src/share/vm/runtime/deoptimization.cpp

Tue, 05 Nov 2013 17:38:04 -0800

author
kvn
date
Tue, 05 Nov 2013 17:38:04 -0800
changeset 6472
2b8e28fdf503
parent 6442
b5c8a61d7fa0
parent 5784
190899198332
child 6503
a9becfeecd1b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc_32
    85 # include "adfiles/ad_ppc_32.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #endif
    90 #endif // COMPILER2
    92 bool DeoptimizationMarker::_is_active = false;
    94 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    95                                          int  caller_adjustment,
    96                                          int  caller_actual_parameters,
    97                                          int  number_of_frames,
    98                                          intptr_t* frame_sizes,
    99                                          address* frame_pcs,
   100                                          BasicType return_type) {
   101   _size_of_deoptimized_frame = size_of_deoptimized_frame;
   102   _caller_adjustment         = caller_adjustment;
   103   _caller_actual_parameters  = caller_actual_parameters;
   104   _number_of_frames          = number_of_frames;
   105   _frame_sizes               = frame_sizes;
   106   _frame_pcs                 = frame_pcs;
   107   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
   108   _return_type               = return_type;
   109   _initial_info              = 0;
   110   // PD (x86 only)
   111   _counter_temp              = 0;
   112   _unpack_kind               = 0;
   113   _sender_sp_temp            = 0;
   115   _total_frame_sizes         = size_of_frames();
   116 }
   119 Deoptimization::UnrollBlock::~UnrollBlock() {
   120   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
   121   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
   122   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
   123 }
   126 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   127   assert(register_number < RegisterMap::reg_count, "checking register number");
   128   return &_register_block[register_number * 2];
   129 }
   133 int Deoptimization::UnrollBlock::size_of_frames() const {
   134   // Acount first for the adjustment of the initial frame
   135   int result = _caller_adjustment;
   136   for (int index = 0; index < number_of_frames(); index++) {
   137     result += frame_sizes()[index];
   138   }
   139   return result;
   140 }
   143 void Deoptimization::UnrollBlock::print() {
   144   ttyLocker ttyl;
   145   tty->print_cr("UnrollBlock");
   146   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   147   tty->print(   "  frame_sizes: ");
   148   for (int index = 0; index < number_of_frames(); index++) {
   149     tty->print("%d ", frame_sizes()[index]);
   150   }
   151   tty->cr();
   152 }
   155 // In order to make fetch_unroll_info work properly with escape
   156 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   157 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   158 // of previously eliminated objects occurs in realloc_objects, which is
   159 // called from the method fetch_unroll_info_helper below.
   160 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   161   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   162   // but makes the entry a little slower. There is however a little dance we have to
   163   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   165   // fetch_unroll_info() is called at the beginning of the deoptimization
   166   // handler. Note this fact before we start generating temporary frames
   167   // that can confuse an asynchronous stack walker. This counter is
   168   // decremented at the end of unpack_frames().
   169   thread->inc_in_deopt_handler();
   171   return fetch_unroll_info_helper(thread);
   172 JRT_END
   175 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   176 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   178   // Note: there is a safepoint safety issue here. No matter whether we enter
   179   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   180   // the vframeArray is created.
   181   //
   183   // Allocate our special deoptimization ResourceMark
   184   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   185   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   186   thread->set_deopt_mark(dmark);
   188   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   189   RegisterMap map(thread, true);
   190   RegisterMap dummy_map(thread, false);
   191   // Now get the deoptee with a valid map
   192   frame deoptee = stub_frame.sender(&map);
   193   // Set the deoptee nmethod
   194   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   195   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   197   if (VerifyStack) {
   198     thread->validate_frame_layout();
   199   }
   201   // Create a growable array of VFrames where each VFrame represents an inlined
   202   // Java frame.  This storage is allocated with the usual system arena.
   203   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   204   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   205   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   206   while (!vf->is_top()) {
   207     assert(vf->is_compiled_frame(), "Wrong frame type");
   208     chunk->push(compiledVFrame::cast(vf));
   209     vf = vf->sender();
   210   }
   211   assert(vf->is_compiled_frame(), "Wrong frame type");
   212   chunk->push(compiledVFrame::cast(vf));
   214 #ifdef COMPILER2
   215   // Reallocate the non-escaping objects and restore their fields. Then
   216   // relock objects if synchronization on them was eliminated.
   217   if (DoEscapeAnalysis || EliminateNestedLocks) {
   218     if (EliminateAllocations) {
   219       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   220       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   222       // The flag return_oop() indicates call sites which return oop
   223       // in compiled code. Such sites include java method calls,
   224       // runtime calls (for example, used to allocate new objects/arrays
   225       // on slow code path) and any other calls generated in compiled code.
   226       // It is not guaranteed that we can get such information here only
   227       // by analyzing bytecode in deoptimized frames. This is why this flag
   228       // is set during method compilation (see Compile::Process_OopMap_Node()).
   229       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   230       Handle return_value;
   231       if (save_oop_result) {
   232         // Reallocation may trigger GC. If deoptimization happened on return from
   233         // call which returns oop we need to save it since it is not in oopmap.
   234         oop result = deoptee.saved_oop_result(&map);
   235         assert(result == NULL || result->is_oop(), "must be oop");
   236         return_value = Handle(thread, result);
   237         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   238         if (TraceDeoptimization) {
   239           ttyLocker ttyl;
   240           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
   241         }
   242       }
   243       bool reallocated = false;
   244       if (objects != NULL) {
   245         JRT_BLOCK
   246           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   247         JRT_END
   248       }
   249       if (reallocated) {
   250         reassign_fields(&deoptee, &map, objects);
   251 #ifndef PRODUCT
   252         if (TraceDeoptimization) {
   253           ttyLocker ttyl;
   254           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   255           print_objects(objects);
   256         }
   257 #endif
   258       }
   259       if (save_oop_result) {
   260         // Restore result.
   261         deoptee.set_saved_oop_result(&map, return_value());
   262       }
   263     }
   264     if (EliminateLocks) {
   265 #ifndef PRODUCT
   266       bool first = true;
   267 #endif
   268       for (int i = 0; i < chunk->length(); i++) {
   269         compiledVFrame* cvf = chunk->at(i);
   270         assert (cvf->scope() != NULL,"expect only compiled java frames");
   271         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   272         if (monitors->is_nonempty()) {
   273           relock_objects(monitors, thread);
   274 #ifndef PRODUCT
   275           if (TraceDeoptimization) {
   276             ttyLocker ttyl;
   277             for (int j = 0; j < monitors->length(); j++) {
   278               MonitorInfo* mi = monitors->at(j);
   279               if (mi->eliminated()) {
   280                 if (first) {
   281                   first = false;
   282                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   283                 }
   284                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
   285               }
   286             }
   287           }
   288 #endif
   289         }
   290       }
   291     }
   292   }
   293 #endif // COMPILER2
   294   // Ensure that no safepoint is taken after pointers have been stored
   295   // in fields of rematerialized objects.  If a safepoint occurs from here on
   296   // out the java state residing in the vframeArray will be missed.
   297   No_Safepoint_Verifier no_safepoint;
   299   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   301   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   302   thread->set_vframe_array_head(array);
   304   // Now that the vframeArray has been created if we have any deferred local writes
   305   // added by jvmti then we can free up that structure as the data is now in the
   306   // vframeArray
   308   if (thread->deferred_locals() != NULL) {
   309     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   310     int i = 0;
   311     do {
   312       // Because of inlining we could have multiple vframes for a single frame
   313       // and several of the vframes could have deferred writes. Find them all.
