src/share/vm/opto/escape.cpp

Thu, 20 Mar 2008 15:11:44 -0700

author
kvn
date
Thu, 20 Mar 2008 15:11:44 -0700
changeset 509
2a9af0b9cb1c
parent 500
99269dbf4ba8
child 512
36cd3cc4d27b
child 536
a6cb86dd209b
permissions
-rw-r--r--

6674600: (Escape Analysis) Optimize memory graph for instance's fields
Summary: EA gives opportunite to do more aggressive memory optimizations.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 uint PointsToNode::edge_target(uint e) const {
    29   assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
    30   return (_edges->at(e) >> EdgeShift);
    31 }
    33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
    34   assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
    35   return (EdgeType) (_edges->at(e) & EdgeMask);
    36 }
    38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    39   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   if (_edges == NULL) {
    41      Arena *a = Compile::current()->comp_arena();
    42     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    43   }
    44   _edges->append_if_missing(v);
    45 }
    47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    48   uint v = (targIdx << EdgeShift) + ((uint) et);
    50   _edges->remove(v);
    51 }
    53 #ifndef PRODUCT
    54 static char *node_type_names[] = {
    55   "UnknownType",
    56   "JavaObject",
    57   "LocalVar",
    58   "Field"
    59 };
    61 static char *esc_names[] = {
    62   "UnknownEscape",
    63   "NoEscape",
    64   "ArgEscape",
    65   "GlobalEscape"
    66 };
    68 static char *edge_type_suffix[] = {
    69  "?", // UnknownEdge
    70  "P", // PointsToEdge
    71  "D", // DeferredEdge
    72  "F"  // FieldEdge
    73 };
    75 void PointsToNode::dump() const {
    76   NodeType nt = node_type();
    77   EscapeState es = escape_state();
    78   tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
    79   for (uint i = 0; i < edge_count(); i++) {
    80     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    81   }
    82   tty->print("]]  ");
    83   if (_node == NULL)
    84     tty->print_cr("<null>");
    85   else
    86     _node->dump();
    87 }
    88 #endif
    90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
    91   _collecting = true;
    92   this->_compile = C;
    93   const PointsToNode &dummy = PointsToNode();
    94   int sz = C->unique();
    95   _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
    96   _phantom_object = C->top()->_idx;
    97   PointsToNode *phn = ptnode_adr(_phantom_object);
    98   phn->_node = C->top();
    99   phn->set_node_type(PointsToNode::JavaObject);
   100   phn->set_escape_state(PointsToNode::GlobalEscape);
   101 }
   103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   104   PointsToNode *f = ptnode_adr(from_i);
   105   PointsToNode *t = ptnode_adr(to_i);
   107   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   108   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   109   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   110   f->add_edge(to_i, PointsToNode::PointsToEdge);
   111 }
   113 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   114   PointsToNode *f = ptnode_adr(from_i);
   115   PointsToNode *t = ptnode_adr(to_i);
   117   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   118   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   119   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   120   // don't add a self-referential edge, this can occur during removal of
   121   // deferred edges
   122   if (from_i != to_i)
   123     f->add_edge(to_i, PointsToNode::DeferredEdge);
   124 }
   126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   127   const Type *adr_type = phase->type(adr);
   128   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   129       adr->in(AddPNode::Address)->is_Proj() &&
   130       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   131     // We are computing a raw address for a store captured by an Initialize
   132     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   133     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   134     assert(offs != Type::OffsetBot ||
   135            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   136            "offset must be a constant or it is initialization of array");
   137     return offs;
   138   }
   139   const TypePtr *t_ptr = adr_type->isa_ptr();
   140   assert(t_ptr != NULL, "must be a pointer type");
   141   return t_ptr->offset();
   142 }
   144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   145   PointsToNode *f = ptnode_adr(from_i);
   146   PointsToNode *t = ptnode_adr(to_i);
   148   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   149   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   150   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   151   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   152   t->set_offset(offset);
   154   f->add_edge(to_i, PointsToNode::FieldEdge);
   155 }
   157 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   158   PointsToNode *npt = ptnode_adr(ni);
   159   PointsToNode::EscapeState old_es = npt->escape_state();
   160   if (es > old_es)
   161     npt->set_escape_state(es);
   162 }
   164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   165                                PointsToNode::EscapeState es, bool done) {
   166   PointsToNode* ptadr = ptnode_adr(n->_idx);
   167   ptadr->_node = n;
   168   ptadr->set_node_type(nt);
   170   // inline set_escape_state(idx, es);
   171   PointsToNode::EscapeState old_es = ptadr->escape_state();
   172   if (es > old_es)
   173     ptadr->set_escape_state(es);
   175   if (done)
   176     _processed.set(n->_idx);
   177 }
   179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   180   uint idx = n->_idx;
   181   PointsToNode::EscapeState es;
   183   // If we are still collecting or there were no non-escaping allocations
   184   // we don't know the answer yet
   185   if (_collecting || !_has_allocations)
   186     return PointsToNode::UnknownEscape;
   188   // if the node was created after the escape computation, return
   189   // UnknownEscape
   190   if (idx >= (uint)_nodes->length())
   191     return PointsToNode::UnknownEscape;
   193   es = _nodes->at_grow(idx).escape_state();
   195   // if we have already computed a value, return it
   196   if (es != PointsToNode::UnknownEscape)
   197     return es;
   199   // compute max escape state of anything this node could point to
   200   VectorSet ptset(Thread::current()->resource_area());
   201   PointsTo(ptset, n, phase);
   202   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   203     uint pt = i.elem;
   204     PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
   205     if (pes > es)
   206       es = pes;
   207   }
   208   // cache the computed escape state
   209   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   210   _nodes->adr_at(idx)->set_escape_state(es);
   211   return es;
   212 }
   214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   215   VectorSet visited(Thread::current()->resource_area());
   216   GrowableArray<uint>  worklist;
   218   n = n->uncast();
   219   PointsToNode  npt = _nodes->at_grow(n->_idx);
   221   // If we have a JavaObject, return just that object
   222   if (npt.node_type() == PointsToNode::JavaObject) {
   223     ptset.set(n->_idx);
   224     return;
   225   }
   226   assert(npt._node != NULL, "unregistered node");
   228   worklist.push(n->_idx);
   229   while(worklist.length() > 0) {
   230     int ni = worklist.pop();
   231     PointsToNode pn = _nodes->at_grow(ni);
   232     if (!visited.test_set(ni)) {
   233       // ensure that all inputs of a Phi have been processed
   234       assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
   236       int edges_processed = 0;
   237       for (uint e = 0; e < pn.edge_count(); e++) {
   238         uint etgt = pn.edge_target(e);
   239         PointsToNode::EdgeType et = pn.edge_type(e);
   240         if (et == PointsToNode::PointsToEdge) {
   241           ptset.set(etgt);
   242           edges_processed++;
   243         } else if (et == PointsToNode::DeferredEdge) {
   244           worklist.push(etgt);
   245           edges_processed++;
   246         } else {
   247           assert(false,"neither PointsToEdge or DeferredEdge");
   248         }
   249       }
   250       if (edges_processed == 0) {
   251         // no deferred or pointsto edges found.  Assume the value was set
   252         // outside this method.  Add the phantom object to the pointsto set.
   253         ptset.set(_phantom_object);
   254       }
   255     }
   256   }
   257 }
   259 void ConnectionGraph::remove_deferred(uint ni) {
   260   VectorSet visited(Thread::current()->resource_area());
   262   uint i = 0;
   263   PointsToNode *ptn = ptnode_adr(ni);
   265   while(i < ptn->edge_count()) {
   266     uint t = ptn->edge_target(i);
   267     PointsToNode *ptt = ptnode_adr(t);
   268     if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
   269       i++;
   270     } else {
   271       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   272       if(!visited.test_set(t)) {
   273         for (uint j = 0; j < ptt->edge_count(); j++) {
   274           uint n1 = ptt->edge_target(j);
   275           PointsToNode *pt1 = ptnode_adr(n1);
   276           switch(ptt->edge_type(j)) {
   277             case PointsToNode::PointsToEdge:
   278               add_pointsto_edge(ni, n1);
   279               if(n1 == _phantom_object) {
   280                 // Special case - field set outside (globally escaping).
