src/share/vm/c1/c1_LIRGenerator.cpp

Fri, 19 Apr 2013 03:13:04 -0400

author
bharadwaj
date
Fri, 19 Apr 2013 03:13:04 -0400
changeset 4954
2a9d97b57920
parent 4938
8df6ddda8090
parent 4947
acadb114c818
child 5229
075ea888b039
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "ci/ciObjArray.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #include "utilities/macros.hpp"
    39 #if INCLUDE_ALL_GCS
    40 #include "gc_implementation/g1/heapRegion.hpp"
    41 #endif // INCLUDE_ALL_GCS
    43 #ifdef ASSERT
    44 #define __ gen()->lir(__FILE__, __LINE__)->
    45 #else
    46 #define __ gen()->lir()->
    47 #endif
    49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    50 #ifdef ARM
    51 #define PATCHED_ADDR  (204)
    52 #else
    53 #define PATCHED_ADDR  (max_jint)
    54 #endif
    56 void PhiResolverState::reset(int max_vregs) {
    57   // Initialize array sizes
    58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    59   _virtual_operands.trunc_to(0);
    60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    61   _other_operands.trunc_to(0);
    62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    63   _vreg_table.trunc_to(0);
    64 }
    68 //--------------------------------------------------------------
    69 // PhiResolver
    71 // Resolves cycles:
    72 //
    73 //  r1 := r2  becomes  temp := r1
    74 //  r2 := r1           r1 := r2
    75 //                     r2 := temp
    76 // and orders moves:
    77 //
    78 //  r2 := r3  becomes  r1 := r2
    79 //  r1 := r2           r2 := r3
    81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    82  : _gen(gen)
    83  , _state(gen->resolver_state())
    84  , _temp(LIR_OprFact::illegalOpr)
    85 {
    86   // reinitialize the shared state arrays
    87   _state.reset(max_vregs);
    88 }
    91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    92   assert(src->is_valid(), "");
    93   assert(dest->is_valid(), "");
    94   __ move(src, dest);
    95 }
    98 void PhiResolver::move_temp_to(LIR_Opr dest) {
    99   assert(_temp->is_valid(), "");
   100   emit_move(_temp, dest);
   101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   102 }
   105 void PhiResolver::move_to_temp(LIR_Opr src) {
   106   assert(_temp->is_illegal(), "");
   107   _temp = _gen->new_register(src->type());
   108   emit_move(src, _temp);
   109 }
   112 // Traverse assignment graph in depth first order and generate moves in post order
   113 // ie. two assignments: b := c, a := b start with node c:
   114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   115 // Generates moves in this order: move b to a and move c to b
   116 // ie. cycle a := b, b := a start with node a
   117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   118 // Generates moves in this order: move b to temp, move a to b, move temp to a
   119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   120   if (!dest->visited()) {
   121     dest->set_visited();
   122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   123       move(dest, dest->destination_at(i));
   124     }
   125   } else if (!dest->start_node()) {
   126     // cylce in graph detected
   127     assert(_loop == NULL, "only one loop valid!");
   128     _loop = dest;
   129     move_to_temp(src->operand());
   130     return;
   131   } // else dest is a start node
   133   if (!dest->assigned()) {
   134     if (_loop == dest) {
   135       move_temp_to(dest->operand());
   136       dest->set_assigned();
   137     } else if (src != NULL) {
   138       emit_move(src->operand(), dest->operand());
   139       dest->set_assigned();
   140     }
   141   }
   142 }
   145 PhiResolver::~PhiResolver() {
   146   int i;
   147   // resolve any cycles in moves from and to virtual registers
   148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   149     ResolveNode* node = virtual_operands()[i];
   150     if (!node->visited()) {
   151       _loop = NULL;
   152       move(NULL, node);
   153       node->set_start_node();
   154       assert(_temp->is_illegal(), "move_temp_to() call missing");
   155     }
   156   }
   158   // generate move for move from non virtual register to abitrary destination
   159   for (i = other_operands().length() - 1; i >= 0; i --) {
   160     ResolveNode* node = other_operands()[i];
   161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   162       emit_move(node->operand(), node->destination_at(j)->operand());
   163     }
   164   }
   165 }
   168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   169   ResolveNode* node;
   170   if (opr->is_virtual()) {
   171     int vreg_num = opr->vreg_number();
   172     node = vreg_table().at_grow(vreg_num, NULL);
   173     assert(node == NULL || node->operand() == opr, "");
   174     if (node == NULL) {
   175       node = new ResolveNode(opr);
   176       vreg_table()[vreg_num] = node;
   177     }
   178     // Make sure that all virtual operands show up in the list when
   179     // they are used as the source of a move.
   180     if (source && !virtual_operands().contains(node)) {
   181       virtual_operands().append(node);
   182     }
   183   } else {
   184     assert(source, "");
   185     node = new ResolveNode(opr);
   186     other_operands().append(node);
   187   }
   188   return node;
   189 }
   192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   193   assert(dest->is_virtual(), "");
   194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   195   assert(src->is_valid(), "");
   196   assert(dest->is_valid(), "");
   197   ResolveNode* source = source_node(src);
   198   source->append(destination_node(dest));
   199 }
   202 //--------------------------------------------------------------
   203 // LIRItem
   205 void LIRItem::set_result(LIR_Opr opr) {
   206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   207   value()->set_operand(opr);
   209   if (opr->is_virtual()) {
   210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   211   }
   213   _result = opr;
   214 }
   216 void LIRItem::load_item() {
   217   if (result()->is_illegal()) {
   218     // update the items result
   219     _result = value()->operand();
   220   }
   221   if (!result()->is_register()) {
   222     LIR_Opr reg = _gen->new_register(value()->type());
   223     __ move(result(), reg);
   224     if (result()->is_constant()) {
   225       _result = reg;
   226     } else {
   227       set_result(reg);
   228     }
   229   }
   230 }
   233 void LIRItem::load_for_store(BasicType type) {
   234   if (_gen->can_store_as_constant(value(), type)) {
   235     _result = value()->operand();
   236     if (!_result->is_constant()) {
   237       _result = LIR_OprFact::value_type(value()->type());
   238     }
   239   } else if (type == T_BYTE || type == T_BOOLEAN) {
   240     load_byte_item();
   241   } else {
   242     load_item();
   243   }
   244 }
   246 void LIRItem::load_item_force(LIR_Opr reg) {
   247   LIR_Opr r = result();
   248   if (r != reg) {
   249 #if !defined(ARM) && !defined(E500V2)
   250     if (r->type() != reg->type()) {
   251       // moves between different types need an intervening spill slot
   252       r = _gen->force_to_spill(r, reg->type());
   253     }
   254 #endif
   255     __ move(r, reg);
   256     _result = reg;
   257   }
   258 }
   260 ciObject* LIRItem::get_jobject_constant() const {
   261   ObjectType* oc = type()->as_ObjectType();
   262   if (oc) {
   263     return oc->constant_value();
   264   }
   265   return NULL;
   266 }
   269 jint LIRItem::get_jint_constant() const {
   270   assert(is_constant() && value() != NULL, "");
   271   assert(type()->as_IntConstant() != NULL, "type check");
   272   return type()->as_IntConstant()->value();
   273 }
   276 jint LIRItem::get_address_constant() const {
   277   assert(is_constant() && value() != NULL, "");
   278   assert(type()->as_AddressConstant() != NULL, "type check");
   279   return type()->as_AddressConstant()->value();
   280 }
   283 jfloat LIRItem::get_jfloat_constant() const {
   284   assert(is_constant() && value() != NULL, "");
   285   assert(type()->as_FloatConstant() != NULL, "type check");
   286   return type()->as_FloatConstant()->value();
   287 }
   290 jdouble LIRItem::get_jdouble_constant() const {
   291   assert(is_constant() && value() != NULL, "");
   292   assert(type()->as_DoubleConstant() != NULL, "type check");
   293   return type()->as_DoubleConstant()->value();
   294 }
   297 jlong LIRItem::get_jlong_constant() const {
   298   assert(is_constant() && value() != NULL, "");
   299   assert(type()->as_LongConstant() != NULL, "type check");
   300   return type()->as_LongConstant()->value();
   301 }
   305 //--------------------------------------------------------------
   308 void LIRGenerator::init() {
   309   _bs = Universe::heap()->barrier_set();
   310 }
   313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   314 #ifndef PRODUCT
   315   if (PrintIRWithLIR) {
   316     block->print();
   317   }
   318 #endif
   320   // set up the list of LIR instructions
   321   assert(block->lir() == NULL, "LIR list already computed for this block");
   322   _lir = new LIR_List(compilation(), block);
   323   block->set_lir(_lir);
   325   __ branch_destination(block->label());
   327   if (LIRTraceExecution &&
   328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   329       !block->is_set(BlockBegin::exception_entry_flag)) {
   330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   331     trace_block_entry(block);
   332   }
   333 }
   336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   337 #ifndef PRODUCT
   338   if (PrintIRWithLIR) {
   339     tty->cr();
   340   }
   341 #endif
   343   // LIR_Opr for unpinned constants shouldn't be referenced by other
   344   // blocks so clear them out after processing the block.
   345   for (int i = 0; i < _unpinned_constants.length(); i++) {
   346     _unpinned_constants.at(i)->clear_operand();
   347   }
   348   _unpinned_constants.trunc_to(0);
   350   // clear our any registers for other local constants
   351   _constants.trunc_to(0);
   352   _reg_for_constants.trunc_to(0);
   353 }
   356 void LIRGenerator::block_do(BlockBegin* block) {
   357   CHECK_BAILOUT();
   359   block_do_prolog(block);
   360   set_block(block);
   362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   363     if (instr->is_pinned()) do_root(instr);
   364   }
   366   set_block(NULL);
   367   block_do_epilog(block);
   368 }
   371 //-------------------------LIRGenerator-----------------------------
   373 // This is where the tree-walk starts; instr must be root;
   374 void LIRGenerator::do_root(Value instr) {
   375   CHECK_BAILOUT();
   377   InstructionMark im(compilation(), instr);
   379   assert(instr->is_pinned(), "use only with roots");
   380   assert(instr->subst() == instr, "shouldn't have missed substitution");
   382   instr->visit(this);
   384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   386 }
   389 // This is called for each node in tree; the walk stops if a root is reached
   390 void LIRGenerator::walk(Value instr) {
   391   InstructionMark im(compilation(), instr);
   392   //stop walk when encounter a root
   393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   395   } else {
   396     assert(instr->subst() == instr, "shouldn't have missed substitution");
   397     instr->visit(this);
   398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   399   }
   400 }
   403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   404   assert(state != NULL, "state must be defined");
   406 #ifndef PRODUCT
   407   state->verify();
   408 #endif
   410   ValueStack* s = state;
   411   for_each_state(s) {
   412     if (s->kind() == ValueStack::EmptyExceptionState) {
   413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   414       continue;
   415     }
   417     int index;
   418     Value value;
   419     for_each_stack_value(s, index, value) {
   420       assert(value->subst() == value, "missed substitution");
   421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   422         walk(value);
   423         assert(value->operand()->is_valid(), "must be evaluated now");
   424       }
   425     }
   427     int bci = s->bci();
   428     IRScope* scope = s->scope();
   429     ciMethod* method = scope->method();
   431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   432     if (bci == SynchronizationEntryBCI) {
   433       if (x->as_ExceptionObject() || x->as_Throw()) {
   434         // all locals are dead on exit from the synthetic unlocker
   435         liveness.clear();
   436       } else {
   437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   438       }
   439     }
   440     if (!liveness.is_valid()) {
   441       // Degenerate or breakpointed method.
