src/share/vm/opto/node.hpp

Tue, 27 Nov 2012 17:24:15 -0800

author
bharadwaj
date
Tue, 27 Nov 2012 17:24:15 -0800
changeset 4315
2aff40cb4703
parent 4159
8e47bac5643a
child 4478
a7114d3d712e
permissions
-rw-r--r--

7092905: C2: Keep track of the number of dead nodes
Summary: keep an (almost) accurate running count of the reachable (live) flow graph nodes.
Reviewed-by: kvn, twisti, jrose, vlivanov

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class Block_Array;
    46 class BoolNode;
    47 class BoxLockNode;
    48 class CMoveNode;
    49 class CallDynamicJavaNode;
    50 class CallJavaNode;
    51 class CallLeafNode;
    52 class CallNode;
    53 class CallRuntimeNode;
    54 class CallStaticJavaNode;
    55 class CatchNode;
    56 class CatchProjNode;
    57 class CheckCastPPNode;
    58 class ClearArrayNode;
    59 class CmpNode;
    60 class CodeBuffer;
    61 class ConstraintCastNode;
    62 class ConNode;
    63 class CountedLoopNode;
    64 class CountedLoopEndNode;
    65 class DecodeNarrowPtrNode;
    66 class DecodeNNode;
    67 class DecodeNKlassNode;
    68 class EncodeNarrowPtrNode;
    69 class EncodePNode;
    70 class EncodePKlassNode;
    71 class FastLockNode;
    72 class FastUnlockNode;
    73 class IfNode;
    74 class IfFalseNode;
    75 class IfTrueNode;
    76 class InitializeNode;
    77 class JVMState;
    78 class JumpNode;
    79 class JumpProjNode;
    80 class LoadNode;
    81 class LoadStoreNode;
    82 class LockNode;
    83 class LoopNode;
    84 class MachBranchNode;
    85 class MachCallDynamicJavaNode;
    86 class MachCallJavaNode;
    87 class MachCallLeafNode;
    88 class MachCallNode;
    89 class MachCallRuntimeNode;
    90 class MachCallStaticJavaNode;
    91 class MachConstantBaseNode;
    92 class MachConstantNode;
    93 class MachGotoNode;
    94 class MachIfNode;
    95 class MachNode;
    96 class MachNullCheckNode;
    97 class MachProjNode;
    98 class MachReturnNode;
    99 class MachSafePointNode;
   100 class MachSpillCopyNode;
   101 class MachTempNode;
   102 class Matcher;
   103 class MemBarNode;
   104 class MemBarStoreStoreNode;
   105 class MemNode;
   106 class MergeMemNode;
   107 class MulNode;
   108 class MultiNode;
   109 class MultiBranchNode;
   110 class NeverBranchNode;
   111 class Node;
   112 class Node_Array;
   113 class Node_List;
   114 class Node_Stack;
   115 class NullCheckNode;
   116 class OopMap;
   117 class ParmNode;
   118 class PCTableNode;
   119 class PhaseCCP;
   120 class PhaseGVN;
   121 class PhaseIterGVN;
   122 class PhaseRegAlloc;
   123 class PhaseTransform;
   124 class PhaseValues;
   125 class PhiNode;
   126 class Pipeline;
   127 class ProjNode;
   128 class RegMask;
   129 class RegionNode;
   130 class RootNode;
   131 class SafePointNode;
   132 class SafePointScalarObjectNode;
   133 class StartNode;
   134 class State;
   135 class StoreNode;
   136 class SubNode;
   137 class Type;
   138 class TypeNode;
   139 class UnlockNode;
   140 class VectorNode;
   141 class LoadVectorNode;
   142 class StoreVectorNode;
   143 class VectorSet;
   144 typedef void (*NFunc)(Node&,void*);
   145 extern "C" {
   146   typedef int (*C_sort_func_t)(const void *, const void *);
   147 }
   149 // The type of all node counts and indexes.
   150 // It must hold at least 16 bits, but must also be fast to load and store.
   151 // This type, if less than 32 bits, could limit the number of possible nodes.
   152 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   153 typedef unsigned int node_idx_t;
   156 #ifndef OPTO_DU_ITERATOR_ASSERT
   157 #ifdef ASSERT
   158 #define OPTO_DU_ITERATOR_ASSERT 1
   159 #else
   160 #define OPTO_DU_ITERATOR_ASSERT 0
   161 #endif
   162 #endif //OPTO_DU_ITERATOR_ASSERT
   164 #if OPTO_DU_ITERATOR_ASSERT
   165 class DUIterator;
   166 class DUIterator_Fast;
   167 class DUIterator_Last;
   168 #else
   169 typedef uint   DUIterator;
   170 typedef Node** DUIterator_Fast;
   171 typedef Node** DUIterator_Last;
   172 #endif
   174 // Node Sentinel
   175 #define NodeSentinel (Node*)-1
   177 // Unknown count frequency
   178 #define COUNT_UNKNOWN (-1.0f)
   180 //------------------------------Node-------------------------------------------
   181 // Nodes define actions in the program.  They create values, which have types.
   182 // They are both vertices in a directed graph and program primitives.  Nodes
   183 // are labeled; the label is the "opcode", the primitive function in the lambda
   184 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   185 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   186 // the Node's function.  These inputs also define a Type equation for the Node.
   187 // Solving these Type equations amounts to doing dataflow analysis.
   188 // Control and data are uniformly represented in the graph.  Finally, Nodes
   189 // have a unique dense integer index which is used to index into side arrays
   190 // whenever I have phase-specific information.
   192 class Node {
   193   friend class VMStructs;
   195   // Lots of restrictions on cloning Nodes
   196   Node(const Node&);            // not defined; linker error to use these
   197   Node &operator=(const Node &rhs);
   199 public:
   200   friend class Compile;
   201   #if OPTO_DU_ITERATOR_ASSERT
   202   friend class DUIterator_Common;
   203   friend class DUIterator;
   204   friend class DUIterator_Fast;
   205   friend class DUIterator_Last;
   206   #endif
   208   // Because Nodes come and go, I define an Arena of Node structures to pull
   209   // from.  This should allow fast access to node creation & deletion.  This
   210   // field is a local cache of a value defined in some "program fragment" for
   211   // which these Nodes are just a part of.
   213   // New Operator that takes a Compile pointer, this will eventually
   214   // be the "new" New operator.
   215   inline void* operator new( size_t x, Compile* C) {
   216     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   217 #ifdef ASSERT
   218     n->_in = (Node**)n; // magic cookie for assertion check
   219 #endif
   220     n->_out = (Node**)C;
   221     return (void*)n;
   222   }
   224   // Delete is a NOP
   225   void operator delete( void *ptr ) {}
   226   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   227   void destruct();
   229   // Create a new Node.  Required is the number is of inputs required for
   230   // semantic correctness.