   314       if (list->at(i)->id() == array->original().id()) {
   315         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   316         list->remove_at(i);
   317         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   318         delete dlv;
   319       } else {
   320         i++;
   321       }
   322     } while ( i < list->length() );
   323     if (list->length() == 0) {
   324       thread->set_deferred_locals(NULL);
   325       // free the list and elements back to C heap.
   326       delete list;
   327     }
   329   }
   331 #ifndef SHARK
   332   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   333   CodeBlob* cb = stub_frame.cb();
   334   // Verify we have the right vframeArray
   335   assert(cb->frame_size() >= 0, "Unexpected frame size");
   336   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   338   // If the deopt call site is a MethodHandle invoke call site we have
   339   // to adjust the unpack_sp.
   340   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   341   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   342     unpack_sp = deoptee.unextended_sp();
   344 #ifdef ASSERT
   345   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   346 #endif
   347 #else
   348   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   349 #endif // !SHARK
   351   // This is a guarantee instead of an assert because if vframe doesn't match
   352   // we will unpack the wrong deoptimized frame and wind up in strange places
   353   // where it will be very difficult to figure out what went wrong. Better
   354   // to die an early death here than some very obscure death later when the
   355   // trail is cold.
   356   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   357   // in that it will fail to detect a problem when there is one. This needs
   358   // more work in tiger timeframe.
   359   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   361   int number_of_frames = array->frames();
   363   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   364   // virtual activation, which is the reverse of the elements in the vframes array.
   365   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
   366   // +1 because we always have an interpreter return address for the final slot.
   367   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
   368   int popframe_extra_args = 0;
   369   // Create an interpreter return address for the stub to use as its return
   370   // address so the skeletal frames are perfectly walkable
   371   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   373   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   374   // activation be put back on the expression stack of the caller for reexecution
   375   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   376     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   377   }
   379   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   380   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   381   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   382   //
   383   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   384   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   386   // It's possible that the number of paramters at the call site is
   387   // different than number of arguments in the callee when method
   388   // handles are used.  If the caller is interpreted get the real
   389   // value so that the proper amount of space can be added to it's
   390   // frame.
   391   bool caller_was_method_handle = false;
   392   if (deopt_sender.is_interpreted_frame()) {
   393     methodHandle method = deopt_sender.interpreter_frame_method();
   394     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
   395     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
   396       // Method handle invokes may involve fairly arbitrary chains of
   397       // calls so it's impossible to know how much actual space the
   398       // caller has for locals.
   399       caller_was_method_handle = true;
   400     }
   401   }
   403   //
   404   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   405   // frame_sizes/frame_pcs[1] next oldest frame (int)
   406   // frame_sizes/frame_pcs[n] youngest frame (int)
   407   //
   408   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   409   // owns the space for the return address to it's caller).  Confusing ain't it.
   410   //
   411   // The vframe array can address vframes with indices running from
   412   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   413   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   414   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   415   // so things look a little strange in this loop.
   416   //
   417   int callee_parameters = 0;
   418   int callee_locals = 0;
   419   for (int index = 0; index < array->frames(); index++ ) {
   420     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   421     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   422     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   423     int caller_parms = callee_parameters;
   424     if ((index == array->frames() - 1) && caller_was_method_handle) {
   425       caller_parms = 0;
   426     }
   427     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
   428                                                                                                     callee_parameters,
   429                                                                                                     callee_locals,
   430                                                                                                     index == 0,
   431                                                                                                     index == array->frames() - 1,
   432                                                                                                     popframe_extra_args);
   433     // This pc doesn't have to be perfect just good enough to identify the frame
   434     // as interpreted so the skeleton frame will be walkable
   435     // The correct pc will be set when the skeleton frame is completely filled out
   436     // The final pc we store in the loop is wrong and will be overwritten below
   437     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   439     callee_parameters = array->element(index)->method()->size_of_parameters();
   440     callee_locals = array->element(index)->method()->max_locals();
   441     popframe_extra_args = 0;
   442   }
   444   // Compute whether the root vframe returns a float or double value.
   445   BasicType return_type;
   446   {
   447     HandleMark hm;
   448     methodHandle method(thread, array->element(0)->method());
   449     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   450     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   451   }
   453   // Compute information for handling adapters and adjusting the frame size of the caller.
   454   int caller_adjustment = 0;
   456   // Compute the amount the oldest interpreter frame will have to adjust
   457   // its caller's stack by. If the caller is a compiled frame then
   458   // we pretend that the callee has no parameters so that the
   459   // extension counts for the full amount of locals and not just
   460   // locals-parms. This is because without a c2i adapter the parm
   461   // area as created by the compiled frame will not be usable by
   462   // the interpreter. (Depending on the calling convention there
   463   // may not even be enough space).
   465   // QQQ I'd rather see this pushed down into last_frame_adjust
   466   // and have it take the sender (aka caller).
   468   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
   469     caller_adjustment = last_frame_adjust(0, callee_locals);
   470   } else if (callee_locals > callee_parameters) {
   471     // The caller frame may need extending to accommodate
   472     // non-parameter locals of the first unpacked interpreted frame.
   473     // Compute that adjustment.
   474     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   475   }
   477   // If the sender is deoptimized the we must retrieve the address of the handler
   478   // since the frame will "magically" show the original pc before the deopt
   479   // and we'd undo the deopt.
   481   frame_pcs[0] = deopt_sender.raw_pc();
   483 #ifndef SHARK
   484   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   485 #endif // SHARK
   487   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   488                                       caller_adjustment * BytesPerWord,
   489                                       caller_was_method_handle ? 0 : callee_parameters,
   490                                       number_of_frames,
   491                                       frame_sizes,
   492                                       frame_pcs,
   493                                       return_type);
   494   // On some platforms, we need a way to pass some platform dependent
   495   // information to the unpacking code so the skeletal frames come out
   496   // correct (initial fp value, unextended sp, ...)
   497   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   499   if (array->frames() > 1) {
   500     if (VerifyStack && TraceDeoptimization) {
   501       ttyLocker ttyl;
   502       tty->print_cr("Deoptimizing method containing inlining");
   503     }
   504   }
   506   array->set_unroll_block(info);
   507   return info;
   508 }
   510 // Called to cleanup deoptimization data structures in normal case
   511 // after unpacking to stack and when stack overflow error occurs
   512 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   513                                         vframeArray *array) {
   515   // Get array if coming from exception
   516   if (array == NULL) {
   517     array = thread->vframe_array_head();
   518   }
   519   thread->set_vframe_array_head(NULL);
   521   // Free the previous UnrollBlock
   522   vframeArray* old_array = thread->vframe_array_last();
   523   thread->set_vframe_array_last(array);
   525   if (old_array != NULL) {
   526     UnrollBlock* old_info = old_array->unroll_block();
   527     old_array->set_unroll_block(NULL);
   528     delete old_info;
   529     delete old_array;
   530   }
   532   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   533   // inside the vframeArray (StackValueCollections)
   535   delete thread->deopt_mark();
   536   thread->set_deopt_mark(NULL);
   537   thread->set_deopt_nmethod(NULL);
   540   if (JvmtiExport::can_pop_frame()) {
   541 #ifndef CC_INTERP
   542     // Regardless of whether we entered this routine with the pending
   543     // popframe condition bit set, we should always clear it now
   544     thread->clear_popframe_condition();
   545 #else
   546     // C++ interpeter will clear has_pending_popframe when it enters
   547     // with method_resume. For deopt_resume2 we clear it now.
