src/share/vm/memory/allocation.cpp

Tue, 05 Nov 2013 17:38:04 -0800

author
kvn
date
Tue, 05 Nov 2013 17:38:04 -0800
changeset 6472
2b8e28fdf503
parent 6461
bdd155477289
parent 5614
9758d9f36299
child 6503
a9becfeecd1b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_aix
    49 # include "os_aix.inline.hpp"
    50 #endif
    51 #ifdef TARGET_OS_FAMILY_bsd
    52 # include "os_bsd.inline.hpp"
    53 #endif
    55 void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
    56 void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
    57 void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
    58 void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
    60 void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
    61 void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
    62 void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
    63 void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
    65 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    66                                  size_t word_size, bool read_only,
    67                                  MetaspaceObj::Type type, TRAPS) throw() {
    68   // Klass has it's own operator new
    69   return Metaspace::allocate(loader_data, word_size, read_only,
    70                              type, CHECK_NULL);
    71 }
    73 bool MetaspaceObj::is_shared() const {
    74   return MetaspaceShared::is_in_shared_space(this);
    75 }
    78 bool MetaspaceObj::is_metaspace_object() const {
    79   return Metaspace::contains((void*)this);
    80 }
    82 void MetaspaceObj::print_address_on(outputStream* st) const {
    83   st->print(" {"INTPTR_FORMAT"}", this);
    84 }
    86 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
    87   address res;
    88   switch (type) {
    89    case C_HEAP:
    90     res = (address)AllocateHeap(size, flags, CALLER_PC);
    91     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    92     break;
    93    case RESOURCE_AREA:
    94     // new(size) sets allocation type RESOURCE_AREA.
    95     res = (address)operator new(size);
    96     break;
    97    default:
    98     ShouldNotReachHere();
    99   }
   100   return res;
   101 }
   103 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
   104   return (address) operator new(size, type, flags);
   105 }
   107 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   108     allocation_type type, MEMFLAGS flags) throw() {
   109   //should only call this with std::nothrow, use other operator new() otherwise
   110   address res;
   111   switch (type) {
   112    case C_HEAP:
   113     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   114     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   115     break;
   116    case RESOURCE_AREA:
   117     // new(size) sets allocation type RESOURCE_AREA.
   118     res = (address)operator new(size, std::nothrow);
   119     break;
   120    default:
   121     ShouldNotReachHere();
   122   }
   123   return res;
   124 }
   126 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   127     allocation_type type, MEMFLAGS flags) throw() {
   128   return (address)operator new(size, nothrow_constant, type, flags);
   129 }
   131 void ResourceObj::operator delete(void* p) {
   132   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   133          "delete only allowed for C_HEAP objects");
   134   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   135   FreeHeap(p);
   136 }
   138 void ResourceObj::operator delete [](void* p) {
   139   operator delete(p);
   140 }
   142 #ifdef ASSERT
   143 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   144     // Set allocation type in the resource object
   145     uintptr_t allocation = (uintptr_t)res;
   146     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   147     assert(type <= allocation_mask, "incorrect allocation type");
   148     ResourceObj* resobj = (ResourceObj *)res;
   149     resobj->_allocation_t[0] = ~(allocation + type);
   150     if (type != STACK_OR_EMBEDDED) {
   151       // Called from operator new() and CollectionSetChooser(),
   152       // set verification value.
   153       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   154     }
   155 }
   157 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   158     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   159     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   160 }
   162 bool ResourceObj::is_type_set() const {
   163     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   164     return get_allocation_type()  == type &&
   165            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   166 }
   168 ResourceObj::ResourceObj() { // default constructor
   169     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   170       // Operator new() is not called for allocations
   171       // on stack and for embedded objects.
   172       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   173     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   174       // For some reason we got a value which resembles
   175       // an embedded or stack object (operator new() does not
   176       // set such type). Keep it since it is valid value
   177       // (even if it was garbage).
   178       // Ignore garbage in other fields.
   179     } else if (is_type_set()) {
   180       // Operator new() was called and type was set.
   181       assert(!allocated_on_stack(),
   182              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   183                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   184     } else {
   185       // Operator new() was not called.
   186       // Assume that it is embedded or stack object.