   231   Node( uint required );
   233   // Create a new Node with given input edges.
   234   // This version requires use of the "edge-count" new.
   235   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   236   Node( Node *n0 );
   237   Node( Node *n0, Node *n1 );
   238   Node( Node *n0, Node *n1, Node *n2 );
   239   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   242   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   243             Node *n4, Node *n5, Node *n6 );
   245   // Clone an inherited Node given only the base Node type.
   246   Node* clone() const;
   248   // Clone a Node, immediately supplying one or two new edges.
   249   // The first and second arguments, if non-null, replace in(1) and in(2),
   250   // respectively.
   251   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   252     Node* nn = clone();
   253     if (in1 != NULL)  nn->set_req(1, in1);
   254     if (in2 != NULL)  nn->set_req(2, in2);
   255     return nn;
   256   }
   258 private:
   259   // Shared setup for the above constructors.
   260   // Handles all interactions with Compile::current.
   261   // Puts initial values in all Node fields except _idx.
   262   // Returns the initial value for _idx, which cannot
   263   // be initialized by assignment.
   264   inline int Init(int req, Compile* C);
   266 //----------------- input edge handling
   267 protected:
   268   friend class PhaseCFG;        // Access to address of _in array elements
   269   Node **_in;                   // Array of use-def references to Nodes
   270   Node **_out;                  // Array of def-use references to Nodes
   272   // Input edges are split into two categories.  Required edges are required
   273   // for semantic correctness; order is important and NULLs are allowed.
   274   // Precedence edges are used to help determine execution order and are
   275   // added, e.g., for scheduling purposes.  They are unordered and not
   276   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   277   // are required, from _cnt to _max-1 are precedence edges.
   278   node_idx_t _cnt;              // Total number of required Node inputs.
   280   node_idx_t _max;              // Actual length of input array.
   282   // Output edges are an unordered list of def-use edges which exactly
   283   // correspond to required input edges which point from other nodes
   284   // to this one.  Thus the count of the output edges is the number of
   285   // users of this node.
   286   node_idx_t _outcnt;           // Total number of Node outputs.
   288   node_idx_t _outmax;           // Actual length of output array.
   290   // Grow the actual input array to the next larger power-of-2 bigger than len.
   291   void grow( uint len );
   292   // Grow the output array to the next larger power-of-2 bigger than len.
   293   void out_grow( uint len );
   295  public:
   296   // Each Node is assigned a unique small/dense number.  This number is used
   297   // to index into auxiliary arrays of data and bitvectors.
   298   // It is declared const to defend against inadvertant assignment,
   299   // since it is used by clients as a naked field.
   300   const node_idx_t _idx;
   302   // Get the (read-only) number of input edges
   303   uint req() const { return _cnt; }
   304   uint len() const { return _max; }
   305   // Get the (read-only) number of output edges
   306   uint outcnt() const { return _outcnt; }
   308 #if OPTO_DU_ITERATOR_ASSERT
   309   // Iterate over the out-edges of this node.  Deletions are illegal.
   310   inline DUIterator outs() const;
   311   // Use this when the out array might have changed to suppress asserts.
   312   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   313   // Does the node have an out at this position?  (Used for iteration.)
   314   inline bool has_out(DUIterator& i) const;
   315   inline Node*    out(DUIterator& i) const;
   316   // Iterate over the out-edges of this node.  All changes are illegal.
   317   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   318   inline Node*    fast_out(DUIterator_Fast& i) const;
   319   // Iterate over the out-edges of this node, deleting one at a time.
   320   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   321   inline Node*    last_out(DUIterator_Last& i) const;
   322   // The inline bodies of all these methods are after the iterator definitions.
   323 #else
   324   // Iterate over the out-edges of this node.  Deletions are illegal.
   325   // This iteration uses integral indexes, to decouple from array reallocations.
   326   DUIterator outs() const  { return 0; }
   327   // Use this when the out array might have changed to suppress asserts.
   328   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   330   // Reference to the i'th output Node.  Error if out of bounds.
   331   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   332   // Does the node have an out at this position?  (Used for iteration.)
   333   bool has_out(DUIterator i) const { return i < _outcnt; }
   335   // Iterate over the out-edges of this node.  All changes are illegal.
   336   // This iteration uses a pointer internal to the out array.
   337   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   338     Node** out = _out;
   339     // Assign a limit pointer to the reference argument:
   340     max = out + (ptrdiff_t)_outcnt;
   341     // Return the base pointer:
   342     return out;
   343   }
   344   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   345   // Iterate over the out-edges of this node, deleting one at a time.
   346   // This iteration uses a pointer internal to the out array.
   347   DUIterator_Last last_outs(DUIterator_Last& min) const {
   348     Node** out = _out;
   349     // Assign a limit pointer to the reference argument:
   350     min = out;
   351     // Return the pointer to the start of the iteration:
   352     return out + (ptrdiff_t)_outcnt - 1;
   353   }
   354   Node*    last_out(DUIterator_Last i) const  { return *i; }
   355 #endif
   357   // Reference to the i'th input Node.  Error if out of bounds.
   358   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   359   // Reference to the i'th output Node.  Error if out of bounds.
   360   // Use this accessor sparingly.  We are going trying to use iterators instead.
   361   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   362   // Return the unique out edge.
   363   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   364   // Delete out edge at position 'i' by moving last out edge to position 'i'
   365   void  raw_del_out(uint i) {
   366     assert(i < _outcnt,"oob");
   367     assert(_outcnt > 0,"oob");
   368     #if OPTO_DU_ITERATOR_ASSERT
   369     // Record that a change happened here.
   370     debug_only(_last_del = _out[i]; ++_del_tick);
   371     #endif
   372     _out[i] = _out[--_outcnt];
   373     // Smash the old edge so it can't be used accidentally.
   374     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   375   }
   377 #ifdef ASSERT
   378   bool is_dead() const;
   379 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   380 #endif
   382   // Set a required input edge, also updates corresponding output edge
   383   void add_req( Node *n ); // Append a NEW required input
   384   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   385   void del_req( uint idx ); // Delete required edge & compact
   386   void ins_req( uint i, Node *n ); // Insert a NEW required input
   387   void set_req( uint i, Node *n ) {
   388     assert( is_not_dead(n), "can not use dead node");
   389     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   390     assert( !VerifyHashTableKeys || _hash_lock == 0,
   391             "remove node from hash table before modifying it");
   392     Node** p = &_in[i];    // cache this._in, across the del_out call
   393     if (*p != NULL)  (*p)->del_out((Node *)this);
   394     (*p) = n;
   395     if (n != NULL)      n->add_out((Node *)this);
   396   }
   397   // Light version of set_req() to init inputs after node creation.