   281                 ptn->set_escape_state(PointsToNode::GlobalEscape);
   282               }
   283               break;
   284             case PointsToNode::DeferredEdge:
   285               add_deferred_edge(ni, n1);
   286               break;
   287             case PointsToNode::FieldEdge:
   288               assert(false, "invalid connection graph");
   289               break;
   290           }
   291         }
   292       }
   293     }
   294   }
   295 }
   298 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   299 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   300 //  a pointsto edge is added if it is a JavaObject
   302 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   303   PointsToNode an = _nodes->at_grow(adr_i);
   304   PointsToNode to = _nodes->at_grow(to_i);
   305   bool deferred = (to.node_type() == PointsToNode::LocalVar);
   307   for (uint fe = 0; fe < an.edge_count(); fe++) {
   308     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   309     int fi = an.edge_target(fe);
   310     PointsToNode pf = _nodes->at_grow(fi);
   311     int po = pf.offset();
   312     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   313       if (deferred)
   314         add_deferred_edge(fi, to_i);
   315       else
   316         add_pointsto_edge(fi, to_i);
   317     }
   318   }
   319 }
   321 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   322 // whose offset matches "offset".
   323 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   324   PointsToNode an = _nodes->at_grow(adr_i);
   325   for (uint fe = 0; fe < an.edge_count(); fe++) {
   326     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   327     int fi = an.edge_target(fe);
   328     PointsToNode pf = _nodes->at_grow(fi);
   329     int po = pf.offset();
   330     if (pf.edge_count() == 0) {
   331       // we have not seen any stores to this field, assume it was set outside this method
   332       add_pointsto_edge(fi, _phantom_object);
   333     }
   334     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   335       add_deferred_edge(from_i, fi);
   336     }
   337   }
   338 }
   340 // Helper functions
   342 static Node* get_addp_base(Node *addp) {
   343   assert(addp->is_AddP(), "must be AddP");
   344   //
   345   // AddP cases for Base and Address inputs:
   346   // case #1. Direct object's field reference:
   347   //     Allocate
   348   //       |
   349   //     Proj #5 ( oop result )
   350   //       |
   351   //     CheckCastPP (cast to instance type)
   352   //      | |
   353   //     AddP  ( base == address )
   354   //
   355   // case #2. Indirect object's field reference:
   356   //      Phi
   357   //       |
   358   //     CastPP (cast to instance type)
   359   //      | |
   360   //     AddP  ( base == address )
   361   //
   362   // case #3. Raw object's field reference for Initialize node:
   363   //      Allocate
   364   //        |
   365   //      Proj #5 ( oop result )
   366   //  top   |
   367   //     \  |
   368   //     AddP  ( base == top )
   369   //
   370   // case #4. Array's element reference:
   371   //   {CheckCastPP | CastPP}
   372   //     |  | |
   373   //     |  AddP ( array's element offset )
   374   //     |  |
   375   //     AddP ( array's offset )
   376   //
   377   // case #5. Raw object's field reference for arraycopy stub call:
   378   //          The inline_native_clone() case when the arraycopy stub is called
   379   //          after the allocation before Initialize and CheckCastPP nodes.
   380   //      Allocate
   381   //        |
   382   //      Proj #5 ( oop result )
   383   //       | |
   384   //       AddP  ( base == address )
   385   //
   386   // case #6. Constant Pool or ThreadLocal or Raw object's field reference:
   387   //      ConP # Object from Constant Pool.
   388   //  top   |
   389   //     \  |
   390   //     AddP  ( base == top )
   391   //
   392   Node *base = addp->in(AddPNode::Base)->uncast();
   393   if (base->is_top()) { // The AddP case #3 and #6.
   394     base = addp->in(AddPNode::Address)->uncast();
   395     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   396            base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL ||
   397            base->is_Proj() && base->in(0)->is_Allocate(), "sanity");
   398   }
   399   return base;
   400 }
   402 static Node* find_second_addp(Node* addp, Node* n) {
   403   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   405   Node* addp2 = addp->raw_out(0);
   406   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   407       addp2->in(AddPNode::Base) == n &&
   408       addp2->in(AddPNode::Address) == addp) {
   410     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   411     //
   412     // Find array's offset to push it on worklist first and
   413     // as result process an array's element offset first (pushed second)
   414     // to avoid CastPP for the array's offset.
   415     // Otherwise the inserted CastPP (LocalVar) will point to what
   416     // the AddP (Field) points to. Which would be wrong since
   417     // the algorithm expects the CastPP has the same point as
   418     // as AddP's base CheckCastPP (LocalVar).
   419     //
   420     //    ArrayAllocation
   421     //     |
   422     //    CheckCastPP
   423     //     |
   424     //    memProj (from ArrayAllocation CheckCastPP)
   425     //     |  ||
   426     //     |  ||   Int (element index)
   427     //     |  ||    |   ConI (log(element size))
   428     //     |  ||    |   /
   429     //     |  ||   LShift
   430     //     |  ||  /
   431     //     |  AddP (array's element offset)
   432     //     |  |
   433     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   434     //     | / /
   435     //     AddP (array's offset)
   436     //      |
   437     //     Load/Store (memory operation on array's element)
   438     //
   439     return addp2;
   440   }
   441   return NULL;
   442 }
   444 //
   445 // Adjust the type and inputs of an AddP which computes the
   446 // address of a field of an instance
   447 //
   448 void ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   449   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   450   assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
   451   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   452   if (t == NULL) {
   453     // We are computing a raw address for a store captured by an Initialize
   454     // compute an appropriate address type.
   455     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   456     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   457     int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   458     assert(offs != Type::OffsetBot, "offset must be a constant");
   459     t = base_t->add_offset(offs)->is_oopptr();
   460   }
   461   uint inst_id =  base_t->instance_id();
   462   assert(!t->is_instance() || t->instance_id() == inst_id,
   463                              "old type must be non-instance or match new type");
   464   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   465   // Do NOT remove the next call: ensure an new alias index is allocated
   466   // for the instance type
   467   int alias_idx = _compile->get_alias_index(tinst);
   468   igvn->set_type(addp, tinst);
   469   // record the allocation in the node map
   470   set_map(addp->_idx, get_map(base->_idx));
   471   // if the Address input is not the appropriate instance type
   472   // (due to intervening casts,) insert a cast
   473   Node *adr = addp->in(AddPNode::Address);
   474   const TypeOopPtr  *atype = igvn->type(adr)->isa_oopptr();
   475   if (atype != NULL && atype->instance_id() != inst_id) {
   476     assert(!atype->is_instance(), "no conflicting instances");
   477     const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
   478     Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
   479     acast->set_req(0, adr->in(0));
   480     igvn->set_type(acast, new_atype);
   481     record_for_optimizer(acast);
   482     Node *bcast = acast;
   483     Node *abase = addp->in(AddPNode::Base);
   484     if (abase != adr) {
   485       bcast = new (_compile, 2) CastPPNode(abase, base_t);
   486       bcast->set_req(0, abase->in(0));
   487       igvn->set_type(bcast, base_t);
   488       record_for_optimizer(bcast);
   489     }
   490     igvn->hash_delete(addp);
   491     addp->set_req(AddPNode::Base, bcast);
   492     addp->set_req(AddPNode::Address, acast);
   493     igvn->hash_insert(addp);
   494   }
   495   // Put on IGVN worklist since at least addp's type was changed above.
   496   record_for_optimizer(addp);
   497 }
   499 //
   500 // Create a new version of orig_phi if necessary. Returns either the newly
   501 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   502 // phi was created.  Cache the last newly created phi in the node map.
   503 //
   504 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   505   Compile *C = _compile;
   506   new_created = false;
   507   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   508   // nothing to do if orig_phi is bottom memory or matches alias_idx
   509   if (phi_alias_idx == alias_idx) {
   510     return orig_phi;
   511   }
   512   // have we already created a Phi for this alias index?
   513   PhiNode *result = get_map_phi(orig_phi->_idx);
   514   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   515     return result;
   516   }
   517   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   518     if (C->do_escape_analysis() == true && !C->failing()) {
   519       // Retry compilation without escape analysis.
   520       // If this is the first failure, the sentinel string will "stick"
   521       // to the Compile object, and the C2Compiler will see it and retry.
   522       C->record_failure(C2Compiler::retry_no_escape_analysis());
   523     }
   524     return NULL;
   525   }
   526   orig_phi_worklist.append_if_missing(orig_phi);
   527   const TypePtr *atype = C->get_adr_type(alias_idx);
   528   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   529   set_map_phi(orig_phi->_idx, result);
   530   igvn->set_type(result, result->bottom_type());
   531   record_for_optimizer(result);
   532   new_created = true;
   533   return result;
   534 }
   536 //
   537 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   538 // specified alias index.
