the O_DELETE flag set.
  3912 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  3914 int os::open(const char *path, int oflag, int mode) {
  3916   if (strlen(path) > MAX_PATH - 1) {
  3917     errno = ENAMETOOLONG;
  3918     return -1;
  3920   int fd;
  3921   int o_delete = (oflag & O_DELETE);
  3922   oflag = oflag & ~O_DELETE;
  3924   fd = ::open(path, oflag, mode);
  3925   if (fd == -1) return -1;
  3927   //If the open succeeded, the file might still be a directory
  3929     struct stat buf;
  3930     int ret = ::fstat(fd, &buf);
  3931     int st_mode = buf.st_mode;
  3933     if (ret != -1) {
  3934       if ((st_mode & S_IFMT) == S_IFDIR) {
  3935         errno = EISDIR;
  3936         ::close(fd);
  3937         return -1;
  3939     } else {
  3940       ::close(fd);
  3941       return -1;
  3945     /*
  3946      * All file descriptors that are opened in the JVM and not
  3947      * specifically destined for a subprocess should have the
  3948      * close-on-exec flag set.  If we don't set it, then careless 3rd
  3949      * party native code might fork and exec without closing all
  3950      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  3951      * UNIXProcess.c), and this in turn might:
  3953      * - cause end-of-file to fail to be detected on some file
  3954      *   descriptors, resulting in mysterious hangs, or
  3956      * - might cause an fopen in the subprocess to fail on a system
  3957      *   suffering from bug 1085341.
  3959      * (Yes, the default setting of the close-on-exec flag is a Unix
  3960      * design flaw)
  3962      * See:
  3963      * 1085341: 32-bit stdio routines should support file descriptors >255
  3964      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  3965      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  3966      */
  3967 #ifdef FD_CLOEXEC
  3969         int flags = ::fcntl(fd, F_GETFD);
  3970         if (flags != -1)
  3971             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  3973 #endif
  3975   if (o_delete != 0) {
  3976     ::unlink(path);
  3978   return fd;
  3982 // create binary file, rewriting existing file if required
  3983 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3984   int oflags = O_WRONLY | O_CREAT;
  3985   if (!rewrite_existing) {
  3986     oflags |= O_EXCL;
  3988   return ::open(path, oflags, S_IREAD | S_IWRITE);
  3991 // return current position of file pointer
  3992 jlong os::current_file_offset(int fd) {
  3993   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
  3996 // move file pointer to the specified offset
  3997 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3998   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
  4001 // This code originates from JDK's sysAvailable
  4002 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4004 int os::available(int fd, jlong *bytes) {
  4005   jlong cur, end;
  4006   int mode;
  4007   struct stat buf;
  4009   if (::fstat(fd, &buf) >= 0) {
  4010     mode = buf.st_mode;
  4011     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4012       /*
  4013       * XXX: is the following call interruptible? If so, this might
  4014       * need to go through the INTERRUPT_IO() wrapper as for other
  4015       * blocking, interruptible calls in this file.
  4016       */
  4017       int n;
  4018       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4019         *bytes = n;
  4020         return 1;
  4024   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
  4025     return 0;
  4026   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
  4027     return 0;
  4028   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
  4029     return 0;
  4031   *bytes = end - cur;
  4032   return 1;
  4035 int os::socket_available(int fd, jint *pbytes) {
  4036    if (fd < 0)
  4037      return OS_OK;
  4039    int ret;
  4041    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  4043    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4044    // is expected to return 0 on failure and 1 on success to the jdk.
  4046    return (ret == OS_ERR) ? 0 : 1;
  4049 // Map a block of memory.
  4050 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4051                      char *addr, size_t bytes, bool read_only,
  4052                      bool allow_exec) {
  4053   int prot;
  4054   int flags;
  4056   if (read_only) {
  4057     prot = PROT_READ;
  4058     flags = MAP_SHARED;
  4059   } else {
  4060     prot = PROT_READ | PROT_WRITE;
  4061     flags = MAP_PRIVATE;
  4064   if (allow_exec) {
  4065     prot |= PROT_EXEC;
  4068   if (addr != NULL) {
  4069     flags |= MAP_FIXED;
  4072   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4073                                      fd, file_offset);
  4074   if (mapped_address == MAP_FAILED) {
  4075     return NULL;
  4077   return mapped_address;
  4081 // Remap a block of memory.