   442       bailout("Degenerate or breakpointed method");
   443     } else {
   444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   445       for_each_local_value(s, index, value) {
   446         assert(value->subst() == value, "missed substition");
   447         if (liveness.at(index) && !value->type()->is_illegal()) {
   448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   449             walk(value);
   450             assert(value->operand()->is_valid(), "must be evaluated now");
   451           }
   452         } else {
   453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   454           s->invalidate_local(index);
   455         }
   456       }
   457     }
   458   }
   460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
   461 }
   464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   465   return state_for(x, x->exception_state());
   466 }
   469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
   470   if (!obj->is_loaded() || PatchALot) {
   471     assert(info != NULL, "info must be set if class is not loaded");
   472     __ klass2reg_patch(NULL, r, info);
   473   } else {
   474     // no patching needed
   475     __ metadata2reg(obj->constant_encoding(), r);
   476   }
   477 }
   480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   482   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   483   if (index->is_constant()) {
   484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   485                 index->as_jint(), null_check_info);
   486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   487   } else {
   488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   491   }
   492 }
   495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   496   CodeStub* stub = new RangeCheckStub(info, index, true);
   497   if (index->is_constant()) {
   498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   500   } else {
   501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   502                 java_nio_Buffer::limit_offset(), T_INT, info);
   503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   504   }
   505   __ move(index, result);
   506 }
   510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   511   LIR_Opr result_op = result;
   512   LIR_Opr left_op   = left;
   513   LIR_Opr right_op  = right;
   515   if (TwoOperandLIRForm && left_op != result_op) {
   516     assert(right_op != result_op, "malformed");
   517     __ move(left_op, result_op);
   518     left_op = result_op;
   519   }
   521   switch(code) {
   522     case Bytecodes::_dadd:
   523     case Bytecodes::_fadd:
   524     case Bytecodes::_ladd:
   525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   526     case Bytecodes::_fmul:
   527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   529     case Bytecodes::_dmul:
   530       {
   531         if (is_strictfp) {
   532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   533         } else {
   534           __ mul(left_op, right_op, result_op); break;
   535         }
   536       }
   537       break;
   539     case Bytecodes::_imul:
   540       {
   541         bool    did_strength_reduce = false;
   543         if (right->is_constant()) {
   544           int c = right->as_jint();
   545           if (is_power_of_2(c)) {
   546             // do not need tmp here
   547             __ shift_left(left_op, exact_log2(c), result_op);
   548             did_strength_reduce = true;
   549           } else {
   550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   551           }
   552         }
   553         // we couldn't strength reduce so just emit the multiply
   554         if (!did_strength_reduce) {
   555           __ mul(left_op, right_op, result_op);
   556         }
   557       }
   558       break;
   560     case Bytecodes::_dsub:
   561     case Bytecodes::_fsub:
   562     case Bytecodes::_lsub:
   563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   566     // ldiv and lrem are implemented with a direct runtime call
   568     case Bytecodes::_ddiv:
   569       {
   570         if (is_strictfp) {
   571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   572         } else {
   573           __ div (left_op, right_op, result_op); break;
   574         }
   575       }
   576       break;
   578     case Bytecodes::_drem:
   579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   581     default: ShouldNotReachHere();
   582   }
   583 }
   586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   587   arithmetic_op(code, result, left, right, false, tmp);
   588 }
   591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   593 }
   596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   598 }
   601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   602   if (TwoOperandLIRForm && value != result_op) {
   603     assert(count != result_op, "malformed");
   604     __ move(value, result_op);
   605     value = result_op;
   606   }
   608   assert(count->is_constant() || count->is_register(), "must be");
   609   switch(code) {
   610   case Bytecodes::_ishl:
   611   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   612   case Bytecodes::_ishr:
   613   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   614   case Bytecodes::_iushr:
   615   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   616   default: ShouldNotReachHere();
   617   }
   618 }
   621 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   622   if (TwoOperandLIRForm && left_op != result_op) {
   623     assert(right_op != result_op, "malformed");
   624     __ move(left_op, result_op);
   625     left_op = result_op;
   626   }
   628   switch(code) {
   629     case Bytecodes::_iand:
   630     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   632     case Bytecodes::_ior:
   633     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   635     case Bytecodes::_ixor:
   636     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   638     default: ShouldNotReachHere();
   639   }
   640 }
   643 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   644   if (!GenerateSynchronizationCode) return;
   645   // for slow path, use debug info for state after successful locking
   646   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   647   __ load_stack_address_monitor(monitor_no, lock);
   648   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   649   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   650 }
   653 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   654   if (!GenerateSynchronizationCode) return;
   655   // setup registers
   656   LIR_Opr hdr = lock;
   657   lock = new_hdr;
   658   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   659   __ load_stack_address_monitor(monitor_no, lock);
   660   __ unlock_object(hdr, object, lock, scratch, slow_path);
   661 }
   664 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   665   klass2reg_with_patching(klass_reg, klass, info);
   666   // If klass is not loaded we do not know if the klass has finalizers:
   667   if (UseFastNewInstance && klass->is_loaded()
   668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   670     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   674     assert(klass->is_loaded(), "must be loaded");
   675     // allocate space for instance
   676     assert(klass->size_helper() >= 0, "illegal instance size");
   677     const int instance_size = align_object_size(klass->size_helper());
   678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   680   } else {
   681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   682     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   683     __ branch_destination(slow_path->continuation());
   684   }
   685 }
   688 static bool is_constant_zero(Instruction* inst) {
   689   IntConstant* c = inst->type()->as_IntConstant();
   690   if (c) {
   691     return (c->value() == 0);
   692   }
   693   return false;
   694 }
   697 static bool positive_constant(Instruction* inst) {
   698   IntConstant* c = inst->type()->as_IntConstant();
   699   if (c) {
   700     return (c->value() >= 0);
   701   }
   702   return false;
   703 }
   706 static ciArrayKlass* as_array_klass(ciType* type) {
   707   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   708     return (ciArrayKlass*)type;
   709   } else {
   710     return NULL;
   711   }
   712 }
   714 static ciType* phi_declared_type(Phi* phi) {
   715   ciType* t = phi->operand_at(0)->declared_type();
   716   if (t == NULL) {
   717     return NULL;
   718   }
   719   for(int i = 1; i < phi->operand_count(); i++) {
   720     if (t != phi->operand_at(i)->declared_type()) {
   721       return NULL;
   722     }
   723   }
   724   return t;
   725 }
   727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   728   Instruction* src     = x->argument_at(0);
   729   Instruction* src_pos = x->argument_at(1);
   730   Instruction* dst     = x->argument_at(2);
   731   Instruction* dst_pos = x->argument_at(3);
   732   Instruction* length  = x->argument_at(4);
   734   // first try to identify the likely type of the arrays involved
   735   ciArrayKlass* expected_type = NULL;
   736   bool is_exact = false, src_objarray = false, dst_objarray = false;
   737   {
   738     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   739     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   740     Phi* phi;
   741     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   742       src_declared_type = as_array_klass(phi_declared_type(phi));
   743     }
   744     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   745     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   746     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   747       dst_declared_type = as_array_klass(phi_declared_type(phi));
   748     }
   750     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   751       // the types exactly match so the type is fully known
   752       is_exact = true;
   753       expected_type = src_exact_type;
   754     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   755       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   756       ciArrayKlass* src_type = NULL;
   757       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   758         src_type = (ciArrayKlass*) src_exact_type;
   759       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   760         src_type = (ciArrayKlass*) src_declared_type;
   761       }
   762       if (src_type != NULL) {
   763         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   764           is_exact = true;
   765           expected_type = dst_type;
   766         }
   767       }
   768     }
   769     // at least pass along a good guess
   770     if (expected_type == NULL) expected_type = dst_exact_type;
   771     if (expected_type == NULL) expected_type = src_declared_type;
   772     if (expected_type == NULL) expected_type = dst_declared_type;
   774     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   775     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   776   }
   778   // if a probable array type has been identified, figure out if any
   779   // of the required checks for a fast case can be elided.
   780   int flags = LIR_OpArrayCopy::all_flags;
   782   if (!src_objarray)
   783     flags &= ~LIR_OpArrayCopy::src_objarray;
   784   if (!dst_objarray)
   785     flags &= ~LIR_OpArrayCopy::dst_objarray;
   787   if (!x->arg_needs_null_check(0))
   788     flags &= ~LIR_OpArrayCopy::src_null_check;
   789   if (!x->arg_needs_null_check(2))
   790     flags &= ~LIR_OpArrayCopy::dst_null_check;
   793   if (expected_type != NULL) {
   794     Value length_limit = NULL;
   796     IfOp* ifop = length->as_IfOp();
   797     if (ifop != NULL) {
   798       // look for expressions like min(v, a.length) which ends up as
   799       //   x > y ? y : x  or  x >= y ? y : x
   800       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   801           ifop->x() == ifop->fval() &&
   802           ifop->y() == ifop->tval()) {
   803         length_limit = ifop->y();
   804       }
   805     }
   807     // try to skip null checks and range checks
   808     NewArray* src_array = src->as_NewArray();
   809     if (src_array != NULL) {
   810       flags &= ~LIR_OpArrayCopy::src_null_check;
   811       if (length_limit != NULL &&
   812           src_array->length() == length_limit &&
   813           is_constant_zero(src_pos)) {
   814         flags &= ~LIR_OpArrayCopy::src_range_check;
   815       }
   816     }
   818     NewArray* dst_array = dst->as_NewArray();
   819     if (dst_array != NULL) {
   820       flags &= ~LIR_OpArrayCopy::dst_null_check;
   821       if (length_limit != NULL &&
   822           dst_array->length() == length_limit &&
   823           is_constant_zero(dst_pos)) {
   824         flags &= ~LIR_OpArrayCopy::dst_range_check;
   825       }
   826     }
   828     // check from incoming constant values
   829     if (positive_constant(src_pos))
   830       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   831     if (positive_constant(dst_pos))
   832       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   833     if (positive_constant(length))
   834       flags &= ~LIR_OpArrayCopy::length_positive_check;
   836     // see if the range check can be elided, which might also imply
   837     // that src or dst is non-null.
   838     ArrayLength* al = length->as_ArrayLength();
   839     if (al != NULL) {
   840       if (al->array() == src) {
   841         // it's the length of the source array
   842         flags &= ~LIR_OpArrayCopy::length_positive_check;
   843         flags &= ~LIR_OpArrayCopy::src_null_check;
   844         if (is_constant_zero(src_pos))
   845           flags &= ~LIR_OpArrayCopy::src_range_check;
   846       }
   847       if (al->array() == dst) {
   848         // it's the length of the destination array
   849         flags &= ~LIR_OpArrayCopy::length_positive_check;
   850         flags &= ~LIR_OpArrayCopy::dst_null_check;
   851         if (is_constant_zero(dst_pos))
   852           flags &= ~LIR_OpArrayCopy::dst_range_check;
   853       }
   854     }
   855     if (is_exact) {
   856       flags &= ~LIR_OpArrayCopy::type_check;
   857     }
   858   }
   860   IntConstant* src_int = src_pos->type()->as_IntConstant();
   861   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   862   if (src_int && dst_int) {
   863     int s_offs = src_int->value();
   864     int d_offs = dst_int->value();
   865     if (src_int->value() >= dst_int->value()) {
   866       flags &= ~LIR_OpArrayCopy::overlapping;
   867     }
   868     if (expected_type != NULL) {
   869       BasicType t = expected_type->element_type()->basic_type();
   870       int element_size = type2aelembytes(t);
   871       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   872           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   873         flags &= ~LIR_OpArrayCopy::unaligned;
   874       }
   875     }
   876   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   877     // src and dest positions are the same, or dst is zero so assume
   878     // nonoverlapping copy.