   539 //
   540 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   542   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   543   Compile *C = _compile;
   544   bool new_phi_created;
   545   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   546   if (!new_phi_created) {
   547     return result;
   548   }
   550   GrowableArray<PhiNode *>  phi_list;
   551   GrowableArray<uint>  cur_input;
   553   PhiNode *phi = orig_phi;
   554   uint idx = 1;
   555   bool finished = false;
   556   while(!finished) {
   557     while (idx < phi->req()) {
   558       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   559       if (mem != NULL && mem->is_Phi()) {
   560         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   561         if (new_phi_created) {
   562           // found an phi for which we created a new split, push current one on worklist and begin
   563           // processing new one
   564           phi_list.push(phi);
   565           cur_input.push(idx);
   566           phi = mem->as_Phi();
   567           result = newphi;
   568           idx = 1;
   569           continue;
   570         } else {
   571           mem = newphi;
   572         }
   573       }
   574       if (C->failing()) {
   575         return NULL;
   576       }
   577       result->set_req(idx++, mem);
   578     }
   579 #ifdef ASSERT
   580     // verify that the new Phi has an input for each input of the original
   581     assert( phi->req() == result->req(), "must have same number of inputs.");
   582     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   583 #endif
   584     // Check if all new phi's inputs have specified alias index.
   585     // Otherwise use old phi.
   586     for (uint i = 1; i < phi->req(); i++) {
   587       Node* in = result->in(i);
   588       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   589     }
   590     // we have finished processing a Phi, see if there are any more to do
   591     finished = (phi_list.length() == 0 );
   592     if (!finished) {
   593       phi = phi_list.pop();
   594       idx = cur_input.pop();
   595       PhiNode *prev_result = get_map_phi(phi->_idx);
   596       prev_result->set_req(idx++, result);
   597       result = prev_result;
   598     }
   599   }
   600   return result;
   601 }
   604 //
   605 // The next methods are derived from methods in MemNode.
   606 //
   607 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   608   Node *mem = mmem;
   609   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   610   // means an array I have not precisely typed yet.  Do not do any
   611   // alias stuff with it any time soon.
   612   if( tinst->base() != Type::AnyPtr &&
   613       !(tinst->klass()->is_java_lang_Object() &&
   614         tinst->offset() == Type::OffsetBot) ) {
   615     mem = mmem->memory_at(alias_idx);
   616     // Update input if it is progress over what we have now
   617   }
   618   return mem;
   619 }
   621 //
   622 // Search memory chain of "mem" to find a MemNode whose address
   623 // is the specified alias index.
   624 //
   625 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   626   if (orig_mem == NULL)
   627     return orig_mem;
   628   Compile* C = phase->C;
   629   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   630   bool is_instance = (tinst != NULL) && tinst->is_instance();
   631   Node *prev = NULL;
   632   Node *result = orig_mem;
   633   while (prev != result) {
   634     prev = result;
   635     if (result->is_Mem()) {
   636       MemNode *mem = result->as_Mem();
   637       const Type *at = phase->type(mem->in(MemNode::Address));
   638       if (at != Type::TOP) {
   639         assert (at->isa_ptr() != NULL, "pointer type required.");
   640         int idx = C->get_alias_index(at->is_ptr());
   641         if (idx == alias_idx)
   642           break;
   643       }
   644       result = mem->in(MemNode::Memory);
   645     }
   646     if (!is_instance)
   647       continue;  // don't search further for non-instance types
   648     // skip over a call which does not affect this memory slice
   649     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   650       Node *proj_in = result->in(0);
   651       if (proj_in->is_Call()) {
   652         CallNode *call = proj_in->as_Call();
   653         if (!call->may_modify(tinst, phase)) {
   654           result = call->in(TypeFunc::Memory);
   655         }
   656       } else if (proj_in->is_Initialize()) {
   657         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   658         // Stop if this is the initialization for the object instance which
   659         // which contains this memory slice, otherwise skip over it.
   660         if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
   661           result = proj_in->in(TypeFunc::Memory);
   662         }
   663       } else if (proj_in->is_MemBar()) {
   664         result = proj_in->in(TypeFunc::Memory);
   665       }
   666     } else if (result->is_MergeMem()) {
   667       MergeMemNode *mmem = result->as_MergeMem();
   668       result = step_through_mergemem(mmem, alias_idx, tinst);
   669       if (result == mmem->base_memory()) {
   670         // Didn't find instance memory, search through general slice recursively.
   671         result = mmem->memory_at(C->get_general_index(alias_idx));
   672         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   673         if (C->failing()) {
   674           return NULL;
   675         }
   676         mmem->set_memory_at(alias_idx, result);
   677       }
   678     } else if (result->is_Phi() &&
   679                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   680       Node *un = result->as_Phi()->unique_input(phase);
   681       if (un != NULL) {
   682         result = un;
   683       } else {
   684         break;
   685       }
   686     }
   687   }
   688   if (is_instance && result->is_Phi()) {
   689     PhiNode *mphi = result->as_Phi();
   690     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   691     const TypePtr *t = mphi->adr_type();
   692     if (C->get_alias_index(t) != alias_idx) {
   693       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   694     }
   695   }
   696   // the result is either MemNode, PhiNode, InitializeNode.
   697   return result;
   698 }
   701 //
   702 //  Convert the types of unescaped object to instance types where possible,
   703 //  propagate the new type information through the graph, and update memory
   704 //  edges and MergeMem inputs to reflect the new type.
   705 //
   706 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   707 //  The processing is done in 4 phases:
   708 //
   709 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   710 //            types for the CheckCastPP for allocations where possible.
   711 //            Propagate the the new types through users as follows:
   712 //               casts and Phi:  push users on alloc_worklist
   713 //               AddP:  cast Base and Address inputs to the instance type
   714 //                      push any AddP users on alloc_worklist and push any memnode
   715 //                      users onto memnode_worklist.
   716 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   717 //            search the Memory chain for a store with the appropriate type
   718 //            address type.  If a Phi is found, create a new version with
   719 //            the approriate memory slices from each of the Phi inputs.
   720 //            For stores, process the users as follows:
   721 //               MemNode:  push on memnode_worklist
   722 //               MergeMem: push on mergemem_worklist
   723 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   724 //            moving the first node encountered of each  instance type to the
   725 //            the input corresponding to its alias index.
   726 //            appropriate memory slice.
   727 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   728 //
   729 // In the following example, the CheckCastPP nodes are the cast of allocation
   730 // results and the allocation of node 29 is unescaped and eligible to be an
   731 // instance type.
   732 //
   733 // We start with:
   734 //
   735 //     7 Parm #memory
   736 //    10  ConI  "12"
   737 //    19  CheckCastPP   "Foo"
   738 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   739 //    29  CheckCastPP   "Foo"
   740 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   741 //
   742 //    40  StoreP  25   7  20   ... alias_index=4
   743 //    50  StoreP  35  40  30   ... alias_index=4
   744 //    60  StoreP  45  50  20   ... alias_index=4
   745 //    70  LoadP    _  60  30   ... alias_index=4
   746 //    80  Phi     75  50  60   Memory alias_index=4
   747 //    90  LoadP    _  80  30   ... alias_index=4
   748 //   100  LoadP    _  80  20   ... alias_index=4
   749 //
   750 //
   751 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   752 // and creating a new alias index for node 30.  This gives:
   753 //
   754 //     7 Parm #memory
   755 //    10  ConI  "12"
   756 //    19  CheckCastPP   "Foo"
   757 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   758 //    29  CheckCastPP   "Foo"  iid=24
   759 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   760 //
   761 //    40  StoreP  25   7  20   ... alias_index=4
   762 //    50  StoreP  35  40  30   ... alias_index=6
   763 //    60  StoreP  45  50  20   ... alias_index=4
   764 //    70  LoadP    _  60  30   ... alias_index=6
   765 //    80  Phi     75  50  60   Memory alias_index=4
   766 //    90  LoadP    _  80  30   ... alias_index=6
   767 //   100  LoadP    _  80  20   ... alias_index=4
   768 //
   769 // In phase 2, new memory inputs are computed for the loads and stores,
   770 // And a new version of the phi is created.  In phase 4, the inputs to
   771 // node 80 are updated and then the memory nodes are updated with the
   772 // values computed in phase 2.  This results in:
   773 //
   774 //     7 Parm #memory
   775 //    10  ConI  "12"
   776 //    19  CheckCastPP   "Foo"
   777 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   778 //    29  CheckCastPP   "Foo"  iid=24
   779 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   780 //
   781 //    40  StoreP  25  7   20   ... alias_index=4
   782 //    50  StoreP  35  7   30   ... alias_index=6
   783 //    60  StoreP  45  40  20   ... alias_index=4
   784 //    70  LoadP    _  50  30   ... alias_index=6
   785 //    80  Phi     75  40  60   Memory alias_index=4
   786 //   120  Phi     75  50  50   Memory alias_index=6
   787 //    90  LoadP    _ 120  30   ... alias_index=6
   788 //   100  LoadP    _  80  20   ... alias_index=4
   789 //
   790 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   791   GrowableArray<Node *>  memnode_worklist;
   792   GrowableArray<Node *>  mergemem_worklist;
   793   GrowableArray<PhiNode *>  orig_phis;
   794   PhaseGVN  *igvn = _compile->initial_gvn();
   795   uint new_index_start = (uint) _compile->num_alias_types();
   796   VectorSet visited(Thread::current()->resource_area());
   797   VectorSet ptset(Thread::current()->resource_area());
   800   //  Phase 1:  Process possible allocations from alloc_worklist.