   398   void init_req( uint i, Node *n ) {
   399     assert( i == 0 && this == n ||
   400             is_not_dead(n), "can not use dead node");
   401     assert( i < _cnt, "oob");
   402     assert( !VerifyHashTableKeys || _hash_lock == 0,
   403             "remove node from hash table before modifying it");
   404     assert( _in[i] == NULL, "sanity");
   405     _in[i] = n;
   406     if (n != NULL)      n->add_out((Node *)this);
   407   }
   408   // Find first occurrence of n among my edges:
   409   int find_edge(Node* n);
   410   int replace_edge(Node* old, Node* neww);
   411   // NULL out all inputs to eliminate incoming Def-Use edges.
   412   // Return the number of edges between 'n' and 'this'
   413   int  disconnect_inputs(Node *n, Compile *c);
   415   // Quickly, return true if and only if I am Compile::current()->top().
   416   bool is_top() const {
   417     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   418     return (_out == NULL);
   419   }
   420   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   421   void setup_is_top();
   423   // Strip away casting.  (It is depth-limited.)
   424   Node* uncast() const;
   425   // Return whether two Nodes are equivalent, after stripping casting.
   426   bool eqv_uncast(const Node* n) const {
   427     return (this->uncast() == n->uncast());
   428   }
   430 private:
   431   static Node* uncast_helper(const Node* n);
   433   // Add an output edge to the end of the list
   434   void add_out( Node *n ) {
   435     if (is_top())  return;
   436     if( _outcnt == _outmax ) out_grow(_outcnt);
   437     _out[_outcnt++] = n;
   438   }
   439   // Delete an output edge
   440   void del_out( Node *n ) {
   441     if (is_top())  return;
   442     Node** outp = &_out[_outcnt];
   443     // Find and remove n
   444     do {
   445       assert(outp > _out, "Missing Def-Use edge");
   446     } while (*--outp != n);
   447     *outp = _out[--_outcnt];
   448     // Smash the old edge so it can't be used accidentally.
   449     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   450     // Record that a change happened here.
   451     #if OPTO_DU_ITERATOR_ASSERT
   452     debug_only(_last_del = n; ++_del_tick);
   453     #endif
   454   }
   456 public:
   457   // Globally replace this node by a given new node, updating all uses.
   458   void replace_by(Node* new_node);
   459   // Globally replace this node by a given new node, updating all uses
   460   // and cutting input edges of old node.
   461   void subsume_by(Node* new_node, Compile* c) {
   462     replace_by(new_node);
   463     disconnect_inputs(NULL, c);
   464   }
   465   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   466   // Find the one non-null required input.  RegionNode only
   467   Node *nonnull_req() const;
   468   // Add or remove precedence edges
   469   void add_prec( Node *n );
   470   void rm_prec( uint i );
   471   void set_prec( uint i, Node *n ) {
   472     assert( is_not_dead(n), "can not use dead node");
   473     assert( i >= _cnt, "not a precedence edge");
   474     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   475     _in[i] = n;
   476     if (n != NULL) n->add_out((Node *)this);
   477   }
   478   // Set this node's index, used by cisc_version to replace current node
   479   void set_idx(uint new_idx) {
   480     const node_idx_t* ref = &_idx;
   481     *(node_idx_t*)ref = new_idx;
   482   }
   483   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   484   void swap_edges(uint i1, uint i2) {
   485     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   486     // Def-Use info is unchanged
   487     Node* n1 = in(i1);
   488     Node* n2 = in(i2);
   489     _in[i1] = n2;
   490     _in[i2] = n1;
   491     // If this node is in the hash table, make sure it doesn't need a rehash.
   492     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   493   }
   495   // Iterators over input Nodes for a Node X are written as:
   496   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   497   // NOTE: Required edges can contain embedded NULL pointers.
   499 //----------------- Other Node Properties
   501   // Generate class id for some ideal nodes to avoid virtual query
   502   // methods is_<Node>().
   503   // Class id is the set of bits corresponded to the node class and all its
   504   // super classes so that queries for super classes are also valid.
   505   // Subclasses of the same super class have different assigned bit
   506   // (the third parameter in the macro DEFINE_CLASS_ID).
   507   // Classes with deeper hierarchy are declared first.
   508   // Classes with the same hierarchy depth are sorted by usage frequency.
   509   //
   510   // The query method masks the bits to cut off bits of subclasses
   511   // and then compare the result with the class id
   512   // (see the macro DEFINE_CLASS_QUERY below).
   513   //
   514   //  Class_MachCall=30, ClassMask_MachCall=31
   515   // 12               8               4               0
   516   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   517   //                                  |   |   |   |
   518   //                                  |   |   |   Bit_Mach=2
   519   //                                  |   |   Bit_MachReturn=4
   520   //                                  |   Bit_MachSafePoint=8
   521   //                                  Bit_MachCall=16
   522   //
   523   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   524   // 12               8               4               0
   525   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   526   //                              |   |   |
   527   //                              |   |   Bit_Region=8
   528   //                              |   Bit_Loop=16
   529   //                              Bit_CountedLoop=32
   531   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   532   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   533   Class_##cl = Class_##supcl + Bit_##cl , \
   534   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   536   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   537   // so that it's values fits into 16 bits.
   538   enum NodeClasses {
   539     Bit_Node   = 0x0000,
   540     Class_Node = 0x0000,
   541     ClassMask_Node = 0xFFFF,
   543     DEFINE_CLASS_ID(Multi, Node, 0)
   544       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   545         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   546           DEFINE_CLASS_ID(CallJava,         Call, 0)
   547             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   548             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   549           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   550             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   551           DEFINE_CLASS_ID(Allocate,         Call, 2)
   552             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   553           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   554             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   555             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   556       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   557         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   558           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   559           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   560         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   561           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   562         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   563       DEFINE_CLASS_ID(Start,       Multi, 2)
   564       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   565         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   566         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   568     DEFINE_CLASS_ID(Mach,  Node, 1)
   569       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   570         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   571           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   572             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   573               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   574               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   575             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   576               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   577       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   578         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   579         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   580         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   581       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   582       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   583       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   584       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   586     DEFINE_CLASS_ID(Type,  Node, 2)
   587       DEFINE_CLASS_ID(Phi,   Type, 0)
   588       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   589       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   590       DEFINE_CLASS_ID(CMove, Type, 3)
   591       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   592       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
   593         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
   594         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
   595       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
   596         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
   597         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
   599     DEFINE_CLASS_ID(Proj,  Node, 3)
   600       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   601       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   602       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   603       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   604       DEFINE_CLASS_ID(Parm,      Proj, 4)
   605       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   607     DEFINE_CLASS_ID(Mem,   Node, 4)
   608       DEFINE_CLASS_ID(Load,  Mem, 0)
   609         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   610       DEFINE_CLASS_ID(Store, Mem, 1)
   611         DEFINE_CLASS_ID(StoreVector, Store, 0)
   612       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   614     DEFINE_CLASS_ID(Region, Node, 5)
   615       DEFINE_CLASS_ID(Loop, Region, 0)
   616         DEFINE_CLASS_ID(Root,        Loop, 0)
   617         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   619     DEFINE_CLASS_ID(Sub,   Node, 6)
   620       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   621         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   622         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   624     DEFINE_CLASS_ID(MergeMem, Node, 7)
   625     DEFINE_CLASS_ID(Bool,     Node, 8)
   626     DEFINE_CLASS_ID(AddP,     Node, 9)
   627     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   628     DEFINE_CLASS_ID(Add,      Node, 11)
   629     DEFINE_CLASS_ID(Mul,      Node, 12)
   630     DEFINE_CLASS_ID(Vector,   Node, 13)
   631     DEFINE_CLASS_ID(ClearArray, Node, 14)
   633     _max_classes  = ClassMask_ClearArray
   634   };
   635   #undef DEFINE_CLASS_ID
   637   // Flags are sorted by usage frequency.