   548     if (thread->popframe_forcing_deopt_reexecution())
   549         thread->clear_popframe_condition();
   550 #endif /* CC_INTERP */
   551   }
   553   // unpack_frames() is called at the end of the deoptimization handler
   554   // and (in C2) at the end of the uncommon trap handler. Note this fact
   555   // so that an asynchronous stack walker can work again. This counter is
   556   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   557   // the beginning of uncommon_trap().
   558   thread->dec_in_deopt_handler();
   559 }
   562 // Return BasicType of value being returned
   563 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   565   // We are already active int he special DeoptResourceMark any ResourceObj's we
   566   // allocate will be freed at the end of the routine.
   568   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   569   // but makes the entry a little slower. There is however a little dance we have to
   570   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   571   ResetNoHandleMark rnhm; // No-op in release/product versions
   572   HandleMark hm;
   574   frame stub_frame = thread->last_frame();
   576   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   577   // must point to the vframeArray for the unpack frame.
   578   vframeArray* array = thread->vframe_array_head();
   580 #ifndef PRODUCT
   581   if (TraceDeoptimization) {
   582     ttyLocker ttyl;
   583     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   584   }
   585 #endif
   586   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
   587               stub_frame.pc(), stub_frame.sp(), exec_mode);
   589   UnrollBlock* info = array->unroll_block();
   591   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   592   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   594   BasicType bt = info->return_type();
   596   // If we have an exception pending, claim that the return type is an oop
   597   // so the deopt_blob does not overwrite the exception_oop.
   599   if (exec_mode == Unpack_exception)
   600     bt = T_OBJECT;
   602   // Cleanup thread deopt data
   603   cleanup_deopt_info(thread, array);
   605 #ifndef PRODUCT
   606   if (VerifyStack) {
   607     ResourceMark res_mark;
   609     thread->validate_frame_layout();
   611     // Verify that the just-unpacked frames match the interpreter's
   612     // notions of expression stack and locals
   613     vframeArray* cur_array = thread->vframe_array_last();
   614     RegisterMap rm(thread, false);
   615     rm.set_include_argument_oops(false);
   616     bool is_top_frame = true;
   617     int callee_size_of_parameters = 0;
   618     int callee_max_locals = 0;
   619     for (int i = 0; i < cur_array->frames(); i++) {
   620       vframeArrayElement* el = cur_array->element(i);
   621       frame* iframe = el->iframe();
   622       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   624       // Get the oop map for this bci
   625       InterpreterOopMap mask;
   626       int cur_invoke_parameter_size = 0;
   627       bool try_next_mask = false;
   628       int next_mask_expression_stack_size = -1;
   629       int top_frame_expression_stack_adjustment = 0;
   630       methodHandle mh(thread, iframe->interpreter_frame_method());
   631       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   632       BytecodeStream str(mh);
   633       str.set_start(iframe->interpreter_frame_bci());
   634       int max_bci = mh->code_size();
   635       // Get to the next bytecode if possible
   636       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   637       // Check to see if we can grab the number of outgoing arguments
   638       // at an uncommon trap for an invoke (where the compiler
   639       // generates debug info before the invoke has executed)
   640       Bytecodes::Code cur_code = str.next();
   641       if (cur_code == Bytecodes::_invokevirtual   ||
   642           cur_code == Bytecodes::_invokespecial   ||
   643           cur_code == Bytecodes::_invokestatic    ||
   644           cur_code == Bytecodes::_invokeinterface ||
   645           cur_code == Bytecodes::_invokedynamic) {
   646         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   647         Symbol* signature = invoke.signature();
   648         ArgumentSizeComputer asc(signature);
   649         cur_invoke_parameter_size = asc.size();
   650         if (invoke.has_receiver()) {
   651           // Add in receiver
   652           ++cur_invoke_parameter_size;
   653         }
   654         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
   655           callee_size_of_parameters++;
   656         }
   657       }
   658       if (str.bci() < max_bci) {
   659         Bytecodes::Code bc = str.next();
   660         if (bc >= 0) {
   661           // The interpreter oop map generator reports results before
   662           // the current bytecode has executed except in the case of
   663           // calls. It seems to be hard to tell whether the compiler
   664           // has emitted debug information matching the "state before"
   665           // a given bytecode or the state after, so we try both
   666           switch (cur_code) {
   667             case Bytecodes::_invokevirtual:
   668             case Bytecodes::_invokespecial:
   669             case Bytecodes::_invokestatic:
   670             case Bytecodes::_invokeinterface:
   671             case Bytecodes::_invokedynamic:
   672             case Bytecodes::_athrow:
   673               break;
   674             default: {
   675               InterpreterOopMap next_mask;
   676               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   677               next_mask_expression_stack_size = next_mask.expression_stack_size();
   678               // Need to subtract off the size of the result type of
   679               // the bytecode because this is not described in the
   680               // debug info but returned to the interpreter in the TOS
   681               // caching register
   682               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   683               if (bytecode_result_type != T_ILLEGAL) {
   684                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   685               }
   686               assert(top_frame_expression_stack_adjustment >= 0, "");
   687               try_next_mask = true;
   688               break;
   689             }
   690           }
   691         }
   692       }
   694       // Verify stack depth and oops in frame
   695       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   696       if (!(
   697             /* SPARC */
   698             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   699             /* x86 */
   700             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   701             (try_next_mask &&
   702              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   703                                                                     top_frame_expression_stack_adjustment))) ||
   704             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   705             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   706              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   707             )) {
   708         ttyLocker ttyl;
   710         // Print out some information that will help us debug the problem
   711         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   712         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   713         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   714                       iframe->interpreter_frame_expression_stack_size());
   715         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   716         tty->print_cr("  try_next_mask = %d", try_next_mask);
   717         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   718         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   719         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   720         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   721         tty->print_cr("  exec_mode = %d", exec_mode);
   722         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   723         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   724         tty->print_cr("  Interpreted frames:");
   725         for (int k = 0; k < cur_array->frames(); k++) {
   726           vframeArrayElement* el = cur_array->element(k);
   727           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   728         }
   729         cur_array->print_on_2(tty);
   730         guarantee(false, "wrong number of expression stack elements during deopt");
   731       }
   732       VerifyOopClosure verify;
   733       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
   734       callee_size_of_parameters = mh->size_of_parameters();
   735       callee_max_locals = mh->max_locals();
   736       is_top_frame = false;
   737     }
   738   }
   739 #endif /* !PRODUCT */
   742   return bt;
   743 JRT_END
   746 int Deoptimization::deoptimize_dependents() {
   747   Threads::deoptimized_wrt_marked_nmethods();
   748   return 0;
   749 }
   752 #ifdef COMPILER2
   753 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   754   Handle pending_exception(thread->pending_exception());
   755   const char* exception_file = thread->exception_file();
   756   int exception_line = thread->exception_line();
   757   thread->clear_pending_exception();
   759   for (int i = 0; i < objects->length(); i++) {
   760     assert(objects->at(i)->is_object(), "invalid debug information");
   761     ObjectValue* sv = (ObjectValue*) objects->at(i);
   763     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   764     oop obj = NULL;
   766     if (k->oop_is_instance()) {
   767       InstanceKlass* ik = InstanceKlass::cast(k());
   768       obj = ik->allocate_instance(CHECK_(false));
   769     } else if (k->oop_is_typeArray()) {
   770       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   771       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   772       int len = sv->field_size() / type2size[ak->element_type()];
   773       obj = ak->allocate(len, CHECK_(false));
   774     } else if (k->oop_is_objArray()) {
   775       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
   776       obj = ak->allocate(sv->field_size(), CHECK_(false));
   777     }
   779     assert(obj != NULL, "allocation failed");
   780     assert(sv->value().is_null(), "redundant reallocation");
   781     sv->set_value(obj);
   782   }
   784   if (pending_exception.not_null()) {
   785     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   786   }
   788   return true;
   789 }
   791 // This assumes that the fields are stored in ObjectValue in the same order
   792 // they are yielded by do_nonstatic_fields.