   801   //  Create instance types for the CheckCastPP for allocations where possible.
   802   while (alloc_worklist.length() != 0) {
   803     Node *n = alloc_worklist.pop();
   804     uint ni = n->_idx;
   805     const TypeOopPtr* tinst = NULL;
   806     if (n->is_Call()) {
   807       CallNode *alloc = n->as_Call();
   808       // copy escape information to call node
   809       PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
   810       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   811       // We have an allocation or call which returns a Java object,
   812       // see if it is unescaped.
   813       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   814         continue;
   815       if (alloc->is_Allocate()) {
   816         // Set the scalar_replaceable flag before the next check.
   817         alloc->as_Allocate()->_is_scalar_replaceable = true;
   818       }
   819       // find CheckCastPP of call return value
   820       n = alloc->result_cast();
   821       if (n == NULL ||          // No uses accept Initialize or
   822           !n->is_CheckCastPP()) // not unique CheckCastPP.
   823         continue;
   824       // The inline code for Object.clone() casts the allocation result to
   825       // java.lang.Object and then to the the actual type of the allocated
   826       // object. Detect this case and use the second cast.
   827       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   828           && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
   829         Node *cast2 = NULL;
   830         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   831           Node *use = n->fast_out(i);
   832           if (use->is_CheckCastPP()) {
   833             cast2 = use;
   834             break;
   835           }
   836         }
   837         if (cast2 != NULL) {
   838           n = cast2;
   839         } else {
   840           continue;
   841         }
   842       }
   843       set_escape_state(n->_idx, es);
   844       // in order for an object to be stackallocatable, it must be:
   845       //   - a direct allocation (not a call returning an object)
   846       //   - non-escaping
   847       //   - eligible to be a unique type
   848       //   - not determined to be ineligible by escape analysis
   849       set_map(alloc->_idx, n);
   850       set_map(n->_idx, alloc);
   851       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   852       if (t == NULL)
   853         continue;  // not a TypeInstPtr
   854       tinst = t->cast_to_instance(ni);
   855       igvn->hash_delete(n);
   856       igvn->set_type(n,  tinst);
   857       n->raise_bottom_type(tinst);
   858       igvn->hash_insert(n);
   859       record_for_optimizer(n);
   860       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
   861           (t->isa_instptr() || t->isa_aryptr())) {
   862         // An allocation may have an Initialize which has raw stores. Scan
   863         // the users of the raw allocation result and push AddP users
   864         // on alloc_worklist.
   865         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
   866         assert (raw_result != NULL, "must have an allocation result");
   867         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
   868           Node *use = raw_result->fast_out(i);
   869           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
   870             Node* addp2 = find_second_addp(use, raw_result);
   871             if (addp2 != NULL) {
   872               assert(alloc->is_AllocateArray(),"array allocation was expected");
   873               alloc_worklist.append_if_missing(addp2);
   874             }
   875             alloc_worklist.append_if_missing(use);
   876           } else if (use->is_Initialize()) {
   877             memnode_worklist.append_if_missing(use);
   878           }
   879         }
   880       }
   881     } else if (n->is_AddP()) {
   882       ptset.Clear();
   883       PointsTo(ptset, get_addp_base(n), igvn);
   884       assert(ptset.Size() == 1, "AddP address is unique");
   885       uint elem = ptset.getelem(); // Allocation node's index
   886       if (elem == _phantom_object)
   887         continue; // Assume the value was set outside this method.
   888       Node *base = get_map(elem);  // CheckCastPP node
   889       split_AddP(n, base, igvn);
   890       tinst = igvn->type(base)->isa_oopptr();
   891     } else if (n->is_Phi() ||
   892                n->is_CheckCastPP() ||
   893                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
   894       if (visited.test_set(n->_idx)) {
   895         assert(n->is_Phi(), "loops only through Phi's");
   896         continue;  // already processed
   897       }
   898       ptset.Clear();
   899       PointsTo(ptset, n, igvn);
   900       if (ptset.Size() == 1) {
   901         uint elem = ptset.getelem(); // Allocation node's index
   902         if (elem == _phantom_object)
   903           continue; // Assume the value was set outside this method.
   904         Node *val = get_map(elem);   // CheckCastPP node
   905         TypeNode *tn = n->as_Type();
   906         tinst = igvn->type(val)->isa_oopptr();
   907         assert(tinst != NULL && tinst->is_instance() &&
   908                tinst->instance_id() == elem , "instance type expected.");
   909         const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
   911         if (tn_t != NULL &&
   912  tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
   913           igvn->hash_delete(tn);
   914           igvn->set_type(tn, tinst);
   915           tn->set_type(tinst);
   916           igvn->hash_insert(tn);
   917           record_for_optimizer(n);
   918         }
   919       }
   920     } else {
   921       continue;
   922     }
   923     // push users on appropriate worklist
   924     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   925       Node *use = n->fast_out(i);
   926       if(use->is_Mem() && use->in(MemNode::Address) == n) {
   927         memnode_worklist.append_if_missing(use);
   928       } else if (use->is_Initialize()) {
   929         memnode_worklist.append_if_missing(use);
   930       } else if (use->is_MergeMem()) {
   931         mergemem_worklist.append_if_missing(use);
   932       } else if (use->is_Call() && tinst != NULL) {
   933         // Look for MergeMem nodes for calls which reference unique allocation
   934         // (through CheckCastPP nodes) even for debug info.
   935         Node* m = use->in(TypeFunc::Memory);
   936         uint iid = tinst->instance_id();
   937         while (m->is_Proj() && m->in(0)->is_Call() &&
   938                m->in(0) != use && !m->in(0)->_idx != iid) {
   939           m = m->in(0)->in(TypeFunc::Memory);
   940         }
   941         if (m->is_MergeMem()) {
   942           mergemem_worklist.append_if_missing(m);
   943         }
   944       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
   945         Node* addp2 = find_second_addp(use, n);
   946         if (addp2 != NULL) {
   947           alloc_worklist.append_if_missing(addp2);
   948         }
   949         alloc_worklist.append_if_missing(use);
   950       } else if (use->is_Phi() ||
   951                  use->is_CheckCastPP() ||
   952                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
   953         alloc_worklist.append_if_missing(use);
   954       }
   955     }
   957   }
   958   // New alias types were created in split_AddP().
   959   uint new_index_end = (uint) _compile->num_alias_types();
   961   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   962   //            compute new values for Memory inputs  (the Memory inputs are not
   963   //            actually updated until phase 4.)
   964   if (memnode_worklist.length() == 0)
   965     return;  // nothing to do
   967   while (memnode_worklist.length() != 0) {
   968     Node *n = memnode_worklist.pop();
   969     if (visited.test_set(n->_idx))
   970       continue;
   971     if (n->is_Phi()) {
   972       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
   973       // we don't need to do anything, but the users must be pushed if we haven't processed
   974       // this Phi before
   975     } else if (n->is_Initialize()) {
   976       // we don't need to do anything, but the users of the memory projection must be pushed
   977       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
   978       if (n == NULL)
   979         continue;
   980     } else {
   981       assert(n->is_Mem(), "memory node required.");
   982       Node *addr = n->in(MemNode::Address);
   983       assert(addr->is_AddP(), "AddP required");
   984       const Type *addr_t = igvn->type(addr);
   985       if (addr_t == Type::TOP)
   986         continue;
   987       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
   988       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
   989       assert ((uint)alias_idx < new_index_end, "wrong alias index");
   990       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
   991       if (_compile->failing()) {
   992         return;
   993       }
   994       if (mem != n->in(MemNode::Memory)) {
   995         set_map(n->_idx, mem);
   996         _nodes->adr_at(n->_idx)->_node = n;
   997       }
   998       if (n->is_Load()) {
   999         continue;  // don't push users
  1000       } else if (n->is_LoadStore()) {
  1001         // get the memory projection
  1002         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1003           Node *use = n->fast_out(i);
  1004           if (use->Opcode() == Op_SCMemProj) {
  1005             n = use;
  1006             break;
  1009         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1012     // push user on appropriate worklist
  1013     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1014       Node *use = n->fast_out(i);
  1015       if (use->is_Phi()) {
  1016         memnode_worklist.append_if_missing(use);
  1017       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1018         memnode_worklist.append_if_missing(use);
  1019       } else if (use->is_Initialize()) {
  1020         memnode_worklist.append_if_missing(use);
  1021       } else if (use->is_MergeMem()) {
  1022         mergemem_worklist.append_if_missing(use);
  1027   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1028   //            Walk each memory moving the first node encountered of each
  1029   //            instance type to the the input corresponding to its alias index.