   187       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   188     }
   189     _allocation_t[1] = 0; // Zap verification value
   190 }
   192 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   193     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   194     // Note: garbage may resembles valid value.
   195     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   196            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   197                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   198     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   199     _allocation_t[1] = 0; // Zap verification value
   200 }
   202 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   203     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   204     assert(allocated_on_stack(),
   205            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   206                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   207     // Keep current _allocation_t value;
   208     return *this;
   209 }
   211 ResourceObj::~ResourceObj() {
   212     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   213     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   214       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   215     }
   216 }
   217 #endif // ASSERT
   220 void trace_heap_malloc(size_t size, const char* name, void* p) {
   221   // A lock is not needed here - tty uses a lock internally
   222   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   223 }
   226 void trace_heap_free(void* p) {
   227   // A lock is not needed here - tty uses a lock internally
   228   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   229 }
   231 //--------------------------------------------------------------------------------------
   232 // ChunkPool implementation
   234 // MT-safe pool of chunks to reduce malloc/free thrashing
   235 // NB: not using Mutex because pools are used before Threads are initialized
   236 class ChunkPool: public CHeapObj<mtInternal> {
   237   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   238   size_t       _num_chunks;   // number of unused chunks in pool
   239   size_t       _num_used;     // number of chunks currently checked out
   240   const size_t _size;         // size of each chunk (must be uniform)
   242   // Our four static pools
   243   static ChunkPool* _large_pool;
   244   static ChunkPool* _medium_pool;
   245   static ChunkPool* _small_pool;
   246   static ChunkPool* _tiny_pool;
   248   // return first element or null
   249   void* get_first() {
   250     Chunk* c = _first;
   251     if (_first) {
   252       _first = _first->next();
   253       _num_chunks--;
   254     }
   255     return c;
   256   }
   258  public:
   259   // All chunks in a ChunkPool has the same size
   260    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   262   // Allocate a new chunk from the pool (might expand the pool)
   263   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   264     assert(bytes == _size, "bad size");
   265     void* p = NULL;
   266     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   267     // should be done outside ThreadCritical lock due to NMT
   268     { ThreadCritical tc;
   269       _num_used++;
   270       p = get_first();
   271     }
   272     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   273     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   274       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   275     }
   276     return p;
   277   }
   279   // Return a chunk to the pool
   280   void free(Chunk* chunk) {
   281     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   282     ThreadCritical tc;
   283     _num_used--;
   285     // Add chunk to list
   286     chunk->set_next(_first);
   287     _first = chunk;
   288     _num_chunks++;
   289   }
   291   // Prune the pool
   292   void free_all_but(size_t n) {
   293     Chunk* cur = NULL;
   294     Chunk* next;
   295     {
   296     // if we have more than n chunks, free all of them
   297     ThreadCritical tc;
   298     if (_num_chunks > n) {
   299       // free chunks at end of queue, for better locality
   300         cur = _first;
   301       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   303       if (cur != NULL) {
   304           next = cur->next();
   305         cur->set_next(NULL);
   306         cur = next;
   308           _num_chunks = n;
   309         }
   310       }
   311     }
   313     // Free all remaining chunks, outside of ThreadCritical
   314     // to avoid deadlock with NMT
   315         while(cur != NULL) {
   316           next = cur->next();
   317       os::free(cur, mtChunk);
   318           cur = next;
   319         }
   320       }
   322   // Accessors to preallocated pool's
   323   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   324   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   325   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   326   static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
   328   static void initialize() {
   329     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   330     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   331     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   332     _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
   333   }
   335   static void clean() {
   336     enum { BlocksToKeep = 5 };
   337      _tiny_pool->free_all_but(BlocksToKeep);
   338      _small_pool->free_all_but(BlocksToKeep);
   339      _medium_pool->free_all_but(BlocksToKeep);
   340      _large_pool->free_all_but(BlocksToKeep);
   341   }
   342 };
   344 ChunkPool* ChunkPool::_large_pool  = NULL;
   345 ChunkPool* ChunkPool::_medium_pool = NULL;
   346 ChunkPool* ChunkPool::_small_pool  = NULL;
   347 ChunkPool* ChunkPool::_tiny_pool   = NULL;
   349 void chunkpool_init() {
   350   ChunkPool::initialize();
   351 }
   353 void
   354 Chunk::clean_chunk_pool() {
   355   ChunkPool::clean();
   356 }
   359 //--------------------------------------------------------------------------------------
   360 // ChunkPoolCleaner implementation
   361 //
   363 class ChunkPoolCleaner : public PeriodicTask {
   364   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   366  public:
   367    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   368    void task() {
   369      ChunkPool::clean();
   370    }
   371 };
   373 //--------------------------------------------------------------------------------------
   374 // Chunk implementation
   376 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
   377   // requested_size is equal to sizeof(Chunk) but in order for the arena
   378   // allocations to come out aligned as expected the size must be aligned
   379   // to expected arena alignment.