   638   enum NodeFlags {
   639     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   640     Flag_rematerialize       = Flag_is_Copy << 1,
   641     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   642     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   643     Flag_is_Con              = Flag_is_macro << 1,
   644     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   645     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   646     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   647     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   648     Flag_has_call            = Flag_avoid_back_to_back << 1,
   649     _max_flags = (Flag_has_call << 1) - 1 // allow flags combination
   650   };
   652 private:
   653   jushort _class_id;
   654   jushort _flags;
   656 protected:
   657   // These methods should be called from constructors only.
   658   void init_class_id(jushort c) {
   659     assert(c <= _max_classes, "invalid node class");
   660     _class_id = c; // cast out const
   661   }
   662   void init_flags(jushort fl) {
   663     assert(fl <= _max_flags, "invalid node flag");
   664     _flags |= fl;
   665   }
   666   void clear_flag(jushort fl) {
   667     assert(fl <= _max_flags, "invalid node flag");
   668     _flags &= ~fl;
   669   }
   671 public:
   672   const jushort class_id() const { return _class_id; }
   674   const jushort flags() const { return _flags; }
   676   // Return a dense integer opcode number
   677   virtual int Opcode() const;
   679   // Virtual inherited Node size
   680   virtual uint size_of() const;
   682   // Other interesting Node properties
   683   #define DEFINE_CLASS_QUERY(type)                           \
   684   bool is_##type() const {                                   \
   685     return ((_class_id & ClassMask_##type) == Class_##type); \
   686   }                                                          \
   687   type##Node *as_##type() const {                            \
   688     assert(is_##type(), "invalid node class");               \
   689     return (type##Node*)this;                                \
   690   }                                                          \
   691   type##Node* isa_##type() const {                           \
   692     return (is_##type()) ? as_##type() : NULL;               \
   693   }
   695   DEFINE_CLASS_QUERY(AbstractLock)
   696   DEFINE_CLASS_QUERY(Add)
   697   DEFINE_CLASS_QUERY(AddP)
   698   DEFINE_CLASS_QUERY(Allocate)
   699   DEFINE_CLASS_QUERY(AllocateArray)
   700   DEFINE_CLASS_QUERY(Bool)
   701   DEFINE_CLASS_QUERY(BoxLock)
   702   DEFINE_CLASS_QUERY(Call)
   703   DEFINE_CLASS_QUERY(CallDynamicJava)
   704   DEFINE_CLASS_QUERY(CallJava)
   705   DEFINE_CLASS_QUERY(CallLeaf)
   706   DEFINE_CLASS_QUERY(CallRuntime)
   707   DEFINE_CLASS_QUERY(CallStaticJava)
   708   DEFINE_CLASS_QUERY(Catch)
   709   DEFINE_CLASS_QUERY(CatchProj)
   710   DEFINE_CLASS_QUERY(CheckCastPP)
   711   DEFINE_CLASS_QUERY(ConstraintCast)
   712   DEFINE_CLASS_QUERY(ClearArray)
   713   DEFINE_CLASS_QUERY(CMove)
   714   DEFINE_CLASS_QUERY(Cmp)
   715   DEFINE_CLASS_QUERY(CountedLoop)
   716   DEFINE_CLASS_QUERY(CountedLoopEnd)
   717   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
   718   DEFINE_CLASS_QUERY(DecodeN)
   719   DEFINE_CLASS_QUERY(DecodeNKlass)
   720   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
   721   DEFINE_CLASS_QUERY(EncodeP)
   722   DEFINE_CLASS_QUERY(EncodePKlass)
   723   DEFINE_CLASS_QUERY(FastLock)
   724   DEFINE_CLASS_QUERY(FastUnlock)
   725   DEFINE_CLASS_QUERY(If)
   726   DEFINE_CLASS_QUERY(IfFalse)
   727   DEFINE_CLASS_QUERY(IfTrue)
   728   DEFINE_CLASS_QUERY(Initialize)
   729   DEFINE_CLASS_QUERY(Jump)
   730   DEFINE_CLASS_QUERY(JumpProj)
   731   DEFINE_CLASS_QUERY(Load)
   732   DEFINE_CLASS_QUERY(LoadStore)
   733   DEFINE_CLASS_QUERY(Lock)
   734   DEFINE_CLASS_QUERY(Loop)
   735   DEFINE_CLASS_QUERY(Mach)
   736   DEFINE_CLASS_QUERY(MachBranch)
   737   DEFINE_CLASS_QUERY(MachCall)
   738   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   739   DEFINE_CLASS_QUERY(MachCallJava)
   740   DEFINE_CLASS_QUERY(MachCallLeaf)
   741   DEFINE_CLASS_QUERY(MachCallRuntime)
   742   DEFINE_CLASS_QUERY(MachCallStaticJava)
   743   DEFINE_CLASS_QUERY(MachConstantBase)
   744   DEFINE_CLASS_QUERY(MachConstant)
   745   DEFINE_CLASS_QUERY(MachGoto)
   746   DEFINE_CLASS_QUERY(MachIf)
   747   DEFINE_CLASS_QUERY(MachNullCheck)
   748   DEFINE_CLASS_QUERY(MachProj)
   749   DEFINE_CLASS_QUERY(MachReturn)
   750   DEFINE_CLASS_QUERY(MachSafePoint)
   751   DEFINE_CLASS_QUERY(MachSpillCopy)
   752   DEFINE_CLASS_QUERY(MachTemp)
   753   DEFINE_CLASS_QUERY(Mem)
   754   DEFINE_CLASS_QUERY(MemBar)
   755   DEFINE_CLASS_QUERY(MemBarStoreStore)
   756   DEFINE_CLASS_QUERY(MergeMem)
   757   DEFINE_CLASS_QUERY(Mul)
   758   DEFINE_CLASS_QUERY(Multi)
   759   DEFINE_CLASS_QUERY(MultiBranch)
   760   DEFINE_CLASS_QUERY(Parm)
   761   DEFINE_CLASS_QUERY(PCTable)
   762   DEFINE_CLASS_QUERY(Phi)
   763   DEFINE_CLASS_QUERY(Proj)
   764   DEFINE_CLASS_QUERY(Region)
   765   DEFINE_CLASS_QUERY(Root)
   766   DEFINE_CLASS_QUERY(SafePoint)
   767   DEFINE_CLASS_QUERY(SafePointScalarObject)
   768   DEFINE_CLASS_QUERY(Start)
   769   DEFINE_CLASS_QUERY(Store)
   770   DEFINE_CLASS_QUERY(Sub)
   771   DEFINE_CLASS_QUERY(Type)
   772   DEFINE_CLASS_QUERY(Vector)
   773   DEFINE_CLASS_QUERY(LoadVector)
   774   DEFINE_CLASS_QUERY(StoreVector)
   775   DEFINE_CLASS_QUERY(Unlock)
   777   #undef DEFINE_CLASS_QUERY
   779   // duplicate of is_MachSpillCopy()
   780   bool is_SpillCopy () const {
   781     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   782   }
   784   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   785   // The data node which is safe to leave in dead loop during IGVN optimization.