  1030   while (mergemem_worklist.length() != 0) {
  1031     Node *n = mergemem_worklist.pop();
  1032     assert(n->is_MergeMem(), "MergeMem node required.");
  1033     if (visited.test_set(n->_idx))
  1034       continue;
  1035     MergeMemNode *nmm = n->as_MergeMem();
  1036     // Note: we don't want to use MergeMemStream here because we only want to
  1037     //  scan inputs which exist at the start, not ones we add during processing.
  1038     uint nslices = nmm->req();
  1039     igvn->hash_delete(nmm);
  1040     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1041       Node* mem = nmm->in(i);
  1042       Node* cur = NULL;
  1043       if (mem == NULL || mem->is_top())
  1044         continue;
  1045       while (mem->is_Mem()) {
  1046         const Type *at = igvn->type(mem->in(MemNode::Address));
  1047         if (at != Type::TOP) {
  1048           assert (at->isa_ptr() != NULL, "pointer type required.");
  1049           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1050           if (idx == i) {
  1051             if (cur == NULL)
  1052               cur = mem;
  1053           } else {
  1054             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1055               nmm->set_memory_at(idx, mem);
  1059         mem = mem->in(MemNode::Memory);
  1061       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1062       // Find any instance of the current type if we haven't encountered
  1063       // a value of the instance along the chain.
  1064       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1065         if((uint)_compile->get_general_index(ni) == i) {
  1066           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1067           if (nmm->is_empty_memory(m)) {
  1068             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1069             if (_compile->failing()) {
  1070               return;
  1072             nmm->set_memory_at(ni, result);
  1077     // Find the rest of instances values
  1078     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1079       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1080       Node* result = step_through_mergemem(nmm, ni, tinst);
  1081       if (result == nmm->base_memory()) {
  1082         // Didn't find instance memory, search through general slice recursively.
  1083         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1084         result = find_inst_mem(result, ni, orig_phis, igvn);
  1085         if (_compile->failing()) {
  1086           return;
  1088         nmm->set_memory_at(ni, result);
  1091     igvn->hash_insert(nmm);
  1092     record_for_optimizer(nmm);
  1094     // Propagate new memory slices to following MergeMem nodes.
  1095     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1096       Node *use = n->fast_out(i);
  1097       if (use->is_Call()) {
  1098         CallNode* in = use->as_Call();
  1099         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1100           Node* m = in->proj_out(TypeFunc::Memory);
  1101           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1102             Node* mm = m->fast_out(j);
  1103             if (mm->is_MergeMem()) {
  1104               mergemem_worklist.append_if_missing(mm);
  1108         if (use->is_Allocate()) {
  1109           use = use->as_Allocate()->initialization();
  1110           if (use == NULL) {
  1111             continue;
  1115       if (use->is_Initialize()) {
  1116         InitializeNode* in = use->as_Initialize();
  1117         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1118           Node* m = in->proj_out(TypeFunc::Memory);
  1119           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1120             Node* mm = m->fast_out(j);
  1121             if (mm->is_MergeMem()) {
  1122               mergemem_worklist.append_if_missing(mm);
  1130   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1131   //            the Memory input of memnodes
  1132   // First update the inputs of any non-instance Phi's from
  1133   // which we split out an instance Phi.  Note we don't have
  1134   // to recursively process Phi's encounted on the input memory
  1135   // chains as is done in split_memory_phi() since they  will
  1136   // also be processed here.
  1137   while (orig_phis.length() != 0) {
  1138     PhiNode *phi = orig_phis.pop();
  1139     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1140     igvn->hash_delete(phi);
  1141     for (uint i = 1; i < phi->req(); i++) {
  1142       Node *mem = phi->in(i);
  1143       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1144       if (_compile->failing()) {
  1145         return;
  1147       if (mem != new_mem) {
  1148         phi->set_req(i, new_mem);
  1151     igvn->hash_insert(phi);
  1152     record_for_optimizer(phi);
  1155   // Update the memory inputs of MemNodes with the value we computed
  1156   // in Phase 2.
  1157   for (int i = 0; i < _nodes->length(); i++) {
  1158     Node *nmem = get_map(i);
  1159     if (nmem != NULL) {
  1160       Node *n = _nodes->adr_at(i)->_node;
  1161       if (n != NULL && n->is_Mem()) {
  1162         igvn->hash_delete(n);
  1163         n->set_req(MemNode::Memory, nmem);
  1164         igvn->hash_insert(n);
  1165         record_for_optimizer(n);
  1171 void ConnectionGraph::compute_escape() {
  1173   // 1. Populate Connection Graph with Ideal nodes.
  1175   Unique_Node_List worklist_init;
  1176   worklist_init.map(_compile->unique(), NULL);  // preallocate space
  1178   // Initialize worklist
  1179   if (_compile->root() != NULL) {
  1180     worklist_init.push(_compile->root());
  1183   GrowableArray<int> cg_worklist;
  1184   PhaseGVN* igvn = _compile->initial_gvn();
  1185   bool has_allocations = false;
  1187   // Push all useful nodes onto CG list and set their type.
  1188   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1189     Node* n = worklist_init.at(next);
  1190     record_for_escape_analysis(n, igvn);
  1191     if (n->is_Call() &&
  1192         _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1193       has_allocations = true;
  1195     if(n->is_AddP())
  1196       cg_worklist.append(n->_idx);
  1197     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1198       Node* m = n->fast_out(i);   // Get user
  1199       worklist_init.push(m);
  1203   if (has_allocations) {
  1204     _has_allocations = true;
  1205   } else {
  1206     _has_allocations = false;
  1207     _collecting = false;
  1208     return; // Nothing to do.
  1211   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1212   for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
  1213     Node* n = _delayed_worklist.at(next);
  1214     build_connection_graph(n, igvn);
  1217   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1218   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1219     int ni = cg_worklist.at(next);
  1220     build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
  1223   cg_worklist.clear();
  1224   cg_worklist.append(_phantom_object);
  1226   // 4. Build Connection Graph which need
  1227   //    to walk the connection graph.
  1228   for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
  1229     PointsToNode* ptn = _nodes->adr_at(ni);
  1230     Node *n = ptn->_node;
  1231     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1232       build_connection_graph(n, igvn);
  1233       if (ptn->node_type() != PointsToNode::UnknownType)
  1234         cg_worklist.append(n->_idx); // Collect CG nodes
  1238   VectorSet ptset(Thread::current()->resource_area());
  1239   GrowableArray<Node*>  alloc_worklist;
  1240   GrowableArray<int>  worklist;
  1242   // remove deferred edges from the graph and collect
  1243   // information we will need for type splitting
  1244   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1245     int ni = cg_worklist.at(next);
  1246     PointsToNode* ptn = _nodes->adr_at(ni);
  1247     PointsToNode::NodeType nt = ptn->node_type();
  1248     Node *n = ptn->_node;
  1249     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1250       remove_deferred(ni);
  1251       if (n->is_AddP()) {
  1252         // If this AddP computes an address which may point to more that one
  1253         // object, nothing the address points to can be scalar replaceable.
  1254         Node *base = get_addp_base(n);
  1255         ptset.Clear();
  1256         PointsTo(ptset, base, igvn);
  1257         if (ptset.Size() > 1) {
  1258           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1259             uint pt = j.elem;
  1260             ptnode_adr(pt)->_scalar_replaceable = false;
  1264     } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
  1265       // Push call on alloc_worlist (alocations are calls)
  1266       // for processing by split_unique_types().