   793 class FieldReassigner: public FieldClosure {
   794   frame* _fr;
   795   RegisterMap* _reg_map;
   796   ObjectValue* _sv;
   797   InstanceKlass* _ik;
   798   oop _obj;
   800   int _i;
   801 public:
   802   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   803     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   805   int i() const { return _i; }
   808   void do_field(fieldDescriptor* fd) {
   809     intptr_t val;
   810     StackValue* value =
   811       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   812     int offset = fd->offset();
   813     switch (fd->field_type()) {
   814     case T_OBJECT: case T_ARRAY:
   815       assert(value->type() == T_OBJECT, "Agreement.");
   816       _obj->obj_field_put(offset, value->get_obj()());
   817       break;
   819     case T_LONG: case T_DOUBLE: {
   820       assert(value->type() == T_INT, "Agreement.");
   821       StackValue* low =
   822         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   823 #ifdef _LP64
   824       jlong res = (jlong)low->get_int();
   825 #else
   826 #ifdef SPARC
   827       // For SPARC we have to swap high and low words.
   828       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   829 #else
   830       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   831 #endif //SPARC
   832 #endif
   833       _obj->long_field_put(offset, res);
   834       break;
   835     }
   836     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   837     case T_INT: case T_FLOAT: // 4 bytes.
   838       assert(value->type() == T_INT, "Agreement.");
   839       val = value->get_int();
   840       _obj->int_field_put(offset, (jint)*((jint*)&val));
   841       break;
   843     case T_SHORT: case T_CHAR: // 2 bytes
   844       assert(value->type() == T_INT, "Agreement.");
   845       val = value->get_int();
   846       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   847       break;
   849     case T_BOOLEAN: case T_BYTE: // 1 byte
   850       assert(value->type() == T_INT, "Agreement.");
   851       val = value->get_int();
   852       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   853       break;
   855     default:
   856       ShouldNotReachHere();
   857     }
   858     _i++;
   859   }
   860 };
   862 // restore elements of an eliminated type array
   863 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   864   int index = 0;
   865   intptr_t val;
   867   for (int i = 0; i < sv->field_size(); i++) {
   868     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   869     switch(type) {
   870     case T_LONG: case T_DOUBLE: {
   871       assert(value->type() == T_INT, "Agreement.");
   872       StackValue* low =
   873         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   874 #ifdef _LP64
   875       jlong res = (jlong)low->get_int();
   876 #else
   877 #ifdef SPARC
   878       // For SPARC we have to swap high and low words.
   879       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   880 #else
   881       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   882 #endif //SPARC
   883 #endif
   884       obj->long_at_put(index, res);
   885       break;
   886     }
   888     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   889     case T_INT: case T_FLOAT: // 4 bytes.
   890       assert(value->type() == T_INT, "Agreement.");
   891       val = value->get_int();
   892       obj->int_at_put(index, (jint)*((jint*)&val));
   893       break;
   895     case T_SHORT: case T_CHAR: // 2 bytes
   896       assert(value->type() == T_INT, "Agreement.");
   897       val = value->get_int();
   898       obj->short_at_put(index, (jshort)*((jint*)&val));
   899       break;
   901     case T_BOOLEAN: case T_BYTE: // 1 byte
   902       assert(value->type() == T_INT, "Agreement.");
   903       val = value->get_int();
   904       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   905       break;
   907       default:
   908         ShouldNotReachHere();
   909     }
   910     index++;
   911   }
   912 }
   915 // restore fields of an eliminated object array
   916 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   917   for (int i = 0; i < sv->field_size(); i++) {
   918     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   919     assert(value->type() == T_OBJECT, "object element expected");
   920     obj->obj_at_put(i, value->get_obj()());
   921   }
   922 }
   925 // restore fields of all eliminated objects and arrays
   926 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   927   for (int i = 0; i < objects->length(); i++) {
   928     ObjectValue* sv = (ObjectValue*) objects->at(i);
   929     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   930     Handle obj = sv->value();
   931     assert(obj.not_null(), "reallocation was missed");
   933     if (k->oop_is_instance()) {
   934       InstanceKlass* ik = InstanceKlass::cast(k());
   935       FieldReassigner reassign(fr, reg_map, sv, obj());
   936       ik->do_nonstatic_fields(&reassign);
   937     } else if (k->oop_is_typeArray()) {
   938       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   939       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   940     } else if (k->oop_is_objArray()) {
   941       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   942     }
   943   }
   944 }
   947 // relock objects for which synchronization was eliminated
   948 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   949   for (int i = 0; i < monitors->length(); i++) {
   950     MonitorInfo* mon_info = monitors->at(i);
   951     if (mon_info->eliminated()) {
   952       assert(mon_info->owner() != NULL, "reallocation was missed");
   953       Handle obj = Handle(mon_info->owner());
   954       markOop mark = obj->mark();
   955       if (UseBiasedLocking && mark->has_bias_pattern()) {
   956         // New allocated objects may have the mark set to anonymously biased.
   957         // Also the deoptimized method may called methods with synchronization
   958         // where the thread-local object is bias locked to the current thread.
   959         assert(mark->is_biased_anonymously() ||
   960                mark->biased_locker() == thread, "should be locked to current thread");
   961         // Reset mark word to unbiased prototype.
   962         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   963         obj->set_mark(unbiased_prototype);
   964       }
   965       BasicLock* lock = mon_info->lock();
   966       ObjectSynchronizer::slow_enter(obj, lock, thread);
   967     }
   968     assert(mon_info->owner()->is_locked(), "object must be locked now");
   969   }
   970 }
   973 #ifndef PRODUCT
   974 // print information about reallocated objects
   975 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   976   fieldDescriptor fd;
   978   for (int i = 0; i < objects->length(); i++) {
   979     ObjectValue* sv = (ObjectValue*) objects->at(i);
   980     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   981     Handle obj = sv->value();
   983     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
   984     k->print_value();
   985     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   986     tty->cr();
   988     if (Verbose) {
   989       k->oop_print_on(obj(), tty);
   990     }
   991   }
   992 }
   993 #endif
   994 #endif // COMPILER2
   996 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   997   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
   999 #ifndef PRODUCT
  1000   if (TraceDeoptimization) {
  1001     ttyLocker ttyl;
  1002     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
  1003     fr.print_on(tty);
  1004     tty->print_cr("     Virtual frames (innermost first):");
  1005     for (int index = 0; index < chunk->length(); index++) {
  1006       compiledVFrame* vf = chunk->at(index);
  1007       tty->print("       %2d - ", index);
  1008       vf->print_value();
  1009       int bci = chunk->at(index)->raw_bci();
  1010       const char* code_name;
  1011       if (bci == SynchronizationEntryBCI) {
  1012         code_name = "sync entry";
  1013       } else {
  1014         Bytecodes::Code code = vf->method()->code_at(bci);
  1015         code_name = Bytecodes::name(code);
  1017       tty->print(" - %s", code_name);
  1018       tty->print_cr(" @ bci %d ", bci);
  1019       if (Verbose) {
  1020         vf->print();
  1021         tty->cr();
  1025 #endif
  1027   // Register map for next frame (used for stack crawl).  We capture
  1028   // the state of the deopt'ing frame's caller.  Thus if we need to
  1029   // stuff a C2I adapter we can properly fill in the callee-save
  1030   // register locations.