   786   bool is_dead_loop_safe() const {
   787     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   788            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   789             (!is_Proj() || !in(0)->is_Allocate()));
   790   }
   792   // is_Copy() returns copied edge index (0 or 1)
   793   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   795   virtual bool is_CFG() const { return false; }
   797   // If this node is control-dependent on a test, can it be
   798   // rerouted to a dominating equivalent test?  This is usually
   799   // true of non-CFG nodes, but can be false for operations which
   800   // depend for their correct sequencing on more than one test.
   801   // (In that case, hoisting to a dominating test may silently
   802   // skip some other important test.)
   803   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   805   // When building basic blocks, I need to have a notion of block beginning
   806   // Nodes, next block selector Nodes (block enders), and next block
   807   // projections.  These calls need to work on their machine equivalents.  The
   808   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   809   bool is_block_start() const {
   810     if ( is_Region() )
   811       return this == (const Node*)in(0);
   812     else
   813       return is_Start();
   814   }
   816   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   817   // Goto and Return.  This call also returns the block ending Node.
   818   virtual const Node *is_block_proj() const;
   820   // The node is a "macro" node which needs to be expanded before matching
   821   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   823 //----------------- Optimization
   825   // Get the worst-case Type output for this Node.
   826   virtual const class Type *bottom_type() const;
   828   // If we find a better type for a node, try to record it permanently.
   829   // Return true if this node actually changed.
   830   // Be sure to do the hash_delete game in the "rehash" variant.
   831   void raise_bottom_type(const Type* new_type);
   833   // Get the address type with which this node uses and/or defs memory,
   834   // or NULL if none.  The address type is conservatively wide.
   835   // Returns non-null for calls, membars, loads, stores, etc.
   836   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   837   virtual const class TypePtr *adr_type() const { return NULL; }
   839   // Return an existing node which computes the same function as this node.
   840   // The optimistic combined algorithm requires this to return a Node which
   841   // is a small number of steps away (e.g., one of my inputs).
   842   virtual Node *Identity( PhaseTransform *phase );
   844   // Return the set of values this Node can take on at runtime.
   845   virtual const Type *Value( PhaseTransform *phase ) const;
   847   // Return a node which is more "ideal" than the current node.
   848   // The invariants on this call are subtle.  If in doubt, read the
   849   // treatise in node.cpp above the default implemention AND TEST WITH
   850   // +VerifyIterativeGVN!
   851   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   853   // Some nodes have specific Ideal subgraph transformations only if they are
   854   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   855   // for the transformations to happen.
   856   bool has_special_unique_user() const;
   858   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   859   Node* find_exact_control(Node* ctrl);
   861   // Check if 'this' node dominates or equal to 'sub'.
   862   bool dominates(Node* sub, Node_List &nlist);
   864 protected:
   865   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   866 public:
   868   // Idealize graph, using DU info.  Done after constant propagation
   869   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   871   // See if there is valid pipeline info
   872   static  const Pipeline *pipeline_class();
   873   virtual const Pipeline *pipeline() const;
   875   // Compute the latency from the def to this instruction of the ith input node
   876   uint latency(uint i);
   878   // Hash & compare functions, for pessimistic value numbering
   880   // If the hash function returns the special sentinel value NO_HASH,
   881   // the node is guaranteed never to compare equal to any other node.
   882   // If we accidentally generate a hash with value NO_HASH the node
   883   // won't go into the table and we'll lose a little optimization.
   884   enum { NO_HASH = 0 };
   885   virtual uint hash() const;
   886   virtual uint cmp( const Node &n ) const;
   888   // Operation appears to be iteratively computed (such as an induction variable)
   889   // It is possible for this operation to return false for a loop-varying
   890   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   891   bool is_iteratively_computed();
   893   // Determine if a node is Counted loop induction variable.
   894   // The method is defined in loopnode.cpp.
   895   const Node* is_loop_iv() const;
   897   // Return a node with opcode "opc" and same inputs as "this" if one can
   898   // be found; Otherwise return NULL;
   899   Node* find_similar(int opc);
   901   // Return the unique control out if only one. Null if none or more than one.
   902   Node* unique_ctrl_out();
   904 //----------------- Code Generation
   906   // Ideal register class for Matching.  Zero means unmatched instruction
   907   // (these are cloned instead of converted to machine nodes).
   908   virtual uint ideal_reg() const;
   910   static const uint NotAMachineReg;   // must be > max. machine register
   912   // Do we Match on this edge index or not?  Generally false for Control
   913   // and true for everything else.  Weird for calls & returns.
   914   virtual uint match_edge(uint idx) const;
   916   // Register class output is returned in
   917   virtual const RegMask &out_RegMask() const;
   918   // Register class input is expected in
   919   virtual const RegMask &in_RegMask(uint) const;
   920   // Should we clone rather than spill this instruction?
   921   bool rematerialize() const;
   923   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   924   virtual JVMState* jvms() const;
   926   // Print as assembly
   927   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   928   // Emit bytes starting at parameter 'ptr'
   929   // Bump 'ptr' by the number of output bytes
   930   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   931   // Size of instruction in bytes
   932   virtual uint size(PhaseRegAlloc *ra_) const;
   934   // Convenience function to extract an integer constant from a node.
   935   // If it is not an integer constant (either Con, CastII, or Mach),
   936   // return value_if_unknown.
