src/share/vm/gc_implementation/g1/ptrQueue.cpp

Tue, 10 Jan 2012 18:58:13 -0500

author
tonyp
date
Tue, 10 Jan 2012 18:58:13 -0500
changeset 3416
2ace1c4ee8da
parent 3156
f08d439fab8c
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

6888336: G1: avoid explicitly marking and pushing objects in survivor spaces
Summary: This change simplifies the interaction between GC and concurrent marking. By disabling survivor spaces during the initial-mark pause we don't need to propagate marks of objects we copy during each GC (since we never need to copy an explicitly marked object).
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/ptrQueue.hpp"
    27 #include "memory/allocation.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "runtime/mutex.hpp"
    30 #include "runtime/mutexLocker.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "thread_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "thread_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "thread_windows.inline.hpp"
    39 #endif
    40 #ifdef TARGET_OS_FAMILY_bsd
    41 # include "thread_bsd.inline.hpp"
    42 #endif
    44 PtrQueue::PtrQueue(PtrQueueSet* qset, bool perm, bool active) :
    45   _qset(qset), _buf(NULL), _index(0), _active(active),
    46   _perm(perm), _lock(NULL)
    47 {}
    49 void PtrQueue::flush() {
    50   if (!_perm && _buf != NULL) {
    51     if (_index == _sz) {
    52       // No work to do.
    53       qset()->deallocate_buffer(_buf);
    54     } else {
    55       // We must NULL out the unused entries, then enqueue.
    56       for (size_t i = 0; i < _index; i += oopSize) {
    57         _buf[byte_index_to_index((int)i)] = NULL;
    58       }
    59       qset()->enqueue_complete_buffer(_buf);
    60     }
    61     _buf = NULL;
    62     _index = 0;
    63   }
    64 }
    67 static int byte_index_to_index(int ind) {
    68   assert((ind % oopSize) == 0, "Invariant.");
    69   return ind / oopSize;
    70 }
    72 static int index_to_byte_index(int byte_ind) {
    73   return byte_ind * oopSize;
    74 }
    76 void PtrQueue::enqueue_known_active(void* ptr) {
    77   assert(0 <= _index && _index <= _sz, "Invariant.");
    78   assert(_index == 0 || _buf != NULL, "invariant");
    80   while (_index == 0) {
    81     handle_zero_index();
    82   }
    84   assert(_index > 0, "postcondition");
    85   _index -= oopSize;
    86   _buf[byte_index_to_index((int)_index)] = ptr;
    87   assert(0 <= _index && _index <= _sz, "Invariant.");
    88 }
    90 void PtrQueue::locking_enqueue_completed_buffer(void** buf) {
    91   assert(_lock->owned_by_self(), "Required.");
    93   // We have to unlock _lock (which may be Shared_DirtyCardQ_lock) before
    94   // we acquire DirtyCardQ_CBL_mon inside enqeue_complete_buffer as they
    95   // have the same rank and we may get the "possible deadlock" message
    96   _lock->unlock();
    98   qset()->enqueue_complete_buffer(buf);
    99   // We must relock only because the caller will unlock, for the normal
   100   // case.
   101   _lock->lock_without_safepoint_check();
   102 }
   105 PtrQueueSet::PtrQueueSet(bool notify_when_complete) :
   106   _max_completed_queue(0),
   107   _cbl_mon(NULL), _fl_lock(NULL),
   108   _notify_when_complete(notify_when_complete),
   109   _sz(0),
   110   _completed_buffers_head(NULL),
   111   _completed_buffers_tail(NULL),
   112   _n_completed_buffers(0),
   113   _process_completed_threshold(0), _process_completed(false),
   114   _buf_free_list(NULL), _buf_free_list_sz(0)
   115 {
   116   _fl_owner = this;
   117 }
   119 void** PtrQueueSet::allocate_buffer() {
   120   assert(_sz > 0, "Didn't set a buffer size.");
   121   MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag);
   122   if (_fl_owner->_buf_free_list != NULL) {
   123     void** res = BufferNode::make_buffer_from_node(_fl_owner->_buf_free_list);
   124     _fl_owner->_buf_free_list = _fl_owner->_buf_free_list->next();
   125     _fl_owner->_buf_free_list_sz--;
   126     return res;
   127   } else {
   128     // Allocate space for the BufferNode in front of the buffer.