  1031   frame caller = fr.sender(reg_map);
  1032   int frame_size = caller.sp() - fr.sp();
  1034   frame sender = caller;
  1036   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1037   // the vframeArray containing the unpacking information is allocated in the C heap.
  1038   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1039   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1041   // Compare the vframeArray to the collected vframes
  1042   assert(array->structural_compare(thread, chunk), "just checking");
  1044 #ifndef PRODUCT
  1045   if (TraceDeoptimization) {
  1046     ttyLocker ttyl;
  1047     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1049 #endif // PRODUCT
  1051   return array;
  1055 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1056   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1057   for (int i = 0; i < monitors->length(); i++) {
  1058     MonitorInfo* mon_info = monitors->at(i);
  1059     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1060       objects_to_revoke->append(Handle(mon_info->owner()));
  1066 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1067   if (!UseBiasedLocking) {
  1068     return;
  1071   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1073   // Unfortunately we don't have a RegisterMap available in most of
  1074   // the places we want to call this routine so we need to walk the
  1075   // stack again to update the register map.
  1076   if (map == NULL || !map->update_map()) {
  1077     StackFrameStream sfs(thread, true);
  1078     bool found = false;
  1079     while (!found && !sfs.is_done()) {
  1080       frame* cur = sfs.current();
  1081       sfs.next();
  1082       found = cur->id() == fr.id();
  1084     assert(found, "frame to be deoptimized not found on target thread's stack");
  1085     map = sfs.register_map();
  1088   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1089   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1090   // Revoke monitors' biases in all scopes
  1091   while (!cvf->is_top()) {
  1092     collect_monitors(cvf, objects_to_revoke);
  1093     cvf = compiledVFrame::cast(cvf->sender());
  1095   collect_monitors(cvf, objects_to_revoke);
  1097   if (SafepointSynchronize::is_at_safepoint()) {
  1098     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1099   } else {
  1100     BiasedLocking::revoke(objects_to_revoke);
  1105 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1106   if (!UseBiasedLocking) {
  1107     return;
  1110   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1111   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1112   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1113     if (jt->has_last_Java_frame()) {
  1114       StackFrameStream sfs(jt, true);
  1115       while (!sfs.is_done()) {
  1116         frame* cur = sfs.current();
  1117         if (cb->contains(cur->pc())) {
  1118           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1119           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1120           // Revoke monitors' biases in all scopes
  1121           while (!cvf->is_top()) {
  1122             collect_monitors(cvf, objects_to_revoke);
  1123             cvf = compiledVFrame::cast(cvf->sender());
  1125           collect_monitors(cvf, objects_to_revoke);
  1127         sfs.next();
  1131   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1135 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1136   assert(fr.can_be_deoptimized(), "checking frame type");
  1138   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1140   // Patch the nmethod so that when execution returns to it we will
  1141   // deopt the execution state and return to the interpreter.
  1142   fr.deoptimize(thread);
  1145 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1146   // Deoptimize only if the frame comes from compile code.
  1147   // Do not deoptimize the frame which is already patched
  1148   // during the execution of the loops below.
  1149   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1150     return;
  1152   ResourceMark rm;
  1153   DeoptimizationMarker dm;
  1154   if (UseBiasedLocking) {
  1155     revoke_biases_of_monitors(thread, fr, map);
  1157   deoptimize_single_frame(thread, fr);
  1162 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1163   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1164          "can only deoptimize other thread at a safepoint");
  1165   // Compute frame and register map based on thread and sp.
  1166   RegisterMap reg_map(thread, UseBiasedLocking);
  1167   frame fr = thread->last_frame();
  1168   while (fr.id() != id) {
  1169     fr = fr.sender(&reg_map);
  1171   deoptimize(thread, fr, &reg_map);
  1175 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1176   if (thread == Thread::current()) {
  1177     Deoptimization::deoptimize_frame_internal(thread, id);
  1178   } else {
  1179     VM_DeoptimizeFrame deopt(thread, id);
  1180     VMThread::execute(&deopt);
  1185 // JVMTI PopFrame support
  1186 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1188   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1190 JRT_END
  1193 #if defined(COMPILER2) || defined(SHARK)
  1194 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1195   // in case of an unresolved klass entry, load the class.
  1196   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1197     Klass* tk = constant_pool->klass_at(index, CHECK);
  1198     return;
  1201   if (!constant_pool->tag_at(index).is_symbol()) return;
  1203   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
  1204   Symbol*  symbol  = constant_pool->symbol_at(index);
  1206   // class name?
  1207   if (symbol->byte_at(0) != '(') {
  1208     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1209     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1210     return;
  1213   // then it must be a signature!
  1214   ResourceMark rm(THREAD);
  1215   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1216     if (ss.is_object()) {
  1217       Symbol* class_name = ss.as_symbol(CHECK);
  1218       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1219       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1225 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1226   EXCEPTION_MARK;
  1227   load_class_by_index(constant_pool, index, THREAD);
  1228   if (HAS_PENDING_EXCEPTION) {
  1229     // Exception happened during classloading. We ignore the exception here, since it
  1230     // is going to be rethrown since the current activation is going to be deoptimzied and
  1231     // the interpreter will re-execute the bytecode.
  1232     CLEAR_PENDING_EXCEPTION;
  1236 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1237   HandleMark hm;
  1239   // uncommon_trap() is called at the beginning of the uncommon trap
  1240   // handler. Note this fact before we start generating temporary frames
  1241   // that can confuse an asynchronous stack walker. This counter is
  1242   // decremented at the end of unpack_frames().
  1243   thread->inc_in_deopt_handler();
  1245   // We need to update the map if we have biased locking.
  1246   RegisterMap reg_map(thread, UseBiasedLocking);
  1247   frame stub_frame = thread->last_frame();
  1248   frame fr = stub_frame.sender(&reg_map);
  1249   // Make sure the calling nmethod is not getting deoptimized and removed
  1250   // before we are done with it.
  1251   nmethodLocker nl(fr.pc());
  1253   // Log a message
  1254   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
  1255               trap_request, fr.pc());
  1258     ResourceMark rm;
  1260     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1261     revoke_biases_of_monitors(thread, fr, &reg_map);
  1263     DeoptReason reason = trap_request_reason(trap_request);
  1264     DeoptAction action = trap_request_action(trap_request);
  1265     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1267     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1268     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1270     nmethod* nm = cvf->code();
  1272     ScopeDesc*      trap_scope  = cvf->scope();
  1273     methodHandle    trap_method = trap_scope->method();
  1274     int             trap_bci    = trap_scope->bci();
  1275     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1277     // Record this event in the histogram.
  1278     gather_statistics(reason, action, trap_bc);
  1280     // Ensure that we can record deopt. history:
  1281     bool create_if_missing = ProfileTraps;
  1283     MethodData* trap_mdo =
  1284       get_method_data(thread, trap_method, create_if_missing);
  1286     // Log a message
  1287     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
  1288                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
  1289                               trap_method->name_and_sig_as_C_string(), trap_bci);
  1291     // Print a bunch of diagnostics, if requested.