   937   jint find_int_con(jint value_if_unknown) const {
   938     const TypeInt* t = find_int_type();
   939     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   940   }
   941   // Return the constant, knowing it is an integer constant already
   942   jint get_int() const {
   943     const TypeInt* t = find_int_type();
   944     guarantee(t != NULL, "must be con");
   945     return t->get_con();
   946   }
   947   // Here's where the work is done.  Can produce non-constant int types too.
   948   const TypeInt* find_int_type() const;
   950   // Same thing for long (and intptr_t, via type.hpp):
   951   jlong get_long() const {
   952     const TypeLong* t = find_long_type();
   953     guarantee(t != NULL, "must be con");
   954     return t->get_con();
   955   }
   956   jlong find_long_con(jint value_if_unknown) const {
   957     const TypeLong* t = find_long_type();
   958     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   959   }
   960   const TypeLong* find_long_type() const;
   962   // These guys are called by code generated by ADLC:
   963   intptr_t get_ptr() const;
   964   intptr_t get_narrowcon() const;
   965   jdouble getd() const;
   966   jfloat getf() const;
   968   // Nodes which are pinned into basic blocks
   969   virtual bool pinned() const { return false; }
   971   // Nodes which use memory without consuming it, hence need antidependences
   972   // More specifically, needs_anti_dependence_check returns true iff the node
   973   // (a) does a load, and (b) does not perform a store (except perhaps to a
   974   // stack slot or some other unaliased location).
   975   bool needs_anti_dependence_check() const;
   977   // Return which operand this instruction may cisc-spill. In other words,
   978   // return operand position that can convert from reg to memory access
   979   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   980   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   982 //----------------- Graph walking
   983 public:
   984   // Walk and apply member functions recursively.
   985   // Supplied (this) pointer is root.
   986   void walk(NFunc pre, NFunc post, void *env);
   987   static void nop(Node &, void*); // Dummy empty function
   988   static void packregion( Node &n, void* );
   989 private:
   990   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   992 //----------------- Printing, etc
   993 public:
   994 #ifndef PRODUCT
   995   Node* find(int idx) const;         // Search the graph for the given idx.
   996   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
   997   void dump() const;                 // Print this node,
   998   void dump(int depth) const;        // Print this node, recursively to depth d
   999   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  1000   virtual void dump_req() const;     // Print required-edge info
  1001   virtual void dump_prec() const;    // Print precedence-edge info
  1002   virtual void dump_out() const;     // Print the output edge info
  1003   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  1004   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  1005   void verify() const;               // Check Def-Use info for my subgraph
  1006   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
  1008   // This call defines a class-unique string used to identify class instances
  1009   virtual const char *Name() const;
  1011   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1012   // RegMask Print Functions
  1013   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1014   void dump_out_regmask() { out_RegMask().dump(); }
  1015   static int _in_dump_cnt;
  1016   static bool in_dump() { return _in_dump_cnt > 0; }
  1017   void fast_dump() const {
  1018     tty->print("%4d: %-17s", _idx, Name());
  1019     for (uint i = 0; i < len(); i++)
  1020       if (in(i))
  1021         tty->print(" %4d", in(i)->_idx);
  1022       else
  1023         tty->print(" NULL");
  1024     tty->print("\n");
  1026 #endif
  1027 #ifdef ASSERT
  1028   void verify_construction();
  1029   bool verify_jvms(const JVMState* jvms) const;
  1030   int  _debug_idx;                     // Unique value assigned to every node.
  1031   int   debug_idx() const              { return _debug_idx; }
  1032   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1034   Node* _debug_orig;                   // Original version of this, if any.
  1035   Node*  debug_orig() const            { return _debug_orig; }
  1036   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1038   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1039   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1040   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1042   static void init_NodeProperty();
  1044   #if OPTO_DU_ITERATOR_ASSERT
  1045   const Node* _last_del;               // The last deleted node.
  1046   uint        _del_tick;               // Bumped when a deletion happens..
  1047   #endif
  1048 #endif
  1049 };
  1051 //-----------------------------------------------------------------------------
  1052 // Iterators over DU info, and associated Node functions.
  1054 #if OPTO_DU_ITERATOR_ASSERT
  1056 // Common code for assertion checking on DU iterators.
  1057 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1058 #ifdef ASSERT
  1059  protected:
  1060   bool         _vdui;               // cached value of VerifyDUIterators
  1061   const Node*  _node;               // the node containing the _out array
  1062   uint         _outcnt;             // cached node->_outcnt
  1063   uint         _del_tick;           // cached node->_del_tick
  1064   Node*        _last;               // last value produced by the iterator
  1066   void sample(const Node* node);    // used by c'tor to set up for verifies
  1067   void verify(const Node* node, bool at_end_ok = false);
  1068   void verify_resync();
  1069   void reset(const DUIterator_Common& that);
  1071 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1072   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1073 #else
  1074   #define I_VDUI_ONLY(i,x) { }
  1075 #endif //ASSERT
  1076 };
  1078 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1080 // Default DU iterator.  Allows appends onto the out array.
  1081 // Allows deletion from the out array only at the current point.
  1082 // Usage:
  1083 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1084 //    Node* y = x->out(i);
  1085 //    ...
  1086 //  }
  1087 // Compiles in product mode to a unsigned integer index, which indexes
  1088 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1089 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1090 // before continuing the loop.  You must delete only the last-produced
  1091 // edge.  You must delete only a single copy of the last-produced edge,
  1092 // or else you must delete all copies at once (the first time the edge
  1093 // is produced by the iterator).
  1094 class DUIterator : public DUIterator_Common {
  1095   friend class Node;
  1097   // This is the index which provides the product-mode behavior.
  1098   // Whatever the product-mode version of the system does to the
  1099   // DUI index is done to this index.  All other fields in
  1100   // this class are used only for assertion checking.
  1101   uint         _idx;
  1103   #ifdef ASSERT
  1104   uint         _refresh_tick;    // Records the refresh activity.
  1106   void sample(const Node* node); // Initialize _refresh_tick etc.
  1107   void verify(const Node* node, bool at_end_ok = false);
  1108   void verify_increment();       // Verify an increment operation.
  1109   void verify_resync();          // Verify that we can back up over a deletion.
  1110   void verify_finish();          // Verify that the loop terminated properly.
  1111   void refresh();                // Resample verification info.
  1112   void reset(const DUIterator& that);  // Resample after assignment.
  1113   #endif
  1115   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1116     { _idx = 0;                         debug_only(sample(node)); }
  1118  public:
  1119   // initialize to garbage; clear _vdui to disable asserts
  1120   DUIterator()
  1121     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1123   void operator++(int dummy_to_specify_postfix_op)
  1124     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1126   void operator--()
  1127     { VDUI_ONLY(verify_resync());       --_idx; }
  1129   ~DUIterator()
  1130     { VDUI_ONLY(verify_finish()); }
  1132   void operator=(const DUIterator& that)
  1133     { _idx = that._idx;                 debug_only(reset(that)); }
  1134 };
  1136 DUIterator Node::outs() const
  1137   { return DUIterator(this, 0); }
  1138 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1139   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1140 bool Node::has_out(DUIterator& i) const
  1141   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1142 Node*    Node::out(DUIterator& i) const
  1143   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1146 // Faster DU iterator.  Disallows insertions into the out array.