  1267       alloc_worklist.append(n);
  1271   // push all GlobalEscape nodes on the worklist
  1272   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1273     int nk = cg_worklist.at(next);
  1274     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
  1275       worklist.append(nk);
  1277   // mark all node reachable from GlobalEscape nodes
  1278   while(worklist.length() > 0) {
  1279     PointsToNode n = _nodes->at(worklist.pop());
  1280     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1281       uint npi = n.edge_target(ei);
  1282       PointsToNode *np = ptnode_adr(npi);
  1283       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1284         np->set_escape_state(PointsToNode::GlobalEscape);
  1285         worklist.append_if_missing(npi);
  1290   // push all ArgEscape nodes on the worklist
  1291   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1292     int nk = cg_worklist.at(next);
  1293     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
  1294       worklist.push(nk);
  1296   // mark all node reachable from ArgEscape nodes
  1297   while(worklist.length() > 0) {
  1298     PointsToNode n = _nodes->at(worklist.pop());
  1299     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1300       uint npi = n.edge_target(ei);
  1301       PointsToNode *np = ptnode_adr(npi);
  1302       if (np->escape_state() < PointsToNode::ArgEscape) {
  1303         np->set_escape_state(PointsToNode::ArgEscape);
  1304         worklist.append_if_missing(npi);
  1309   // push all NoEscape nodes on the worklist
  1310   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1311     int nk = cg_worklist.at(next);
  1312     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
  1313       worklist.push(nk);
  1315   // mark all node reachable from NoEscape nodes
  1316   while(worklist.length() > 0) {
  1317     PointsToNode n = _nodes->at(worklist.pop());
  1318     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1319       uint npi = n.edge_target(ei);
  1320       PointsToNode *np = ptnode_adr(npi);
  1321       if (np->escape_state() < PointsToNode::NoEscape) {
  1322         np->set_escape_state(PointsToNode::NoEscape);
  1323         worklist.append_if_missing(npi);
  1328   _collecting = false;
  1330   has_allocations = false; // Are there scalar replaceable allocations?
  1332   for( int next = 0; next < alloc_worklist.length(); ++next ) {
  1333     Node* n = alloc_worklist.at(next);
  1334     uint ni = n->_idx;
  1335     PointsToNode* ptn = _nodes->adr_at(ni);
  1336     PointsToNode::EscapeState es = ptn->escape_state();
  1337     if (ptn->escape_state() == PointsToNode::NoEscape &&
  1338         ptn->_scalar_replaceable) {
  1339       has_allocations = true;
  1340       break;
  1343   if (!has_allocations) {
  1344     return; // Nothing to do.
  1347   if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
  1348     // Now use the escape information to create unique types for
  1349     // unescaped objects
  1350     split_unique_types(alloc_worklist);
  1351     if (_compile->failing())  return;
  1353     // Clean up after split unique types.
  1354     ResourceMark rm;
  1355     PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
  1357 #ifdef ASSERT
  1358   } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
  1359     tty->print("=== No allocations eliminated for ");
  1360     C()->method()->print_short_name();
  1361     if(!EliminateAllocations) {
  1362       tty->print(" since EliminateAllocations is off ===");
  1363     } else if(_compile->AliasLevel() < 3) {
  1364       tty->print(" since AliasLevel < 3 ===");
  1366     tty->cr();
  1367 #endif
  1371 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1373     switch (call->Opcode()) {
  1374 #ifdef ASSERT
  1375     case Op_Allocate:
  1376     case Op_AllocateArray:
  1377     case Op_Lock:
  1378     case Op_Unlock:
  1379       assert(false, "should be done already");
  1380       break;
  1381 #endif
  1382     case Op_CallLeafNoFP:
  1384       // Stub calls, objects do not escape but they are not scale replaceable.
  1385       // Adjust escape state for outgoing arguments.
  1386       const TypeTuple * d = call->tf()->domain();
  1387       VectorSet ptset(Thread::current()->resource_area());
  1388       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1389         const Type* at = d->field_at(i);
  1390         Node *arg = call->in(i)->uncast();
  1391         const Type *aat = phase->type(arg);
  1392         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
  1393           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1394                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1395           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1396           if (arg->is_AddP()) {
  1397             //
  1398             // The inline_native_clone() case when the arraycopy stub is called
  1399             // after the allocation before Initialize and CheckCastPP nodes.
  1400             //
  1401             // Set AddP's base (Allocate) as not scalar replaceable since
  1402             // pointer to the base (with offset) is passed as argument.
  1403             //
  1404             arg = get_addp_base(arg);
  1406           ptset.Clear();
  1407           PointsTo(ptset, arg, phase);
  1408           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1409             uint pt = j.elem;
  1410             set_escape_state(pt, PointsToNode::ArgEscape);
  1414       break;
  1417     case Op_CallStaticJava:
  1418     // For a static call, we know exactly what method is being called.
  1419     // Use bytecode estimator to record the call's escape affects
  1421       ciMethod *meth = call->as_CallJava()->method();
  1422       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1423       // fall-through if not a Java method or no analyzer information
  1424       if (call_analyzer != NULL) {
  1425         const TypeTuple * d = call->tf()->domain();
  1426         VectorSet ptset(Thread::current()->resource_area());
  1427         bool copy_dependencies = false;
  1428         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1429           const Type* at = d->field_at(i);
  1430           int k = i - TypeFunc::Parms;
  1432           if (at->isa_oopptr() != NULL) {
  1433             Node *arg = call->in(i)->uncast();
  1435             bool global_escapes = false;
  1436             bool fields_escapes = false;
  1437             if (!call_analyzer->is_arg_stack(k)) {
  1438               // The argument global escapes, mark everything it could point to
  1439               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1440               global_escapes = true;
  1441             } else {
  1442               if (!call_analyzer->is_arg_local(k)) {
  1443                 // The argument itself doesn't escape, but any fields might
  1444                 fields_escapes = true;
  1446               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1447               copy_dependencies = true;
  1450             ptset.Clear();
  1451             PointsTo(ptset, arg, phase);
  1452             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1453               uint pt = j.elem;
  1454               if (global_escapes) {
  1455                 //The argument global escapes, mark everything it could point to
  1456                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1457               } else {
  1458                 if (fields_escapes) {
  1459                   // The argument itself doesn't escape, but any fields might
  1460                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1462                 set_escape_state(pt, PointsToNode::ArgEscape);
  1467         if (copy_dependencies)
  1468           call_analyzer->copy_dependencies(C()->dependencies());
  1469         break;
  1473     default:
  1474     // Fall-through here if not a Java method or no analyzer information
  1475     // or some other type of call, assume the worst case: all arguments
  1476     // globally escape.
  1478       // adjust escape state for  outgoing arguments
  1479       const TypeTuple * d = call->tf()->domain();
  1480       VectorSet ptset(Thread::current()->resource_area());
  1481       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1482         const Type* at = d->field_at(i);
  1483         if (at->isa_oopptr() != NULL) {
  1484           Node *arg = call->in(i)->uncast();
  1485           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1486           ptset.Clear();
  1487           PointsTo(ptset, arg, phase);
  1488           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1489             uint pt = j.elem;
  1490             set_escape_state(pt, PointsToNode::GlobalEscape);
  1491             PointsToNode *ptadr = ptnode_adr(pt);
  1498 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1499   PointsToNode *ptadr = ptnode_adr(resproj->_idx);
  1501   CallNode *call = resproj->in(0)->as_Call();
  1502   switch (call->Opcode()) {
  1503     case Op_Allocate:
  1505       Node *k = call->in(AllocateNode::KlassNode);
  1506       const TypeKlassPtr *kt;
  1507       if (k->Opcode() == Op_LoadKlass) {
  1508         kt = k->as_Load()->type()->isa_klassptr();
  1509       } else {
  1510         kt = k->as_Type()->type()->isa_klassptr();
  1512       assert(kt != NULL, "TypeKlassPtr  required.");
  1513       ciKlass* cik = kt->klass();
  1514       ciInstanceKlass* ciik = cik->as_instance_klass();
  1516       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1517       PointsToNode::EscapeState es;
  1518       uint edge_to;
  1519       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1520         es = PointsToNode::GlobalEscape;
  1521         edge_to = _phantom_object; // Could not be worse
  1522       } else {
  1523         es = PointsToNode::NoEscape;
  1524         edge_to = call->_idx;
  1526       set_escape_state(call->_idx, es);
  1527       add_pointsto_edge(resproj->_idx, edge_to);
  1528       _processed.set(resproj->_idx);
  1529       break;
  1532     case Op_AllocateArray:
  1534       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1535       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1536       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1537         // Not scalar replaceable if the length is not constant or too big.