  1292     if (TraceDeoptimization || LogCompilation) {
  1293       ResourceMark rm;
  1294       ttyLocker ttyl;
  1295       char buf[100];
  1296       if (xtty != NULL) {
  1297         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1298                          os::current_thread_id(),
  1299                          format_trap_request(buf, sizeof(buf), trap_request));
  1300         nm->log_identity(xtty);
  1302       Symbol* class_name = NULL;
  1303       bool unresolved = false;
  1304       if (unloaded_class_index >= 0) {
  1305         constantPoolHandle constants (THREAD, trap_method->constants());
  1306         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1307           class_name = constants->klass_name_at(unloaded_class_index);
  1308           unresolved = true;
  1309           if (xtty != NULL)
  1310             xtty->print(" unresolved='1'");
  1311         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1312           class_name = constants->symbol_at(unloaded_class_index);
  1314         if (xtty != NULL)
  1315           xtty->name(class_name);
  1317       if (xtty != NULL && trap_mdo != NULL) {
  1318         // Dump the relevant MDO state.
  1319         // This is the deopt count for the current reason, any previous
  1320         // reasons or recompiles seen at this point.
  1321         int dcnt = trap_mdo->trap_count(reason);
  1322         if (dcnt != 0)
  1323           xtty->print(" count='%d'", dcnt);
  1324         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1325         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1326         if (dos != 0) {
  1327           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1328           if (trap_state_is_recompiled(dos)) {
  1329             int recnt2 = trap_mdo->overflow_recompile_count();
  1330             if (recnt2 != 0)
  1331               xtty->print(" recompiles2='%d'", recnt2);
  1335       if (xtty != NULL) {
  1336         xtty->stamp();
  1337         xtty->end_head();
  1339       if (TraceDeoptimization) {  // make noise on the tty
  1340         tty->print("Uncommon trap occurred in");
  1341         nm->method()->print_short_name(tty);
  1342         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
  1343                    fr.pc(),
  1344                    os::current_thread_id(),
  1345                    trap_reason_name(reason),
  1346                    trap_action_name(action),
  1347                    unloaded_class_index);
  1348         if (class_name != NULL) {
  1349           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1350           class_name->print_symbol_on(tty);
  1352         tty->cr();
  1354       if (xtty != NULL) {
  1355         // Log the precise location of the trap.
  1356         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1357           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1358           xtty->method(sd->method());
  1359           xtty->end_elem();
  1360           if (sd->is_top())  break;
  1362         xtty->tail("uncommon_trap");
  1365     // (End diagnostic printout.)
  1367     // Load class if necessary
  1368     if (unloaded_class_index >= 0) {
  1369       constantPoolHandle constants(THREAD, trap_method->constants());
  1370       load_class_by_index(constants, unloaded_class_index);
  1373     // Flush the nmethod if necessary and desirable.
  1374     //
  1375     // We need to avoid situations where we are re-flushing the nmethod
  1376     // because of a hot deoptimization site.  Repeated flushes at the same
  1377     // point need to be detected by the compiler and avoided.  If the compiler
  1378     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1379     // module must take measures to avoid an infinite cycle of recompilation
  1380     // and deoptimization.  There are several such measures:
  1381     //
  1382     //   1. If a recompilation is ordered a second time at some site X
  1383     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1384     //   to give the interpreter time to exercise the method more thoroughly.
  1385     //   If this happens, the method's overflow_recompile_count is incremented.
  1386     //
  1387     //   2. If the compiler fails to reduce the deoptimization rate, then
  1388     //   the method's overflow_recompile_count will begin to exceed the set
  1389     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1390     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1391     //   to the interpreter.  This is a performance hit for hot methods,
  1392     //   but is better than a disastrous infinite cycle of recompilations.
  1393     //   (Actually, only the method containing the site X is abandoned.)
  1394     //
  1395     //   3. In parallel with the previous measures, if the total number of
  1396     //   recompilations of a method exceeds the much larger set limit
  1397     //   PerMethodRecompilationCutoff, the method is abandoned.
  1398     //   This should only happen if the method is very large and has
  1399     //   many "lukewarm" deoptimizations.  The code which enforces this
  1400     //   limit is elsewhere (class nmethod, class Method).
  1401     //
  1402     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1403     // to recompile at each bytecode independently of the per-BCI cutoff.
  1404     //
  1405     // The decision to update code is up to the compiler, and is encoded
  1406     // in the Action_xxx code.  If the compiler requests Action_none
  1407     // no trap state is changed, no compiled code is changed, and the
  1408     // computation suffers along in the interpreter.
  1409     //
  1410     // The other action codes specify various tactics for decompilation
  1411     // and recompilation.  Action_maybe_recompile is the loosest, and
  1412     // allows the compiled code to stay around until enough traps are seen,
  1413     // and until the compiler gets around to recompiling the trapping method.
  1414     //
  1415     // The other actions cause immediate removal of the present code.
  1417     bool update_trap_state = true;
  1418     bool make_not_entrant = false;
  1419     bool make_not_compilable = false;
  1420     bool reprofile = false;
  1421     switch (action) {
  1422     case Action_none:
  1423       // Keep the old code.
  1424       update_trap_state = false;
  1425       break;
  1426     case Action_maybe_recompile:
  1427       // Do not need to invalidate the present code, but we can
  1428       // initiate another
  1429       // Start compiler without (necessarily) invalidating the nmethod.
  1430       // The system will tolerate the old code, but new code should be
  1431       // generated when possible.
  1432       break;
  1433     case Action_reinterpret:
  1434       // Go back into the interpreter for a while, and then consider
  1435       // recompiling form scratch.
  1436       make_not_entrant = true;
  1437       // Reset invocation counter for outer most method.
  1438       // This will allow the interpreter to exercise the bytecodes
  1439       // for a while before recompiling.
  1440       // By contrast, Action_make_not_entrant is immediate.
  1441       //
  1442       // Note that the compiler will track null_check, null_assert,
  1443       // range_check, and class_check events and log them as if they
  1444       // had been traps taken from compiled code.  This will update
  1445       // the MDO trap history so that the next compilation will
  1446       // properly detect hot trap sites.
  1447       reprofile = true;
  1448       break;
  1449     case Action_make_not_entrant:
  1450       // Request immediate recompilation, and get rid of the old code.
  1451       // Make them not entrant, so next time they are called they get
  1452       // recompiled.  Unloaded classes are loaded now so recompile before next
  1453       // time they are called.  Same for uninitialized.  The interpreter will
  1454       // link the missing class, if any.
  1455       make_not_entrant = true;
  1456       break;
  1457     case Action_make_not_compilable:
  1458       // Give up on compiling this method at all.
  1459       make_not_entrant = true;
  1460       make_not_compilable = true;
  1461       break;
  1462     default:
  1463       ShouldNotReachHere();
  1466     // Setting +ProfileTraps fixes the following, on all platforms:
  1467     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1468     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1469     // recompile relies on a MethodData* to record heroic opt failures.
  1471     // Whether the interpreter is producing MDO data or not, we also need
  1472     // to use the MDO to detect hot deoptimization points and control
  1473     // aggressive optimization.
  1474     bool inc_recompile_count = false;
  1475     ProfileData* pdata = NULL;
  1476     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
  1477       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
  1478       uint this_trap_count = 0;
  1479       bool maybe_prior_trap = false;
  1480       bool maybe_prior_recompile = false;
  1481       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1482                                    //outputs:
  1483                                    this_trap_count,
  1484                                    maybe_prior_trap,
  1485                                    maybe_prior_recompile);
  1486       // Because the interpreter also counts null, div0, range, and class
  1487       // checks, these traps from compiled code are double-counted.
  1488       // This is harmless; it just means that the PerXTrapLimit values
  1489       // are in effect a little smaller than they look.
  1491       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1492       if (per_bc_reason != Reason_none) {
  1493         // Now take action based on the partially known per-BCI history.