  1147 // Allows deletion from the out array only at the current point.
  1148 // Usage:
  1149 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1150 //    Node* y = x->fast_out(i);
  1151 //    ...
  1152 //  }
  1153 // Compiles in product mode to raw Node** pointer arithmetic, with
  1154 // no reloading of pointers from the original node x.  If you delete,
  1155 // you must perform "--i; --imax" just before continuing the loop.
  1156 // If you delete multiple copies of the same edge, you must decrement
  1157 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1158 class DUIterator_Fast : public DUIterator_Common {
  1159   friend class Node;
  1160   friend class DUIterator_Last;
  1162   // This is the pointer which provides the product-mode behavior.
  1163   // Whatever the product-mode version of the system does to the
  1164   // DUI pointer is done to this pointer.  All other fields in
  1165   // this class are used only for assertion checking.
  1166   Node**       _outp;
  1168   #ifdef ASSERT
  1169   void verify(const Node* node, bool at_end_ok = false);
  1170   void verify_limit();
  1171   void verify_resync();
  1172   void verify_relimit(uint n);
  1173   void reset(const DUIterator_Fast& that);
  1174   #endif
  1176   // Note:  offset must be signed, since -1 is sometimes passed
  1177   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1178     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1180  public:
  1181   // initialize to garbage; clear _vdui to disable asserts
  1182   DUIterator_Fast()
  1183     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1185   void operator++(int dummy_to_specify_postfix_op)
  1186     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1188   void operator--()
  1189     { VDUI_ONLY(verify_resync());       --_outp; }
  1191   void operator-=(uint n)   // applied to the limit only
  1192     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1194   bool operator<(DUIterator_Fast& limit) {
  1195     I_VDUI_ONLY(*this, this->verify(_node, true));
  1196     I_VDUI_ONLY(limit, limit.verify_limit());
  1197     return _outp < limit._outp;
  1200   void operator=(const DUIterator_Fast& that)
  1201     { _outp = that._outp;               debug_only(reset(that)); }
  1202 };
  1204 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1205   // Assign a limit pointer to the reference argument:
  1206   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1207   // Return the base pointer:
  1208   return DUIterator_Fast(this, 0);
  1210 Node* Node::fast_out(DUIterator_Fast& i) const {
  1211   I_VDUI_ONLY(i, i.verify(this));
  1212   return debug_only(i._last=) *i._outp;
  1216 // Faster DU iterator.  Requires each successive edge to be removed.
  1217 // Does not allow insertion of any edges.
  1218 // Usage:
  1219 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1220 //    Node* y = x->last_out(i);
  1221 //    ...
  1222 //  }
  1223 // Compiles in product mode to raw Node** pointer arithmetic, with
  1224 // no reloading of pointers from the original node x.
  1225 class DUIterator_Last : private DUIterator_Fast {
  1226   friend class Node;
  1228   #ifdef ASSERT
  1229   void verify(const Node* node, bool at_end_ok = false);
  1230   void verify_limit();
  1231   void verify_step(uint num_edges);
  1232   #endif
  1234   // Note:  offset must be signed, since -1 is sometimes passed
  1235   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1236     : DUIterator_Fast(node, offset) { }
  1238   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1239   void operator<(int)                              {} // do not use
  1241  public:
  1242   DUIterator_Last() { }
  1243   // initialize to garbage
  1245   void operator--()
  1246     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1248   void operator-=(uint n)
  1249     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1251   bool operator>=(DUIterator_Last& limit) {
  1252     I_VDUI_ONLY(*this, this->verify(_node, true));
  1253     I_VDUI_ONLY(limit, limit.verify_limit());
  1254     return _outp >= limit._outp;
  1257   void operator=(const DUIterator_Last& that)
  1258     { DUIterator_Fast::operator=(that); }
  1259 };
  1261 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1262   // Assign a limit pointer to the reference argument:
  1263   imin = DUIterator_Last(this, 0);
  1264   // Return the initial pointer:
  1265   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1267 Node* Node::last_out(DUIterator_Last& i) const {
  1268   I_VDUI_ONLY(i, i.verify(this));
  1269   return debug_only(i._last=) *i._outp;
  1272 #endif //OPTO_DU_ITERATOR_ASSERT
  1274 #undef I_VDUI_ONLY
  1275 #undef VDUI_ONLY
  1277 // An Iterator that truly follows the iterator pattern.  Doesn't
  1278 // support deletion but could be made to.
  1279 //
  1280 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1281 //     Node* m = i.get();
  1282 //
  1283 class SimpleDUIterator : public StackObj {
  1284  private:
  1285   Node* node;
  1286   DUIterator_Fast i;
  1287   DUIterator_Fast imax;
  1288  public:
  1289   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1290   bool has_next() { return i < imax; }
  1291   void next() { i++; }
  1292   Node* get() { return node->fast_out(i); }
  1293 };
  1296 //-----------------------------------------------------------------------------
  1297 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1298 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1299 // Note that the constructor just zeros things, and since I use Arena
  1300 // allocation I do not need a destructor to reclaim storage.
  1301 class Node_Array : public ResourceObj {
  1302   friend class VMStructs;
  1303 protected:
  1304   Arena *_a;                    // Arena to allocate in
  1305   uint   _max;
  1306   Node **_nodes;
  1307   void   grow( uint i );        // Grow array node to fit
  1308 public:
  1309   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1310     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1311     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1312       _nodes[i] = NULL;
  1316   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1317   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1318   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1319   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1320   Node **adr() { return _nodes; }
  1321   // Extend the mapping: index i maps to Node *n.