  4082 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4083                        char *addr, size_t bytes, bool read_only,
  4084                        bool allow_exec) {
  4085   // same as map_memory() on this OS
  4086   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4087                         allow_exec);
  4091 // Unmap a block of memory.
  4092 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4093   return munmap(addr, bytes) == 0;
  4096 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4097 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4098 // of a thread.
  4099 //
  4100 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4101 // the fast estimate available on the platform.
  4103 jlong os::current_thread_cpu_time() {
  4104 #ifdef __APPLE__
  4105   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
  4106 #else
  4107   Unimplemented();
  4108   return 0;
  4109 #endif
  4112 jlong os::thread_cpu_time(Thread* thread) {
  4113 #ifdef __APPLE__
  4114   return os::thread_cpu_time(thread, true /* user + sys */);
  4115 #else
  4116   Unimplemented();
  4117   return 0;
  4118 #endif
  4121 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4122 #ifdef __APPLE__
  4123   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4124 #else
  4125   Unimplemented();
  4126   return 0;
  4127 #endif
  4130 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4131 #ifdef __APPLE__
  4132   struct thread_basic_info tinfo;
  4133   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
  4134   kern_return_t kr;
  4135   thread_t mach_thread;
  4137   mach_thread = thread->osthread()->thread_id();
  4138   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
  4139   if (kr != KERN_SUCCESS)
  4140     return -1;
  4142   if (user_sys_cpu_time) {
  4143     jlong nanos;
  4144     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
  4145     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
  4146     return nanos;
  4147   } else {
  4148     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
  4150 #else
  4151   Unimplemented();
  4152   return 0;
  4153 #endif
  4157 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4158   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4159   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4160   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4161   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4164 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4165   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4166   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4167   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4168   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4171 bool os::is_thread_cpu_time_supported() {
  4172 #ifdef __APPLE__
  4173   return true;
  4174 #else
  4175   return false;
  4176 #endif
  4179 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4180 // Bsd doesn't yet have a (official) notion of processor sets,
  4181 // so just return the system wide load average.
  4182 int os::loadavg(double loadavg[], int nelem) {
  4183   return ::getloadavg(loadavg, nelem);
  4186 void os::pause() {
  4187   char filename[MAX_PATH];
  4188   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4189     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4190   } else {
  4191     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4194   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4195   if (fd != -1) {
  4196     struct stat buf;
  4197     ::close(fd);
  4198     while (::stat(filename, &buf) == 0) {
  4199       (void)::poll(NULL, 0, 100);
  4201   } else {
  4202     jio_fprintf(stderr,
  4203       "Could not open pause file '%s', continuing immediately.\n", filename);
  4208 // Refer to the comments in os_solaris.cpp park-unpark.
  4209 //
  4210 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4211 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4212 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4213 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4214 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4215 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4216 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4217 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4218 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4219 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4220 // of libpthread avoids the problem, but isn't practical.
  4221 //
  4222 // Possible remedies:
  4223 //
  4224 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4225 //      This is palliative and probabilistic, however.  If the thread is preempted
  4226 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4227 //      than the minimum period may have passed, and the abstime may be stale (in the
  4228 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4229 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4230 //
  4231 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4232 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4233 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4234 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4235 //      thread.
  4236 //
  4237 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4238 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4239 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4240 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4241 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4242 //      timers in a graceful fashion.
  4243 //
  4244 // 4.   When the abstime value is in the past it appears that control returns
  4245 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4246 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4247 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4248 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4249 //      It may be possible to avoid reinitialization by checking the return
  4250 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4251 //      condvar we must establish the invariant that cond_signal() is only called
  4252 //      within critical sections protected by the adjunct mutex.  This prevents
  4253 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4254 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4255 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4256 //
  4257 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4258 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4259 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4260 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4261 //
  4262 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4263 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4264 // and only enabling the work-around for vulnerable environments.