  1494         if (maybe_prior_trap
  1495             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1496           // If there are too many traps at this BCI, force a recompile.
  1497           // This will allow the compiler to see the limit overflow, and
  1498           // take corrective action, if possible.  The compiler generally
  1499           // does not use the exact PerBytecodeTrapLimit value, but instead
  1500           // changes its tactics if it sees any traps at all.  This provides
  1501           // a little hysteresis, delaying a recompile until a trap happens
  1502           // several times.
  1503           //
  1504           // Actually, since there is only one bit of counter per BCI,
  1505           // the possible per-BCI counts are {0,1,(per-method count)}.
  1506           // This produces accurate results if in fact there is only
  1507           // one hot trap site, but begins to get fuzzy if there are
  1508           // many sites.  For example, if there are ten sites each
  1509           // trapping two or more times, they each get the blame for
  1510           // all of their traps.
  1511           make_not_entrant = true;
  1514         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1515         if (make_not_entrant && maybe_prior_recompile) {
  1516           // More than one recompile at this point.
  1517           inc_recompile_count = maybe_prior_trap;
  1519       } else {
  1520         // For reasons which are not recorded per-bytecode, we simply
  1521         // force recompiles unconditionally.
  1522         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1523         make_not_entrant = true;
  1526       // Go back to the compiler if there are too many traps in this method.
  1527       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1528         // If there are too many traps in this method, force a recompile.
  1529         // This will allow the compiler to see the limit overflow, and
  1530         // take corrective action, if possible.
  1531         // (This condition is an unlikely backstop only, because the
  1532         // PerBytecodeTrapLimit is more likely to take effect first,
  1533         // if it is applicable.)
  1534         make_not_entrant = true;
  1537       // Here's more hysteresis:  If there has been a recompile at
  1538       // this trap point already, run the method in the interpreter
  1539       // for a while to exercise it more thoroughly.
  1540       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1541         reprofile = true;
  1546     // Take requested actions on the method:
  1548     // Recompile
  1549     if (make_not_entrant) {
  1550       if (!nm->make_not_entrant()) {
  1551         return; // the call did not change nmethod's state
  1554       if (pdata != NULL) {
  1555         // Record the recompilation event, if any.
  1556         int tstate0 = pdata->trap_state();
  1557         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1558         if (tstate1 != tstate0)
  1559           pdata->set_trap_state(tstate1);
  1563     if (inc_recompile_count) {
  1564       trap_mdo->inc_overflow_recompile_count();
  1565       if ((uint)trap_mdo->overflow_recompile_count() >
  1566           (uint)PerBytecodeRecompilationCutoff) {
  1567         // Give up on the method containing the bad BCI.
  1568         if (trap_method() == nm->method()) {
  1569           make_not_compilable = true;
  1570         } else {
  1571           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
  1572           // But give grace to the enclosing nm->method().
  1577     // Reprofile
  1578     if (reprofile) {
  1579       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1582     // Give up compiling
  1583     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1584       assert(make_not_entrant, "consistent");
  1585       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1588   } // Free marked resources
  1591 JRT_END
  1593 MethodData*
  1594 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1595                                 bool create_if_missing) {
  1596   Thread* THREAD = thread;
  1597   MethodData* mdo = m()->method_data();
  1598   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1599     // Build an MDO.  Ignore errors like OutOfMemory;
  1600     // that simply means we won't have an MDO to update.
  1601     Method::build_interpreter_method_data(m, THREAD);
  1602     if (HAS_PENDING_EXCEPTION) {
  1603       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1604       CLEAR_PENDING_EXCEPTION;
  1606     mdo = m()->method_data();
  1608   return mdo;
  1611 ProfileData*
  1612 Deoptimization::query_update_method_data(MethodData* trap_mdo,
  1613                                          int trap_bci,
  1614                                          Deoptimization::DeoptReason reason,
  1615                                          //outputs:
  1616                                          uint& ret_this_trap_count,
  1617                                          bool& ret_maybe_prior_trap,
  1618                                          bool& ret_maybe_prior_recompile) {
  1619   uint prior_trap_count = trap_mdo->trap_count(reason);
  1620   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1622   // If the runtime cannot find a place to store trap history,
  1623   // it is estimated based on the general condition of the method.
  1624   // If the method has ever been recompiled, or has ever incurred
  1625   // a trap with the present reason , then this BCI is assumed
  1626   // (pessimistically) to be the culprit.
  1627   bool maybe_prior_trap      = (prior_trap_count != 0);
  1628   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1629   ProfileData* pdata = NULL;
  1632   // For reasons which are recorded per bytecode, we check per-BCI data.
  1633   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1634   if (per_bc_reason != Reason_none) {
  1635     // Find the profile data for this BCI.  If there isn't one,
  1636     // try to allocate one from the MDO's set of spares.
  1637     // This will let us detect a repeated trap at this point.
  1638     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1640     if (pdata != NULL) {
  1641       // Query the trap state of this profile datum.
  1642       int tstate0 = pdata->trap_state();
  1643       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1644         maybe_prior_trap = false;
  1645       if (!trap_state_is_recompiled(tstate0))
  1646         maybe_prior_recompile = false;
  1648       // Update the trap state of this profile datum.
  1649       int tstate1 = tstate0;
  1650       // Record the reason.
  1651       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1652       // Store the updated state on the MDO, for next time.
  1653       if (tstate1 != tstate0)
  1654         pdata->set_trap_state(tstate1);
  1655     } else {
  1656       if (LogCompilation && xtty != NULL) {
  1657         ttyLocker ttyl;
  1658         // Missing MDP?  Leave a small complaint in the log.
  1659         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1664   // Return results:
  1665   ret_this_trap_count = this_trap_count;
  1666   ret_maybe_prior_trap = maybe_prior_trap;
  1667   ret_maybe_prior_recompile = maybe_prior_recompile;
  1668   return pdata;
  1671 void
  1672 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1673   ResourceMark rm;
  1674   // Ignored outputs:
  1675   uint ignore_this_trap_count;
  1676   bool ignore_maybe_prior_trap;
  1677   bool ignore_maybe_prior_recompile;
  1678   query_update_method_data(trap_mdo, trap_bci,
  1679                            (DeoptReason)reason,
  1680                            ignore_this_trap_count,
  1681                            ignore_maybe_prior_trap,
  1682                            ignore_maybe_prior_recompile);
  1685 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1687   // Still in Java no safepoints
  1689     // This enters VM and may safepoint
  1690     uncommon_trap_inner(thread, trap_request);
  1692   return fetch_unroll_info_helper(thread);
  1695 // Local derived constants.
  1696 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1697 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1698 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1700 //---------------------------trap_state_reason---------------------------------
  1701 Deoptimization::DeoptReason
  1702 Deoptimization::trap_state_reason(int trap_state) {
  1703   // This assert provides the link between the width of DataLayout::trap_bits
  1704   // and the encoding of "recorded" reasons.  It ensures there are enough
  1705   // bits to store all needed reasons in the per-BCI MDO profile.