   380   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   381   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   382   size_t bytes = ARENA_ALIGN(requested_size) + length;
   383   switch (length) {
   384    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   385    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   386    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   387    case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
   388    default: {
   389      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   390      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   391        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   392      }
   393      return p;
   394    }
   395   }
   396 }
   398 void Chunk::operator delete(void* p) {
   399   Chunk* c = (Chunk*)p;
   400   switch (c->length()) {
   401    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   402    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   403    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   404    case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
   405    default:                 os::free(c, mtChunk);
   406   }
   407 }
   409 Chunk::Chunk(size_t length) : _len(length) {
   410   _next = NULL;         // Chain on the linked list
   411 }
   414 void Chunk::chop() {
   415   Chunk *k = this;
   416   while( k ) {
   417     Chunk *tmp = k->next();
   418     // clear out this chunk (to detect allocation bugs)
   419     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   420     delete k;                   // Free chunk (was malloc'd)
   421     k = tmp;
   422   }
   423 }
   425 void Chunk::next_chop() {
   426   _next->chop();
   427   _next = NULL;
   428 }
   431 void Chunk::start_chunk_pool_cleaner_task() {
   432 #ifdef ASSERT
   433   static bool task_created = false;
   434   assert(!task_created, "should not start chuck pool cleaner twice");
   435   task_created = true;
   436 #endif
   437   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   438   cleaner->enroll();
   439 }
   441 //------------------------------Arena------------------------------------------
   442 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   444 Arena::Arena(size_t init_size) {
   445   size_t round_size = (sizeof (char *)) - 1;
   446   init_size = (init_size+round_size) & ~round_size;
   447   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   448   _hwm = _chunk->bottom();      // Save the cached hwm, max
   449   _max = _chunk->top();
   450   set_size_in_bytes(init_size);
   451   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   452 }
   454 Arena::Arena() {
   455   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   456   _hwm = _chunk->bottom();      // Save the cached hwm, max
   457   _max = _chunk->top();
   458   set_size_in_bytes(Chunk::init_size);
   459   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   460 }
   462 Arena *Arena::move_contents(Arena *copy) {
   463   copy->destruct_contents();
   464   copy->_chunk = _chunk;
   465   copy->_hwm   = _hwm;
   466   copy->_max   = _max;
   467   copy->_first = _first;
   469   // workaround rare racing condition, which could double count
   470   // the arena size by native memory tracking
   471   size_t size = size_in_bytes();
   472   set_size_in_bytes(0);
   473   copy->set_size_in_bytes(size);
   474   // Destroy original arena
   475   reset();
   476   return copy;            // Return Arena with contents
   477 }
   479 Arena::~Arena() {
   480   destruct_contents();
   481   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   482 }
   484 void* Arena::operator new(size_t size) throw() {
   485   assert(false, "Use dynamic memory type binding");
   486   return NULL;
   487 }
   489 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   490   assert(false, "Use dynamic memory type binding");
   491   return NULL;
   492 }
   494   // dynamic memory type binding
   495 void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
   496 #ifdef ASSERT
   497   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   498   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   499   return p;
   500 #else
   501   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   502 #endif
   503 }
   505 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
   506 #ifdef ASSERT
   507   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   508   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   509   return p;
   510 #else
   511   return os::malloc(size, flags|otArena, CALLER_PC);
   512 #endif
   513 }
   515 void Arena::operator delete(void* p) {
   516   FreeHeap(p);
   517 }
   519 // Destroy this arenas contents and reset to empty
   520 void Arena::destruct_contents() {
   521   if (UseMallocOnly && _first != NULL) {
   522     char* end = _first->next() ? _first->top() : _hwm;
   523     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   524   }
   525   // reset size before chop to avoid a rare racing condition
   526   // that can have total arena memory exceed total chunk memory
   527   set_size_in_bytes(0);
   528   _first->chop();
   529   reset();
   530 }
   532 // This is high traffic method, but many calls actually don't
   533 // change the size
   534 void Arena::set_size_in_bytes(size_t size) {
   535   if (_size_in_bytes != size) {
   536     _size_in_bytes = size;
   537     MemTracker::record_arena_size((address)this, size);
   538   }
   539 }
   541 // Total of all Chunks in arena
   542 size_t Arena::used() const {
   543   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   544   register Chunk *k = _first;
   545   while( k != _chunk) {         // Whilst have Chunks in a row
   546     sum += k->length();         // Total size of this Chunk
   547     k = k->next();              // Bump along to next Chunk
   548   }
   549   return sum;                   // Return total consumed space.