  4266 // utility to compute the abstime argument to timedwait:
  4267 // millis is the relative timeout time
  4268 // abstime will be the absolute timeout time
  4269 // TODO: replace compute_abstime() with unpackTime()
  4271 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
  4272   if (millis < 0)  millis = 0;
  4273   struct timeval now;
  4274   int status = gettimeofday(&now, NULL);
  4275   assert(status == 0, "gettimeofday");
  4276   jlong seconds = millis / 1000;
  4277   millis %= 1000;
  4278   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4279     seconds = 50000000;
  4281   abstime->tv_sec = now.tv_sec  + seconds;
  4282   long       usec = now.tv_usec + millis * 1000;
  4283   if (usec >= 1000000) {
  4284     abstime->tv_sec += 1;
  4285     usec -= 1000000;
  4287   abstime->tv_nsec = usec * 1000;
  4288   return abstime;
  4292 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4293 // Conceptually TryPark() should be equivalent to park(0).
  4295 int os::PlatformEvent::TryPark() {
  4296   for (;;) {
  4297     const int v = _Event ;
  4298     guarantee ((v == 0) || (v == 1), "invariant") ;
  4299     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4303 void os::PlatformEvent::park() {       // AKA "down()"
  4304   // Invariant: Only the thread associated with the Event/PlatformEvent
  4305   // may call park().
  4306   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4307   int v ;
  4308   for (;;) {
  4309       v = _Event ;
  4310       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4312   guarantee (v >= 0, "invariant") ;
  4313   if (v == 0) {
  4314      // Do this the hard way by blocking ...
  4315      int status = pthread_mutex_lock(_mutex);
  4316      assert_status(status == 0, status, "mutex_lock");
  4317      guarantee (_nParked == 0, "invariant") ;
  4318      ++ _nParked ;
  4319      while (_Event < 0) {
  4320         status = pthread_cond_wait(_cond, _mutex);
  4321         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4322         // Treat this the same as if the wait was interrupted
  4323         if (status == ETIMEDOUT) { status = EINTR; }
  4324         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4326      -- _nParked ;
  4328     _Event = 0 ;
  4329      status = pthread_mutex_unlock(_mutex);
  4330      assert_status(status == 0, status, "mutex_unlock");
  4331     // Paranoia to ensure our locked and lock-free paths interact
  4332     // correctly with each other.
  4333     OrderAccess::fence();
  4335   guarantee (_Event >= 0, "invariant") ;
  4338 int os::PlatformEvent::park(jlong millis) {
  4339   guarantee (_nParked == 0, "invariant") ;
  4341   int v ;
  4342   for (;;) {
  4343       v = _Event ;
  4344       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4346   guarantee (v >= 0, "invariant") ;
  4347   if (v != 0) return OS_OK ;
  4349   // We do this the hard way, by blocking the thread.
  4350   // Consider enforcing a minimum timeout value.
  4351   struct timespec abst;
  4352   compute_abstime(&abst, millis);
  4354   int ret = OS_TIMEOUT;
  4355   int status = pthread_mutex_lock(_mutex);
  4356   assert_status(status == 0, status, "mutex_lock");
  4357   guarantee (_nParked == 0, "invariant") ;
  4358   ++_nParked ;
  4360   // Object.wait(timo) will return because of
  4361   // (a) notification
  4362   // (b) timeout
  4363   // (c) thread.interrupt
  4364   //
  4365   // Thread.interrupt and object.notify{All} both call Event::set.
  4366   // That is, we treat thread.interrupt as a special case of notification.
  4367   // The underlying Solaris implementation, cond_timedwait, admits
  4368   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4369   // JVM from making those visible to Java code.  As such, we must
  4370   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4371   //
  4372   // TODO: properly differentiate simultaneous notify+interrupt.
  4373   // In that case, we should propagate the notify to another waiter.
  4375   while (_Event < 0) {
  4376     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
  4377     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4378       pthread_cond_destroy (_cond);
  4379       pthread_cond_init (_cond, NULL) ;
  4381     assert_status(status == 0 || status == EINTR ||
  4382                   status == ETIMEDOUT,
  4383                   status, "cond_timedwait");
  4384     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4385     if (status == ETIMEDOUT) break ;
  4386     // We consume and ignore EINTR and spurious wakeups.