  1538         ptadr->_scalar_replaceable = false;
  1540       set_escape_state(call->_idx, PointsToNode::NoEscape);
  1541       add_pointsto_edge(resproj->_idx, call->_idx);
  1542       _processed.set(resproj->_idx);
  1543       break;
  1546     case Op_CallStaticJava:
  1547     // For a static call, we know exactly what method is being called.
  1548     // Use bytecode estimator to record whether the call's return value escapes
  1550       bool done = true;
  1551       const TypeTuple *r = call->tf()->range();
  1552       const Type* ret_type = NULL;
  1554       if (r->cnt() > TypeFunc::Parms)
  1555         ret_type = r->field_at(TypeFunc::Parms);
  1557       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1558       //        _multianewarray functions return a TypeRawPtr.
  1559       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1560         _processed.set(resproj->_idx);
  1561         break;  // doesn't return a pointer type
  1563       ciMethod *meth = call->as_CallJava()->method();
  1564       const TypeTuple * d = call->tf()->domain();
  1565       if (meth == NULL) {
  1566         // not a Java method, assume global escape
  1567         set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1568         if (resproj != NULL)
  1569           add_pointsto_edge(resproj->_idx, _phantom_object);
  1570       } else {
  1571         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1572         VectorSet ptset(Thread::current()->resource_area());
  1573         bool copy_dependencies = false;
  1575         if (call_analyzer->is_return_allocated()) {
  1576           // Returns a newly allocated unescaped object, simply
  1577           // update dependency information.
  1578           // Mark it as NoEscape so that objects referenced by
  1579           // it's fields will be marked as NoEscape at least.
  1580           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1581           if (resproj != NULL)
  1582             add_pointsto_edge(resproj->_idx, call->_idx);
  1583           copy_dependencies = true;
  1584         } else if (call_analyzer->is_return_local() && resproj != NULL) {
  1585           // determine whether any arguments are returned
  1586           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1587           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1588             const Type* at = d->field_at(i);
  1590             if (at->isa_oopptr() != NULL) {
  1591               Node *arg = call->in(i)->uncast();
  1593               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1594                 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1595                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1596                   done = false;
  1597                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1598                   add_pointsto_edge(resproj->_idx, arg->_idx);
  1599                 else
  1600                   add_deferred_edge(resproj->_idx, arg->_idx);
  1601                 arg_esp->_hidden_alias = true;
  1605           copy_dependencies = true;
  1606         } else {
  1607           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1608           if (resproj != NULL)
  1609             add_pointsto_edge(resproj->_idx, _phantom_object);
  1610           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1611             const Type* at = d->field_at(i);
  1612             if (at->isa_oopptr() != NULL) {
  1613               Node *arg = call->in(i)->uncast();
  1614               PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1615               arg_esp->_hidden_alias = true;
  1619         if (copy_dependencies)
  1620           call_analyzer->copy_dependencies(C()->dependencies());
  1622       if (done)
  1623         _processed.set(resproj->_idx);
  1624       break;
  1627     default:
  1628     // Some other type of call, assume the worst case that the
  1629     // returned value, if any, globally escapes.
  1631       const TypeTuple *r = call->tf()->range();
  1632       if (r->cnt() > TypeFunc::Parms) {
  1633         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1635         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1636         //        _multianewarray functions return a TypeRawPtr.
  1637         if (ret_type->isa_ptr() != NULL) {
  1638           PointsToNode *ptadr = ptnode_adr(call->_idx);
  1639           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1640           if (resproj != NULL)
  1641             add_pointsto_edge(resproj->_idx, _phantom_object);
  1644       _processed.set(resproj->_idx);
  1649 // Populate Connection Graph with Ideal nodes and create simple
  1650 // connection graph edges (do not need to check the node_type of inputs
  1651 // or to call PointsTo() to walk the connection graph).
  1652 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1653   if (_processed.test(n->_idx))
  1654     return; // No need to redefine node's state.
  1656   if (n->is_Call()) {
  1657     // Arguments to allocation and locking don't escape.
  1658     if (n->is_Allocate()) {
  1659       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1660       record_for_optimizer(n);
  1661     } else if (n->is_Lock() || n->is_Unlock()) {
  1662       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1663       // the first IGVN optimization when escape information is still available.
  1664       record_for_optimizer(n);
  1665       _processed.set(n->_idx);
  1666     } else {
  1667       // Have to process call's arguments first.
  1668       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  1670       // Check if a call returns an object.
  1671       const TypeTuple *r = n->as_Call()->tf()->range();
  1672       if (r->cnt() > TypeFunc::Parms &&
  1673           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  1674         // Note:  use isa_ptr() instead of isa_oopptr() here because
  1675         //        the _multianewarray functions return a TypeRawPtr.
  1676         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  1677           nt = PointsToNode::JavaObject;
  1680       add_node(n, nt, PointsToNode::UnknownEscape, false);
  1682     return;
  1685   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  1686   // ThreadLocal has RawPrt type.
  1687   switch (n->Opcode()) {
  1688     case Op_AddP:
  1690       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  1691       break;
  1693     case Op_CastX2P:
  1694     { // "Unsafe" memory access.
  1695       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1696       break;
  1698     case Op_CastPP:
  1699     case Op_CheckCastPP:
  1701       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1702       int ti = n->in(1)->_idx;
  1703       PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1704       if (nt == PointsToNode::UnknownType) {
  1705         _delayed_worklist.push(n); // Process it later.
  1706         break;
  1707       } else if (nt == PointsToNode::JavaObject) {
  1708         add_pointsto_edge(n->_idx, ti);
  1709       } else {
  1710         add_deferred_edge(n->_idx, ti);
  1712       _processed.set(n->_idx);
  1713       break;
  1715     case Op_ConP:
  1717       // assume all pointer constants globally escape except for null
  1718       PointsToNode::EscapeState es;
  1719       if (phase->type(n) == TypePtr::NULL_PTR)
  1720         es = PointsToNode::NoEscape;
  1721       else
  1722         es = PointsToNode::GlobalEscape;
  1724       add_node(n, PointsToNode::JavaObject, es, true);
  1725       break;
  1727     case Op_CreateEx:
  1729       // assume that all exception objects globally escape
  1730       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1731       break;
  1733     case Op_LoadKlass:
  1735       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1736       break;
  1738     case Op_LoadP:
  1740       const Type *t = phase->type(n);
  1741       if (t->isa_ptr() == NULL) {
  1742         _processed.set(n->_idx);
  1743         return;
  1745       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1746       break;
  1748     case Op_Parm:
  1750       _processed.set(n->_idx); // No need to redefine it state.
  1751       uint con = n->as_Proj()->_con;
  1752       if (con < TypeFunc::Parms)
  1753         return;
  1754       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  1755       if (t->isa_ptr() == NULL)
  1756         return;
  1757       // We have to assume all input parameters globally escape
  1758       // (Note: passing 'false' since _processed is already set).
  1759       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  1760       break;
  1762     case Op_Phi:
  1764       if (n->as_Phi()->type()->isa_ptr() == NULL) {
  1765         // nothing to do if not an oop
  1766         _processed.set(n->_idx);
  1767         return;
  1769       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1770       uint i;
  1771       for (i = 1; i < n->req() ; i++) {
  1772         Node* in = n->in(i);
  1773         if (in == NULL)
  1774           continue;  // ignore NULL
  1775         in = in->uncast();
  1776         if (in->is_top() || in == n)
  1777           continue;  // ignore top or inputs which go back this node
  1778         int ti = in->_idx;
  1779         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1780         if (nt == PointsToNode::UnknownType) {
  1781           break;
  1782         } else if (nt == PointsToNode::JavaObject) {
  1783           add_pointsto_edge(n->_idx, ti);
  1784         } else {
  1785           add_deferred_edge(n->_idx, ti);
  1788       if (i >= n->req())
  1789         _processed.set(n->_idx);
  1790       else
  1791         _delayed_worklist.push(n);
  1792       break;
  1794     case Op_Proj:
  1796       // we are only interested in the result projection from a call
  1797       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  1798         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1799         process_call_result(n->as_Proj(), phase);
  1800         if (!_processed.test(n->_idx)) {
  1801           // The call's result may need to be processed later if the call
  1802           // returns it's argument and the argument is not processed yet.
  1803           _delayed_worklist.push(n);
  1805       } else {
  1806         _processed.set(n->_idx);
  1808       break;
  1810     case Op_Return:
  1812       if( n->req() > TypeFunc::Parms &&
  1813           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  1814         // Treat Return value as LocalVar with GlobalEscape escape state.