   550 }
   552 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   553   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   554 }
   556 // Grow a new Chunk
   557 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   558   // Get minimal required size.  Either real big, or even bigger for giant objs
   559   size_t len = MAX2(x, (size_t) Chunk::size);
   561   Chunk *k = _chunk;            // Get filled-up chunk address
   562   _chunk = new (alloc_failmode, len) Chunk(len);
   564   if (_chunk == NULL) {
   565     return NULL;
   566   }
   567   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   568   else _first = _chunk;
   569   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   570   _max =  _chunk->top();
   571   set_size_in_bytes(size_in_bytes() + len);
   572   void* result = _hwm;
   573   _hwm += x;
   574   return result;
   575 }
   579 // Reallocate storage in Arena.
   580 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   581   assert(new_size >= 0, "bad size");
   582   if (new_size == 0) return NULL;
   583 #ifdef ASSERT
   584   if (UseMallocOnly) {
   585     // always allocate a new object  (otherwise we'll free this one twice)
   586     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   587     if (copy == NULL) {
   588       return NULL;
   589     }
   590     size_t n = MIN2(old_size, new_size);
   591     if (n > 0) memcpy(copy, old_ptr, n);
   592     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   593     return copy;
   594   }
   595 #endif
   596   char *c_old = (char*)old_ptr; // Handy name
   597   // Stupid fast special case
   598   if( new_size <= old_size ) {  // Shrink in-place
   599     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   600       _hwm = c_old+new_size;    // Adjust hwm
   601     return c_old;
   602   }
   604   // make sure that new_size is legal
   605   size_t corrected_new_size = ARENA_ALIGN(new_size);
   607   // See if we can resize in-place
   608   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   609       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   610     _hwm = c_old+corrected_new_size;      // Adjust hwm
   611     return c_old;               // Return old pointer
   612   }
   614   // Oops, got to relocate guts
   615   void *new_ptr = Amalloc(new_size, alloc_failmode);
   616   if (new_ptr == NULL) {
   617     return NULL;
   618   }
   619   memcpy( new_ptr, c_old, old_size );
   620   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   621   return new_ptr;
   622 }
   625 // Determine if pointer belongs to this Arena or not.
   626 bool Arena::contains( const void *ptr ) const {
   627 #ifdef ASSERT
   628   if (UseMallocOnly) {
   629     // really slow, but not easy to make fast
   630     if (_chunk == NULL) return false;
   631     char** bottom = (char**)_chunk->bottom();
   632     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   633       if (*p == ptr) return true;
   634     }
   635     for (Chunk *c = _first; c != NULL; c = c->next()) {
   636       if (c == _chunk) continue;  // current chunk has been processed
   637       char** bottom = (char**)c->bottom();
   638       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   639         if (*p == ptr) return true;
   640       }
   641     }
   642     return false;
   643   }
   644 #endif
   645   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   646     return true;                // Check for in this chunk
   647   for (Chunk *c = _first; c; c = c->next()) {
   648     if (c == _chunk) continue;  // current chunk has been processed
   649     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   650       return true;              // Check for every chunk in Arena
   651     }
   652   }
   653   return false;                 // Not in any Chunk, so not in Arena
   654 }
   657 #ifdef ASSERT
   658 void* Arena::malloc(size_t size) {
   659   assert(UseMallocOnly, "shouldn't call");
   660   // use malloc, but save pointer in res. area for later freeing
   661   char** save = (char**)internal_malloc_4(sizeof(char*));
   662   return (*save = (char*)os::malloc(size, mtChunk));
   663 }
   665 // for debugging with UseMallocOnly
   666 void* Arena::internal_malloc_4(size_t x) {
   667   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   668   check_for_overflow(x, "Arena::internal_malloc_4");
   669   if (_hwm + x > _max) {
   670     return grow(x);
   671   } else {
   672     char *old = _hwm;
   673     _hwm += x;
   674     return old;
   675   }
   676 }
   677 #endif
   680 //--------------------------------------------------------------------------------------
   681 // Non-product code
   683 #ifndef PRODUCT
   684 // The global operator new should never be called since it will usually indicate
   685 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   686 // that they're allocated on the C heap.