   129     char *b =  NEW_C_HEAP_ARRAY(char, _sz + BufferNode::aligned_size());
   130     return BufferNode::make_buffer_from_block(b);
   131   }
   132 }
   134 void PtrQueueSet::deallocate_buffer(void** buf) {
   135   assert(_sz > 0, "Didn't set a buffer size.");
   136   MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag);
   137   BufferNode *node = BufferNode::make_node_from_buffer(buf);
   138   node->set_next(_fl_owner->_buf_free_list);
   139   _fl_owner->_buf_free_list = node;
   140   _fl_owner->_buf_free_list_sz++;
   141 }
   143 void PtrQueueSet::reduce_free_list() {
   144   assert(_fl_owner == this, "Free list reduction is allowed only for the owner");
   145   // For now we'll adopt the strategy of deleting half.
   146   MutexLockerEx x(_fl_lock, Mutex::_no_safepoint_check_flag);
   147   size_t n = _buf_free_list_sz / 2;
   148   while (n > 0) {
   149     assert(_buf_free_list != NULL, "_buf_free_list_sz must be wrong.");
   150     void* b = BufferNode::make_block_from_node(_buf_free_list);
   151     _buf_free_list = _buf_free_list->next();
   152     FREE_C_HEAP_ARRAY(char, b);
   153     _buf_free_list_sz --;
   154     n--;
   155   }
   156 }
   158 void PtrQueue::handle_zero_index() {
   159   assert(_index == 0, "Precondition.");
   161   // This thread records the full buffer and allocates a new one (while
   162   // holding the lock if there is one).
   163   if (_buf != NULL) {
   164     if (!should_enqueue_buffer()) {
   165       assert(_index > 0, "the buffer can only be re-used if it's not full");
   166       return;
   167     }
   169     if (_lock) {
   170       assert(_lock->owned_by_self(), "Required.");
   172       // The current PtrQ may be the shared dirty card queue and
   173       // may be being manipulated by more than one worker thread
   174       // during a pause. Since the enqueuing of the completed
   175       // buffer unlocks the Shared_DirtyCardQ_lock more than one
   176       // worker thread can 'race' on reading the shared queue attributes
   177       // (_buf and _index) and multiple threads can call into this
   178       // routine for the same buffer. This will cause the completed
   179       // buffer to be added to the CBL multiple times.
   181       // We "claim" the current buffer by caching value of _buf in
   182       // a local and clearing the field while holding _lock. When
   183       // _lock is released (while enqueueing the completed buffer)
   184       // the thread that acquires _lock will skip this code,
   185       // preventing the subsequent the multiple enqueue, and
   186       // install a newly allocated buffer below.
   188       void** buf = _buf;   // local pointer to completed buffer
   189       _buf = NULL;         // clear shared _buf field
   191       locking_enqueue_completed_buffer(buf);  // enqueue completed buffer
   193       // While the current thread was enqueuing the buffer another thread
   194       // may have a allocated a new buffer and inserted it into this pointer
   195       // queue. If that happens then we just return so that the current
   196       // thread doesn't overwrite the buffer allocated by the other thread
   197       // and potentially losing some dirtied cards.
   199       if (_buf != NULL) return;
   200     } else {
   201       if (qset()->process_or_enqueue_complete_buffer(_buf)) {
   202         // Recycle the buffer. No allocation.
   203         _sz = qset()->buffer_size();
   204         _index = _sz;
   205         return;
   206       }
   207     }
   208   }
   209   // Reallocate the buffer
   210   _buf = qset()->allocate_buffer();
   211   _sz = qset()->buffer_size();
   212   _index = _sz;
   213   assert(0 <= _index && _index <= _sz, "Invariant.");
   214 }
   216 bool PtrQueueSet::process_or_enqueue_complete_buffer(void** buf) {
   217   if (Thread::current()->is_Java_thread()) {
   218     // We don't lock. It is fine to be epsilon-precise here.