  4388   --_nParked ;
  4389   if (_Event >= 0) {
  4390      ret = OS_OK;
  4392   _Event = 0 ;
  4393   status = pthread_mutex_unlock(_mutex);
  4394   assert_status(status == 0, status, "mutex_unlock");
  4395   assert (_nParked == 0, "invariant") ;
  4396   // Paranoia to ensure our locked and lock-free paths interact
  4397   // correctly with each other.
  4398   OrderAccess::fence();
  4399   return ret;
  4402 void os::PlatformEvent::unpark() {
  4403   // Transitions for _Event:
  4404   //    0 :=> 1
  4405   //    1 :=> 1
  4406   //   -1 :=> either 0 or 1; must signal target thread
  4407   //          That is, we can safely transition _Event from -1 to either
  4408   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4409   //          unpark() calls.
  4410   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4411   //
  4412   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4413   // that it will take two back-to-back park() calls for the owning
  4414   // thread to block. This has the benefit of forcing a spurious return
  4415   // from the first park() call after an unpark() call which will help
  4416   // shake out uses of park() and unpark() without condition variables.
  4418   if (Atomic::xchg(1, &_Event) >= 0) return;
  4420   // Wait for the thread associated with the event to vacate
  4421   int status = pthread_mutex_lock(_mutex);
  4422   assert_status(status == 0, status, "mutex_lock");
  4423   int AnyWaiters = _nParked;
  4424   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  4425   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4426     AnyWaiters = 0;
  4427     pthread_cond_signal(_cond);
  4429   status = pthread_mutex_unlock(_mutex);
  4430   assert_status(status == 0, status, "mutex_unlock");
  4431   if (AnyWaiters != 0) {
  4432     status = pthread_cond_signal(_cond);
  4433     assert_status(status == 0, status, "cond_signal");
  4436   // Note that we signal() _after dropping the lock for "immortal" Events.
  4437   // This is safe and avoids a common class of  futile wakeups.  In rare
  4438   // circumstances this can cause a thread to return prematurely from
  4439   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4440   // simply re-test the condition and re-park itself.
  4444 // JSR166
  4445 // -------------------------------------------------------
  4447 /*
  4448  * The solaris and bsd implementations of park/unpark are fairly
  4449  * conservative for now, but can be improved. They currently use a
  4450  * mutex/condvar pair, plus a a count.
  4451  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4452  * sets count to 1 and signals condvar.  Only one thread ever waits
  4453  * on the condvar. Contention seen when trying to park implies that someone
  4454  * is unparking you, so don't wait. And spurious returns are fine, so there
  4455  * is no need to track notifications.
  4456  */
  4458 #define MAX_SECS 100000000
  4459 /*
  4460  * This code is common to bsd and solaris and will be moved to a
  4461  * common place in dolphin.
  4463  * The passed in time value is either a relative time in nanoseconds
  4464  * or an absolute time in milliseconds. Either way it has to be unpacked
  4465  * into suitable seconds and nanoseconds components and stored in the
  4466  * given timespec structure.
  4467  * Given time is a 64-bit value and the time_t used in the timespec is only
  4468  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
  4469  * overflow if times way in the future are given. Further on Solaris versions
  4470  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4471  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4472  * As it will be 28 years before "now + 100000000" will overflow we can
  4473  * ignore overflow and just impose a hard-limit on seconds using the value
  4474  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4475  * years from "now".
  4476  */
  4478 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
  4479   assert (time > 0, "convertTime");
  4481   struct timeval now;
  4482   int status = gettimeofday(&now, NULL);
  4483   assert(status == 0, "gettimeofday");
  4485   time_t max_secs = now.tv_sec + MAX_SECS;
  4487   if (isAbsolute) {
  4488     jlong secs = time / 1000;
  4489     if (secs > max_secs) {
  4490       absTime->tv_sec = max_secs;
  4492     else {
  4493       absTime->tv_sec = secs;
  4495     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4497   else {
  4498     jlong secs = time / NANOSECS_PER_SEC;
  4499     if (secs >= MAX_SECS) {
  4500       absTime->tv_sec = max_secs;
  4501       absTime->tv_nsec = 0;
  4503     else {
  4504       absTime->tv_sec = now.tv_sec + secs;
  4505       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4506       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4507         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4508         ++absTime->tv_sec; // note: this must be <= max_secs
  4512   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4513   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4514   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4515   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4518 void Parker::park(bool isAbsolute, jlong time) {
  4519   // Ideally we'd do something useful while spinning, such
  4520   // as calling unpackTime().