   687 // Commented out in product version to avoid conflicts with third-party C++ native code.
   688 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   689 // from jdk source and causing data corruption. Such as
   690 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   691 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   692 //
   693 #ifndef ALLOW_OPERATOR_NEW_USAGE
   694 void* operator new(size_t size) throw() {
   695   assert(false, "Should not call global operator new");
   696   return 0;
   697 }
   699 void* operator new [](size_t size) throw() {
   700   assert(false, "Should not call global operator new[]");
   701   return 0;
   702 }
   704 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   705   assert(false, "Should not call global operator new");
   706   return 0;
   707 }
   709 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
   710   assert(false, "Should not call global operator new[]");
   711   return 0;
   712 }
   714 void operator delete(void* p) {
   715   assert(false, "Should not call global delete");
   716 }
   718 void operator delete [](void* p) {
   719   assert(false, "Should not call global delete []");
   720 }
   721 #endif // ALLOW_OPERATOR_NEW_USAGE
   723 void AllocatedObj::print() const       { print_on(tty); }
   724 void AllocatedObj::print_value() const { print_value_on(tty); }
   726 void AllocatedObj::print_on(outputStream* st) const {
   727   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   728 }
   730 void AllocatedObj::print_value_on(outputStream* st) const {
   731   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   732 }
   734 julong Arena::_bytes_allocated = 0;
   736 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   738 AllocStats::AllocStats() {
   739   start_mallocs      = os::num_mallocs;
   740   start_frees        = os::num_frees;
   741   start_malloc_bytes = os::alloc_bytes;
   742   start_mfree_bytes  = os::free_bytes;
   743   start_res_bytes    = Arena::_bytes_allocated;
   744 }
   746 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   747 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   748 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   749 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   750 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   751 void    AllocStats::print() {
   752   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   753                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   754                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   755 }
   758 // debugging code
   759 inline void Arena::free_all(char** start, char** end) {
   760   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   761 }
   763 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   764   assert(UseMallocOnly, "should not call");
   765   // free all objects malloced since resource mark was created; resource area
   766   // contains their addresses
   767   if (chunk->next()) {
   768     // this chunk is full, and some others too
   769     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   770       char* top = c->top();
   771       if (c->next() == NULL) {
   772         top = hwm2;     // last junk is only used up to hwm2
   773         assert(c->contains(hwm2), "bad hwm2");
   774       }
   775       free_all((char**)c->bottom(), (char**)top);
   776     }
   777     assert(chunk->contains(hwm), "bad hwm");
   778     assert(chunk->contains(max), "bad max");
   779     free_all((char**)hwm, (char**)max);
   780   } else {
   781     // this chunk was partially used
   782     assert(chunk->contains(hwm), "bad hwm");
   783     assert(chunk->contains(hwm2), "bad hwm2");
   784     free_all((char**)hwm, (char**)hwm2);
   785   }
   786 }
   789 ReallocMark::ReallocMark() {
   790 #ifdef ASSERT
   791   Thread *thread = ThreadLocalStorage::get_thread_slow();
   792   _nesting = thread->resource_area()->nesting();
   793 #endif
   794 }
   796 void ReallocMark::check() {
   797 #ifdef ASSERT
   798   if (_nesting != Thread::current()->resource_area()->nesting()) {
   799     fatal("allocation bug: array could grow within nested ResourceMark");
   800   }
   801 #endif
   802 }
   804 #endif // Non-product

mercurial