   219     if (_max_completed_queue == 0 || _max_completed_queue > 0 &&
   220         _n_completed_buffers >= _max_completed_queue + _completed_queue_padding) {
   221       bool b = mut_process_buffer(buf);
   222       if (b) {
   223         // True here means that the buffer hasn't been deallocated and the caller may reuse it.
   224         return true;
   225       }
   226     }
   227   }
   228   // The buffer will be enqueued. The caller will have to get a new one.
   229   enqueue_complete_buffer(buf);
   230   return false;
   231 }
   233 void PtrQueueSet::enqueue_complete_buffer(void** buf, size_t index) {
   234   MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
   235   BufferNode* cbn = BufferNode::new_from_buffer(buf);
   236   cbn->set_index(index);
   237   if (_completed_buffers_tail == NULL) {
   238     assert(_completed_buffers_head == NULL, "Well-formedness");
   239     _completed_buffers_head = cbn;
   240     _completed_buffers_tail = cbn;
   241   } else {
   242     _completed_buffers_tail->set_next(cbn);
   243     _completed_buffers_tail = cbn;
   244   }
   245   _n_completed_buffers++;
   247   if (!_process_completed && _process_completed_threshold >= 0 &&
   248       _n_completed_buffers >= _process_completed_threshold) {
   249     _process_completed = true;
   250     if (_notify_when_complete)
   251       _cbl_mon->notify();
   252   }
   253   debug_only(assert_completed_buffer_list_len_correct_locked());
   254 }
   256 int PtrQueueSet::completed_buffers_list_length() {
   257   int n = 0;
   258   BufferNode* cbn = _completed_buffers_head;
   259   while (cbn != NULL) {
   260     n++;
   261     cbn = cbn->next();
   262   }
   263   return n;
   264 }
   266 void PtrQueueSet::assert_completed_buffer_list_len_correct() {
   267   MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
   268   assert_completed_buffer_list_len_correct_locked();
   269 }
   271 void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() {
   272   guarantee(completed_buffers_list_length() ==  _n_completed_buffers,
   273             "Completed buffer length is wrong.");
   274 }
   276 void PtrQueueSet::set_buffer_size(size_t sz) {
   277   assert(_sz == 0 && sz > 0, "Should be called only once.");
   278   _sz = sz * oopSize;
   279 }
   281 // Merge lists of buffers. Notify the processing threads.
   282 // The source queue is emptied as a result. The queues
   283 // must share the monitor.
   284 void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) {
   285   assert(_cbl_mon == src->_cbl_mon, "Should share the same lock");
   286   MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
   287   if (_completed_buffers_tail == NULL) {
   288     assert(_completed_buffers_head == NULL, "Well-formedness");
   289     _completed_buffers_head = src->_completed_buffers_head;
   290     _completed_buffers_tail = src->_completed_buffers_tail;
   291   } else {
   292     assert(_completed_buffers_head != NULL, "Well formedness");
   293     if (src->_completed_buffers_head != NULL) {
   294       _completed_buffers_tail->set_next(src->_completed_buffers_head);
   295       _completed_buffers_tail = src->_completed_buffers_tail;
   296     }
   297   }
   298   _n_completed_buffers += src->_n_completed_buffers;
   300   src->_n_completed_buffers = 0;
   301   src->_completed_buffers_head = NULL;
   302   src->_completed_buffers_tail = NULL;
   304   assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL ||
   305          _completed_buffers_head != NULL && _completed_buffers_tail != NULL,
   306          "Sanity");
   307 }
   309 void PtrQueueSet::notify_if_necessary() {
   310   MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
   311   if (_n_completed_buffers >= _process_completed_threshold || _max_completed_queue == 0) {
   312     _process_completed = true;
   313     if (_notify_when_complete)
   314       _cbl_mon->notify();
   315   }
   316 }

mercurial