  1322   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1323   void insert( uint i, Node *n );
  1324   void remove( uint i );        // Remove, preserving order
  1325   void sort( C_sort_func_t func);
  1326   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1327   void clear();                 // Set all entries to NULL, keep storage
  1328   uint Size() const { return _max; }
  1329   void dump() const;
  1330 };
  1332 class Node_List : public Node_Array {
  1333   friend class VMStructs;
  1334   uint _cnt;
  1335 public:
  1336   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1337   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1338   bool contains(Node* n) {
  1339     for (uint e = 0; e < size(); e++) {
  1340       if (at(e) == n) return true;
  1342     return false;
  1344   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1345   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1346   void push( Node *b ) { map(_cnt++,b); }
  1347   void yank( Node *n );         // Find and remove
  1348   Node *pop() { return _nodes[--_cnt]; }
  1349   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1350   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1351   uint size() const { return _cnt; }
  1352   void dump() const;
  1353 };
  1355 //------------------------------Unique_Node_List-------------------------------
  1356 class Unique_Node_List : public Node_List {
  1357   friend class VMStructs;
  1358   VectorSet _in_worklist;
  1359   uint _clock_index;            // Index in list where to pop from next
  1360 public:
  1361   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1362   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1364   void remove( Node *n );
  1365   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1366   VectorSet &member_set(){ return _in_worklist; }
  1368   void push( Node *b ) {
  1369     if( !_in_worklist.test_set(b->_idx) )
  1370       Node_List::push(b);
  1372   Node *pop() {
  1373     if( _clock_index >= size() ) _clock_index = 0;
  1374     Node *b = at(_clock_index);
  1375     map( _clock_index, Node_List::pop());
  1376     if (size() != 0) _clock_index++; // Always start from 0
  1377     _in_worklist >>= b->_idx;
  1378     return b;
  1380   Node *remove( uint i ) {
  1381     Node *b = Node_List::at(i);
  1382     _in_worklist >>= b->_idx;
  1383     map(i,Node_List::pop());
  1384     return b;
  1386   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1387   void  clear() {
  1388     _in_worklist.Clear();        // Discards storage but grows automatically
  1389     Node_List::clear();
  1390     _clock_index = 0;
  1393   // Used after parsing to remove useless nodes before Iterative GVN
  1394   void remove_useless_nodes(VectorSet &useful);
  1396 #ifndef PRODUCT
  1397   void print_set() const { _in_worklist.print(); }
  1398 #endif
  1399 };
  1401 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1402 inline void Compile::record_for_igvn(Node* n) {
  1403   _for_igvn->push(n);
  1406 //------------------------------Node_Stack-------------------------------------
  1407 class Node_Stack {
  1408   friend class VMStructs;
  1409 protected:
  1410   struct INode {
  1411     Node *node; // Processed node
  1412     uint  indx; // Index of next node's child
  1413   };
  1414   INode *_inode_top; // tos, stack grows up
  1415   INode *_inode_max; // End of _inodes == _inodes + _max
  1416   INode *_inodes;    // Array storage for the stack
  1417   Arena *_a;         // Arena to allocate in
  1418   void grow();
  1419 public:
  1420   Node_Stack(int size) {
  1421     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1422     _a = Thread::current()->resource_area();
  1423     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1424     _inode_max = _inodes + max;
  1425     _inode_top = _inodes - 1; // stack is empty
  1428   Node_Stack(Arena *a, int size) : _a(a) {
  1429     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1430     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1431     _inode_max = _inodes + max;
  1432     _inode_top = _inodes - 1; // stack is empty
  1435   void pop() {
  1436     assert(_inode_top >= _inodes, "node stack underflow");
  1437     --_inode_top;
  1439   void push(Node *n, uint i) {
  1440     ++_inode_top;
  1441     if (_inode_top >= _inode_max) grow();
  1442     INode *top = _inode_top; // optimization
  1443     top->node = n;
  1444     top->indx = i;
  1446   Node *node() const {
  1447     return _inode_top->node;
  1449   Node* node_at(uint i) const {
  1450     assert(_inodes + i <= _inode_top, "in range");
  1451     return _inodes[i].node;
  1453   uint index() const {
  1454     return _inode_top->indx;
  1456   uint index_at(uint i) const {
  1457     assert(_inodes + i <= _inode_top, "in range");
  1458     return _inodes[i].indx;
  1460   void set_node(Node *n) {
  1461     _inode_top->node = n;
  1463   void set_index(uint i) {
  1464     _inode_top->indx = i;
  1466   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1467   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1468   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1469   bool is_empty() const { return (_inode_top < _inodes); }
  1470   void clear() { _inode_top = _inodes - 1; } // retain storage
  1472   // Node_Stack is used to map nodes.
  1473   Node* find(uint idx) const;
  1474 };
  1477 //-----------------------------Node_Notes--------------------------------------
  1478 // Debugging or profiling annotations loosely and sparsely associated
  1479 // with some nodes.  See Compile::node_notes_at for the accessor.
  1480 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1481   friend class VMStructs;
  1482   JVMState* _jvms;
  1484 public:
  1485   Node_Notes(JVMState* jvms = NULL) {
  1486     _jvms = jvms;
  1489   JVMState* jvms()            { return _jvms; }
  1490   void  set_jvms(JVMState* x) {        _jvms = x; }
  1492   // True if there is nothing here.
  1493   bool is_clear() {
  1494     return (_jvms == NULL);
  1497   // Make there be nothing here.
  1498   void clear() {
  1499     _jvms = NULL;
  1502   // Make a new, clean node notes.
  1503   static Node_Notes* make(Compile* C) {
  1504     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1505     nn->clear();
  1506     return nn;
  1509   Node_Notes* clone(Compile* C) {
  1510     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1511     (*nn) = (*this);
  1512     return nn;
  1515   // Absorb any information from source.
  1516   bool update_from(Node_Notes* source) {
  1517     bool changed = false;
  1518     if (source != NULL) {
  1519       if (source->jvms() != NULL) {
  1520         set_jvms(source->jvms());
  1521         changed = true;
  1524     return changed;
  1526 };
  1528 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1529 inline Node_Notes*
  1530 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1531                            int idx, bool can_grow) {
  1532   assert(idx >= 0, "oob");
  1533   int block_idx = (idx >> _log2_node_notes_block_size);
  1534   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1535   if (grow_by >= 0) {
  1536     if (!can_grow)  return NULL;
  1537     grow_node_notes(arr, grow_by + 1);
  1539   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1540   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1543 inline bool
  1544 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1545   if (value == NULL || value->is_clear())
  1546     return false;  // nothing to write => write nothing
  1547   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1548   assert(loc != NULL, "");
  1549   return loc->update_from(value);
  1553 //------------------------------TypeNode---------------------------------------
  1554 // Node with a Type constant.
  1555 class TypeNode : public Node {
  1556 protected:
  1557   virtual uint hash() const;    // Check the type
  1558   virtual uint cmp( const Node &n ) const;
  1559   virtual uint size_of() const; // Size is bigger
  1560   const Type* const _type;
  1561 public:
  1562   void set_type(const Type* t) {
  1563     assert(t != NULL, "sanity");
  1564     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1565     *(const Type**)&_type = t;   // cast away const-ness
  1566     // If this node is in the hash table, make sure it doesn't need a rehash.
  1567     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1569   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1570   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1571     init_class_id(Class_Type);
  1573   virtual const Type *Value( PhaseTransform *phase ) const;
  1574   virtual const Type *bottom_type() const;
  1575   virtual       uint  ideal_reg() const;
  1576 #ifndef PRODUCT
  1577   virtual void dump_spec(outputStream *st) const;
  1578 #endif
  1579 };
  1581 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial