src/share/vm/c1/c1_Instruction.hpp

Fri, 19 Apr 2013 03:13:04 -0400

author
bharadwaj
date
Fri, 19 Apr 2013 03:13:04 -0400
changeset 4954
2a9d97b57920
parent 4947
acadb114c818
child 5614
9758d9f36299
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_C1_C1_INSTRUCTION_HPP
    26 #define SHARE_VM_C1_C1_INSTRUCTION_HPP
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_LIR.hpp"
    30 #include "c1/c1_ValueType.hpp"
    31 #include "ci/ciField.hpp"
    33 // Predefined classes
    34 class ciField;
    35 class ValueStack;
    36 class InstructionPrinter;
    37 class IRScope;
    38 class LIR_OprDesc;
    39 typedef LIR_OprDesc* LIR_Opr;
    42 // Instruction class hierarchy
    43 //
    44 // All leaf classes in the class hierarchy are concrete classes
    45 // (i.e., are instantiated). All other classes are abstract and
    46 // serve factoring.
    48 class Instruction;
    49 class   Phi;
    50 class   Local;
    51 class   Constant;
    52 class   AccessField;
    53 class     LoadField;
    54 class     StoreField;
    55 class   AccessArray;
    56 class     ArrayLength;
    57 class     AccessIndexed;
    58 class       LoadIndexed;
    59 class       StoreIndexed;
    60 class   NegateOp;
    61 class   Op2;
    62 class     ArithmeticOp;
    63 class     ShiftOp;
    64 class     LogicOp;
    65 class     CompareOp;
    66 class     IfOp;
    67 class   Convert;
    68 class   NullCheck;
    69 class   TypeCast;
    70 class   OsrEntry;
    71 class   ExceptionObject;
    72 class   StateSplit;
    73 class     Invoke;
    74 class     NewInstance;
    75 class     NewArray;
    76 class       NewTypeArray;
    77 class       NewObjectArray;
    78 class       NewMultiArray;
    79 class     TypeCheck;
    80 class       CheckCast;
    81 class       InstanceOf;
    82 class     AccessMonitor;
    83 class       MonitorEnter;
    84 class       MonitorExit;
    85 class     Intrinsic;
    86 class     BlockBegin;
    87 class     BlockEnd;
    88 class       Goto;
    89 class       If;
    90 class       IfInstanceOf;
    91 class       Switch;
    92 class         TableSwitch;
    93 class         LookupSwitch;
    94 class       Return;
    95 class       Throw;
    96 class       Base;
    97 class   RoundFP;
    98 class   UnsafeOp;
    99 class     UnsafeRawOp;
   100 class       UnsafeGetRaw;
   101 class       UnsafePutRaw;
   102 class     UnsafeObjectOp;
   103 class       UnsafeGetObject;
   104 class       UnsafePutObject;
   105 class         UnsafeGetAndSetObject;
   106 class       UnsafePrefetch;
   107 class         UnsafePrefetchRead;
   108 class         UnsafePrefetchWrite;
   109 class   ProfileCall;
   110 class   ProfileInvoke;
   111 class   RuntimeCall;
   112 class   MemBar;
   113 class   RangeCheckPredicate;
   114 #ifdef ASSERT
   115 class   Assert;
   116 #endif
   118 // A Value is a reference to the instruction creating the value
   119 typedef Instruction* Value;
   120 define_array(ValueArray, Value)
   121 define_stack(Values, ValueArray)
   123 define_array(ValueStackArray, ValueStack*)
   124 define_stack(ValueStackStack, ValueStackArray)
   126 // BlockClosure is the base class for block traversal/iteration.
   128 class BlockClosure: public CompilationResourceObj {
   129  public:
   130   virtual void block_do(BlockBegin* block)       = 0;
   131 };
   134 // A simple closure class for visiting the values of an Instruction
   135 class ValueVisitor: public StackObj {
   136  public:
   137   virtual void visit(Value* v) = 0;
   138 };
   141 // Some array and list classes
   142 define_array(BlockBeginArray, BlockBegin*)
   143 define_stack(_BlockList, BlockBeginArray)
   145 class BlockList: public _BlockList {
   146  public:
   147   BlockList(): _BlockList() {}
   148   BlockList(const int size): _BlockList(size) {}
   149   BlockList(const int size, BlockBegin* init): _BlockList(size, init) {}
   151   void iterate_forward(BlockClosure* closure);
   152   void iterate_backward(BlockClosure* closure);
   153   void blocks_do(void f(BlockBegin*));
   154   void values_do(ValueVisitor* f);
   155   void print(bool cfg_only = false, bool live_only = false) PRODUCT_RETURN;
   156 };
   159 // InstructionVisitors provide type-based dispatch for instructions.
   160 // For each concrete Instruction class X, a virtual function do_X is
   161 // provided. Functionality that needs to be implemented for all classes
   162 // (e.g., printing, code generation) is factored out into a specialised
   163 // visitor instead of added to the Instruction classes itself.
   165 class InstructionVisitor: public StackObj {
   166  public:
   167   virtual void do_Phi            (Phi*             x) = 0;
   168   virtual void do_Local          (Local*           x) = 0;
   169   virtual void do_Constant       (Constant*        x) = 0;
   170   virtual void do_LoadField      (LoadField*       x) = 0;
   171   virtual void do_StoreField     (StoreField*      x) = 0;
   172   virtual void do_ArrayLength    (ArrayLength*     x) = 0;
   173   virtual void do_LoadIndexed    (LoadIndexed*     x) = 0;
   174   virtual void do_StoreIndexed   (StoreIndexed*    x) = 0;
   175   virtual void do_NegateOp       (NegateOp*        x) = 0;
   176   virtual void do_ArithmeticOp   (ArithmeticOp*    x) = 0;
   177   virtual void do_ShiftOp        (ShiftOp*         x) = 0;
   178   virtual void do_LogicOp        (LogicOp*         x) = 0;
   179   virtual void do_CompareOp      (CompareOp*       x) = 0;
   180   virtual void do_IfOp           (IfOp*            x) = 0;
   181   virtual void do_Convert        (Convert*         x) = 0;
   182   virtual void do_NullCheck      (NullCheck*       x) = 0;
   183   virtual void do_TypeCast       (TypeCast*        x) = 0;
   184   virtual void do_Invoke         (Invoke*          x) = 0;
   185   virtual void do_NewInstance    (NewInstance*     x) = 0;
   186   virtual void do_NewTypeArray   (NewTypeArray*    x) = 0;
   187   virtual void do_NewObjectArray (NewObjectArray*  x) = 0;
   188   virtual void do_NewMultiArray  (NewMultiArray*   x) = 0;
   189   virtual void do_CheckCast      (CheckCast*       x) = 0;
   190   virtual void do_InstanceOf     (InstanceOf*      x) = 0;
   191   virtual void do_MonitorEnter   (MonitorEnter*    x) = 0;
   192   virtual void do_MonitorExit    (MonitorExit*     x) = 0;
   193   virtual void do_Intrinsic      (Intrinsic*       x) = 0;
   194   virtual void do_BlockBegin     (BlockBegin*      x) = 0;
   195   virtual void do_Goto           (Goto*            x) = 0;
   196   virtual void do_If             (If*              x) = 0;
   197   virtual void do_IfInstanceOf   (IfInstanceOf*    x) = 0;
   198   virtual void do_TableSwitch    (TableSwitch*     x) = 0;
   199   virtual void do_LookupSwitch   (LookupSwitch*    x) = 0;
   200   virtual void do_Return         (Return*          x) = 0;
   201   virtual void do_Throw          (Throw*           x) = 0;
   202   virtual void do_Base           (Base*            x) = 0;
   203   virtual void do_OsrEntry       (OsrEntry*        x) = 0;
   204   virtual void do_ExceptionObject(ExceptionObject* x) = 0;
   205   virtual void do_RoundFP        (RoundFP*         x) = 0;
   206   virtual void do_UnsafeGetRaw   (UnsafeGetRaw*    x) = 0;
   207   virtual void do_UnsafePutRaw   (UnsafePutRaw*    x) = 0;
   208   virtual void do_UnsafeGetObject(UnsafeGetObject* x) = 0;
   209   virtual void do_UnsafePutObject(UnsafePutObject* x) = 0;
   210   virtual void do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) = 0;
   211   virtual void do_UnsafePrefetchRead (UnsafePrefetchRead*  x) = 0;
   212   virtual void do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) = 0;
   213   virtual void do_ProfileCall    (ProfileCall*     x) = 0;
   214   virtual void do_ProfileInvoke  (ProfileInvoke*   x) = 0;
   215   virtual void do_RuntimeCall    (RuntimeCall*     x) = 0;
   216   virtual void do_MemBar         (MemBar*          x) = 0;
   217   virtual void do_RangeCheckPredicate(RangeCheckPredicate* x) = 0;
   218 #ifdef ASSERT
   219   virtual void do_Assert         (Assert*          x) = 0;
   220 #endif
   221 };
   224 // Hashing support
   225 //
   226 // Note: This hash functions affect the performance
   227 //       of ValueMap - make changes carefully!
   229 #define HASH1(x1            )                    ((intx)(x1))
   230 #define HASH2(x1, x2        )                    ((HASH1(x1        ) << 7) ^ HASH1(x2))
   231 #define HASH3(x1, x2, x3    )                    ((HASH2(x1, x2    ) << 7) ^ HASH1(x3))
   232 #define HASH4(x1, x2, x3, x4)                    ((HASH3(x1, x2, x3) << 7) ^ HASH1(x4))
   235 // The following macros are used to implement instruction-specific hashing.
   236 // By default, each instruction implements hash() and is_equal(Value), used
   237 // for value numbering/common subexpression elimination. The default imple-
   238 // mentation disables value numbering. Each instruction which can be value-
   239 // numbered, should define corresponding hash() and is_equal(Value) functions
   240 // via the macros below. The f arguments specify all the values/op codes, etc.
   241 // that need to be identical for two instructions to be identical.
   242 //
   243 // Note: The default implementation of hash() returns 0 in order to indicate
   244 //       that the instruction should not be considered for value numbering.
   245 //       The currently used hash functions do not guarantee that never a 0
   246 //       is produced. While this is still correct, it may be a performance
   247 //       bug (no value numbering for that node). However, this situation is
   248 //       so unlikely, that we are not going to handle it specially.
   250 #define HASHING1(class_name, enabled, f1)             \
   251   virtual intx hash() const {                         \
   252     return (enabled) ? HASH2(name(), f1) : 0;         \
   253   }                                                   \
   254   virtual bool is_equal(Value v) const {              \
   255     if (!(enabled)  ) return false;                   \
   256     class_name* _v = v->as_##class_name();            \
   257     if (_v == NULL  ) return false;                   \
   258     if (f1 != _v->f1) return false;                   \
   259     return true;                                      \
   260   }                                                   \
   263 #define HASHING2(class_name, enabled, f1, f2)         \
   264   virtual intx hash() const {                         \
   265     return (enabled) ? HASH3(name(), f1, f2) : 0;     \
   266   }                                                   \
   267   virtual bool is_equal(Value v) const {              \
   268     if (!(enabled)  ) return false;                   \
   269     class_name* _v = v->as_##class_name();            \
   270     if (_v == NULL  ) return false;                   \
   271     if (f1 != _v->f1) return false;                   \
   272     if (f2 != _v->f2) return false;                   \
   273     return true;                                      \
   274   }                                                   \
   277 #define HASHING3(class_name, enabled, f1, f2, f3)     \
   278   virtual intx hash() const {                          \
   279     return (enabled) ? HASH4(name(), f1, f2, f3) : 0; \
   280   }                                                   \
   281   virtual bool is_equal(Value v) const {              \
   282     if (!(enabled)  ) return false;                   \
   283     class_name* _v = v->as_##class_name();            \
   284     if (_v == NULL  ) return false;                   \
   285     if (f1 != _v->f1) return false;                   \
   286     if (f2 != _v->f2) return false;                   \
   287     if (f3 != _v->f3) return false;                   \
   288     return true;                                      \
   289   }                                                   \
   292 // The mother of all instructions...
   294 class Instruction: public CompilationResourceObj {
   295  private:
   296   int          _id;                              // the unique instruction id
   297 #ifndef PRODUCT
   298   int          _printable_bci;                   // the bci of the instruction for printing
   299 #endif
   300   int          _use_count;                       // the number of instructions refering to this value (w/o prev/next); only roots can have use count = 0 or > 1
   301   int          _pin_state;                       // set of PinReason describing the reason for pinning
   302   ValueType*   _type;                            // the instruction value type
   303   Instruction* _next;                            // the next instruction if any (NULL for BlockEnd instructions)
   304   Instruction* _subst;                           // the substitution instruction if any
   305   LIR_Opr      _operand;                         // LIR specific information
   306   unsigned int _flags;                           // Flag bits
   308   ValueStack*  _state_before;                    // Copy of state with input operands still on stack (or NULL)
   309   ValueStack*  _exception_state;                 // Copy of state for exception handling
   310   XHandlers*   _exception_handlers;              // Flat list of exception handlers covering this instruction
   312   friend class UseCountComputer;
   313   friend class BlockBegin;
   315   void update_exception_state(ValueStack* state);
   317  protected:
   318   BlockBegin*  _block;                           // Block that contains this instruction
   320   void set_type(ValueType* type) {
   321     assert(type != NULL, "type must exist");
   322     _type = type;
   323   }
   325  public:
   326   void* operator new(size_t size) {
   327     Compilation* c = Compilation::current();
   328     void* res = c->arena()->Amalloc(size);
   329     ((Instruction*)res)->_id = c->get_next_id();
   330     return res;
   331   }
   333   static const int no_bci = -99;
   335   enum InstructionFlag {
   336     NeedsNullCheckFlag = 0,
   337     CanTrapFlag,
   338     DirectCompareFlag,
   339     IsEliminatedFlag,
   340     IsSafepointFlag,
   341     IsStaticFlag,
   342     IsStrictfpFlag,
   343     NeedsStoreCheckFlag,
   344     NeedsWriteBarrierFlag,
   345     PreservesStateFlag,
   346     TargetIsFinalFlag,
   347     TargetIsLoadedFlag,
   348     TargetIsStrictfpFlag,
   349     UnorderedIsTrueFlag,
   350     NeedsPatchingFlag,
   351     ThrowIncompatibleClassChangeErrorFlag,
   352     ProfileMDOFlag,
   353     IsLinkedInBlockFlag,
   354     NeedsRangeCheckFlag,
   355     InWorkListFlag,
   356     DeoptimizeOnException,
   357     InstructionLastFlag
   358   };
   360  public:
   361   bool check_flag(InstructionFlag id) const      { return (_flags & (1 << id)) != 0;    }
   362   void set_flag(InstructionFlag id, bool f)      { _flags = f ? (_flags | (1 << id)) : (_flags & ~(1 << id)); };
   364   // 'globally' used condition values
   365   enum Condition {
   366     eql, neq, lss, leq, gtr, geq, aeq, beq
   367   };
   369   // Instructions may be pinned for many reasons and under certain conditions
   370   // with enough knowledge it's possible to safely unpin them.
   371   enum PinReason {
   372       PinUnknown           = 1 << 0
   373     , PinExplicitNullCheck = 1 << 3
   374     , PinStackForStateSplit= 1 << 12
   375     , PinStateSplitConstructor= 1 << 13
   376     , PinGlobalValueNumbering= 1 << 14
   377   };
   379   static Condition mirror(Condition cond);
   380   static Condition negate(Condition cond);
   382   // initialization
   383   static int number_of_instructions() {
   384     return Compilation::current()->number_of_instructions();
   385   }
   387   // creation
   388   Instruction(ValueType* type, ValueStack* state_before = NULL, bool type_is_constant = false)
   389   : _use_count(0)
   390 #ifndef PRODUCT
   391   , _printable_bci(-99)
   392 #endif
   393   , _pin_state(0)
   394   , _type(type)
   395   , _next(NULL)
   396   , _block(NULL)
   397   , _subst(NULL)
   398   , _flags(0)
   399   , _operand(LIR_OprFact::illegalOpr)
   400   , _state_before(state_before)
   401   , _exception_handlers(NULL)
   402   {
   403     check_state(state_before);
   404     assert(type != NULL && (!type->is_constant() || type_is_constant), "type must exist");
   405     update_exception_state(_state_before);
   406   }
   408   // accessors
   409   int id() const                                 { return _id; }
   410 #ifndef PRODUCT
   411   bool has_printable_bci() const                 { return _printable_bci != -99; }
   412   int printable_bci() const                      { assert(has_printable_bci(), "_printable_bci should have been set"); return _printable_bci; }
   413   void set_printable_bci(int bci)                { _printable_bci = bci; }
   414 #endif
   415   int dominator_depth();
   416   int use_count() const                          { return _use_count; }
   417   int pin_state() const                          { return _pin_state; }
   418   bool is_pinned() const                         { return _pin_state != 0 || PinAllInstructions; }
   419   ValueType* type() const                        { return _type; }
   420   BlockBegin *block() const                      { return _block; }
   421   Instruction* prev();                           // use carefully, expensive operation
   422   Instruction* next() const                      { return _next; }
   423   bool has_subst() const                         { return _subst != NULL; }
   424   Instruction* subst()                           { return _subst == NULL ? this : _subst->subst(); }
   425   LIR_Opr operand() const                        { return _operand; }
   427   void set_needs_null_check(bool f)              { set_flag(NeedsNullCheckFlag, f); }
   428   bool needs_null_check() const                  { return check_flag(NeedsNullCheckFlag); }
   429   bool is_linked() const                         { return check_flag(IsLinkedInBlockFlag); }
   430   bool can_be_linked()                           { return as_Local() == NULL && as_Phi() == NULL; }
   432   bool has_uses() const                          { return use_count() > 0; }
   433   ValueStack* state_before() const               { return _state_before; }
   434   ValueStack* exception_state() const            { return _exception_state; }
   435   virtual bool needs_exception_state() const     { return true; }
   436   XHandlers* exception_handlers() const          { return _exception_handlers; }
   438   // manipulation
   439   void pin(PinReason reason)                     { _pin_state |= reason; }
   440   void pin()                                     { _pin_state |= PinUnknown; }
   441   // DANGEROUS: only used by EliminateStores
   442   void unpin(PinReason reason)                   { assert((reason & PinUnknown) == 0, "can't unpin unknown state"); _pin_state &= ~reason; }
   444   Instruction* set_next(Instruction* next) {
   445     assert(next->has_printable_bci(), "_printable_bci should have been set");
   446     assert(next != NULL, "must not be NULL");
   447     assert(as_BlockEnd() == NULL, "BlockEnd instructions must have no next");
   448     assert(next->can_be_linked(), "shouldn't link these instructions into list");
   450     BlockBegin *block = this->block();
   451     next->_block = block;
   453     next->set_flag(Instruction::IsLinkedInBlockFlag, true);
   454     _next = next;
   455     return next;
   456   }
   458   Instruction* set_next(Instruction* next, int bci) {
   459 #ifndef PRODUCT
   460     next->set_printable_bci(bci);
   461 #endif
   462     return set_next(next);
   463   }
   465   // when blocks are merged
   466   void fixup_block_pointers() {
   467     Instruction *cur = next()->next(); // next()'s block is set in set_next
   468     while (cur && cur->_block != block()) {
   469       cur->_block = block();
   470       cur = cur->next();
   471     }
   472   }
   474   Instruction *insert_after(Instruction *i) {
   475     Instruction* n = _next;
   476     set_next(i);
   477     i->set_next(n);
   478     return _next;
   479   }
   481   Instruction *insert_after_same_bci(Instruction *i) {
   482 #ifndef PRODUCT
   483     i->set_printable_bci(printable_bci());
   484 #endif
   485     return insert_after(i);
   486   }
   488   void set_subst(Instruction* subst)             {
   489     assert(subst == NULL ||
   490            type()->base() == subst->type()->base() ||
   491            subst->type()->base() == illegalType, "type can't change");
   492     _subst = subst;
   493   }
   494   void set_exception_handlers(XHandlers *xhandlers) { _exception_handlers = xhandlers; }
   495   void set_exception_state(ValueStack* s)        { check_state(s); _exception_state = s; }
   496   void set_state_before(ValueStack* s)           { check_state(s); _state_before = s; }
   498   // machine-specifics
   499   void set_operand(LIR_Opr operand)              { assert(operand != LIR_OprFact::illegalOpr, "operand must exist"); _operand = operand; }
   500   void clear_operand()                           { _operand = LIR_OprFact::illegalOpr; }
   502   // generic
   503   virtual Instruction*      as_Instruction()     { return this; } // to satisfy HASHING1 macro
   504   virtual Phi*              as_Phi()             { return NULL; }
   505   virtual Local*            as_Local()           { return NULL; }
   506   virtual Constant*         as_Constant()        { return NULL; }
   507   virtual AccessField*      as_AccessField()     { return NULL; }
   508   virtual LoadField*        as_LoadField()       { return NULL; }
   509   virtual StoreField*       as_StoreField()      { return NULL; }
   510   virtual AccessArray*      as_AccessArray()     { return NULL; }
   511   virtual ArrayLength*      as_ArrayLength()     { return NULL; }
   512   virtual AccessIndexed*    as_AccessIndexed()   { return NULL; }
   513   virtual LoadIndexed*      as_LoadIndexed()     { return NULL; }
   514   virtual StoreIndexed*     as_StoreIndexed()    { return NULL; }
   515   virtual NegateOp*         as_NegateOp()        { return NULL; }
   516   virtual Op2*              as_Op2()             { return NULL; }
   517   virtual ArithmeticOp*     as_ArithmeticOp()    { return NULL; }
   518   virtual ShiftOp*          as_ShiftOp()         { return NULL; }
   519   virtual LogicOp*          as_LogicOp()         { return NULL; }
   520   virtual CompareOp*        as_CompareOp()       { return NULL; }
   521   virtual IfOp*             as_IfOp()            { return NULL; }
   522   virtual Convert*          as_Convert()         { return NULL; }
   523   virtual NullCheck*        as_NullCheck()       { return NULL; }
   524   virtual OsrEntry*         as_OsrEntry()        { return NULL; }
   525   virtual StateSplit*       as_StateSplit()      { return NULL; }
   526   virtual Invoke*           as_Invoke()          { return NULL; }
   527   virtual NewInstance*      as_NewInstance()     { return NULL; }
   528   virtual NewArray*         as_NewArray()        { return NULL; }
   529   virtual NewTypeArray*     as_NewTypeArray()    { return NULL; }
   530   virtual NewObjectArray*   as_NewObjectArray()  { return NULL; }
   531   virtual NewMultiArray*    as_NewMultiArray()   { return NULL; }
   532   virtual TypeCheck*        as_TypeCheck()       { return NULL; }
   533   virtual CheckCast*        as_CheckCast()       { return NULL; }
   534   virtual InstanceOf*       as_InstanceOf()      { return NULL; }
   535   virtual TypeCast*         as_TypeCast()        { return NULL; }
   536   virtual AccessMonitor*    as_AccessMonitor()   { return NULL; }
   537   virtual MonitorEnter*     as_MonitorEnter()    { return NULL; }
   538   virtual MonitorExit*      as_MonitorExit()     { return NULL; }
   539   virtual Intrinsic*        as_Intrinsic()       { return NULL; }
   540   virtual BlockBegin*       as_BlockBegin()      { return NULL; }
   541   virtual BlockEnd*         as_BlockEnd()        { return NULL; }
   542   virtual Goto*             as_Goto()            { return NULL; }
   543   virtual If*               as_If()              { return NULL; }
   544   virtual IfInstanceOf*     as_IfInstanceOf()    { return NULL; }
   545   virtual TableSwitch*      as_TableSwitch()     { return NULL; }
   546   virtual LookupSwitch*     as_LookupSwitch()    { return NULL; }
   547   virtual Return*           as_Return()          { return NULL; }
   548   virtual Throw*            as_Throw()           { return NULL; }
   549   virtual Base*             as_Base()            { return NULL; }
   550   virtual RoundFP*          as_RoundFP()         { return NULL; }
   551   virtual ExceptionObject*  as_ExceptionObject() { return NULL; }
   552   virtual UnsafeOp*         as_UnsafeOp()        { return NULL; }
   553   virtual ProfileInvoke*    as_ProfileInvoke()   { return NULL; }
   554   virtual RangeCheckPredicate* as_RangeCheckPredicate() { return NULL; }
   556 #ifdef ASSERT
   557   virtual Assert*           as_Assert()          { return NULL; }
   558 #endif
   560   virtual void visit(InstructionVisitor* v)      = 0;
   562   virtual bool can_trap() const                  { return false; }
   564   virtual void input_values_do(ValueVisitor* f)   = 0;
   565   virtual void state_values_do(ValueVisitor* f);
   566   virtual void other_values_do(ValueVisitor* f)   { /* usually no other - override on demand */ }
   567           void       values_do(ValueVisitor* f)   { input_values_do(f); state_values_do(f); other_values_do(f); }
   569   virtual ciType* exact_type() const             { return NULL; }
   570   virtual ciType* declared_type() const          { return NULL; }
   572   // hashing
   573   virtual const char* name() const               = 0;
   574   HASHING1(Instruction, false, id())             // hashing disabled by default
   576   // debugging
   577   static void check_state(ValueStack* state)     PRODUCT_RETURN;
   578   void print()                                   PRODUCT_RETURN;
   579   void print_line()                              PRODUCT_RETURN;
   580   void print(InstructionPrinter& ip)             PRODUCT_RETURN;
   581 };
   584 // The following macros are used to define base (i.e., non-leaf)
   585 // and leaf instruction classes. They define class-name related
   586 // generic functionality in one place.
   588 #define BASE(class_name, super_class_name)       \
   589   class class_name: public super_class_name {    \
   590    public:                                       \
   591     virtual class_name* as_##class_name()        { return this; }              \
   594 #define LEAF(class_name, super_class_name)       \
   595   BASE(class_name, super_class_name)             \
   596    public:                                       \
   597     virtual const char* name() const             { return #class_name; }       \
   598     virtual void visit(InstructionVisitor* v)    { v->do_##class_name(this); } \
   601 // Debugging support
   604 #ifdef ASSERT
   605 class AssertValues: public ValueVisitor {
   606   void visit(Value* x)             { assert((*x) != NULL, "value must exist"); }
   607 };
   608   #define ASSERT_VALUES                          { AssertValues assert_value; values_do(&assert_value); }
   609 #else
   610   #define ASSERT_VALUES
   611 #endif // ASSERT
   614 // A Phi is a phi function in the sense of SSA form. It stands for
   615 // the value of a local variable at the beginning of a join block.
   616 // A Phi consists of n operands, one for every incoming branch.
   618 LEAF(Phi, Instruction)
   619  private:
   620   int         _pf_flags; // the flags of the phi function
   621   int         _index;    // to value on operand stack (index < 0) or to local
   622  public:
   623   // creation
   624   Phi(ValueType* type, BlockBegin* b, int index)
   625   : Instruction(type->base())
   626   , _pf_flags(0)
   627   , _index(index)
   628   {
   629     _block = b;
   630     NOT_PRODUCT(set_printable_bci(Value(b)->printable_bci()));
   631     if (type->is_illegal()) {
   632       make_illegal();
   633     }
   634   }
   636   // flags
   637   enum Flag {
   638     no_flag         = 0,
   639     visited         = 1 << 0,
   640     cannot_simplify = 1 << 1
   641   };
   643   // accessors
   644   bool  is_local() const          { return _index >= 0; }
   645   bool  is_on_stack() const       { return !is_local(); }
   646   int   local_index() const       { assert(is_local(), ""); return _index; }
   647   int   stack_index() const       { assert(is_on_stack(), ""); return -(_index+1); }
   649   Value operand_at(int i) const;
   650   int   operand_count() const;
   652   void   set(Flag f)              { _pf_flags |=  f; }
   653   void   clear(Flag f)            { _pf_flags &= ~f; }
   654   bool   is_set(Flag f) const     { return (_pf_flags & f) != 0; }
   656   // Invalidates phis corresponding to merges of locals of two different types
   657   // (these should never be referenced, otherwise the bytecodes are illegal)
   658   void   make_illegal() {
   659     set(cannot_simplify);
   660     set_type(illegalType);
   661   }
   663   bool is_illegal() const {
   664     return type()->is_illegal();
   665   }
   667   // generic
   668   virtual void input_values_do(ValueVisitor* f) {
   669   }
   670 };
   673 // A local is a placeholder for an incoming argument to a function call.
   674 LEAF(Local, Instruction)
   675  private:
   676   int      _java_index;                          // the local index within the method to which the local belongs
   677   ciType*  _declared_type;
   678  public:
   679   // creation
   680   Local(ciType* declared, ValueType* type, int index)
   681     : Instruction(type)
   682     , _java_index(index)
   683     , _declared_type(declared)
   684   {
   685     NOT_PRODUCT(set_printable_bci(-1));
   686   }
   688   // accessors
   689   int java_index() const                         { return _java_index; }
   691   virtual ciType* declared_type() const          { return _declared_type; }
   692   virtual ciType* exact_type() const;
   694   // generic
   695   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
   696 };
   699 LEAF(Constant, Instruction)
   700  public:
   701   // creation
   702   Constant(ValueType* type):
   703       Instruction(type, NULL, /*type_is_constant*/ true)
   704   {
   705     assert(type->is_constant(), "must be a constant");
   706   }
   708   Constant(ValueType* type, ValueStack* state_before):
   709     Instruction(type, state_before, /*type_is_constant*/ true)
   710   {
   711     assert(state_before != NULL, "only used for constants which need patching");
   712     assert(type->is_constant(), "must be a constant");
   713     // since it's patching it needs to be pinned
   714     pin();
   715   }
   717   // generic
   718   virtual bool can_trap() const                  { return state_before() != NULL; }
   719   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
   721   virtual intx hash() const;
   722   virtual bool is_equal(Value v) const;
   724   virtual ciType* exact_type() const;
   726   enum CompareResult { not_comparable = -1, cond_false, cond_true };
   728   virtual CompareResult compare(Instruction::Condition condition, Value right) const;
   729   BlockBegin* compare(Instruction::Condition cond, Value right,
   730                       BlockBegin* true_sux, BlockBegin* false_sux) const {
   731     switch (compare(cond, right)) {
   732     case not_comparable:
   733       return NULL;
   734     case cond_false:
   735       return false_sux;
   736     case cond_true:
   737       return true_sux;
   738     default:
   739       ShouldNotReachHere();
   740       return NULL;
   741     }
   742   }
   743 };
   746 BASE(AccessField, Instruction)
   747  private:
   748   Value       _obj;
   749   int         _offset;
   750   ciField*    _field;
   751   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   753  public:
   754   // creation
   755   AccessField(Value obj, int offset, ciField* field, bool is_static,
   756               ValueStack* state_before, bool needs_patching)
   757   : Instruction(as_ValueType(field->type()->basic_type()), state_before)
   758   , _obj(obj)
   759   , _offset(offset)
   760   , _field(field)
   761   , _explicit_null_check(NULL)
   762   {
   763     set_needs_null_check(!is_static);
   764     set_flag(IsStaticFlag, is_static);
   765     set_flag(NeedsPatchingFlag, needs_patching);
   766     ASSERT_VALUES
   767     // pin of all instructions with memory access
   768     pin();
   769   }
   771   // accessors
   772   Value obj() const                              { return _obj; }
   773   int offset() const                             { return _offset; }
   774   ciField* field() const                         { return _field; }
   775   BasicType field_type() const                   { return _field->type()->basic_type(); }
   776   bool is_static() const                         { return check_flag(IsStaticFlag); }
   777   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   778   bool needs_patching() const                    { return check_flag(NeedsPatchingFlag); }
   780   // Unresolved getstatic and putstatic can cause initialization.
   781   // Technically it occurs at the Constant that materializes the base
   782   // of the static fields but it's simpler to model it here.
   783   bool is_init_point() const                     { return is_static() && (needs_patching() || !_field->holder()->is_initialized()); }
   785   // manipulation
   787   // Under certain circumstances, if a previous NullCheck instruction
   788   // proved the target object non-null, we can eliminate the explicit
   789   // null check and do an implicit one, simply specifying the debug
   790   // information from the NullCheck. This field should only be consulted
   791   // if needs_null_check() is true.
   792   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   794   // generic
   795   virtual bool can_trap() const                  { return needs_null_check() || needs_patching(); }
   796   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
   797 };
   800 LEAF(LoadField, AccessField)
   801  public:
   802   // creation
   803   LoadField(Value obj, int offset, ciField* field, bool is_static,
   804             ValueStack* state_before, bool needs_patching)
   805   : AccessField(obj, offset, field, is_static, state_before, needs_patching)
   806   {}
   808   ciType* declared_type() const;
   809   ciType* exact_type() const;
   811   // generic
   812   HASHING2(LoadField, !needs_patching() && !field()->is_volatile(), obj()->subst(), offset())  // cannot be eliminated if needs patching or if volatile
   813 };
   816 LEAF(StoreField, AccessField)
   817  private:
   818   Value _value;
   820  public:
   821   // creation
   822   StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
   823              ValueStack* state_before, bool needs_patching)
   824   : AccessField(obj, offset, field, is_static, state_before, needs_patching)
   825   , _value(value)
   826   {
   827     set_flag(NeedsWriteBarrierFlag, as_ValueType(field_type())->is_object());
   828     ASSERT_VALUES
   829     pin();
   830   }
   832   // accessors
   833   Value value() const                            { return _value; }
   834   bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
   836   // generic
   837   virtual void input_values_do(ValueVisitor* f)   { AccessField::input_values_do(f); f->visit(&_value); }
   838 };
   841 BASE(AccessArray, Instruction)
   842  private:
   843   Value       _array;
   845  public:
   846   // creation
   847   AccessArray(ValueType* type, Value array, ValueStack* state_before)
   848   : Instruction(type, state_before)
   849   , _array(array)
   850   {
   851     set_needs_null_check(true);
   852     ASSERT_VALUES
   853     pin(); // instruction with side effect (null exception or range check throwing)
   854   }
   856   Value array() const                            { return _array; }
   858   // generic
   859   virtual bool can_trap() const                  { return needs_null_check(); }
   860   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_array); }
   861 };
   864 LEAF(ArrayLength, AccessArray)
   865  private:
   866   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   868  public:
   869   // creation
   870   ArrayLength(Value array, ValueStack* state_before)
   871   : AccessArray(intType, array, state_before)
   872   , _explicit_null_check(NULL) {}
   874   // accessors
   875   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   877   // setters
   878   // See LoadField::set_explicit_null_check for documentation
   879   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   881   // generic
   882   HASHING1(ArrayLength, true, array()->subst())
   883 };
   886 BASE(AccessIndexed, AccessArray)
   887  private:
   888   Value     _index;
   889   Value     _length;
   890   BasicType _elt_type;
   892  public:
   893   // creation
   894   AccessIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
   895   : AccessArray(as_ValueType(elt_type), array, state_before)
   896   , _index(index)
   897   , _length(length)
   898   , _elt_type(elt_type)
   899   {
   900     set_flag(Instruction::NeedsRangeCheckFlag, true);
   901     ASSERT_VALUES
   902   }
   904   // accessors
   905   Value index() const                            { return _index; }
   906   Value length() const                           { return _length; }
   907   BasicType elt_type() const                     { return _elt_type; }
   909   void clear_length()                            { _length = NULL; }
   910   // perform elimination of range checks involving constants
   911   bool compute_needs_range_check();
   913   // generic
   914   virtual void input_values_do(ValueVisitor* f)   { AccessArray::input_values_do(f); f->visit(&_index); if (_length != NULL) f->visit(&_length); }
   915 };
   918 LEAF(LoadIndexed, AccessIndexed)
   919  private:
   920   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   922  public:
   923   // creation
   924   LoadIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
   925   : AccessIndexed(array, index, length, elt_type, state_before)
   926   , _explicit_null_check(NULL) {}
   928   // accessors
   929   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   931   // setters
   932   // See LoadField::set_explicit_null_check for documentation
   933   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   935   ciType* exact_type() const;
   936   ciType* declared_type() const;
   938   // generic
   939   HASHING2(LoadIndexed, true, array()->subst(), index()->subst())
   940 };
   943 LEAF(StoreIndexed, AccessIndexed)
   944  private:
   945   Value       _value;
   947   ciMethod* _profiled_method;
   948   int       _profiled_bci;
   949  public:
   950   // creation
   951   StoreIndexed(Value array, Value index, Value length, BasicType elt_type, Value value, ValueStack* state_before)
   952   : AccessIndexed(array, index, length, elt_type, state_before)
   953   , _value(value), _profiled_method(NULL), _profiled_bci(0)
   954   {
   955     set_flag(NeedsWriteBarrierFlag, (as_ValueType(elt_type)->is_object()));
   956     set_flag(NeedsStoreCheckFlag, (as_ValueType(elt_type)->is_object()));
   957     ASSERT_VALUES
   958     pin();
   959   }
   961   // accessors
   962   Value value() const                            { return _value; }
   963   bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
   964   bool needs_store_check() const                 { return check_flag(NeedsStoreCheckFlag); }
   965   // Helpers for MethodData* profiling
   966   void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
   967   void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
   968   void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
   969   bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
   970   ciMethod* profiled_method() const                  { return _profiled_method;     }
   971   int       profiled_bci() const                     { return _profiled_bci;        }
   972   // generic
   973   virtual void input_values_do(ValueVisitor* f)   { AccessIndexed::input_values_do(f); f->visit(&_value); }
   974 };
   977 LEAF(NegateOp, Instruction)
   978  private:
   979   Value _x;
   981  public:
   982   // creation
   983   NegateOp(Value x) : Instruction(x->type()->base()), _x(x) {
   984     ASSERT_VALUES
   985   }
   987   // accessors
   988   Value x() const                                { return _x; }
   990   // generic
   991   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); }
   992 };
   995 BASE(Op2, Instruction)
   996  private:
   997   Bytecodes::Code _op;
   998   Value           _x;
   999   Value           _y;
  1001  public:
  1002   // creation
  1003   Op2(ValueType* type, Bytecodes::Code op, Value x, Value y, ValueStack* state_before = NULL)
  1004   : Instruction(type, state_before)
  1005   , _op(op)
  1006   , _x(x)
  1007   , _y(y)
  1009     ASSERT_VALUES
  1012   // accessors
  1013   Bytecodes::Code op() const                     { return _op; }
  1014   Value x() const                                { return _x; }
  1015   Value y() const                                { return _y; }
  1017   // manipulators
  1018   void swap_operands() {
  1019     assert(is_commutative(), "operation must be commutative");
  1020     Value t = _x; _x = _y; _y = t;
  1023   // generic
  1024   virtual bool is_commutative() const            { return false; }
  1025   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); f->visit(&_y); }
  1026 };
  1029 LEAF(ArithmeticOp, Op2)
  1030  public:
  1031   // creation
  1032   ArithmeticOp(Bytecodes::Code op, Value x, Value y, bool is_strictfp, ValueStack* state_before)
  1033   : Op2(x->type()->meet(y->type()), op, x, y, state_before)
  1035     set_flag(IsStrictfpFlag, is_strictfp);
  1036     if (can_trap()) pin();
  1039   // accessors
  1040   bool        is_strictfp() const                { return check_flag(IsStrictfpFlag); }
  1042   // generic
  1043   virtual bool is_commutative() const;
  1044   virtual bool can_trap() const;
  1045   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1046 };
  1049 LEAF(ShiftOp, Op2)
  1050  public:
  1051   // creation
  1052   ShiftOp(Bytecodes::Code op, Value x, Value s) : Op2(x->type()->base(), op, x, s) {}
  1054   // generic
  1055   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1056 };
  1059 LEAF(LogicOp, Op2)
  1060  public:
  1061   // creation
  1062   LogicOp(Bytecodes::Code op, Value x, Value y) : Op2(x->type()->meet(y->type()), op, x, y) {}
  1064   // generic
  1065   virtual bool is_commutative() const;
  1066   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1067 };
  1070 LEAF(CompareOp, Op2)
  1071  public:
  1072   // creation
  1073   CompareOp(Bytecodes::Code op, Value x, Value y, ValueStack* state_before)
  1074   : Op2(intType, op, x, y, state_before)
  1075   {}
  1077   // generic
  1078   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1079 };
  1082 LEAF(IfOp, Op2)
  1083  private:
  1084   Value _tval;
  1085   Value _fval;
  1087  public:
  1088   // creation
  1089   IfOp(Value x, Condition cond, Value y, Value tval, Value fval)
  1090   : Op2(tval->type()->meet(fval->type()), (Bytecodes::Code)cond, x, y)
  1091   , _tval(tval)
  1092   , _fval(fval)
  1094     ASSERT_VALUES
  1095     assert(tval->type()->tag() == fval->type()->tag(), "types must match");
  1098   // accessors
  1099   virtual bool is_commutative() const;
  1100   Bytecodes::Code op() const                     { ShouldNotCallThis(); return Bytecodes::_illegal; }
  1101   Condition cond() const                         { return (Condition)Op2::op(); }
  1102   Value tval() const                             { return _tval; }
  1103   Value fval() const                             { return _fval; }
  1105   // generic
  1106   virtual void input_values_do(ValueVisitor* f)   { Op2::input_values_do(f); f->visit(&_tval); f->visit(&_fval); }
  1107 };
  1110 LEAF(Convert, Instruction)
  1111  private:
  1112   Bytecodes::Code _op;
  1113   Value           _value;
  1115  public:
  1116   // creation
  1117   Convert(Bytecodes::Code op, Value value, ValueType* to_type) : Instruction(to_type), _op(op), _value(value) {
  1118     ASSERT_VALUES
  1121   // accessors
  1122   Bytecodes::Code op() const                     { return _op; }
  1123   Value value() const                            { return _value; }
  1125   // generic
  1126   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_value); }
  1127   HASHING2(Convert, true, op(), value()->subst())
  1128 };
  1131 LEAF(NullCheck, Instruction)
  1132  private:
  1133   Value       _obj;
  1135  public:
  1136   // creation
  1137   NullCheck(Value obj, ValueStack* state_before)
  1138   : Instruction(obj->type()->base(), state_before)
  1139   , _obj(obj)
  1141     ASSERT_VALUES
  1142     set_can_trap(true);
  1143     assert(_obj->type()->is_object(), "null check must be applied to objects only");
  1144     pin(Instruction::PinExplicitNullCheck);
  1147   // accessors
  1148   Value obj() const                              { return _obj; }
  1150   // setters
  1151   void set_can_trap(bool can_trap)               { set_flag(CanTrapFlag, can_trap); }
  1153   // generic
  1154   virtual bool can_trap() const                  { return check_flag(CanTrapFlag); /* null-check elimination sets to false */ }
  1155   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
  1156   HASHING1(NullCheck, true, obj()->subst())
  1157 };
  1160 // This node is supposed to cast the type of another node to a more precise
  1161 // declared type.
  1162 LEAF(TypeCast, Instruction)
  1163  private:
  1164   ciType* _declared_type;
  1165   Value   _obj;
  1167  public:
  1168   // The type of this node is the same type as the object type (and it might be constant).
  1169   TypeCast(ciType* type, Value obj, ValueStack* state_before)
  1170   : Instruction(obj->type(), state_before, obj->type()->is_constant()),
  1171     _declared_type(type),
  1172     _obj(obj) {}
  1174   // accessors
  1175   ciType* declared_type() const                  { return _declared_type; }
  1176   Value   obj() const                            { return _obj; }
  1178   // generic
  1179   virtual void input_values_do(ValueVisitor* f)  { f->visit(&_obj); }
  1180 };
  1183 BASE(StateSplit, Instruction)
  1184  private:
  1185   ValueStack* _state;
  1187  protected:
  1188   static void substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block);
  1190  public:
  1191   // creation
  1192   StateSplit(ValueType* type, ValueStack* state_before = NULL)
  1193   : Instruction(type, state_before)
  1194   , _state(NULL)
  1196     pin(PinStateSplitConstructor);
  1199   // accessors
  1200   ValueStack* state() const                      { return _state; }
  1201   IRScope* scope() const;                        // the state's scope
  1203   // manipulation
  1204   void set_state(ValueStack* state)              { assert(_state == NULL, "overwriting existing state"); check_state(state); _state = state; }
  1206   // generic
  1207   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
  1208   virtual void state_values_do(ValueVisitor* f);
  1209 };
  1212 LEAF(Invoke, StateSplit)
  1213  private:
  1214   Bytecodes::Code _code;
  1215   Value           _recv;
  1216   Values*         _args;
  1217   BasicTypeList*  _signature;
  1218   int             _vtable_index;
  1219   ciMethod*       _target;
  1221  public:
  1222   // creation
  1223   Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
  1224          int vtable_index, ciMethod* target, ValueStack* state_before);
  1226   // accessors
  1227   Bytecodes::Code code() const                   { return _code; }
  1228   Value receiver() const                         { return _recv; }
  1229   bool has_receiver() const                      { return receiver() != NULL; }
  1230   int number_of_arguments() const                { return _args->length(); }
  1231   Value argument_at(int i) const                 { return _args->at(i); }
  1232   int vtable_index() const                       { return _vtable_index; }
  1233   BasicTypeList* signature() const               { return _signature; }
  1234   ciMethod* target() const                       { return _target; }
  1236   ciType* declared_type() const;
  1238   // Returns false if target is not loaded
  1239   bool target_is_final() const                   { return check_flag(TargetIsFinalFlag); }
  1240   bool target_is_loaded() const                  { return check_flag(TargetIsLoadedFlag); }
  1241   // Returns false if target is not loaded
  1242   bool target_is_strictfp() const                { return check_flag(TargetIsStrictfpFlag); }
  1244   // JSR 292 support
  1245   bool is_invokedynamic() const                  { return code() == Bytecodes::_invokedynamic; }
  1246   bool is_method_handle_intrinsic() const        { return target()->is_method_handle_intrinsic(); }
  1248   virtual bool needs_exception_state() const     { return false; }
  1250   // generic
  1251   virtual bool can_trap() const                  { return true; }
  1252   virtual void input_values_do(ValueVisitor* f) {
  1253     StateSplit::input_values_do(f);
  1254     if (has_receiver()) f->visit(&_recv);
  1255     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  1257   virtual void state_values_do(ValueVisitor *f);
  1258 };
  1261 LEAF(NewInstance, StateSplit)
  1262  private:
  1263   ciInstanceKlass* _klass;
  1265  public:
  1266   // creation
  1267   NewInstance(ciInstanceKlass* klass, ValueStack* state_before)
  1268   : StateSplit(instanceType, state_before)
  1269   , _klass(klass)
  1270   {}
  1272   // accessors
  1273   ciInstanceKlass* klass() const                 { return _klass; }
  1275   virtual bool needs_exception_state() const     { return false; }
  1277   // generic
  1278   virtual bool can_trap() const                  { return true; }
  1279   ciType* exact_type() const;
  1280   ciType* declared_type() const;
  1281 };
  1284 BASE(NewArray, StateSplit)
  1285  private:
  1286   Value       _length;
  1288  public:
  1289   // creation
  1290   NewArray(Value length, ValueStack* state_before)
  1291   : StateSplit(objectType, state_before)
  1292   , _length(length)
  1294     // Do not ASSERT_VALUES since length is NULL for NewMultiArray
  1297   // accessors
  1298   Value length() const                           { return _length; }
  1300   virtual bool needs_exception_state() const     { return false; }
  1302   ciType* declared_type() const;
  1304   // generic
  1305   virtual bool can_trap() const                  { return true; }
  1306   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_length); }
  1307 };
  1310 LEAF(NewTypeArray, NewArray)
  1311  private:
  1312   BasicType _elt_type;
  1314  public:
  1315   // creation
  1316   NewTypeArray(Value length, BasicType elt_type, ValueStack* state_before)
  1317   : NewArray(length, state_before)
  1318   , _elt_type(elt_type)
  1319   {}
  1321   // accessors
  1322   BasicType elt_type() const                     { return _elt_type; }
  1323   ciType* exact_type() const;
  1324 };
  1327 LEAF(NewObjectArray, NewArray)
  1328  private:
  1329   ciKlass* _klass;
  1331  public:
  1332   // creation
  1333   NewObjectArray(ciKlass* klass, Value length, ValueStack* state_before) : NewArray(length, state_before), _klass(klass) {}
  1335   // accessors
  1336   ciKlass* klass() const                         { return _klass; }
  1337   ciType* exact_type() const;
  1338 };
  1341 LEAF(NewMultiArray, NewArray)
  1342  private:
  1343   ciKlass* _klass;
  1344   Values*  _dims;
  1346  public:
  1347   // creation
  1348   NewMultiArray(ciKlass* klass, Values* dims, ValueStack* state_before) : NewArray(NULL, state_before), _klass(klass), _dims(dims) {
  1349     ASSERT_VALUES
  1352   // accessors
  1353   ciKlass* klass() const                         { return _klass; }
  1354   Values* dims() const                           { return _dims; }
  1355   int rank() const                               { return dims()->length(); }
  1357   // generic
  1358   virtual void input_values_do(ValueVisitor* f) {
  1359     // NOTE: we do not call NewArray::input_values_do since "length"
  1360     // is meaningless for a multi-dimensional array; passing the
  1361     // zeroth element down to NewArray as its length is a bad idea
  1362     // since there will be a copy in the "dims" array which doesn't
  1363     // get updated, and the value must not be traversed twice. Was bug
  1364     // - kbr 4/10/2001
  1365     StateSplit::input_values_do(f);
  1366     for (int i = 0; i < _dims->length(); i++) f->visit(_dims->adr_at(i));
  1368 };
  1371 BASE(TypeCheck, StateSplit)
  1372  private:
  1373   ciKlass*    _klass;
  1374   Value       _obj;
  1376   ciMethod* _profiled_method;
  1377   int       _profiled_bci;
  1379  public:
  1380   // creation
  1381   TypeCheck(ciKlass* klass, Value obj, ValueType* type, ValueStack* state_before)
  1382   : StateSplit(type, state_before), _klass(klass), _obj(obj),
  1383     _profiled_method(NULL), _profiled_bci(0) {
  1384     ASSERT_VALUES
  1385     set_direct_compare(false);
  1388   // accessors
  1389   ciKlass* klass() const                         { return _klass; }
  1390   Value obj() const                              { return _obj; }
  1391   bool is_loaded() const                         { return klass() != NULL; }
  1392   bool direct_compare() const                    { return check_flag(DirectCompareFlag); }
  1394   // manipulation
  1395   void set_direct_compare(bool flag)             { set_flag(DirectCompareFlag, flag); }
  1397   // generic
  1398   virtual bool can_trap() const                  { return true; }
  1399   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
  1401   // Helpers for MethodData* profiling
  1402   void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
  1403   void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
  1404   void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
  1405   bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
  1406   ciMethod* profiled_method() const                  { return _profiled_method;     }
  1407   int       profiled_bci() const                     { return _profiled_bci;        }
  1408 };
  1411 LEAF(CheckCast, TypeCheck)
  1412  public:
  1413   // creation
  1414   CheckCast(ciKlass* klass, Value obj, ValueStack* state_before)
  1415   : TypeCheck(klass, obj, objectType, state_before) {}
  1417   void set_incompatible_class_change_check() {
  1418     set_flag(ThrowIncompatibleClassChangeErrorFlag, true);
  1420   bool is_incompatible_class_change_check() const {
  1421     return check_flag(ThrowIncompatibleClassChangeErrorFlag);
  1424   ciType* declared_type() const;
  1425   ciType* exact_type() const;
  1426 };
  1429 LEAF(InstanceOf, TypeCheck)
  1430  public:
  1431   // creation
  1432   InstanceOf(ciKlass* klass, Value obj, ValueStack* state_before) : TypeCheck(klass, obj, intType, state_before) {}
  1434   virtual bool needs_exception_state() const     { return false; }
  1435 };
  1438 BASE(AccessMonitor, StateSplit)
  1439  private:
  1440   Value       _obj;
  1441   int         _monitor_no;
  1443  public:
  1444   // creation
  1445   AccessMonitor(Value obj, int monitor_no, ValueStack* state_before = NULL)
  1446   : StateSplit(illegalType, state_before)
  1447   , _obj(obj)
  1448   , _monitor_no(monitor_no)
  1450     set_needs_null_check(true);
  1451     ASSERT_VALUES
  1454   // accessors
  1455   Value obj() const                              { return _obj; }
  1456   int monitor_no() const                         { return _monitor_no; }
  1458   // generic
  1459   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
  1460 };
  1463 LEAF(MonitorEnter, AccessMonitor)
  1464  public:
  1465   // creation
  1466   MonitorEnter(Value obj, int monitor_no, ValueStack* state_before)
  1467   : AccessMonitor(obj, monitor_no, state_before)
  1469     ASSERT_VALUES
  1472   // generic
  1473   virtual bool can_trap() const                  { return true; }
  1474 };
  1477 LEAF(MonitorExit, AccessMonitor)
  1478  public:
  1479   // creation
  1480   MonitorExit(Value obj, int monitor_no)
  1481   : AccessMonitor(obj, monitor_no, NULL)
  1483     ASSERT_VALUES
  1485 };
  1488 LEAF(Intrinsic, StateSplit)
  1489  private:
  1490   vmIntrinsics::ID _id;
  1491   Values*          _args;
  1492   Value            _recv;
  1493   int              _nonnull_state; // mask identifying which args are nonnull
  1495  public:
  1496   // preserves_state can be set to true for Intrinsics
  1497   // which are guaranteed to preserve register state across any slow
  1498   // cases; setting it to true does not mean that the Intrinsic can
  1499   // not trap, only that if we continue execution in the same basic
  1500   // block after the Intrinsic, all of the registers are intact. This
  1501   // allows load elimination and common expression elimination to be
  1502   // performed across the Intrinsic.  The default value is false.
  1503   Intrinsic(ValueType* type,
  1504             vmIntrinsics::ID id,
  1505             Values* args,
  1506             bool has_receiver,
  1507             ValueStack* state_before,
  1508             bool preserves_state,
  1509             bool cantrap = true)
  1510   : StateSplit(type, state_before)
  1511   , _id(id)
  1512   , _args(args)
  1513   , _recv(NULL)
  1514   , _nonnull_state(AllBits)
  1516     assert(args != NULL, "args must exist");
  1517     ASSERT_VALUES
  1518     set_flag(PreservesStateFlag, preserves_state);
  1519     set_flag(CanTrapFlag,        cantrap);
  1520     if (has_receiver) {
  1521       _recv = argument_at(0);
  1523     set_needs_null_check(has_receiver);
  1525     // some intrinsics can't trap, so don't force them to be pinned
  1526     if (!can_trap()) {
  1527       unpin(PinStateSplitConstructor);
  1531   // accessors
  1532   vmIntrinsics::ID id() const                    { return _id; }
  1533   int number_of_arguments() const                { return _args->length(); }
  1534   Value argument_at(int i) const                 { return _args->at(i); }
  1536   bool has_receiver() const                      { return (_recv != NULL); }
  1537   Value receiver() const                         { assert(has_receiver(), "must have receiver"); return _recv; }
  1538   bool preserves_state() const                   { return check_flag(PreservesStateFlag); }
  1540   bool arg_needs_null_check(int i) {
  1541     if (i >= 0 && i < (int)sizeof(_nonnull_state) * BitsPerByte) {
  1542       return is_set_nth_bit(_nonnull_state, i);
  1544     return true;
  1547   void set_arg_needs_null_check(int i, bool check) {
  1548     if (i >= 0 && i < (int)sizeof(_nonnull_state) * BitsPerByte) {
  1549       if (check) {
  1550         _nonnull_state |= nth_bit(i);
  1551       } else {
  1552         _nonnull_state &= ~(nth_bit(i));
  1557   // generic
  1558   virtual bool can_trap() const                  { return check_flag(CanTrapFlag); }
  1559   virtual void input_values_do(ValueVisitor* f) {
  1560     StateSplit::input_values_do(f);
  1561     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  1563 };
  1566 class LIR_List;
  1568 LEAF(BlockBegin, StateSplit)
  1569  private:
  1570   int        _block_id;                          // the unique block id
  1571   int        _bci;                               // start-bci of block
  1572   int        _depth_first_number;                // number of this block in a depth-first ordering
  1573   int        _linear_scan_number;                // number of this block in linear-scan ordering
  1574   int        _dominator_depth;
  1575   int        _loop_depth;                        // the loop nesting level of this block
  1576   int        _loop_index;                        // number of the innermost loop of this block
  1577   int        _flags;                             // the flags associated with this block
  1579   // fields used by BlockListBuilder
  1580   int        _total_preds;                       // number of predecessors found by BlockListBuilder
  1581   BitMap     _stores_to_locals;                  // bit is set when a local variable is stored in the block
  1583   // SSA specific fields: (factor out later)
  1584   BlockList   _successors;                       // the successors of this block
  1585   BlockList   _predecessors;                     // the predecessors of this block
  1586   BlockList   _dominates;                        // list of blocks that are dominated by this block
  1587   BlockBegin* _dominator;                        // the dominator of this block
  1588   // SSA specific ends
  1589   BlockEnd*  _end;                               // the last instruction of this block
  1590   BlockList  _exception_handlers;                // the exception handlers potentially invoked by this block
  1591   ValueStackStack* _exception_states;            // only for xhandler entries: states of all instructions that have an edge to this xhandler
  1592   int        _exception_handler_pco;             // if this block is the start of an exception handler,
  1593                                                  // this records the PC offset in the assembly code of the
  1594                                                  // first instruction in this block
  1595   Label      _label;                             // the label associated with this block
  1596   LIR_List*  _lir;                               // the low level intermediate representation for this block
  1598   BitMap      _live_in;                          // set of live LIR_Opr registers at entry to this block
  1599   BitMap      _live_out;                         // set of live LIR_Opr registers at exit from this block
  1600   BitMap      _live_gen;                         // set of registers used before any redefinition in this block
  1601   BitMap      _live_kill;                        // set of registers defined in this block
  1603   BitMap      _fpu_register_usage;
  1604   intArray*   _fpu_stack_state;                  // For x86 FPU code generation with UseLinearScan
  1605   int         _first_lir_instruction_id;         // ID of first LIR instruction in this block
  1606   int         _last_lir_instruction_id;          // ID of last LIR instruction in this block
  1608   void iterate_preorder (boolArray& mark, BlockClosure* closure);
  1609   void iterate_postorder(boolArray& mark, BlockClosure* closure);
  1611   friend class SuxAndWeightAdjuster;
  1613  public:
  1614    void* operator new(size_t size) {
  1615     Compilation* c = Compilation::current();
  1616     void* res = c->arena()->Amalloc(size);
  1617     ((BlockBegin*)res)->_id = c->get_next_id();
  1618     ((BlockBegin*)res)->_block_id = c->get_next_block_id();
  1619     return res;
  1622   // initialization/counting
  1623   static int  number_of_blocks() {
  1624     return Compilation::current()->number_of_blocks();
  1627   // creation
  1628   BlockBegin(int bci)
  1629   : StateSplit(illegalType)
  1630   , _bci(bci)
  1631   , _depth_first_number(-1)
  1632   , _linear_scan_number(-1)
  1633   , _loop_depth(0)
  1634   , _flags(0)
  1635   , _dominator_depth(-1)
  1636   , _dominator(NULL)
  1637   , _end(NULL)
  1638   , _predecessors(2)
  1639   , _successors(2)
  1640   , _dominates(2)
  1641   , _exception_handlers(1)
  1642   , _exception_states(NULL)
  1643   , _exception_handler_pco(-1)
  1644   , _lir(NULL)
  1645   , _loop_index(-1)
  1646   , _live_in()
  1647   , _live_out()
  1648   , _live_gen()
  1649   , _live_kill()
  1650   , _fpu_register_usage()
  1651   , _fpu_stack_state(NULL)
  1652   , _first_lir_instruction_id(-1)
  1653   , _last_lir_instruction_id(-1)
  1654   , _total_preds(0)
  1655   , _stores_to_locals()
  1657     _block = this;
  1658 #ifndef PRODUCT
  1659     set_printable_bci(bci);
  1660 #endif
  1663   // accessors
  1664   int block_id() const                           { return _block_id; }
  1665   int bci() const                                { return _bci; }
  1666   BlockList* successors()                        { return &_successors; }
  1667   BlockList* dominates()                         { return &_dominates; }
  1668   BlockBegin* dominator() const                  { return _dominator; }
  1669   int loop_depth() const                         { return _loop_depth; }
  1670   int dominator_depth() const                    { return _dominator_depth; }
  1671   int depth_first_number() const                 { return _depth_first_number; }
  1672   int linear_scan_number() const                 { return _linear_scan_number; }
  1673   BlockEnd* end() const                          { return _end; }
  1674   Label* label()                                 { return &_label; }
  1675   LIR_List* lir() const                          { return _lir; }
  1676   int exception_handler_pco() const              { return _exception_handler_pco; }
  1677   BitMap& live_in()                              { return _live_in;        }
  1678   BitMap& live_out()                             { return _live_out;       }
  1679   BitMap& live_gen()                             { return _live_gen;       }
  1680   BitMap& live_kill()                            { return _live_kill;      }
  1681   BitMap& fpu_register_usage()                   { return _fpu_register_usage; }
  1682   intArray* fpu_stack_state() const              { return _fpu_stack_state;    }
  1683   int first_lir_instruction_id() const           { return _first_lir_instruction_id; }
  1684   int last_lir_instruction_id() const            { return _last_lir_instruction_id; }
  1685   int total_preds() const                        { return _total_preds; }
  1686   BitMap& stores_to_locals()                     { return _stores_to_locals; }
  1688   // manipulation
  1689   void set_dominator(BlockBegin* dom)            { _dominator = dom; }
  1690   void set_loop_depth(int d)                     { _loop_depth = d; }
  1691   void set_dominator_depth(int d)                { _dominator_depth = d; }
  1692   void set_depth_first_number(int dfn)           { _depth_first_number = dfn; }
  1693   void set_linear_scan_number(int lsn)           { _linear_scan_number = lsn; }
  1694   void set_end(BlockEnd* end);
  1695   void clear_end();
  1696   void disconnect_from_graph();
  1697   static void disconnect_edge(BlockBegin* from, BlockBegin* to);
  1698   BlockBegin* insert_block_between(BlockBegin* sux);
  1699   void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  1700   void set_lir(LIR_List* lir)                    { _lir = lir; }
  1701   void set_exception_handler_pco(int pco)        { _exception_handler_pco = pco; }
  1702   void set_live_in       (BitMap map)            { _live_in = map;        }
  1703   void set_live_out      (BitMap map)            { _live_out = map;       }
  1704   void set_live_gen      (BitMap map)            { _live_gen = map;       }
  1705   void set_live_kill     (BitMap map)            { _live_kill = map;      }
  1706   void set_fpu_register_usage(BitMap map)        { _fpu_register_usage = map; }
  1707   void set_fpu_stack_state(intArray* state)      { _fpu_stack_state = state;  }
  1708   void set_first_lir_instruction_id(int id)      { _first_lir_instruction_id = id;  }
  1709   void set_last_lir_instruction_id(int id)       { _last_lir_instruction_id = id;  }
  1710   void increment_total_preds(int n = 1)          { _total_preds += n; }
  1711   void init_stores_to_locals(int locals_count)   { _stores_to_locals = BitMap(locals_count); _stores_to_locals.clear(); }
  1713   // generic
  1714   virtual void state_values_do(ValueVisitor* f);
  1716   // successors and predecessors
  1717   int number_of_sux() const;
  1718   BlockBegin* sux_at(int i) const;
  1719   void add_successor(BlockBegin* sux);
  1720   void remove_successor(BlockBegin* pred);
  1721   bool is_successor(BlockBegin* sux) const       { return _successors.contains(sux); }
  1723   void add_predecessor(BlockBegin* pred);
  1724   void remove_predecessor(BlockBegin* pred);
  1725   bool is_predecessor(BlockBegin* pred) const    { return _predecessors.contains(pred); }
  1726   int number_of_preds() const                    { return _predecessors.length(); }
  1727   BlockBegin* pred_at(int i) const               { return _predecessors[i]; }
  1729   // exception handlers potentially invoked by this block
  1730   void add_exception_handler(BlockBegin* b);
  1731   bool is_exception_handler(BlockBegin* b) const { return _exception_handlers.contains(b); }
  1732   int  number_of_exception_handlers() const      { return _exception_handlers.length(); }
  1733   BlockBegin* exception_handler_at(int i) const  { return _exception_handlers.at(i); }
  1735   // states of the instructions that have an edge to this exception handler
  1736   int number_of_exception_states()               { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states == NULL ? 0 : _exception_states->length(); }
  1737   ValueStack* exception_state_at(int idx) const  { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states->at(idx); }
  1738   int add_exception_state(ValueStack* state);
  1740   // flags
  1741   enum Flag {
  1742     no_flag                       = 0,
  1743     std_entry_flag                = 1 << 0,
  1744     osr_entry_flag                = 1 << 1,
  1745     exception_entry_flag          = 1 << 2,
  1746     subroutine_entry_flag         = 1 << 3,
  1747     backward_branch_target_flag   = 1 << 4,
  1748     is_on_work_list_flag          = 1 << 5,
  1749     was_visited_flag              = 1 << 6,
  1750     parser_loop_header_flag       = 1 << 7,  // set by parser to identify blocks where phi functions can not be created on demand
  1751     critical_edge_split_flag      = 1 << 8, // set for all blocks that are introduced when critical edges are split
  1752     linear_scan_loop_header_flag  = 1 << 9, // set during loop-detection for LinearScan
  1753     linear_scan_loop_end_flag     = 1 << 10, // set during loop-detection for LinearScan
  1754     donot_eliminate_range_checks  = 1 << 11  // Should be try to eliminate range checks in this block
  1755   };
  1757   void set(Flag f)                               { _flags |= f; }
  1758   void clear(Flag f)                             { _flags &= ~f; }
  1759   bool is_set(Flag f) const                      { return (_flags & f) != 0; }
  1760   bool is_entry_block() const {
  1761     const int entry_mask = std_entry_flag | osr_entry_flag | exception_entry_flag;
  1762     return (_flags & entry_mask) != 0;
  1765   // iteration
  1766   void iterate_preorder   (BlockClosure* closure);
  1767   void iterate_postorder  (BlockClosure* closure);
  1769   void block_values_do(ValueVisitor* f);
  1771   // loops
  1772   void set_loop_index(int ix)                    { _loop_index = ix;        }
  1773   int  loop_index() const                        { return _loop_index;      }
  1775   // merging
  1776   bool try_merge(ValueStack* state);             // try to merge states at block begin
  1777   void merge(ValueStack* state)                  { bool b = try_merge(state); assert(b, "merge failed"); }
  1779   // debugging
  1780   void print_block()                             PRODUCT_RETURN;
  1781   void print_block(InstructionPrinter& ip, bool live_only = false) PRODUCT_RETURN;
  1782 };
  1785 BASE(BlockEnd, StateSplit)
  1786  private:
  1787   BlockList*  _sux;
  1789  protected:
  1790   BlockList* sux() const                         { return _sux; }
  1792   void set_sux(BlockList* sux) {
  1793 #ifdef ASSERT
  1794     assert(sux != NULL, "sux must exist");
  1795     for (int i = sux->length() - 1; i >= 0; i--) assert(sux->at(i) != NULL, "sux must exist");
  1796 #endif
  1797     _sux = sux;
  1800  public:
  1801   // creation
  1802   BlockEnd(ValueType* type, ValueStack* state_before, bool is_safepoint)
  1803   : StateSplit(type, state_before)
  1804   , _sux(NULL)
  1806     set_flag(IsSafepointFlag, is_safepoint);
  1809   // accessors
  1810   bool is_safepoint() const                      { return check_flag(IsSafepointFlag); }
  1811   // For compatibility with old code, for new code use block()
  1812   BlockBegin* begin() const                      { return _block; }
  1814   // manipulation
  1815   void set_begin(BlockBegin* begin);
  1817   // successors
  1818   int number_of_sux() const                      { return _sux != NULL ? _sux->length() : 0; }
  1819   BlockBegin* sux_at(int i) const                { return _sux->at(i); }
  1820   BlockBegin* default_sux() const                { return sux_at(number_of_sux() - 1); }
  1821   BlockBegin** addr_sux_at(int i) const          { return _sux->adr_at(i); }
  1822   int sux_index(BlockBegin* sux) const           { return _sux->find(sux); }
  1823   void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  1824 };
  1827 LEAF(Goto, BlockEnd)
  1828  public:
  1829   enum Direction {
  1830     none,            // Just a regular goto
  1831     taken, not_taken // Goto produced from If
  1832   };
  1833  private:
  1834   ciMethod*   _profiled_method;
  1835   int         _profiled_bci;
  1836   Direction   _direction;
  1837  public:
  1838   // creation
  1839   Goto(BlockBegin* sux, ValueStack* state_before, bool is_safepoint = false)
  1840     : BlockEnd(illegalType, state_before, is_safepoint)
  1841     , _direction(none)
  1842     , _profiled_method(NULL)
  1843     , _profiled_bci(0) {
  1844     BlockList* s = new BlockList(1);
  1845     s->append(sux);
  1846     set_sux(s);
  1849   Goto(BlockBegin* sux, bool is_safepoint) : BlockEnd(illegalType, NULL, is_safepoint)
  1850                                            , _direction(none)
  1851                                            , _profiled_method(NULL)
  1852                                            , _profiled_bci(0) {
  1853     BlockList* s = new BlockList(1);
  1854     s->append(sux);
  1855     set_sux(s);
  1858   bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  1859   ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  1860   int profiled_bci() const                       { return _profiled_bci; }
  1861   Direction direction() const                    { return _direction; }
  1863   void set_should_profile(bool value)            { set_flag(ProfileMDOFlag, value); }
  1864   void set_profiled_method(ciMethod* method)     { _profiled_method = method; }
  1865   void set_profiled_bci(int bci)                 { _profiled_bci = bci; }
  1866   void set_direction(Direction d)                { _direction = d; }
  1867 };
  1869 #ifdef ASSERT
  1870 LEAF(Assert, Instruction)
  1871   private:
  1872   Value       _x;
  1873   Condition   _cond;
  1874   Value       _y;
  1875   char        *_message;
  1877  public:
  1878   // creation
  1879   // unordered_is_true is valid for float/double compares only
  1880    Assert(Value x, Condition cond, bool unordered_is_true, Value y);
  1882   // accessors
  1883   Value x() const                                { return _x; }
  1884   Condition cond() const                         { return _cond; }
  1885   bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  1886   Value y() const                                { return _y; }
  1887   const char *message() const                    { return _message; }
  1889   // generic
  1890   virtual void input_values_do(ValueVisitor* f)  { f->visit(&_x); f->visit(&_y); }
  1891 };
  1892 #endif
  1894 LEAF(RangeCheckPredicate, StateSplit)
  1895  private:
  1896   Value       _x;
  1897   Condition   _cond;
  1898   Value       _y;
  1900   void check_state();
  1902  public:
  1903   // creation
  1904   // unordered_is_true is valid for float/double compares only
  1905    RangeCheckPredicate(Value x, Condition cond, bool unordered_is_true, Value y, ValueStack* state) : StateSplit(illegalType)
  1906   , _x(x)
  1907   , _cond(cond)
  1908   , _y(y)
  1910     ASSERT_VALUES
  1911     set_flag(UnorderedIsTrueFlag, unordered_is_true);
  1912     assert(x->type()->tag() == y->type()->tag(), "types must match");
  1913     this->set_state(state);
  1914     check_state();
  1917   // Always deoptimize
  1918   RangeCheckPredicate(ValueStack* state) : StateSplit(illegalType)
  1920     this->set_state(state);
  1921     _x = _y = NULL;
  1922     check_state();
  1925   // accessors
  1926   Value x() const                                { return _x; }
  1927   Condition cond() const                         { return _cond; }
  1928   bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  1929   Value y() const                                { return _y; }
  1931   void always_fail()                             { _x = _y = NULL; }
  1933   // generic
  1934   virtual void input_values_do(ValueVisitor* f)  { StateSplit::input_values_do(f); f->visit(&_x); f->visit(&_y); }
  1935   HASHING3(RangeCheckPredicate, true, x()->subst(), y()->subst(), cond())
  1936 };
  1938 LEAF(If, BlockEnd)
  1939  private:
  1940   Value       _x;
  1941   Condition   _cond;
  1942   Value       _y;
  1943   ciMethod*   _profiled_method;
  1944   int         _profiled_bci; // Canonicalizer may alter bci of If node
  1945   bool        _swapped;      // Is the order reversed with respect to the original If in the
  1946                              // bytecode stream?
  1947  public:
  1948   // creation
  1949   // unordered_is_true is valid for float/double compares only
  1950   If(Value x, Condition cond, bool unordered_is_true, Value y, BlockBegin* tsux, BlockBegin* fsux, ValueStack* state_before, bool is_safepoint)
  1951     : BlockEnd(illegalType, state_before, is_safepoint)
  1952   , _x(x)
  1953   , _cond(cond)
  1954   , _y(y)
  1955   , _profiled_method(NULL)
  1956   , _profiled_bci(0)
  1957   , _swapped(false)
  1959     ASSERT_VALUES
  1960     set_flag(UnorderedIsTrueFlag, unordered_is_true);
  1961     assert(x->type()->tag() == y->type()->tag(), "types must match");
  1962     BlockList* s = new BlockList(2);
  1963     s->append(tsux);
  1964     s->append(fsux);
  1965     set_sux(s);
  1968   // accessors
  1969   Value x() const                                { return _x; }
  1970   Condition cond() const                         { return _cond; }
  1971   bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  1972   Value y() const                                { return _y; }
  1973   BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  1974   BlockBegin* tsux() const                       { return sux_for(true); }
  1975   BlockBegin* fsux() const                       { return sux_for(false); }
  1976   BlockBegin* usux() const                       { return sux_for(unordered_is_true()); }
  1977   bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  1978   ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  1979   int profiled_bci() const                       { return _profiled_bci; }    // set for profiled branches and tiered
  1980   bool is_swapped() const                        { return _swapped; }
  1982   // manipulation
  1983   void swap_operands() {
  1984     Value t = _x; _x = _y; _y = t;
  1985     _cond = mirror(_cond);
  1988   void swap_sux() {
  1989     assert(number_of_sux() == 2, "wrong number of successors");
  1990     BlockList* s = sux();
  1991     BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
  1992     _cond = negate(_cond);
  1993     set_flag(UnorderedIsTrueFlag, !check_flag(UnorderedIsTrueFlag));
  1996   void set_should_profile(bool value)             { set_flag(ProfileMDOFlag, value); }
  1997   void set_profiled_method(ciMethod* method)      { _profiled_method = method; }
  1998   void set_profiled_bci(int bci)                  { _profiled_bci = bci;       }
  1999   void set_swapped(bool value)                    { _swapped = value;         }
  2000   // generic
  2001   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_x); f->visit(&_y); }
  2002 };
  2005 LEAF(IfInstanceOf, BlockEnd)
  2006  private:
  2007   ciKlass* _klass;
  2008   Value    _obj;
  2009   bool     _test_is_instance;                    // jump if instance
  2010   int      _instanceof_bci;
  2012  public:
  2013   IfInstanceOf(ciKlass* klass, Value obj, bool test_is_instance, int instanceof_bci, BlockBegin* tsux, BlockBegin* fsux)
  2014   : BlockEnd(illegalType, NULL, false) // temporary set to false
  2015   , _klass(klass)
  2016   , _obj(obj)
  2017   , _test_is_instance(test_is_instance)
  2018   , _instanceof_bci(instanceof_bci)
  2020     ASSERT_VALUES
  2021     assert(instanceof_bci >= 0, "illegal bci");
  2022     BlockList* s = new BlockList(2);
  2023     s->append(tsux);
  2024     s->append(fsux);
  2025     set_sux(s);
  2028   // accessors
  2029   //
  2030   // Note 1: If test_is_instance() is true, IfInstanceOf tests if obj *is* an
  2031   //         instance of klass; otherwise it tests if it is *not* and instance
  2032   //         of klass.
  2033   //
  2034   // Note 2: IfInstanceOf instructions are created by combining an InstanceOf
  2035   //         and an If instruction. The IfInstanceOf bci() corresponds to the
  2036   //         bci that the If would have had; the (this->) instanceof_bci() is
  2037   //         the bci of the original InstanceOf instruction.
  2038   ciKlass* klass() const                         { return _klass; }
  2039   Value obj() const                              { return _obj; }
  2040   int instanceof_bci() const                     { return _instanceof_bci; }
  2041   bool test_is_instance() const                  { return _test_is_instance; }
  2042   BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  2043   BlockBegin* tsux() const                       { return sux_for(true); }
  2044   BlockBegin* fsux() const                       { return sux_for(false); }
  2046   // manipulation
  2047   void swap_sux() {
  2048     assert(number_of_sux() == 2, "wrong number of successors");
  2049     BlockList* s = sux();
  2050     BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
  2051     _test_is_instance = !_test_is_instance;
  2054   // generic
  2055   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_obj); }
  2056 };
  2059 BASE(Switch, BlockEnd)
  2060  private:
  2061   Value       _tag;
  2063  public:
  2064   // creation
  2065   Switch(Value tag, BlockList* sux, ValueStack* state_before, bool is_safepoint)
  2066   : BlockEnd(illegalType, state_before, is_safepoint)
  2067   , _tag(tag) {
  2068     ASSERT_VALUES
  2069     set_sux(sux);
  2072   // accessors
  2073   Value tag() const                              { return _tag; }
  2074   int length() const                             { return number_of_sux() - 1; }
  2076   virtual bool needs_exception_state() const     { return false; }
  2078   // generic
  2079   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_tag); }
  2080 };
  2083 LEAF(TableSwitch, Switch)
  2084  private:
  2085   int _lo_key;
  2087  public:
  2088   // creation
  2089   TableSwitch(Value tag, BlockList* sux, int lo_key, ValueStack* state_before, bool is_safepoint)
  2090     : Switch(tag, sux, state_before, is_safepoint)
  2091   , _lo_key(lo_key) {}
  2093   // accessors
  2094   int lo_key() const                             { return _lo_key; }
  2095   int hi_key() const                             { return _lo_key + length() - 1; }
  2096 };
  2099 LEAF(LookupSwitch, Switch)
  2100  private:
  2101   intArray* _keys;
  2103  public:
  2104   // creation
  2105   LookupSwitch(Value tag, BlockList* sux, intArray* keys, ValueStack* state_before, bool is_safepoint)
  2106   : Switch(tag, sux, state_before, is_safepoint)
  2107   , _keys(keys) {
  2108     assert(keys != NULL, "keys must exist");
  2109     assert(keys->length() == length(), "sux & keys have incompatible lengths");
  2112   // accessors
  2113   int key_at(int i) const                        { return _keys->at(i); }
  2114 };
  2117 LEAF(Return, BlockEnd)
  2118  private:
  2119   Value _result;
  2121  public:
  2122   // creation
  2123   Return(Value result) :
  2124     BlockEnd(result == NULL ? voidType : result->type()->base(), NULL, true),
  2125     _result(result) {}
  2127   // accessors
  2128   Value result() const                           { return _result; }
  2129   bool has_result() const                        { return result() != NULL; }
  2131   // generic
  2132   virtual void input_values_do(ValueVisitor* f) {
  2133     BlockEnd::input_values_do(f);
  2134     if (has_result()) f->visit(&_result);
  2136 };
  2139 LEAF(Throw, BlockEnd)
  2140  private:
  2141   Value _exception;
  2143  public:
  2144   // creation
  2145   Throw(Value exception, ValueStack* state_before) : BlockEnd(illegalType, state_before, true), _exception(exception) {
  2146     ASSERT_VALUES
  2149   // accessors
  2150   Value exception() const                        { return _exception; }
  2152   // generic
  2153   virtual bool can_trap() const                  { return true; }
  2154   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_exception); }
  2155 };
  2158 LEAF(Base, BlockEnd)
  2159  public:
  2160   // creation
  2161   Base(BlockBegin* std_entry, BlockBegin* osr_entry) : BlockEnd(illegalType, NULL, false) {
  2162     assert(std_entry->is_set(BlockBegin::std_entry_flag), "std entry must be flagged");
  2163     assert(osr_entry == NULL || osr_entry->is_set(BlockBegin::osr_entry_flag), "osr entry must be flagged");
  2164     BlockList* s = new BlockList(2);
  2165     if (osr_entry != NULL) s->append(osr_entry);
  2166     s->append(std_entry); // must be default sux!
  2167     set_sux(s);
  2170   // accessors
  2171   BlockBegin* std_entry() const                  { return default_sux(); }
  2172   BlockBegin* osr_entry() const                  { return number_of_sux() < 2 ? NULL : sux_at(0); }
  2173 };
  2176 LEAF(OsrEntry, Instruction)
  2177  public:
  2178   // creation
  2179 #ifdef _LP64
  2180   OsrEntry() : Instruction(longType) { pin(); }
  2181 #else
  2182   OsrEntry() : Instruction(intType)  { pin(); }
  2183 #endif
  2185   // generic
  2186   virtual void input_values_do(ValueVisitor* f)   { }
  2187 };
  2190 // Models the incoming exception at a catch site
  2191 LEAF(ExceptionObject, Instruction)
  2192  public:
  2193   // creation
  2194   ExceptionObject() : Instruction(objectType) {
  2195     pin();
  2198   // generic
  2199   virtual void input_values_do(ValueVisitor* f)   { }
  2200 };
  2203 // Models needed rounding for floating-point values on Intel.
  2204 // Currently only used to represent rounding of double-precision
  2205 // values stored into local variables, but could be used to model
  2206 // intermediate rounding of single-precision values as well.
  2207 LEAF(RoundFP, Instruction)
  2208  private:
  2209   Value _input;             // floating-point value to be rounded
  2211  public:
  2212   RoundFP(Value input)
  2213   : Instruction(input->type()) // Note: should not be used for constants
  2214   , _input(input)
  2216     ASSERT_VALUES
  2219   // accessors
  2220   Value input() const                            { return _input; }
  2222   // generic
  2223   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_input); }
  2224 };
  2227 BASE(UnsafeOp, Instruction)
  2228  private:
  2229   BasicType _basic_type;    // ValueType can not express byte-sized integers
  2231  protected:
  2232   // creation
  2233   UnsafeOp(BasicType basic_type, bool is_put)
  2234   : Instruction(is_put ? voidType : as_ValueType(basic_type))
  2235   , _basic_type(basic_type)
  2237     //Note:  Unsafe ops are not not guaranteed to throw NPE.
  2238     // Convservatively, Unsafe operations must be pinned though we could be
  2239     // looser about this if we wanted to..