   879     flags &= ~LIR_OpArrayCopy::overlapping;
   880   }
   882   if (src == dst) {
   883     // moving within a single array so no type checks are needed
   884     if (flags & LIR_OpArrayCopy::type_check) {
   885       flags &= ~LIR_OpArrayCopy::type_check;
   886     }
   887   }
   888   *flagsp = flags;
   889   *expected_typep = (ciArrayKlass*)expected_type;
   890 }
   893 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   894   assert(opr->is_register(), "why spill if item is not register?");
   896   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   897     LIR_Opr result = new_register(T_FLOAT);
   898     set_vreg_flag(result, must_start_in_memory);
   899     assert(opr->is_register(), "only a register can be spilled");
   900     assert(opr->value_type()->is_float(), "rounding only for floats available");
   901     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   902     return result;
   903   }
   904   return opr;
   905 }
   908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   909   assert(type2size[t] == type2size[value->type()],
   910          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   911   if (!value->is_register()) {
   912     // force into a register
   913     LIR_Opr r = new_register(value->type());
   914     __ move(value, r);
   915     value = r;
   916   }
   918   // create a spill location
   919   LIR_Opr tmp = new_register(t);
   920   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   922   // move from register to spill
   923   __ move(value, tmp);
   924   return tmp;
   925 }
   927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   928   if (if_instr->should_profile()) {
   929     ciMethod* method = if_instr->profiled_method();
   930     assert(method != NULL, "method should be set if branch is profiled");
   931     ciMethodData* md = method->method_data_or_null();
   932     assert(md != NULL, "Sanity");
   933     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   934     assert(data != NULL, "must have profiling data");
   935     assert(data->is_BranchData(), "need BranchData for two-way branches");
   936     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   937     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   938     if (if_instr->is_swapped()) {
   939       int t = taken_count_offset;
   940       taken_count_offset = not_taken_count_offset;
   941       not_taken_count_offset = t;
   942     }
   944     LIR_Opr md_reg = new_register(T_METADATA);
   945     __ metadata2reg(md->constant_encoding(), md_reg);
   947     LIR_Opr data_offset_reg = new_pointer_register();
   948     __ cmove(lir_cond(cond),
   949              LIR_OprFact::intptrConst(taken_count_offset),
   950              LIR_OprFact::intptrConst(not_taken_count_offset),
   951              data_offset_reg, as_BasicType(if_instr->x()->type()));
   953     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   954     LIR_Opr data_reg = new_pointer_register();
   955     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   956     __ move(data_addr, data_reg);
   957     // Use leal instead of add to avoid destroying condition codes on x86
   958     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   959     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   960     __ move(data_reg, data_addr);
   961   }
   962 }
   964 // Phi technique:
   965 // This is about passing live values from one basic block to the other.
   966 // In code generated with Java it is rather rare that more than one
   967 // value is on the stack from one basic block to the other.
   968 // We optimize our technique for efficient passing of one value
   969 // (of type long, int, double..) but it can be extended.
   970 // When entering or leaving a basic block, all registers and all spill
   971 // slots are release and empty. We use the released registers
   972 // and spill slots to pass the live values from one block
   973 // to the other. The topmost value, i.e., the value on TOS of expression
   974 // stack is passed in registers. All other values are stored in spilling
   975 // area. Every Phi has an index which designates its spill slot
   976 // At exit of a basic block, we fill the register(s) and spill slots.
   977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   978 // and locks necessary registers and spilling slots.
   981 // move current value to referenced phi function
   982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   983   Phi* phi = sux_val->as_Phi();
   984   // cur_val can be null without phi being null in conjunction with inlining
   985   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   986     LIR_Opr operand = cur_val->operand();
   987     if (cur_val->operand()->is_illegal()) {
   988       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   989              "these can be produced lazily");
   990       operand = operand_for_instruction(cur_val);
   991     }
   992     resolver->move(operand, operand_for_instruction(phi));
   993   }
   994 }
   997 // Moves all stack values into their PHI position
   998 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
   999   BlockBegin* bb = block();
  1000   if (bb->number_of_sux() == 1) {
  1001     BlockBegin* sux = bb->sux_at(0);
  1002     assert(sux->number_of_preds() > 0, "invalid CFG");
  1004     // a block with only one predecessor never has phi functions
  1005     if (sux->number_of_preds() > 1) {
  1006       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1007       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1009       ValueStack* sux_state = sux->state();
  1010       Value sux_value;
  1011       int index;
  1013       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1014       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1015       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1017       for_each_stack_value(sux_state, index, sux_value) {
  1018         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1021       for_each_local_value(sux_state, index, sux_value) {
  1022         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1025       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1031 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1032   int vreg = _virtual_register_number;
  1033   // add a little fudge factor for the bailout, since the bailout is
  1034   // only checked periodically.  This gives a few extra registers to
  1035   // hand out before we really run out, which helps us keep from
  1036   // tripping over assertions.
  1037   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1038     bailout("out of virtual registers");
  1039     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1040       // wrap it around
  1041       _virtual_register_number = LIR_OprDesc::vreg_base;
  1044   _virtual_register_number += 1;
  1045   return LIR_OprFact::virtual_register(vreg, type);
  1049 // Try to lock using register in hint
  1050 LIR_Opr LIRGenerator::rlock(Value instr) {
  1051   return new_register(instr->type());
  1055 // does an rlock and sets result
  1056 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1057   LIR_Opr reg = rlock(x);
  1058   set_result(x, reg);
  1059   return reg;
  1063 // does an rlock and sets result
  1064 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1065   LIR_Opr reg;
  1066   switch (type) {
  1067   case T_BYTE:
  1068   case T_BOOLEAN:
  1069     reg = rlock_byte(type);
  1070     break;
  1071   default:
  1072     reg = rlock(x);
  1073     break;
  1076   set_result(x, reg);
  1077   return reg;
  1081 //---------------------------------------------------------------------
  1082 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1083   ObjectType* oc = value->type()->as_ObjectType();
  1084   if (oc) {
  1085     return oc->constant_value();
  1087   return NULL;
  1091 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1092   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1093   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1095   // no moves are created for phi functions at the begin of exception
  1096   // handlers, so assign operands manually here
  1097   for_each_phi_fun(block(), phi,
  1098                    operand_for_instruction(phi));
  1100   LIR_Opr thread_reg = getThreadPointer();
  1101   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1102                exceptionOopOpr());
  1103   __ move_wide(LIR_OprFact::oopConst(NULL),
  1104                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1105   __ move_wide(LIR_OprFact::oopConst(NULL),
  1106                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1108   LIR_Opr result = new_register(T_OBJECT);
  1109   __ move(exceptionOopOpr(), result);
  1110   set_result(x, result);
  1114 //----------------------------------------------------------------------
  1115 //----------------------------------------------------------------------
  1116 //----------------------------------------------------------------------
  1117 //----------------------------------------------------------------------
  1118 //                        visitor functions
  1119 //----------------------------------------------------------------------
  1120 //----------------------------------------------------------------------
  1121 //----------------------------------------------------------------------
  1122 //----------------------------------------------------------------------
  1124 void LIRGenerator::do_Phi(Phi* x) {
  1125   // phi functions are never visited directly
  1126   ShouldNotReachHere();
  1130 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1131 void LIRGenerator::do_Constant(Constant* x) {
  1132   if (x->state_before() != NULL) {
  1133     // Any constant with a ValueStack requires patching so emit the patch here
  1134     LIR_Opr reg = rlock_result(x);
  1135     CodeEmitInfo* info = state_for(x, x->state_before());
  1136     __ oop2reg_patch(NULL, reg, info);
  1137   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1138     if (!x->is_pinned()) {
  1139       // unpinned constants are handled specially so that they can be
  1140       // put into registers when they are used multiple times within a
  1141       // block.  After the block completes their operand will be
  1142       // cleared so that other blocks can't refer to that register.
  1143       set_result(x, load_constant(x));
  1144     } else {
  1145       LIR_Opr res = x->operand();
  1146       if (!res->is_valid()) {
  1147         res = LIR_OprFact::value_type(x->type());
  1149       if (res->is_constant()) {
  1150         LIR_Opr reg = rlock_result(x);
  1151         __ move(res, reg);
  1152       } else {
  1153         set_result(x, res);
  1156   } else {
  1157     set_result(x, LIR_OprFact::value_type(x->type()));
  1162 void LIRGenerator::do_Local(Local* x) {
  1163   // operand_for_instruction has the side effect of setting the result
  1164   // so there's no need to do it here.
  1165   operand_for_instruction(x);
  1169 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1170   Unimplemented();
  1174 void LIRGenerator::do_Return(Return* x) {
  1175   if (compilation()->env()->dtrace_method_probes()) {
  1176     BasicTypeList signature;
  1177     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1178     signature.append(T_OBJECT); // Method*
  1179     LIR_OprList* args = new LIR_OprList();
  1180     args->append(getThreadPointer());
  1181     LIR_Opr meth = new_register(T_METADATA);
  1182     __ metadata2reg(method()->constant_encoding(), meth);
  1183     args->append(meth);
  1184     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1187   if (x->type()->is_void()) {
  1188     __ return_op(LIR_OprFact::illegalOpr);
  1189   } else {
  1190     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1191     LIRItem result(x->result(), this);
  1193     result.load_item_force(reg);
  1194     __ return_op(result.result());
  1196   set_no_result(x);
  1199 // Examble: ref.get()
  1200 // Combination of LoadField and g1 pre-write barrier
  1201 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1203   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1204   guarantee(referent_offset > 0, "referent offset not initialized");
  1206   assert(x->number_of_arguments() == 1, "wrong type");
  1208   LIRItem reference(x->argument_at(0), this);
  1209   reference.load_item();
  1211   // need to perform the null check on the reference objecy
  1212   CodeEmitInfo* info = NULL;
  1213   if (x->needs_null_check()) {
  1214     info = state_for(x);
  1217   LIR_Address* referent_field_adr =
  1218     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1220   LIR_Opr result = rlock_result(x);
  1222   __ load(referent_field_adr, result, info);
  1224   // Register the value in the referent field with the pre-barrier
  1225   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1226               result /* pre_val */,
  1227               false  /* do_load */,
  1228               false  /* patch */,
  1229               NULL   /* info */);
  1232 // Example: clazz.isInstance(object)
  1233 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1234   assert(x->number_of_arguments() == 2, "wrong type");
  1236   // TODO could try to substitute this node with an equivalent InstanceOf
  1237   // if clazz is known to be a constant Class. This will pick up newly found
  1238   // constants after HIR construction. I'll leave this to a future change.
  1240   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1241   // could follow the aastore example in a future change.
  1243   LIRItem clazz(x->argument_at(0), this);
  1244   LIRItem object(x->argument_at(1), this);
  1245   clazz.load_item();
  1246   object.load_item();
  1247   LIR_Opr result = rlock_result(x);
  1249   // need to perform null check on clazz
  1250   if (x->needs_null_check()) {
  1251     CodeEmitInfo* info = state_for(x);
  1252     __ null_check(clazz.result(), info);
  1255   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1256                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1257                                      x->type(),
  1258                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1259   __ move(call_result, result);
  1262 // Example: object.getClass ()
  1263 void LIRGenerator::do_getClass(Intrinsic* x) {
  1264   assert(x->number_of_arguments() == 1, "wrong type");
  1266   LIRItem rcvr(x->argument_at(0), this);
  1267   rcvr.load_item();
  1268   LIR_Opr result = rlock_result(x);
  1270   // need to perform the null check on the rcvr
  1271   CodeEmitInfo* info = NULL;
  1272   if (x->needs_null_check()) {
  1273     info = state_for(x);
  1275   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
  1276   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1280 // Example: Thread.currentThread()
  1281 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1282   assert(x->number_of_arguments() == 0, "wrong type");
  1283   LIR_Opr reg = rlock_result(x);
  1284   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1288 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1289   assert(x->number_of_arguments() == 1, "wrong type");
  1290   LIRItem receiver(x->argument_at(0), this);
  1292   receiver.load_item();
  1293   BasicTypeList signature;
  1294   signature.append(T_OBJECT); // receiver
  1295   LIR_OprList* args = new LIR_OprList();
  1296   args->append(receiver.result());
  1297   CodeEmitInfo* info = state_for(x, x->state());
  1298   call_runtime(&signature, args,
  1299                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1300                voidType, info);
  1302   set_no_result(x);
  1306 //------------------------local access--------------------------------------
  1308 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1309   if (x->operand()->is_illegal()) {
  1310     Constant* c = x->as_Constant();
  1311     if (c != NULL) {
  1312       x->set_operand(LIR_OprFact::value_type(c->type()));
  1313     } else {
  1314       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1315       // allocate a virtual register for this local or phi
  1316       x->set_operand(rlock(x));
  1317       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1320   return x->operand();
  1324 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1325   if (opr->is_virtual()) {
  1326     return instruction_for_vreg(opr->vreg_number());
  1328   return NULL;
  1332 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1333   if (reg_num < _instruction_for_operand.length()) {
  1334     return _instruction_for_operand.at(reg_num);
  1336   return NULL;
  1340 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1341   if (_vreg_flags.size_in_bits() == 0) {
  1342     BitMap2D temp(100, num_vreg_flags);
  1343     temp.clear();
  1344     _vreg_flags = temp;
  1346   _vreg_flags.at_put_grow(vreg_num, f, true);
  1349 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1350   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1351     return false;
  1353   return _vreg_flags.at(vreg_num, f);
  1357 // Block local constant handling.  This code is useful for keeping
  1358 // unpinned constants and constants which aren't exposed in the IR in
  1359 // registers.  Unpinned Constant instructions have their operands
  1360 // cleared when the block is finished so that other blocks can't end
  1361 // up referring to their registers.
  1363 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1364   assert(!x->is_pinned(), "only for unpinned constants");
  1365   _unpinned_constants.append(x);
  1366   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1370 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1371   BasicType t = c->type();
  1372   for (int i = 0; i < _constants.length(); i++) {
  1373     LIR_Const* other = _constants.at(i);
  1374     if (t == other->type()) {
  1375       switch (t) {
  1376       case T_INT:
  1377       case T_FLOAT:
  1378         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1379         break;
  1380       case T_LONG:
  1381       case T_DOUBLE:
  1382         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1383         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1384         break;
  1385       case T_OBJECT:
  1386         if (c->as_jobject() != other->as_jobject()) continue;
  1387         break;
  1389       return _reg_for_constants.at(i);
  1393   LIR_Opr result = new_register(t);
  1394   __ move((LIR_Opr)c, result);
  1395   _constants.append(c);
  1396   _reg_for_constants.append(result);
  1397   return result;
  1400 // Various barriers
  1402 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1403                                bool do_load, bool patch, CodeEmitInfo* info) {
  1404   // Do the pre-write barrier, if any.
  1405   switch (_bs->kind()) {
  1406 #if INCLUDE_ALL_GCS
  1407     case BarrierSet::G1SATBCT:
  1408     case BarrierSet::G1SATBCTLogging:
  1409       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1410       break;
  1411 #endif // INCLUDE_ALL_GCS
  1412     case BarrierSet::CardTableModRef:
  1413     case BarrierSet::CardTableExtension:
  1414       // No pre barriers
  1415       break;
  1416     case BarrierSet::ModRef:
  1417     case BarrierSet::Other:
  1418       // No pre barriers
  1419       break;
  1420     default      :
  1421       ShouldNotReachHere();
  1426 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1427   switch (_bs->kind()) {
  1428 #if INCLUDE_ALL_GCS
  1429     case BarrierSet::G1SATBCT:
  1430     case BarrierSet::G1SATBCTLogging:
  1431       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1432       break;
  1433 #endif // INCLUDE_ALL_GCS
  1434     case BarrierSet::CardTableModRef:
  1435     case BarrierSet::CardTableExtension:
  1436       CardTableModRef_post_barrier(addr,  new_val);
  1437       break;
  1438     case BarrierSet::ModRef:
  1439     case BarrierSet::Other:
  1440       // No post barriers
  1441       break;
  1442     default      :
  1443       ShouldNotReachHere();
  1447 ////////////////////////////////////////////////////////////////////////
  1448 #if INCLUDE_ALL_GCS
  1450 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1451                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1452   // First we test whether marking is in progress.
  1453   BasicType flag_type;
  1454   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1455     flag_type = T_INT;
  1456   } else {
  1457     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1458               "Assumption");
  1459     flag_type = T_BYTE;
  1461   LIR_Opr thrd = getThreadPointer();
  1462   LIR_Address* mark_active_flag_addr =
  1463     new LIR_Address(thrd,
  1464                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1465                              PtrQueue::byte_offset_of_active()),
  1466                     flag_type);
  1467   // Read the marking-in-progress flag.
  1468   LIR_Opr flag_val = new_register(T_INT);
  1469   __ load(mark_active_flag_addr, flag_val);
  1470   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1472   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1474   CodeStub* slow;
  1476   if (do_load) {
  1477     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1478     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1480     if (patch)
  1481       pre_val_patch_code = lir_patch_normal;
  1483     pre_val = new_register(T_OBJECT);
  1485     if (!addr_opr->is_address()) {
  1486       assert(addr_opr->is_register(), "must be");
  1487       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1489     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1490   } else {
  1491     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1492     assert(pre_val->is_register(), "must be");
  1493     assert(pre_val->type() == T_OBJECT, "must be an object");
  1494     assert(info == NULL, "sanity");
  1496     slow = new G1PreBarrierStub(pre_val);
  1499   __ branch(lir_cond_notEqual, T_INT, slow);
  1500   __ branch_destination(slow->continuation());
  1503 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1504   // If the "new_val" is a constant NULL, no barrier is necessary.
  1505   if (new_val->is_constant() &&
  1506       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1508   if (!new_val->is_register()) {
  1509     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1510     if (new_val->is_constant()) {
  1511       __ move(new_val, new_val_reg);
  1512     } else {
  1513       __ leal(new_val, new_val_reg);
  1515     new_val = new_val_reg;
  1517   assert(new_val->is_register(), "must be a register at this point");
  1519   if (addr->is_address()) {
  1520     LIR_Address* address = addr->as_address_ptr();
  1521     LIR_Opr ptr = new_pointer_register();
  1522     if (!address->index()->is_valid() && address->disp() == 0) {
  1523       __ move(address->base(), ptr);
  1524     } else {
  1525       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1526       __ leal(addr, ptr);
  1528     addr = ptr;
  1530   assert(addr->is_register(), "must be a register at this point");
  1532   LIR_Opr xor_res = new_pointer_register();
  1533   LIR_Opr xor_shift_res = new_pointer_register();
  1534   if (TwoOperandLIRForm ) {
  1535     __ move(addr, xor_res);
  1536     __ logical_xor(xor_res, new_val, xor_res);
  1537     __ move(xor_res, xor_shift_res);
  1538     __ unsigned_shift_right(xor_shift_res,
  1539                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1540                             xor_shift_res,
  1541                             LIR_OprDesc::illegalOpr());
  1542   } else {
  1543     __ logical_xor(addr, new_val, xor_res);
  1544     __ unsigned_shift_right(xor_res,
  1545                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1546                             xor_shift_res,
  1547                             LIR_OprDesc::illegalOpr());
  1550   if (!new_val->is_register()) {
  1551     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1552     __ leal(new_val, new_val_reg);
  1553     new_val = new_val_reg;
  1555   assert(new_val->is_register(), "must be a register at this point");
  1557   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1559   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1560   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1561   __ branch_destination(slow->continuation());
  1564 #endif // INCLUDE_ALL_GCS
  1565 ////////////////////////////////////////////////////////////////////////
  1567 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1569   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1570   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1571   if (addr->is_address()) {
  1572     LIR_Address* address = addr->as_address_ptr();
  1573     // ptr cannot be an object because we use this barrier for array card marks
  1574     // and addr can point in the middle of an array.
  1575     LIR_Opr ptr = new_pointer_register();
  1576     if (!address->index()->is_valid() && address->disp() == 0) {
  1577       __ move(address->base(), ptr);
  1578     } else {
  1579       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1580       __ leal(addr, ptr);
  1582     addr = ptr;
  1584   assert(addr->is_register(), "must be a register at this point");
  1586 #ifdef ARM
  1587   // TODO: ARM - move to platform-dependent code
  1588   LIR_Opr tmp = FrameMap::R14_opr;
  1589   if (VM_Version::supports_movw()) {
  1590     __ move((LIR_Opr)card_table_base, tmp);
  1591   } else {
  1592     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1595   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1596   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1597   if(((int)ct->byte_map_base & 0xff) == 0) {
  1598     __ move(tmp, card_addr);
  1599   } else {
  1600     LIR_Opr tmp_zero = new_register(T_INT);
  1601     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1602     __ move(tmp_zero, card_addr);
  1604 #else // ARM
  1605   LIR_Opr tmp = new_pointer_register();
  1606   if (TwoOperandLIRForm) {
  1607     __ move(addr, tmp);
  1608     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1609   } else {
  1610     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1612   if (can_inline_as_constant(card_table_base)) {
  1613     __ move(LIR_OprFact::intConst(0),
  1614               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1615   } else {
  1616     __ move(LIR_OprFact::intConst(0),
  1617               new LIR_Address(tmp, load_constant(card_table_base),
  1618                               T_BYTE));
  1620 #endif // ARM
  1624 //------------------------field access--------------------------------------
  1626 // Comment copied form templateTable_i486.cpp
  1627 // ----------------------------------------------------------------------------
  1628 // Volatile variables demand their effects be made known to all CPU's in
  1629 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1630 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1631 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1632 // reorder volatile references, the hardware also must not reorder them).
  1633 //
  1634 // According to the new Java Memory Model (JMM):
  1635 // (1) All volatiles are serialized wrt to each other.
  1636 // ALSO reads & writes act as aquire & release, so:
  1637 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1638 // the read float up to before the read.  It's OK for non-volatile memory refs
  1639 // that happen before the volatile read to float down below it.
  1640 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1641 // that happen BEFORE the write float down to after the write.  It's OK for
  1642 // non-volatile memory refs that happen after the volatile write to float up
  1643 // before it.
  1644 //
  1645 // We only put in barriers around volatile refs (they are expensive), not
  1646 // _between_ memory refs (that would require us to track the flavor of the
  1647 // previous memory refs).  Requirements (2) and (3) require some barriers
  1648 // before volatile stores and after volatile loads.  These nearly cover
  1649 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1650 // case is placed after volatile-stores although it could just as well go
  1651 // before volatile-loads.
  1654 void LIRGenerator::do_StoreField(StoreField* x) {
  1655   bool needs_patching = x->needs_patching();
  1656   bool is_volatile = x->field()->is_volatile();
  1657   BasicType field_type = x->field_type();
  1658   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1660   CodeEmitInfo* info = NULL;
  1661   if (needs_patching) {
  1662     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1663     info = state_for(x, x->state_before());
  1664   } else if (x->needs_null_check()) {
  1665     NullCheck* nc = x->explicit_null_check();
  1666     if (nc == NULL) {
  1667       info = state_for(x);
  1668     } else {
  1669       info = state_for(nc);
  1674   LIRItem object(x->obj(), this);
  1675   LIRItem value(x->value(),  this);
  1677   object.load_item();
  1679   if (is_volatile || needs_patching) {
  1680     // load item if field is volatile (fewer special cases for volatiles)
  1681     // load item if field not initialized
  1682     // load item if field not constant
  1683     // because of code patching we cannot inline constants
  1684     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1685       value.load_byte_item();
  1686     } else  {
  1687       value.load_item();
  1689   } else {
  1690     value.load_for_store(field_type);
  1693   set_no_result(x);
  1695 #ifndef PRODUCT
  1696   if (PrintNotLoaded && needs_patching) {
  1697     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1698                   x->is_static() ?  "static" : "field", x->printable_bci());
  1700 #endif
  1702   if (x->needs_null_check() &&
  1703       (needs_patching ||
  1704        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1705     // emit an explicit null check because the offset is too large
  1706     __ null_check(object.result(), new CodeEmitInfo(info));
  1709   LIR_Address* address;
  1710   if (needs_patching) {
  1711     // we need to patch the offset in the instruction so don't allow
  1712     // generate_address to try to be smart about emitting the -1.