  4522   // Optional fast-path check:
  4523   // Return immediately if a permit is available.
  4524   // We depend on Atomic::xchg() having full barrier semantics
  4525   // since we are doing a lock-free update to _counter.
  4526   if (Atomic::xchg(0, &_counter) > 0) return;
  4528   Thread* thread = Thread::current();
  4529   assert(thread->is_Java_thread(), "Must be JavaThread");
  4530   JavaThread *jt = (JavaThread *)thread;
  4532   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4533   // Check interrupt before trying to wait
  4534   if (Thread::is_interrupted(thread, false)) {
  4535     return;
  4538   // Next, demultiplex/decode time arguments
  4539   struct timespec absTime;
  4540   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  4541     return;
  4543   if (time > 0) {
  4544     unpackTime(&absTime, isAbsolute, time);
  4548   // Enter safepoint region
  4549   // Beware of deadlocks such as 6317397.
  4550   // The per-thread Parker:: mutex is a classic leaf-lock.
  4551   // In particular a thread must never block on the Threads_lock while
  4552   // holding the Parker:: mutex.  If safepoints are pending both the
  4553   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4554   ThreadBlockInVM tbivm(jt);
  4556   // Don't wait if cannot get lock since interference arises from
  4557   // unblocking.  Also. check interrupt before trying wait
  4558   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4559     return;
  4562   int status ;
  4563   if (_counter > 0)  { // no wait needed
  4564     _counter = 0;
  4565     status = pthread_mutex_unlock(_mutex);
  4566     assert (status == 0, "invariant") ;
  4567     // Paranoia to ensure our locked and lock-free paths interact
  4568     // correctly with each other and Java-level accesses.
  4569     OrderAccess::fence();
  4570     return;
  4573 #ifdef ASSERT
  4574   // Don't catch signals while blocked; let the running threads have the signals.
  4575   // (This allows a debugger to break into the running thread.)
  4576   sigset_t oldsigs;
  4577   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
  4578   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4579 #endif
  4581   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4582   jt->set_suspend_equivalent();
  4583   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4585   if (time == 0) {
  4586     status = pthread_cond_wait (_cond, _mutex) ;
  4587   } else {
  4588     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4589     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4590       pthread_cond_destroy (_cond) ;
  4591       pthread_cond_init    (_cond, NULL);
  4594   assert_status(status == 0 || status == EINTR ||
  4595                 status == ETIMEDOUT,
  4596                 status, "cond_timedwait");
  4598 #ifdef ASSERT
  4599   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4600 #endif
  4602   _counter = 0 ;
  4603   status = pthread_mutex_unlock(_mutex) ;
  4604   assert_status(status == 0, status, "invariant") ;
  4605   // Paranoia to ensure our locked and lock-free paths interact
  4606   // correctly with each other and Java-level accesses.
  4607   OrderAccess::fence();
  4609   // If externally suspended while waiting, re-suspend
  4610   if (jt->handle_special_suspend_equivalent_condition()) {
  4611     jt->java_suspend_self();
  4615 void Parker::unpark() {
  4616   int s, status ;
  4617   status = pthread_mutex_lock(_mutex);
  4618   assert (status == 0, "invariant") ;
  4619   s = _counter;
  4620   _counter = 1;
  4621   if (s < 1) {
  4622      if (WorkAroundNPTLTimedWaitHang) {
  4623         status = pthread_cond_signal (_cond) ;
  4624         assert (status == 0, "invariant") ;
  4625         status = pthread_mutex_unlock(_mutex);
  4626         assert (status == 0, "invariant") ;
  4627      } else {
  4628         status = pthread_mutex_unlock(_mutex);
  4629         assert (status == 0, "invariant") ;
  4630         status = pthread_cond_signal (_cond) ;
  4631         assert (status == 0, "invariant") ;
  4633   } else {
  4634     pthread_mutex_unlock(_mutex);
  4635     assert (status == 0, "invariant") ;
  4640 /* Darwin has no "environ" in a dynamic library. */
  4641 #ifdef __APPLE__
  4642 #include <crt_externs.h>
  4643 #define environ (*_NSGetEnviron())
  4644 #else
  4645 extern char** environ;
  4646 #endif
  4648 // Run the specified command in a separate process. Return its exit value,
  4649 // or -1 on failure (e.g. can't fork a new process).
  4650 // Unlike system(), this function can be called from signal handler. It
  4651 // doesn't block SIGINT et al.
  4652 int os::fork_and_exec(char* cmd) {
  4653   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4655   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
  4656   // pthread_atfork handlers and reset pthread library. All we need is a
  4657   // separate process to execve. Make a direct syscall to fork process.
  4658   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4659   // the best...
  4660   pid_t pid = fork();
  4662   if (pid < 0) {
  4663     // fork failed
  4664     return -1;
  4666   } else if (pid == 0) {
  4667     // child process
  4669     // execve() in BsdThreads will call pthread_kill_other_threads_np()
  4670     // first to kill every thread on the thread list. Because this list is
  4671     // not reset by fork() (see notes above), execve() will instead kill
  4672     // every thread in the parent process. We know this is the only thread
  4673     // in the new process, so make a system call directly.
  4674     // IA64 should use normal execve() from glibc to match the glibc fork()
  4675     // above.
  4676     execve("/bin/sh", (char* const*)argv, environ);
  4678     // execve failed
  4679     _exit(-1);
  4681   } else  {
  4682     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4683     // care about the actual exit code, for now.
  4685     int status;
  4687     // Wait for the child process to exit.  This returns immediately if
  4688     // the child has already exited. */
  4689     while (waitpid(pid, &status, 0) < 0) {
  4690         switch (errno) {
  4691         case ECHILD: return 0;
  4692         case EINTR: break;
  4693         default: return -1;
  4697     if (WIFEXITED(status)) {
  4698        // The child exited normally; get its exit code.
  4699        return WEXITSTATUS(status);
  4700     } else if (WIFSIGNALED(status)) {
  4701        // The child exited because of a signal
  4702        // The best value to return is 0x80 + signal number,
  4703        // because that is what all Unix shells do, and because
  4704        // it allows callers to distinguish between process exit and
  4705        // process death by signal.
  4706        return 0x80 + WTERMSIG(status);
  4707     } else {
  4708        // Unknown exit code; pass it through
  4709        return status;
  4714 // is_headless_jre()
  4715 //
  4716 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  4717 // in order to report if we are running in a headless jre
  4718 //
  4719 // Since JDK8 xawt/libmawt.so was moved into the same directory
  4720 // as libawt.so, and renamed libawt_xawt.so
  4721 //
  4722 bool os::is_headless_jre() {
  4723     struct stat statbuf;
  4724     char buf[MAXPATHLEN];
  4725     char libmawtpath[MAXPATHLEN];
  4726     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
  4727     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
  4728     char *p;
  4730     // Get path to libjvm.so
  4731     os::jvm_path(buf, sizeof(buf));
  4733     // Get rid of libjvm.so
  4734     p = strrchr(buf, '/');
  4735     if (p == NULL) return false;
  4736     else *p = '\0';
  4738     // Get rid of client or server
  4739     p = strrchr(buf, '/');
  4740     if (p == NULL) return false;
  4741     else *p = '\0';
  4743     // check xawt/libmawt.so
  4744     strcpy(libmawtpath, buf);
  4745     strcat(libmawtpath, xawtstr);
  4746     if (::stat(libmawtpath, &statbuf) == 0) return false;
  4748     // check libawt_xawt.so
  4749     strcpy(libmawtpath, buf);
  4750     strcat(libmawtpath, new_xawtstr);
  4751     if (::stat(libmawtpath, &statbuf) == 0) return false;
  4753     return true;
  4756 // Get the default path to the core file
  4757 // Returns the length of the string
  4758 int os::get_core_path(char* buffer, size_t bufferSize) {
  4759   int n = jio_snprintf(buffer, bufferSize, "/cores");
  4761   // Truncate if theoretical string was longer than bufferSize
  4762   n = MIN2(n, (int)bufferSize);
  4764   return n;
  4767 #ifndef PRODUCT
  4768 void TestReserveMemorySpecial_test() {
  4769   // No tests available for this platform
  4771 #endif

mercurial