  2240     pin();
  2243  public:
  2244   // accessors
  2245   BasicType basic_type()                         { return _basic_type; }
  2247   // generic
  2248   virtual void input_values_do(ValueVisitor* f)   { }
  2249 };
  2252 BASE(UnsafeRawOp, UnsafeOp)
  2253  private:
  2254   Value _base;                                   // Base address (a Java long)
  2255   Value _index;                                  // Index if computed by optimizer; initialized to NULL
  2256   int   _log2_scale;                             // Scale factor: 0, 1, 2, or 3.
  2257                                                  // Indicates log2 of number of bytes (1, 2, 4, or 8)
  2258                                                  // to scale index by.
  2260  protected:
  2261   UnsafeRawOp(BasicType basic_type, Value addr, bool is_put)
  2262   : UnsafeOp(basic_type, is_put)
  2263   , _base(addr)
  2264   , _index(NULL)
  2265   , _log2_scale(0)
  2267     // Can not use ASSERT_VALUES because index may be NULL
  2268     assert(addr != NULL && addr->type()->is_long(), "just checking");
  2271   UnsafeRawOp(BasicType basic_type, Value base, Value index, int log2_scale, bool is_put)
  2272   : UnsafeOp(basic_type, is_put)
  2273   , _base(base)
  2274   , _index(index)
  2275   , _log2_scale(log2_scale)
  2279  public:
  2280   // accessors
  2281   Value base()                                   { return _base; }
  2282   Value index()                                  { return _index; }
  2283   bool  has_index()                              { return (_index != NULL); }
  2284   int   log2_scale()                             { return _log2_scale; }
  2286   // setters
  2287   void set_base (Value base)                     { _base  = base; }
  2288   void set_index(Value index)                    { _index = index; }
  2289   void set_log2_scale(int log2_scale)            { _log2_scale = log2_scale; }
  2291   // generic
  2292   virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
  2293                                                    f->visit(&_base);
  2294                                                    if (has_index()) f->visit(&_index); }
  2295 };
  2298 LEAF(UnsafeGetRaw, UnsafeRawOp)
  2299  private:
  2300  bool _may_be_unaligned, _is_wide;  // For OSREntry
  2302  public:
  2303  UnsafeGetRaw(BasicType basic_type, Value addr, bool may_be_unaligned, bool is_wide = false)
  2304   : UnsafeRawOp(basic_type, addr, false) {
  2305     _may_be_unaligned = may_be_unaligned;
  2306     _is_wide = is_wide;
  2309  UnsafeGetRaw(BasicType basic_type, Value base, Value index, int log2_scale, bool may_be_unaligned, bool is_wide = false)
  2310   : UnsafeRawOp(basic_type, base, index, log2_scale, false) {
  2311     _may_be_unaligned = may_be_unaligned;
  2312     _is_wide = is_wide;
  2315   bool may_be_unaligned()                         { return _may_be_unaligned; }
  2316   bool is_wide()                                  { return _is_wide; }
  2317 };
  2320 LEAF(UnsafePutRaw, UnsafeRawOp)
  2321  private:
  2322   Value _value;                                  // Value to be stored
  2324  public:
  2325   UnsafePutRaw(BasicType basic_type, Value addr, Value value)
  2326   : UnsafeRawOp(basic_type, addr, true)
  2327   , _value(value)
  2329     assert(value != NULL, "just checking");
  2330     ASSERT_VALUES
  2333   UnsafePutRaw(BasicType basic_type, Value base, Value index, int log2_scale, Value value)
  2334   : UnsafeRawOp(basic_type, base, index, log2_scale, true)
  2335   , _value(value)
  2337     assert(value != NULL, "just checking");
  2338     ASSERT_VALUES
  2341   // accessors
  2342   Value value()                                  { return _value; }
  2344   // generic
  2345   virtual void input_values_do(ValueVisitor* f)   { UnsafeRawOp::input_values_do(f);
  2346                                                    f->visit(&_value); }
  2347 };
  2350 BASE(UnsafeObjectOp, UnsafeOp)
  2351  private:
  2352   Value _object;                                 // Object to be fetched from or mutated
  2353   Value _offset;                                 // Offset within object
  2354   bool  _is_volatile;                            // true if volatile - dl/JSR166
  2355  public:
  2356   UnsafeObjectOp(BasicType basic_type, Value object, Value offset, bool is_put, bool is_volatile)
  2357     : UnsafeOp(basic_type, is_put), _object(object), _offset(offset), _is_volatile(is_volatile)
  2361   // accessors
  2362   Value object()                                 { return _object; }
  2363   Value offset()                                 { return _offset; }
  2364   bool  is_volatile()                            { return _is_volatile; }
  2365   // generic
  2366   virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
  2367                                                    f->visit(&_object);
  2368                                                    f->visit(&_offset); }
  2369 };
  2372 LEAF(UnsafeGetObject, UnsafeObjectOp)
  2373  public:
  2374   UnsafeGetObject(BasicType basic_type, Value object, Value offset, bool is_volatile)
  2375   : UnsafeObjectOp(basic_type, object, offset, false, is_volatile)
  2377     ASSERT_VALUES
  2379 };
  2382 LEAF(UnsafePutObject, UnsafeObjectOp)
  2383  private:
  2384   Value _value;                                  // Value to be stored
  2385  public:
  2386   UnsafePutObject(BasicType basic_type, Value object, Value offset, Value value, bool is_volatile)
  2387   : UnsafeObjectOp(basic_type, object, offset, true, is_volatile)
  2388     , _value(value)
  2390     ASSERT_VALUES
  2393   // accessors
  2394   Value value()                                  { return _value; }
  2396   // generic
  2397   virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
  2398                                                    f->visit(&_value); }
  2399 };
  2401 LEAF(UnsafeGetAndSetObject, UnsafeObjectOp)
  2402  private:
  2403   Value _value;                                  // Value to be stored
  2404   bool  _is_add;
  2405  public:
  2406   UnsafeGetAndSetObject(BasicType basic_type, Value object, Value offset, Value value, bool is_add)
  2407   : UnsafeObjectOp(basic_type, object, offset, false, false)
  2408     , _value(value)
  2409     , _is_add(is_add)
  2411     ASSERT_VALUES
  2414   // accessors
  2415   bool is_add() const                            { return _is_add; }
  2416   Value value()                                  { return _value; }
  2418   // generic
  2419   virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
  2420                                                    f->visit(&_value); }
  2421 };
  2423 BASE(UnsafePrefetch, UnsafeObjectOp)
  2424  public:
  2425   UnsafePrefetch(Value object, Value offset)
  2426   : UnsafeObjectOp(T_VOID, object, offset, false, false)
  2429 };
  2432 LEAF(UnsafePrefetchRead, UnsafePrefetch)
  2433  public:
  2434   UnsafePrefetchRead(Value object, Value offset)
  2435   : UnsafePrefetch(object, offset)
  2437     ASSERT_VALUES
  2439 };
  2442 LEAF(UnsafePrefetchWrite, UnsafePrefetch)
  2443  public:
  2444   UnsafePrefetchWrite(Value object, Value offset)
  2445   : UnsafePrefetch(object, offset)
  2447     ASSERT_VALUES
  2449 };
  2451 LEAF(ProfileCall, Instruction)
  2452  private:
  2453   ciMethod* _method;
  2454   int       _bci_of_invoke;
  2455   ciMethod* _callee;         // the method that is called at the given bci
  2456   Value     _recv;
  2457   ciKlass*  _known_holder;
  2459  public:
  2460   ProfileCall(ciMethod* method, int bci, ciMethod* callee, Value recv, ciKlass* known_holder)
  2461     : Instruction(voidType)
  2462     , _method(method)
  2463     , _bci_of_invoke(bci)
  2464     , _callee(callee)
  2465     , _recv(recv)
  2466     , _known_holder(known_holder)
  2468     // The ProfileCall has side-effects and must occur precisely where located
  2469     pin();
  2472   ciMethod* method()      { return _method; }
  2473   int bci_of_invoke()     { return _bci_of_invoke; }
  2474   ciMethod* callee()      { return _callee; }
  2475   Value recv()            { return _recv; }
  2476   ciKlass* known_holder() { return _known_holder; }
  2478   virtual void input_values_do(ValueVisitor* f)   { if (_recv != NULL) f->visit(&_recv); }
  2479 };
  2482 // Call some C runtime function that doesn't safepoint,
  2483 // optionally passing the current thread as the first argument.
  2484 LEAF(RuntimeCall, Instruction)
  2485  private:
  2486   const char* _entry_name;
  2487   address     _entry;
  2488   Values*     _args;
  2489   bool        _pass_thread;  // Pass the JavaThread* as an implicit first argument
  2491  public:
  2492   RuntimeCall(ValueType* type, const char* entry_name, address entry, Values* args, bool pass_thread = true)
  2493     : Instruction(type)
  2494     , _entry(entry)
  2495     , _args(args)
  2496     , _entry_name(entry_name)
  2497     , _pass_thread(pass_thread) {
  2498     ASSERT_VALUES
  2499     pin();
  2502   const char* entry_name() const  { return _entry_name; }
  2503   address entry() const           { return _entry; }
  2504   int number_of_arguments() const { return _args->length(); }
  2505   Value argument_at(int i) const  { return _args->at(i); }
  2506   bool pass_thread() const        { return _pass_thread; }
  2508   virtual void input_values_do(ValueVisitor* f)   {
  2509     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  2511 };
  2513 // Use to trip invocation counter of an inlined method
  2515 LEAF(ProfileInvoke, Instruction)
  2516  private:
  2517   ciMethod*   _inlinee;
  2518   ValueStack* _state;
  2520  public:
  2521   ProfileInvoke(ciMethod* inlinee,  ValueStack* state)
  2522     : Instruction(voidType)
  2523     , _inlinee(inlinee)
  2524     , _state(state)
  2526     // The ProfileInvoke has side-effects and must occur precisely where located QQQ???
  2527     pin();
  2530   ciMethod* inlinee()      { return _inlinee; }
  2531   ValueStack* state()      { return _state; }
  2532   virtual void input_values_do(ValueVisitor*)   {}
  2533   virtual void state_values_do(ValueVisitor*);
  2534 };
  2536 LEAF(MemBar, Instruction)
  2537  private:
  2538   LIR_Code _code;
  2540  public:
  2541   MemBar(LIR_Code code)
  2542     : Instruction(voidType)
  2543     , _code(code)
  2545     pin();
  2548   LIR_Code code()           { return _code; }
  2550   virtual void input_values_do(ValueVisitor*)   {}
  2551 };
  2553 class BlockPair: public CompilationResourceObj {
  2554  private:
  2555   BlockBegin* _from;
  2556   BlockBegin* _to;
  2557  public:
  2558   BlockPair(BlockBegin* from, BlockBegin* to): _from(from), _to(to) {}
  2559   BlockBegin* from() const { return _from; }
  2560   BlockBegin* to() const   { return _to;   }
  2561   bool is_same(BlockBegin* from, BlockBegin* to) const { return  _from == from && _to == to; }
  2562   bool is_same(BlockPair* p) const { return  _from == p->from() && _to == p->to(); }
  2563   void set_to(BlockBegin* b)   { _to = b; }
  2564   void set_from(BlockBegin* b) { _from = b; }
  2565 };
  2568 define_array(BlockPairArray, BlockPair*)
  2569 define_stack(BlockPairList, BlockPairArray)
  2572 inline int         BlockBegin::number_of_sux() const            { assert(_end == NULL || _end->number_of_sux() == _successors.length(), "mismatch"); return _successors.length(); }
  2573 inline BlockBegin* BlockBegin::sux_at(int i) const              { assert(_end == NULL || _end->sux_at(i) == _successors.at(i), "mismatch");          return _successors.at(i); }
  2574 inline void        BlockBegin::add_successor(BlockBegin* sux)   { assert(_end == NULL, "Would create mismatch with successors of BlockEnd");         _successors.append(sux); }
  2576 #undef ASSERT_VALUES
  2578 #endif // SHARE_VM_C1_C1_INSTRUCTION_HPP

mercurial