  1713     // Otherwise the patching code won't know how to find the
  1714     // instruction to patch.
  1715     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1716   } else {
  1717     address = generate_address(object.result(), x->offset(), field_type);
  1720   if (is_volatile && os::is_MP()) {
  1721     __ membar_release();
  1724   if (is_oop) {
  1725     // Do the pre-write barrier, if any.
  1726     pre_barrier(LIR_OprFact::address(address),
  1727                 LIR_OprFact::illegalOpr /* pre_val */,
  1728                 true /* do_load*/,
  1729                 needs_patching,
  1730                 (info ? new CodeEmitInfo(info) : NULL));
  1733   if (is_volatile && !needs_patching) {
  1734     volatile_field_store(value.result(), address, info);
  1735   } else {
  1736     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1737     __ store(value.result(), address, info, patch_code);
  1740   if (is_oop) {
  1741     // Store to object so mark the card of the header
  1742     post_barrier(object.result(), value.result());
  1745   if (is_volatile && os::is_MP()) {
  1746     __ membar();
  1751 void LIRGenerator::do_LoadField(LoadField* x) {
  1752   bool needs_patching = x->needs_patching();
  1753   bool is_volatile = x->field()->is_volatile();
  1754   BasicType field_type = x->field_type();
  1756   CodeEmitInfo* info = NULL;
  1757   if (needs_patching) {
  1758     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1759     info = state_for(x, x->state_before());
  1760   } else if (x->needs_null_check()) {
  1761     NullCheck* nc = x->explicit_null_check();
  1762     if (nc == NULL) {
  1763       info = state_for(x);
  1764     } else {
  1765       info = state_for(nc);
  1769   LIRItem object(x->obj(), this);
  1771   object.load_item();
  1773 #ifndef PRODUCT
  1774   if (PrintNotLoaded && needs_patching) {
  1775     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1776                   x->is_static() ?  "static" : "field", x->printable_bci());
  1778 #endif
  1780   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
  1781   if (x->needs_null_check() &&
  1782       (needs_patching ||
  1783        MacroAssembler::needs_explicit_null_check(x->offset()) ||
  1784        stress_deopt)) {
  1785     LIR_Opr obj = object.result();
  1786     if (stress_deopt) {
  1787       obj = new_register(T_OBJECT);
  1788       __ move(LIR_OprFact::oopConst(NULL), obj);
  1790     // emit an explicit null check because the offset is too large
  1791     __ null_check(obj, new CodeEmitInfo(info));
  1794   LIR_Opr reg = rlock_result(x, field_type);
  1795   LIR_Address* address;
  1796   if (needs_patching) {
  1797     // we need to patch the offset in the instruction so don't allow
  1798     // generate_address to try to be smart about emitting the -1.
  1799     // Otherwise the patching code won't know how to find the
  1800     // instruction to patch.
  1801     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1802   } else {
  1803     address = generate_address(object.result(), x->offset(), field_type);
  1806   if (is_volatile && !needs_patching) {
  1807     volatile_field_load(address, reg, info);
  1808   } else {
  1809     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1810     __ load(address, reg, info, patch_code);
  1813   if (is_volatile && os::is_MP()) {
  1814     __ membar_acquire();
  1819 //------------------------java.nio.Buffer.checkIndex------------------------
  1821 // int java.nio.Buffer.checkIndex(int)
  1822 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1823   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1824   // the buffer is non-null (because checkIndex is package-private and
  1825   // only called from within other methods in the buffer).
  1826   assert(x->number_of_arguments() == 2, "wrong type");
  1827   LIRItem buf  (x->argument_at(0), this);
  1828   LIRItem index(x->argument_at(1), this);
  1829   buf.load_item();
  1830   index.load_item();
  1832   LIR_Opr result = rlock_result(x);
  1833   if (GenerateRangeChecks) {
  1834     CodeEmitInfo* info = state_for(x);
  1835     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1836     if (index.result()->is_constant()) {
  1837       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1838       __ branch(lir_cond_belowEqual, T_INT, stub);
  1839     } else {
  1840       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1841                   java_nio_Buffer::limit_offset(), T_INT, info);
  1842       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1844     __ move(index.result(), result);
  1845   } else {
  1846     // Just load the index into the result register
  1847     __ move(index.result(), result);
  1852 //------------------------array access--------------------------------------
  1855 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1856   LIRItem array(x->array(), this);
  1857   array.load_item();
  1858   LIR_Opr reg = rlock_result(x);
  1860   CodeEmitInfo* info = NULL;
  1861   if (x->needs_null_check()) {
  1862     NullCheck* nc = x->explicit_null_check();
  1863     if (nc == NULL) {
  1864       info = state_for(x);
  1865     } else {
  1866       info = state_for(nc);
  1868     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
  1869       LIR_Opr obj = new_register(T_OBJECT);
  1870       __ move(LIR_OprFact::oopConst(NULL), obj);
  1871       __ null_check(obj, new CodeEmitInfo(info));
  1874   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1878 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1879   bool use_length = x->length() != NULL;
  1880   LIRItem array(x->array(), this);
  1881   LIRItem index(x->index(), this);
  1882   LIRItem length(this);
  1883   bool needs_range_check = x->compute_needs_range_check();
  1885   if (use_length && needs_range_check) {
  1886     length.set_instruction(x->length());
  1887     length.load_item();
  1890   array.load_item();
  1891   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1892     // let it be a constant
  1893     index.dont_load_item();
  1894   } else {
  1895     index.load_item();
  1898   CodeEmitInfo* range_check_info = state_for(x);
  1899   CodeEmitInfo* null_check_info = NULL;
  1900   if (x->needs_null_check()) {
  1901     NullCheck* nc = x->explicit_null_check();
  1902     if (nc != NULL) {
  1903       null_check_info = state_for(nc);
  1904     } else {
  1905       null_check_info = range_check_info;
  1907     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
  1908       LIR_Opr obj = new_register(T_OBJECT);
  1909       __ move(LIR_OprFact::oopConst(NULL), obj);
  1910       __ null_check(obj, new CodeEmitInfo(null_check_info));
  1914   // emit array address setup early so it schedules better
  1915   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1917   if (GenerateRangeChecks && needs_range_check) {
  1918     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
  1919       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
  1920     } else if (use_length) {
  1921       // TODO: use a (modified) version of array_range_check that does not require a
  1922       //       constant length to be loaded to a register
  1923       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1924       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1925     } else {
  1926       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1927       // The range check performs the null check, so clear it out for the load
  1928       null_check_info = NULL;
  1932   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1936 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1937   if (x->can_trap()) {
  1938     LIRItem value(x->obj(), this);
  1939     value.load_item();
  1940     CodeEmitInfo* info = state_for(x);
  1941     __ null_check(value.result(), info);
  1946 void LIRGenerator::do_TypeCast(TypeCast* x) {
  1947   LIRItem value(x->obj(), this);
  1948   value.load_item();
  1949   // the result is the same as from the node we are casting
  1950   set_result(x, value.result());
  1954 void LIRGenerator::do_Throw(Throw* x) {
  1955   LIRItem exception(x->exception(), this);
  1956   exception.load_item();
  1957   set_no_result(x);
  1958   LIR_Opr exception_opr = exception.result();
  1959   CodeEmitInfo* info = state_for(x, x->state());
  1961 #ifndef PRODUCT
  1962   if (PrintC1Statistics) {
  1963     increment_counter(Runtime1::throw_count_address(), T_INT);
  1965 #endif
  1967   // check if the instruction has an xhandler in any of the nested scopes
  1968   bool unwind = false;
  1969   if (info->exception_handlers()->length() == 0) {
  1970     // this throw is not inside an xhandler
  1971     unwind = true;
  1972   } else {
  1973     // get some idea of the throw type
  1974     bool type_is_exact = true;
  1975     ciType* throw_type = x->exception()->exact_type();
  1976     if (throw_type == NULL) {
  1977       type_is_exact = false;
  1978       throw_type = x->exception()->declared_type();
  1980     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1981       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1982       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1986   // do null check before moving exception oop into fixed register
  1987   // to avoid a fixed interval with an oop during the null check.
  1988   // Use a copy of the CodeEmitInfo because debug information is
  1989   // different for null_check and throw.
  1990   if (GenerateCompilerNullChecks &&
  1991       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1992     // if the exception object wasn't created using new then it might be null.
  1993     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1996   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1997     // we need to go through the exception lookup path to get JVMTI
  1998     // notification done
  1999     unwind = false;
  2002   // move exception oop into fixed register
  2003   __ move(exception_opr, exceptionOopOpr());
  2005   if (unwind) {
  2006     __ unwind_exception(exceptionOopOpr());
  2007   } else {
  2008     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2013 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2014   LIRItem input(x->input(), this);
  2015   input.load_item();
  2016   LIR_Opr input_opr = input.result();
  2017   assert(input_opr->is_register(), "why round if value is not in a register?");
  2018   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2019   if (input_opr->is_single_fpu()) {
  2020     set_result(x, round_item(input_opr)); // This code path not currently taken
  2021   } else {
  2022     LIR_Opr result = new_register(T_DOUBLE);
  2023     set_vreg_flag(result, must_start_in_memory);
  2024     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2025     set_result(x, result);
  2029 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2030   LIRItem base(x->base(), this);
  2031   LIRItem idx(this);
  2033   base.load_item();
  2034   if (x->has_index()) {
  2035     idx.set_instruction(x->index());
  2036     idx.load_nonconstant();
  2039   LIR_Opr reg = rlock_result(x, x->basic_type());
  2041   int   log2_scale = 0;
  2042   if (x->has_index()) {
  2043     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2044     log2_scale = x->log2_scale();
  2047   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2049   LIR_Opr base_op = base.result();
  2050 #ifndef _LP64
  2051   if (x->base()->type()->tag() == longTag) {
  2052     base_op = new_register(T_INT);
  2053     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2054   } else {
  2055     assert(x->base()->type()->tag() == intTag, "must be");
  2057 #endif
  2059   BasicType dst_type = x->basic_type();
  2060   LIR_Opr index_op = idx.result();
  2062   LIR_Address* addr;
  2063   if (index_op->is_constant()) {
  2064     assert(log2_scale == 0, "must not have a scale");
  2065     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2066   } else {
  2067 #ifdef X86
  2068 #ifdef _LP64
  2069     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2070       LIR_Opr tmp = new_pointer_register();
  2071       __ convert(Bytecodes::_i2l, index_op, tmp);
  2072       index_op = tmp;
  2074 #endif
  2075     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2076 #elif defined(ARM)
  2077     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2078 #else
  2079     if (index_op->is_illegal() || log2_scale == 0) {
  2080 #ifdef _LP64
  2081       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2082         LIR_Opr tmp = new_pointer_register();
  2083         __ convert(Bytecodes::_i2l, index_op, tmp);
  2084         index_op = tmp;
  2086 #endif
  2087       addr = new LIR_Address(base_op, index_op, dst_type);
  2088     } else {
  2089       LIR_Opr tmp = new_pointer_register();
  2090       __ shift_left(index_op, log2_scale, tmp);
  2091       addr = new LIR_Address(base_op, tmp, dst_type);
  2093 #endif
  2096   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2097     __ unaligned_move(addr, reg);
  2098   } else {
  2099     if (dst_type == T_OBJECT && x->is_wide()) {
  2100       __ move_wide(addr, reg);
  2101     } else {
  2102       __ move(addr, reg);
  2108 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2109   int  log2_scale = 0;
  2110   BasicType type = x->basic_type();
  2112   if (x->has_index()) {
  2113     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2114     log2_scale = x->log2_scale();
  2117   LIRItem base(x->base(), this);
  2118   LIRItem value(x->value(), this);
  2119   LIRItem idx(this);
  2121   base.load_item();
  2122   if (x->has_index()) {
  2123     idx.set_instruction(x->index());
  2124     idx.load_item();
  2127   if (type == T_BYTE || type == T_BOOLEAN) {
  2128     value.load_byte_item();
  2129   } else {
  2130     value.load_item();
  2133   set_no_result(x);
  2135   LIR_Opr base_op = base.result();
  2136 #ifndef _LP64
  2137   if (x->base()->type()->tag() == longTag) {
  2138     base_op = new_register(T_INT);
  2139     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2140   } else {
  2141     assert(x->base()->type()->tag() == intTag, "must be");
  2143 #endif
  2145   LIR_Opr index_op = idx.result();
  2146   if (log2_scale != 0) {
  2147     // temporary fix (platform dependent code without shift on Intel would be better)
  2148     index_op = new_pointer_register();
  2149 #ifdef _LP64
  2150     if(idx.result()->type() == T_INT) {
  2151       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2152     } else {
  2153 #endif
  2154       // TODO: ARM also allows embedded shift in the address
  2155       __ move(idx.result(), index_op);
  2156 #ifdef _LP64
  2158 #endif
  2159     __ shift_left(index_op, log2_scale, index_op);
  2161 #ifdef _LP64
  2162   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  2163     LIR_Opr tmp = new_pointer_register();
  2164     __ convert(Bytecodes::_i2l, index_op, tmp);
  2165     index_op = tmp;
  2167 #endif
  2169   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2170   __ move(value.result(), addr);
  2174 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2175   BasicType type = x->basic_type();
  2176   LIRItem src(x->object(), this);
  2177   LIRItem off(x->offset(), this);
  2179   off.load_item();
  2180   src.load_item();
  2182   LIR_Opr value = rlock_result(x, x->basic_type());
  2184   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2186 #if INCLUDE_ALL_GCS
  2187   // We might be reading the value of the referent field of a
  2188   // Reference object in order to attach it back to the live
  2189   // object graph. If G1 is enabled then we need to record
  2190   // the value that is being returned in an SATB log buffer.