  1815         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  1816         int ti = n->in(TypeFunc::Parms)->_idx;
  1817         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1818         if (nt == PointsToNode::UnknownType) {
  1819           _delayed_worklist.push(n); // Process it later.
  1820           break;
  1821         } else if (nt == PointsToNode::JavaObject) {
  1822           add_pointsto_edge(n->_idx, ti);
  1823         } else {
  1824           add_deferred_edge(n->_idx, ti);
  1827       _processed.set(n->_idx);
  1828       break;
  1830     case Op_StoreP:
  1832       const Type *adr_type = phase->type(n->in(MemNode::Address));
  1833       if (adr_type->isa_oopptr()) {
  1834         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1835       } else {
  1836         Node* adr = n->in(MemNode::Address);
  1837         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  1838             adr->in(AddPNode::Address)->is_Proj() &&
  1839             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  1840           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1841           // We are computing a raw address for a store captured
  1842           // by an Initialize compute an appropriate address type.
  1843           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  1844           assert(offs != Type::OffsetBot, "offset must be a constant");
  1845         } else {
  1846           _processed.set(n->_idx);
  1847           return;
  1850       break;
  1852     case Op_StorePConditional:
  1853     case Op_CompareAndSwapP:
  1855       const Type *adr_type = phase->type(n->in(MemNode::Address));
  1856       if (adr_type->isa_oopptr()) {
  1857         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1858       } else {
  1859         _processed.set(n->_idx);
  1860         return;
  1862       break;
  1864     case Op_ThreadLocal:
  1866       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  1867       break;
  1869     default:
  1871       // nothing to do
  1873   return;
  1876 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  1877   // Don't set processed bit for AddP, LoadP, StoreP since
  1878   // they may need more then one pass to process.
  1879   if (_processed.test(n->_idx))
  1880     return; // No need to redefine node's state.
  1882   PointsToNode *ptadr = ptnode_adr(n->_idx);
  1884   if (n->is_Call()) {
  1885     CallNode *call = n->as_Call();
  1886     process_call_arguments(call, phase);
  1887     _processed.set(n->_idx);
  1888     return;
  1891   switch (n->Opcode()) {
  1892     case Op_AddP:
  1894       Node *base = get_addp_base(n);
  1895       // Create a field edge to this node from everything base could point to.
  1896       VectorSet ptset(Thread::current()->resource_area());
  1897       PointsTo(ptset, base, phase);
  1898       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1899         uint pt = i.elem;
  1900         add_field_edge(pt, n->_idx, address_offset(n, phase));
  1902       break;
  1904     case Op_CastX2P:
  1906       assert(false, "Op_CastX2P");
  1907       break;
  1909     case Op_CastPP:
  1910     case Op_CheckCastPP:
  1912       int ti = n->in(1)->_idx;
  1913       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
  1914         add_pointsto_edge(n->_idx, ti);
  1915       } else {
  1916         add_deferred_edge(n->_idx, ti);
  1918       _processed.set(n->_idx);
  1919       break;
  1921     case Op_ConP:
  1923       assert(false, "Op_ConP");
  1924       break;
  1926     case Op_CreateEx:
  1928       assert(false, "Op_CreateEx");
  1929       break;
  1931     case Op_LoadKlass:
  1933       assert(false, "Op_LoadKlass");
  1934       break;
  1936     case Op_LoadP:
  1938       const Type *t = phase->type(n);
  1939 #ifdef ASSERT
  1940       if (t->isa_ptr() == NULL)
  1941         assert(false, "Op_LoadP");
  1942 #endif
  1944       Node* adr = n->in(MemNode::Address)->uncast();
  1945       const Type *adr_type = phase->type(adr);
  1946       Node* adr_base;
  1947       if (adr->is_AddP()) {
  1948         adr_base = get_addp_base(adr);
  1949       } else {
  1950         adr_base = adr;
  1953       // For everything "adr_base" could point to, create a deferred edge from
  1954       // this node to each field with the same offset.
  1955       VectorSet ptset(Thread::current()->resource_area());
  1956       PointsTo(ptset, adr_base, phase);
  1957       int offset = address_offset(adr, phase);
  1958       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1959         uint pt = i.elem;
  1960         add_deferred_edge_to_fields(n->_idx, pt, offset);
  1962       break;
  1964     case Op_Parm:
  1966       assert(false, "Op_Parm");
  1967       break;
  1969     case Op_Phi:
  1971 #ifdef ASSERT
  1972       if (n->as_Phi()->type()->isa_ptr() == NULL)
  1973         assert(false, "Op_Phi");
  1974 #endif
  1975       for (uint i = 1; i < n->req() ; i++) {
  1976         Node* in = n->in(i);
  1977         if (in == NULL)
  1978           continue;  // ignore NULL
  1979         in = in->uncast();
  1980         if (in->is_top() || in == n)
  1981           continue;  // ignore top or inputs which go back this node
  1982         int ti = in->_idx;
  1983         if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
  1984           add_pointsto_edge(n->_idx, ti);
  1985         } else {
  1986           add_deferred_edge(n->_idx, ti);
  1989       _processed.set(n->_idx);
  1990       break;
  1992     case Op_Proj:
  1994       // we are only interested in the result projection from a call
  1995       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  1996         process_call_result(n->as_Proj(), phase);
  1997         assert(_processed.test(n->_idx), "all call results should be processed");
  1998       } else {
  1999         assert(false, "Op_Proj");
  2001       break;
  2003     case Op_Return:
  2005 #ifdef ASSERT
  2006       if( n->req() <= TypeFunc::Parms ||
  2007           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2008         assert(false, "Op_Return");
  2010 #endif
  2011       int ti = n->in(TypeFunc::Parms)->_idx;
  2012       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
  2013         add_pointsto_edge(n->_idx, ti);
  2014       } else {
  2015         add_deferred_edge(n->_idx, ti);
  2017       _processed.set(n->_idx);
  2018       break;
  2020     case Op_StoreP:
  2021     case Op_StorePConditional:
  2022     case Op_CompareAndSwapP:
  2024       Node *adr = n->in(MemNode::Address);
  2025       const Type *adr_type = phase->type(adr);
  2026 #ifdef ASSERT
  2027       if (!adr_type->isa_oopptr())
  2028         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2029 #endif
  2031       assert(adr->is_AddP(), "expecting an AddP");
  2032       Node *adr_base = get_addp_base(adr);
  2033       Node *val = n->in(MemNode::ValueIn)->uncast();
  2034       // For everything "adr_base" could point to, create a deferred edge
  2035       // to "val" from each field with the same offset.
  2036       VectorSet ptset(Thread::current()->resource_area());
  2037       PointsTo(ptset, adr_base, phase);
  2038       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2039         uint pt = i.elem;
  2040         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2042       break;
  2044     case Op_ThreadLocal:
  2046       assert(false, "Op_ThreadLocal");
  2047       break;
  2049     default:
  2051       // nothing to do
  2055 #ifndef PRODUCT
  2056 void ConnectionGraph::dump() {
  2057   PhaseGVN  *igvn = _compile->initial_gvn();
  2058   bool first = true;
  2060   uint size = (uint)_nodes->length();
  2061   for (uint ni = 0; ni < size; ni++) {
  2062     PointsToNode *ptn = _nodes->adr_at(ni);
  2063     PointsToNode::NodeType ptn_type = ptn->node_type();
  2065     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2066       continue;
  2067     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2068     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2069       if (first) {
  2070         tty->cr();
  2071         tty->print("======== Connection graph for ");
  2072         C()->method()->print_short_name();
  2073         tty->cr();
  2074         first = false;
  2076       tty->print("%6d ", ni);
  2077       ptn->dump();
  2078       // Print all locals which reference this allocation
  2079       for (uint li = ni; li < size; li++) {
  2080         PointsToNode *ptn_loc = _nodes->adr_at(li);
  2081         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2082         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2083              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2084           tty->print("%6d  LocalVar [[%d]]", li, ni);
  2085           _nodes->adr_at(li)->_node->dump();
  2088       if (Verbose) {
  2089         // Print all fields which reference this allocation
  2090         for (uint i = 0; i < ptn->edge_count(); i++) {
  2091           uint ei = ptn->edge_target(i);
  2092           tty->print("%6d  Field [[%d]]", ei, ni);
  2093           _nodes->adr_at(ei)->_node->dump();
  2096       tty->cr();
  2100 #endif

mercurial