  1706   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1707   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1708   trap_state -= recompile_bit;
  1709   if (trap_state == DS_REASON_MASK) {
  1710     return Reason_many;
  1711   } else {
  1712     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1713     return (DeoptReason)trap_state;
  1716 //-------------------------trap_state_has_reason-------------------------------
  1717 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1718   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1719   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1720   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1721   trap_state -= recompile_bit;
  1722   if (trap_state == DS_REASON_MASK) {
  1723     return -1;  // true, unspecifically (bottom of state lattice)
  1724   } else if (trap_state == reason) {
  1725     return 1;   // true, definitely
  1726   } else if (trap_state == 0) {
  1727     return 0;   // false, definitely (top of state lattice)
  1728   } else {
  1729     return 0;   // false, definitely
  1732 //-------------------------trap_state_add_reason-------------------------------
  1733 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1734   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1735   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1736   trap_state -= recompile_bit;
  1737   if (trap_state == DS_REASON_MASK) {
  1738     return trap_state + recompile_bit;     // already at state lattice bottom
  1739   } else if (trap_state == reason) {
  1740     return trap_state + recompile_bit;     // the condition is already true
  1741   } else if (trap_state == 0) {
  1742     return reason + recompile_bit;          // no condition has yet been true
  1743   } else {
  1744     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1747 //-----------------------trap_state_is_recompiled------------------------------
  1748 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1749   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1751 //-----------------------trap_state_set_recompiled-----------------------------
  1752 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1753   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1754   else    return trap_state & ~DS_RECOMPILE_BIT;
  1756 //---------------------------format_trap_state---------------------------------
  1757 // This is used for debugging and diagnostics, including LogFile output.
  1758 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1759                                               int trap_state) {
  1760   DeoptReason reason      = trap_state_reason(trap_state);
  1761   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1762   // Re-encode the state from its decoded components.
  1763   int decoded_state = 0;
  1764   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1765     decoded_state = trap_state_add_reason(decoded_state, reason);
  1766   if (recomp_flag)
  1767     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1768   // If the state re-encodes properly, format it symbolically.
  1769   // Because this routine is used for debugging and diagnostics,
  1770   // be robust even if the state is a strange value.
  1771   size_t len;
  1772   if (decoded_state != trap_state) {
  1773     // Random buggy state that doesn't decode??
  1774     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1775   } else {
  1776     len = jio_snprintf(buf, buflen, "%s%s",
  1777                        trap_reason_name(reason),
  1778                        recomp_flag ? " recompiled" : "");
  1780   if (len >= buflen)
  1781     buf[buflen-1] = '\0';
  1782   return buf;
  1786 //--------------------------------statics--------------------------------------
  1787 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1788   = Deoptimization::Action_reinterpret;
  1789 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1790   // Note:  Keep this in sync. with enum DeoptReason.
  1791   "none",
  1792   "null_check",
  1793   "null_assert",
  1794   "range_check",
  1795   "class_check",
  1796   "array_check",
  1797   "intrinsic",
  1798   "bimorphic",
  1799   "unloaded",
  1800   "uninitialized",
  1801   "unreached",
  1802   "unhandled",
  1803   "constraint",
  1804   "div0_check",
  1805   "age",
  1806   "predicate",
  1807   "loop_limit_check"
  1808 };
  1809 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1810   // Note:  Keep this in sync. with enum DeoptAction.
  1811   "none",
  1812   "maybe_recompile",
  1813   "reinterpret",
  1814   "make_not_entrant",
  1815   "make_not_compilable"
  1816 };
  1818 const char* Deoptimization::trap_reason_name(int reason) {
  1819   if (reason == Reason_many)  return "many";
  1820   if ((uint)reason < Reason_LIMIT)
  1821     return _trap_reason_name[reason];
  1822   static char buf[20];
  1823   sprintf(buf, "reason%d", reason);
  1824   return buf;
  1826 const char* Deoptimization::trap_action_name(int action) {
  1827   if ((uint)action < Action_LIMIT)
  1828     return _trap_action_name[action];
  1829   static char buf[20];
  1830   sprintf(buf, "action%d", action);
  1831   return buf;
  1834 // This is used for debugging and diagnostics, including LogFile output.
  1835 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1836                                                 int trap_request) {
  1837   jint unloaded_class_index = trap_request_index(trap_request);
  1838   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1839   const char* action = trap_action_name(trap_request_action(trap_request));
  1840   size_t len;
  1841   if (unloaded_class_index < 0) {
  1842     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1843                        reason, action);
  1844   } else {
  1845     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1846                        reason, action, unloaded_class_index);
  1848   if (len >= buflen)
  1849     buf[buflen-1] = '\0';
  1850   return buf;
  1853 juint Deoptimization::_deoptimization_hist
  1854         [Deoptimization::Reason_LIMIT]
  1855     [1 + Deoptimization::Action_LIMIT]
  1856         [Deoptimization::BC_CASE_LIMIT]
  1857   = {0};
  1859 enum {
  1860   LSB_BITS = 8,
  1861   LSB_MASK = right_n_bits(LSB_BITS)
  1862 };
  1864 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1865                                        Bytecodes::Code bc) {
  1866   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1867   assert(action >= 0 && action < Action_LIMIT, "oob");
  1868   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1869   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1870   juint* cases = _deoptimization_hist[reason][1+action];
  1871   juint* bc_counter_addr = NULL;
  1872   juint  bc_counter      = 0;
  1873   // Look for an unused counter, or an exact match to this BC.
  1874   if (bc != Bytecodes::_illegal) {
  1875     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1876       juint* counter_addr = &cases[bc_case];
  1877       juint  counter = *counter_addr;
  1878       if ((counter == 0 && bc_counter_addr == NULL)
  1879           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1880         // this counter is either free or is already devoted to this BC
  1881         bc_counter_addr = counter_addr;
  1882         bc_counter = counter | bc;
  1886   if (bc_counter_addr == NULL) {
  1887     // Overflow, or no given bytecode.
  1888     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1889     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1891   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1894 jint Deoptimization::total_deoptimization_count() {
  1895   return _deoptimization_hist[Reason_none][0][0];
  1898 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1899   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1900   return _deoptimization_hist[reason][0][0];
  1903 void Deoptimization::print_statistics() {
  1904   juint total = total_deoptimization_count();
  1905   juint account = total;
  1906   if (total != 0) {
  1907     ttyLocker ttyl;
  1908     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1909     tty->print_cr("Deoptimization traps recorded:");
  1910     #define PRINT_STAT_LINE(name, r) \
  1911       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1912     PRINT_STAT_LINE("total", total);
  1913     // For each non-zero entry in the histogram, print the reason,
  1914     // the action, and (if specifically known) the type of bytecode.
  1915     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1916       for (int action = 0; action < Action_LIMIT; action++) {
  1917         juint* cases = _deoptimization_hist[reason][1+action];
  1918         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1919           juint counter = cases[bc_case];
  1920           if (counter != 0) {
  1921             char name[1*K];
  1922             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1923             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1924               bc = Bytecodes::_illegal;
  1925             sprintf(name, "%s/%s/%s",
  1926                     trap_reason_name(reason),
  1927                     trap_action_name(action),
  1928                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1929             juint r = counter >> LSB_BITS;
  1930             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1931             account -= r;
  1936     if (account != 0) {
  1937       PRINT_STAT_LINE("unaccounted", account);
  1939     #undef PRINT_STAT_LINE
  1940     if (xtty != NULL)  xtty->tail("statistics");
  1943 #else // COMPILER2 || SHARK
  1946 // Stubs for C1 only system.
  1947 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1948   return false;
  1951 const char* Deoptimization::trap_reason_name(int reason) {
  1952   return "unknown";
  1955 void Deoptimization::print_statistics() {
  1956   // no output
  1959 void
  1960 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1961   // no udpate
  1964 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1965   return 0;
  1968 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1969                                        Bytecodes::Code bc) {
  1970   // no update
  1973 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1974                                               int trap_state) {
  1975   jio_snprintf(buf, buflen, "#%d", trap_state);
  1976   return buf;
  1979 #endif // COMPILER2 || SHARK

mercurial