  2191   //
  2192   // We need to generate code similar to the following...
  2193   //
  2194   // if (offset == java_lang_ref_Reference::referent_offset) {
  2195   //   if (src != NULL) {
  2196   //     if (klass(src)->reference_type() != REF_NONE) {
  2197   //       pre_barrier(..., value, ...);
  2198   //     }
  2199   //   }
  2200   // }
  2202   if (UseG1GC && type == T_OBJECT) {
  2203     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2204     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2205     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2206     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2208     if (off.is_constant()) {
  2209       jlong off_con = (off.type()->is_int() ?
  2210                         (jlong) off.get_jint_constant() :
  2211                         off.get_jlong_constant());
  2214       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2215         // The constant offset is something other than referent_offset.
  2216         // We can skip generating/checking the remaining guards and
  2217         // skip generation of the code stub.
  2218         gen_pre_barrier = false;
  2219       } else {
  2220         // The constant offset is the same as referent_offset -
  2221         // we do not need to generate a runtime offset check.
  2222         gen_offset_check = false;
  2226     // We don't need to generate stub if the source object is an array
  2227     if (gen_pre_barrier && src.type()->is_array()) {
  2228       gen_pre_barrier = false;
  2231     if (gen_pre_barrier) {
  2232       // We still need to continue with the checks.
  2233       if (src.is_constant()) {
  2234         ciObject* src_con = src.get_jobject_constant();
  2236         if (src_con->is_null_object()) {
  2237           // The constant src object is null - We can skip
  2238           // generating the code stub.
  2239           gen_pre_barrier = false;
  2240         } else {
  2241           // Non-null constant source object. We still have to generate
  2242           // the slow stub - but we don't need to generate the runtime
  2243           // null object check.
  2244           gen_source_check = false;
  2248     if (gen_pre_barrier && !PatchALot) {
  2249       // Can the klass of object be statically determined to be
  2250       // a sub-class of Reference?
  2251       ciType* type = src.value()->declared_type();
  2252       if ((type != NULL) && type->is_loaded()) {
  2253         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2254           gen_type_check = false;
  2255         } else if (type->is_klass() &&
  2256                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2257           // Not Reference and not Object klass.
  2258           gen_pre_barrier = false;
  2263     if (gen_pre_barrier) {
  2264       LabelObj* Lcont = new LabelObj();
  2266       // We can have generate one runtime check here. Let's start with
  2267       // the offset check.
  2268       if (gen_offset_check) {
  2269         // if (offset != referent_offset) -> continue
  2270         // If offset is an int then we can do the comparison with the
  2271         // referent_offset constant; otherwise we need to move
  2272         // referent_offset into a temporary register and generate
  2273         // a reg-reg compare.
  2275         LIR_Opr referent_off;
  2277         if (off.type()->is_int()) {
  2278           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2279         } else {
  2280           assert(off.type()->is_long(), "what else?");
  2281           referent_off = new_register(T_LONG);
  2282           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2284         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2285         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2287       if (gen_source_check) {
  2288         // offset is a const and equals referent offset
  2289         // if (source == null) -> continue
  2290         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2291         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2293       LIR_Opr src_klass = new_register(T_OBJECT);
  2294       if (gen_type_check) {
  2295         // We have determined that offset == referent_offset && src != null.
  2296         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2297         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
  2298         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2299         LIR_Opr reference_type = new_register(T_INT);
  2300         __ move(reference_type_addr, reference_type);
  2301         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2302         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2305         // We have determined that src->_klass->_reference_type != REF_NONE
  2306         // so register the value in the referent field with the pre-barrier.
  2307         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2308                     value  /* pre_val */,
  2309                     false  /* do_load */,
  2310                     false  /* patch */,
  2311                     NULL   /* info */);
  2313       __ branch_destination(Lcont->label());
  2316 #endif // INCLUDE_ALL_GCS
  2318   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2322 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2323   BasicType type = x->basic_type();
  2324   LIRItem src(x->object(), this);
  2325   LIRItem off(x->offset(), this);
  2326   LIRItem data(x->value(), this);
  2328   src.load_item();
  2329   if (type == T_BOOLEAN || type == T_BYTE) {
  2330     data.load_byte_item();
  2331   } else {
  2332     data.load_item();
  2334   off.load_item();
  2336   set_no_result(x);
  2338   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2339   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2340   if (x->is_volatile() && os::is_MP()) __ membar();
  2344 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2345   LIRItem src(x->object(), this);
  2346   LIRItem off(x->offset(), this);
  2348   src.load_item();
  2349   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2350     // let it be a constant
  2351     off.dont_load_item();
  2352   } else {
  2353     off.load_item();
  2356   set_no_result(x);
  2358   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2359   __ prefetch(addr, is_store);
  2363 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2364   do_UnsafePrefetch(x, false);
  2368 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2369   do_UnsafePrefetch(x, true);
  2373 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2374   int lng = x->length();
  2376   for (int i = 0; i < lng; i++) {
  2377     SwitchRange* one_range = x->at(i);
  2378     int low_key = one_range->low_key();
  2379     int high_key = one_range->high_key();
  2380     BlockBegin* dest = one_range->sux();
  2381     if (low_key == high_key) {
  2382       __ cmp(lir_cond_equal, value, low_key);
  2383       __ branch(lir_cond_equal, T_INT, dest);
  2384     } else if (high_key - low_key == 1) {
  2385       __ cmp(lir_cond_equal, value, low_key);
  2386       __ branch(lir_cond_equal, T_INT, dest);
  2387       __ cmp(lir_cond_equal, value, high_key);
  2388       __ branch(lir_cond_equal, T_INT, dest);
  2389     } else {
  2390       LabelObj* L = new LabelObj();
  2391       __ cmp(lir_cond_less, value, low_key);
  2392       __ branch(lir_cond_less, T_INT, L->label());
  2393       __ cmp(lir_cond_lessEqual, value, high_key);
  2394       __ branch(lir_cond_lessEqual, T_INT, dest);
  2395       __ branch_destination(L->label());
  2398   __ jump(default_sux);
  2402 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2403   SwitchRangeList* res = new SwitchRangeList();
  2404   int len = x->length();
  2405   if (len > 0) {
  2406     BlockBegin* sux = x->sux_at(0);
  2407     int key = x->lo_key();
  2408     BlockBegin* default_sux = x->default_sux();
  2409     SwitchRange* range = new SwitchRange(key, sux);
  2410     for (int i = 0; i < len; i++, key++) {
  2411       BlockBegin* new_sux = x->sux_at(i);
  2412       if (sux == new_sux) {
  2413         // still in same range
  2414         range->set_high_key(key);
  2415       } else {
  2416         // skip tests which explicitly dispatch to the default
  2417         if (sux != default_sux) {
  2418           res->append(range);
  2420         range = new SwitchRange(key, new_sux);
  2422       sux = new_sux;
  2424     if (res->length() == 0 || res->last() != range)  res->append(range);
  2426   return res;
  2430 // we expect the keys to be sorted by increasing value
  2431 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2432   SwitchRangeList* res = new SwitchRangeList();
  2433   int len = x->length();
  2434   if (len > 0) {
  2435     BlockBegin* default_sux = x->default_sux();
  2436     int key = x->key_at(0);
  2437     BlockBegin* sux = x->sux_at(0);
  2438     SwitchRange* range = new SwitchRange(key, sux);
  2439     for (int i = 1; i < len; i++) {
  2440       int new_key = x->key_at(i);
  2441       BlockBegin* new_sux = x->sux_at(i);
  2442       if (key+1 == new_key && sux == new_sux) {
  2443         // still in same range
  2444         range->set_high_key(new_key);
  2445       } else {
  2446         // skip tests which explicitly dispatch to the default
  2447         if (range->sux() != default_sux) {
  2448           res->append(range);
  2450         range = new SwitchRange(new_key, new_sux);
  2452       key = new_key;
  2453       sux = new_sux;
  2455     if (res->length() == 0 || res->last() != range)  res->append(range);
  2457   return res;
  2461 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2462   LIRItem tag(x->tag(), this);
  2463   tag.load_item();
  2464   set_no_result(x);
  2466   if (x->is_safepoint()) {
  2467     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2470   // move values into phi locations
  2471   move_to_phi(x->state());
  2473   int lo_key = x->lo_key();
  2474   int hi_key = x->hi_key();
  2475   int len = x->length();
  2476   LIR_Opr value = tag.result();
  2477   if (UseTableRanges) {
  2478     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2479   } else {
  2480     for (int i = 0; i < len; i++) {
  2481       __ cmp(lir_cond_equal, value, i + lo_key);
  2482       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2484     __ jump(x->default_sux());
  2489 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2490   LIRItem tag(x->tag(), this);
  2491   tag.load_item();
  2492   set_no_result(x);
  2494   if (x->is_safepoint()) {
  2495     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2498   // move values into phi locations
  2499   move_to_phi(x->state());
  2501   LIR_Opr value = tag.result();
  2502   if (UseTableRanges) {
  2503     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2504   } else {
  2505     int len = x->length();
  2506     for (int i = 0; i < len; i++) {
  2507       __ cmp(lir_cond_equal, value, x->key_at(i));
  2508       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2510     __ jump(x->default_sux());
  2515 void LIRGenerator::do_Goto(Goto* x) {
  2516   set_no_result(x);
  2518   if (block()->next()->as_OsrEntry()) {
  2519     // need to free up storage used for OSR entry point
  2520     LIR_Opr osrBuffer = block()->next()->operand();
  2521     BasicTypeList signature;
  2522     signature.append(T_INT);
  2523     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2524     __ move(osrBuffer, cc->args()->at(0));
  2525     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2526                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2529   if (x->is_safepoint()) {
  2530     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2532     // increment backedge counter if needed
  2533     CodeEmitInfo* info = state_for(x, state);
  2534     increment_backedge_counter(info, x->profiled_bci());
  2535     CodeEmitInfo* safepoint_info = state_for(x, state);
  2536     __ safepoint(safepoint_poll_register(), safepoint_info);
  2539   // Gotos can be folded Ifs, handle this case.
  2540   if (x->should_profile()) {
  2541     ciMethod* method = x->profiled_method();
  2542     assert(method != NULL, "method should be set if branch is profiled");
  2543     ciMethodData* md = method->method_data_or_null();
  2544     assert(md != NULL, "Sanity");
  2545     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2546     assert(data != NULL, "must have profiling data");
  2547     int offset;
  2548     if (x->direction() == Goto::taken) {
  2549       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2550       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2551     } else if (x->direction() == Goto::not_taken) {
  2552       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2553       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2554     } else {
  2555       assert(data->is_JumpData(), "need JumpData for branches");
  2556       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2558     LIR_Opr md_reg = new_register(T_METADATA);
  2559     __ metadata2reg(md->constant_encoding(), md_reg);
  2561     increment_counter(new LIR_Address(md_reg, offset,
  2562                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2565   // emit phi-instruction move after safepoint since this simplifies
  2566   // describing the state as the safepoint.
  2567   move_to_phi(x->state());
  2569   __ jump(x->default_sux());
  2573 void LIRGenerator::do_Base(Base* x) {
  2574   __ std_entry(LIR_OprFact::illegalOpr);
  2575   // Emit moves from physical registers / stack slots to virtual registers
  2576   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2577   IRScope* irScope = compilation()->hir()->top_scope();
  2578   int java_index = 0;
  2579   for (int i = 0; i < args->length(); i++) {
  2580     LIR_Opr src = args->at(i);
  2581     assert(!src->is_illegal(), "check");
  2582     BasicType t = src->type();
  2584     // Types which are smaller than int are passed as int, so
  2585     // correct the type which passed.
  2586     switch (t) {
  2587     case T_BYTE:
  2588     case T_BOOLEAN:
  2589     case T_SHORT:
  2590     case T_CHAR:
  2591       t = T_INT;
  2592       break;
  2595     LIR_Opr dest = new_register(t);
  2596     __ move(src, dest);
  2598     // Assign new location to Local instruction for this local
  2599     Local* local = x->state()->local_at(java_index)->as_Local();
  2600     assert(local != NULL, "Locals for incoming arguments must have been created");
  2601 #ifndef __SOFTFP__
  2602     // The java calling convention passes double as long and float as int.
  2603     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2604 #endif // __SOFTFP__
  2605     local->set_operand(dest);
  2606     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2607     java_index += type2size[t];
  2610   if (compilation()->env()->dtrace_method_probes()) {
  2611     BasicTypeList signature;
  2612     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2613     signature.append(T_OBJECT); // Method*
  2614     LIR_OprList* args = new LIR_OprList();
  2615     args->append(getThreadPointer());
  2616     LIR_Opr meth = new_register(T_METADATA);
  2617     __ metadata2reg(method()->constant_encoding(), meth);
  2618     args->append(meth);
  2619     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2622   if (method()->is_synchronized()) {
  2623     LIR_Opr obj;
  2624     if (method()->is_static()) {
  2625       obj = new_register(T_OBJECT);
  2626       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2627     } else {
  2628       Local* receiver = x->state()->local_at(0)->as_Local();
  2629       assert(receiver != NULL, "must already exist");
  2630       obj = receiver->operand();
  2632     assert(obj->is_valid(), "must be valid");
  2634     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2635       LIR_Opr lock = new_register(T_INT);
  2636       __ load_stack_address_monitor(0, lock);
  2638       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
  2639       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2641       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2642       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2646   // increment invocation counters if needed
  2647   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2648     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
  2649     increment_invocation_counter(info);
  2652   // all blocks with a successor must end with an unconditional jump
  2653   // to the successor even if they are consecutive
  2654   __ jump(x->default_sux());
  2658 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2659   // construct our frame and model the production of incoming pointer
  2660   // to the OSR buffer.
  2661   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2662   LIR_Opr result = rlock_result(x);
  2663   __ move(LIR_Assembler::osrBufferPointer(), result);
  2667 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2668   assert(args->length() == arg_list->length(),
  2669          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  2670   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  2671     LIRItem* param = args->at(i);
  2672     LIR_Opr loc = arg_list->at(i);
  2673     if (loc->is_register()) {
  2674       param->load_item_force(loc);
  2675     } else {
  2676       LIR_Address* addr = loc->as_address_ptr();
  2677       param->load_for_store(addr->type());
  2678       if (addr->type() == T_OBJECT) {
  2679         __ move_wide(param->result(), addr);
  2680       } else
  2681         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2682           __ unaligned_move(param->result(), addr);
  2683         } else {
  2684           __ move(param->result(), addr);
  2689   if (x->has_receiver()) {
  2690     LIRItem* receiver = args->at(0);
  2691     LIR_Opr loc = arg_list->at(0);
  2692     if (loc->is_register()) {
  2693       receiver->load_item_force(loc);
  2694     } else {
  2695       assert(loc->is_address(), "just checking");
  2696       receiver->load_for_store(T_OBJECT);
  2697       __ move_wide(receiver->result(), loc->as_address_ptr());
  2703 // Visits all arguments, returns appropriate items without loading them
  2704 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2705   LIRItemList* argument_items = new LIRItemList();
  2706   if (x->has_receiver()) {
  2707     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2708     argument_items->append(receiver);
  2710   for (int i = 0; i < x->number_of_arguments(); i++) {
  2711     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2712     argument_items->append(param);
  2714   return argument_items;
  2718 // The invoke with receiver has following phases:
  2719 //   a) traverse and load/lock receiver;
  2720 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2721 //   c) push receiver on stack
  2722 //   d) load each of the items and push on stack
  2723 //   e) unlock receiver
  2724 //   f) move receiver into receiver-register %o0
  2725 //   g) lock result registers and emit call operation
  2726 //
  2727 // Before issuing a call, we must spill-save all values on stack
  2728 // that are in caller-save register. "spill-save" moves thos registers
  2729 // either in a free callee-save register or spills them if no free
  2730 // callee save register is available.
  2731 //
  2732 // The problem is where to invoke spill-save.
  2733 // - if invoked between e) and f), we may lock callee save
  2734 //   register in "spill-save" that destroys the receiver register
  2735 //   before f) is executed
  2736 // - if we rearange the f) to be earlier, by loading %o0, it
  2737 //   may destroy a value on the stack that is currently in %o0
  2738 //   and is waiting to be spilled
  2739 // - if we keep the receiver locked while doing spill-save,
  2740 //   we cannot spill it as it is spill-locked
  2741 //
  2742 void LIRGenerator::do_Invoke(Invoke* x) {
  2743   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2745   LIR_OprList* arg_list = cc->args();
  2746   LIRItemList* args = invoke_visit_arguments(x);
  2747   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2749   // setup result register
  2750   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2751   if (x->type() != voidType) {
  2752     result_register = result_register_for(x->type());
  2755   CodeEmitInfo* info = state_for(x, x->state());
  2757   invoke_load_arguments(x, args, arg_list);
  2759   if (x->has_receiver()) {
  2760     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2761     receiver = args->at(0)->result();
  2764   // emit invoke code
  2765   bool optimized = x->target_is_loaded() && x->target_is_final();
  2766   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2768   // JSR 292
  2769   // Preserve the SP over MethodHandle call sites.
  2770   ciMethod* target = x->target();
  2771   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  2772                                   target->is_method_handle_intrinsic() ||
  2773                                   target->is_compiled_lambda_form());
  2774   if (is_method_handle_invoke) {
  2775     info->set_is_method_handle_invoke(true);
  2776     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2779   switch (x->code()) {
  2780     case Bytecodes::_invokestatic:
  2781       __ call_static(target, result_register,
  2782                      SharedRuntime::get_resolve_static_call_stub(),
  2783                      arg_list, info);
  2784       break;
  2785     case Bytecodes::_invokespecial:
  2786     case Bytecodes::_invokevirtual:
  2787     case Bytecodes::_invokeinterface:
  2788       // for final target we still produce an inline cache, in order
  2789       // to be able to call mixed mode
  2790       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2791         __ call_opt_virtual(target, receiver, result_register,
  2792                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2793                             arg_list, info);
  2794       } else if (x->vtable_index() < 0) {
  2795         __ call_icvirtual(target, receiver, result_register,
  2796                           SharedRuntime::get_resolve_virtual_call_stub(),
  2797                           arg_list, info);
  2798       } else {
  2799         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2800         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2801         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2803       break;
  2804     case Bytecodes::_invokedynamic: {
  2805       __ call_dynamic(target, receiver, result_register,
  2806                       SharedRuntime::get_resolve_static_call_stub(),
  2807                       arg_list, info);
  2808       break;
  2810     default:
  2811       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  2812       break;
  2815   // JSR 292
  2816   // Restore the SP after MethodHandle call sites.
  2817   if (is_method_handle_invoke) {
  2818     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2821   if (x->type()->is_float() || x->type()->is_double()) {
  2822     // Force rounding of results from non-strictfp when in strictfp
  2823     // scope (or when we don't know the strictness of the callee, to
  2824     // be safe.)
  2825     if (method()->is_strict()) {
  2826       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2827         result_register = round_item(result_register);
  2832   if (result_register->is_valid()) {
  2833     LIR_Opr result = rlock_result(x);
  2834     __ move(result_register, result);
  2839 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2840   assert(x->number_of_arguments() == 1, "wrong type");
  2841   LIRItem value       (x->argument_at(0), this);
  2842   LIR_Opr reg = rlock_result(x);
  2843   value.load_item();
  2844   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2845   __ move(tmp, reg);
  2850 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2851 void LIRGenerator::do_IfOp(IfOp* x) {
  2852 #ifdef ASSERT
  2854     ValueTag xtag = x->x()->type()->tag();
  2855     ValueTag ttag = x->tval()->type()->tag();
  2856     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2857     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2858     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2860 #endif
  2862   LIRItem left(x->x(), this);
  2863   LIRItem right(x->y(), this);
  2864   left.load_item();
  2865   if (can_inline_as_constant(right.value())) {
  2866     right.dont_load_item();
  2867   } else {
  2868     right.load_item();
  2871   LIRItem t_val(x->tval(), this);
  2872   LIRItem f_val(x->fval(), this);
  2873   t_val.dont_load_item();
  2874   f_val.dont_load_item();
  2875   LIR_Opr reg = rlock_result(x);
  2877   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2878   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2881 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  2882     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  2883     LIR_Opr reg = result_register_for(x->type());
  2884     __ call_runtime_leaf(routine, getThreadTemp(),
  2885                          reg, new LIR_OprList());
  2886     LIR_Opr result = rlock_result(x);
  2887     __ move(reg, result);
  2890 #ifdef TRACE_HAVE_INTRINSICS
  2891 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  2892     LIR_Opr thread = getThreadPointer();
  2893     LIR_Opr osthread = new_pointer_register();
  2894     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  2895     size_t thread_id_size = OSThread::thread_id_size();
  2896     if (thread_id_size == (size_t) BytesPerLong) {
  2897       LIR_Opr id = new_register(T_LONG);
  2898       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  2899       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  2900     } else if (thread_id_size == (size_t) BytesPerInt) {
  2901       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  2902     } else {
  2903       ShouldNotReachHere();
  2907 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  2908     CodeEmitInfo* info = state_for(x);
  2909     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  2910     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  2911     assert(info != NULL, "must have info");
  2912     LIRItem arg(x->argument_at(1), this);
  2913     arg.load_item();
  2914     LIR_Opr klass = new_pointer_register();
  2915     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  2916     LIR_Opr id = new_register(T_LONG);
  2917     ByteSize offset = TRACE_ID_OFFSET;
  2918     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  2919     __ move(trace_id_addr, id);
  2920     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  2921     __ store(id, trace_id_addr);
  2922     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  2923     __ move(id, rlock_result(x));
  2925 #endif
  2927 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2928   switch (x->id()) {
  2929   case vmIntrinsics::_intBitsToFloat      :
  2930   case vmIntrinsics::_doubleToRawLongBits :
  2931   case vmIntrinsics::_longBitsToDouble    :
  2932   case vmIntrinsics::_floatToRawIntBits   : {
  2933     do_FPIntrinsics(x);
  2934     break;
  2937 #ifdef TRACE_HAVE_INTRINSICS
  2938   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  2939   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  2940   case vmIntrinsics::_counterTime:
  2941     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  2942     break;
  2943 #endif
  2945   case vmIntrinsics::_currentTimeMillis:
  2946     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  2947     break;
  2949   case vmIntrinsics::_nanoTime:
  2950     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  2951     break;
  2953   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2954   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  2955   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2956   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2958   case vmIntrinsics::_dlog:           // fall through
  2959   case vmIntrinsics::_dlog10:         // fall through
  2960   case vmIntrinsics::_dabs:           // fall through
  2961   case vmIntrinsics::_dsqrt:          // fall through
  2962   case vmIntrinsics::_dtan:           // fall through
  2963   case vmIntrinsics::_dsin :          // fall through
  2964   case vmIntrinsics::_dcos :          // fall through
  2965   case vmIntrinsics::_dexp :          // fall through
  2966   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  2967   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2969   // java.nio.Buffer.checkIndex
  2970   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2972   case vmIntrinsics::_compareAndSwapObject:
  2973     do_CompareAndSwap(x, objectType);
  2974     break;
  2975   case vmIntrinsics::_compareAndSwapInt:
  2976     do_CompareAndSwap(x, intType);
  2977     break;
  2978   case vmIntrinsics::_compareAndSwapLong:
  2979     do_CompareAndSwap(x, longType);
  2980     break;
  2982   case vmIntrinsics::_loadFence :
  2983     if (os::is_MP()) __ membar_acquire();
  2984     break;
  2985   case vmIntrinsics::_storeFence:
  2986     if (os::is_MP()) __ membar_release();
  2987     break;
  2988   case vmIntrinsics::_fullFence :
  2989     if (os::is_MP()) __ membar();
  2990     break;
  2992   case vmIntrinsics::_Reference_get:
  2993     do_Reference_get(x);
  2994     break;
  2996   default: ShouldNotReachHere(); break;
  3000 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3001   // Need recv in a temporary register so it interferes with the other temporaries
  3002   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3003   LIR_Opr mdo = new_register(T_OBJECT);
  3004   // tmp is used to hold the counters on SPARC
  3005   LIR_Opr tmp = new_pointer_register();
  3006   if (x->recv() != NULL) {
  3007     LIRItem value(x->recv(), this);
  3008     value.load_item();
  3009     recv = new_register(T_OBJECT);
  3010     __ move(value.result(), recv);
  3012   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3015 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3016   // We can safely ignore accessors here, since c2 will inline them anyway,
  3017   // accessors are also always mature.
  3018   if (!x->inlinee()->is_accessor()) {
  3019     CodeEmitInfo* info = state_for(x, x->state(), true);
  3020     // Notify the runtime very infrequently only to take care of counter overflows
  3021     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3025 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3026   int freq_log;
  3027   int level = compilation()->env()->comp_level();
  3028   if (level == CompLevel_limited_profile) {
  3029     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3030   } else if (level == CompLevel_full_profile) {
  3031     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3032   } else {
  3033     ShouldNotReachHere();
  3035   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3036   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3039 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3040                                                 ciMethod *method, int frequency,
  3041                                                 int bci, bool backedge, bool notify) {
  3042   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3043   int level = _compilation->env()->comp_level();
  3044   assert(level > CompLevel_simple, "Shouldn't be here");
  3046   int offset = -1;
  3047   LIR_Opr counter_holder;
  3048   if (level == CompLevel_limited_profile) {
  3049     address counters_adr = method->ensure_method_counters();
  3050     counter_holder = new_pointer_register();
  3051     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
  3052     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
  3053                                  MethodCounters::invocation_counter_offset());
  3054   } else if (level == CompLevel_full_profile) {
  3055     counter_holder = new_register(T_METADATA);
  3056     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3057                                  MethodData::invocation_counter_offset());
  3058     ciMethodData* md = method->method_data_or_null();
  3059     assert(md != NULL, "Sanity");
  3060     __ metadata2reg(md->constant_encoding(), counter_holder);
  3061   } else {
  3062     ShouldNotReachHere();
  3064   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3065   LIR_Opr result = new_register(T_INT);
  3066   __ load(counter, result);
  3067   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3068   __ store(result, counter);
  3069   if (notify) {
  3070     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3071     LIR_Opr meth = new_register(T_METADATA);
  3072     __ metadata2reg(method->constant_encoding(), meth);
  3073     __ logical_and(result, mask, result);
  3074     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3075     // The bci for info can point to cmp for if's we want the if bci
  3076     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3077     __ branch(lir_cond_equal, T_INT, overflow);
  3078     __ branch_destination(overflow->continuation());
  3082 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3083   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3084   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3086   if (x->pass_thread()) {
  3087     signature->append(T_ADDRESS);
  3088     args->append(getThreadPointer());
  3091   for (int i = 0; i < x->number_of_arguments(); i++) {
  3092     Value a = x->argument_at(i);
  3093     LIRItem* item = new LIRItem(a, this);
  3094     item->load_item();
  3095     args->append(item->result());
  3096     signature->append(as_BasicType(a->type()));
  3099   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3100   if (x->type() == voidType) {
  3101     set_no_result(x);
  3102   } else {
  3103     __ move(result, rlock_result(x));
  3107 #ifdef ASSERT
  3108 void LIRGenerator::do_Assert(Assert *x) {
  3109   ValueTag tag = x->x()->type()->tag();
  3110   If::Condition cond = x->cond();
  3112   LIRItem xitem(x->x(), this);
  3113   LIRItem yitem(x->y(), this);
  3114   LIRItem* xin = &xitem;
  3115   LIRItem* yin = &yitem;
  3117   assert(tag == intTag, "Only integer assertions are valid!");
  3119   xin->load_item();
  3120   yin->dont_load_item();
  3122   set_no_result(x);
  3124   LIR_Opr left = xin->result();
  3125   LIR_Opr right = yin->result();
  3127   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
  3129 #endif
  3131 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
  3134   Instruction *a = x->x();
  3135   Instruction *b = x->y();
  3136   if (!a || StressRangeCheckElimination) {
  3137     assert(!b || StressRangeCheckElimination, "B must also be null");
  3139     CodeEmitInfo *info = state_for(x, x->state());
  3140     CodeStub* stub = new PredicateFailedStub(info);
  3142     __ jump(stub);
  3143   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
  3144     int a_int = a->type()->as_IntConstant()->value();
  3145     int b_int = b->type()->as_IntConstant()->value();
  3147     bool ok = false;
  3149     switch(x->cond()) {
  3150       case Instruction::eql: ok = (a_int == b_int); break;
  3151       case Instruction::neq: ok = (a_int != b_int); break;
  3152       case Instruction::lss: ok = (a_int < b_int); break;
  3153       case Instruction::leq: ok = (a_int <= b_int); break;
  3154       case Instruction::gtr: ok = (a_int > b_int); break;
  3155       case Instruction::geq: ok = (a_int >= b_int); break;
  3156       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
  3157       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
  3158       default: ShouldNotReachHere();
  3161     if (ok) {
  3163       CodeEmitInfo *info = state_for(x, x->state());
  3164       CodeStub* stub = new PredicateFailedStub(info);
  3166       __ jump(stub);
  3168   } else {
  3170     ValueTag tag = x->x()->type()->tag();
  3171     If::Condition cond = x->cond();
  3172     LIRItem xitem(x->x(), this);
  3173     LIRItem yitem(x->y(), this);
  3174     LIRItem* xin = &xitem;
  3175     LIRItem* yin = &yitem;
  3177     assert(tag == intTag, "Only integer deoptimizations are valid!");
  3179     xin->load_item();
  3180     yin->dont_load_item();
  3181     set_no_result(x);
  3183     LIR_Opr left = xin->result();
  3184     LIR_Opr right = yin->result();
  3186     CodeEmitInfo *info = state_for(x, x->state());
  3187     CodeStub* stub = new PredicateFailedStub(info);
  3189     __ cmp(lir_cond(cond), left, right);
  3190     __ branch(lir_cond(cond), right->type(), stub);
  3195 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3196   LIRItemList args(1);
  3197   LIRItem value(arg1, this);
  3198   args.append(&value);
  3199   BasicTypeList signature;
  3200   signature.append(as_BasicType(arg1->type()));
  3202   return call_runtime(&signature, &args, entry, result_type, info);
  3206 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3207   LIRItemList args(2);
  3208   LIRItem value1(arg1, this);
  3209   LIRItem value2(arg2, this);
  3210   args.append(&value1);
  3211   args.append(&value2);
  3212   BasicTypeList signature;
  3213   signature.append(as_BasicType(arg1->type()));
  3214   signature.append(as_BasicType(arg2->type()));
  3216   return call_runtime(&signature, &args, entry, result_type, info);
  3220 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3221                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3222   // get a result register
  3223   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3224   LIR_Opr result = LIR_OprFact::illegalOpr;
  3225   if (result_type->tag() != voidTag) {
  3226     result = new_register(result_type);
  3227     phys_reg = result_register_for(result_type);
  3230   // move the arguments into the correct location
  3231   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3232   assert(cc->length() == args->length(), "argument mismatch");
  3233   for (int i = 0; i < args->length(); i++) {
  3234     LIR_Opr arg = args->at(i);
  3235     LIR_Opr loc = cc->at(i);
  3236     if (loc->is_register()) {
  3237       __ move(arg, loc);
  3238     } else {
  3239       LIR_Address* addr = loc->as_address_ptr();
  3240 //           if (!can_store_as_constant(arg)) {
  3241 //             LIR_Opr tmp = new_register(arg->type());
  3242 //             __ move(arg, tmp);
  3243 //             arg = tmp;
  3244 //           }
  3245       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3246         __ unaligned_move(arg, addr);
  3247       } else {
  3248         __ move(arg, addr);
  3253   if (info) {
  3254     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3255   } else {
  3256     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3258   if (result->is_valid()) {
  3259     __ move(phys_reg, result);
  3261   return result;
  3265 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3266                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3267   // get a result register
  3268   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3269   LIR_Opr result = LIR_OprFact::illegalOpr;
  3270   if (result_type->tag() != voidTag) {
  3271     result = new_register(result_type);
  3272     phys_reg = result_register_for(result_type);
  3275   // move the arguments into the correct location
  3276   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3278   assert(cc->length() == args->length(), "argument mismatch");
  3279   for (int i = 0; i < args->length(); i++) {
  3280     LIRItem* arg = args->at(i);
  3281     LIR_Opr loc = cc->at(i);
  3282     if (loc->is_register()) {
  3283       arg->load_item_force(loc);
  3284     } else {
  3285       LIR_Address* addr = loc->as_address_ptr();
  3286       arg->load_for_store(addr->type());
  3287       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3288         __ unaligned_move(arg->result(), addr);
  3289       } else {
  3290         __ move(arg->result(), addr);
  3295   if (info) {
  3296     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3297   } else {
  3298     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3300   if (result->is_valid()) {
  3301     __ move(phys_reg, result);
  3303   return result;
  3306 void LIRGenerator::do_MemBar(MemBar* x) {
  3307   if (os::is_MP()) {
  3308     LIR_Code code = x->code();
  3309     switch(code) {
  3310       case lir_membar_acquire   : __ membar_acquire(); break;
  3311       case lir_membar_release   : __ membar_release(); break;
  3312       case lir_membar           : __ membar(); break;
  3313       case lir_membar_loadload  : __ membar_loadload(); break;
  3314       case lir_membar_storestore: __ membar_storestore(); break;
  3315       case lir_membar_loadstore : __ membar_loadstore(); break;
  3316       case lir_membar_storeload : __ membar_storeload(); break;
  3317       default                   : ShouldNotReachHere(); break;

mercurial