src/share/vm/runtime/thread.cpp

Thu, 08 Jul 2010 14:29:44 -0700

author
never
date
Thu, 08 Jul 2010 14:29:44 -0700
changeset 1999
2a47bd84841f
parent 1963
2389669474a6
child 2036
126ea7725993
child 2043
2dfd013a7465
permissions
-rw-r--r--

6965184: possible races in make_not_entrant_or_zombie
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_thread.cpp.incl"
    28 #ifdef DTRACE_ENABLED
    30 // Only bother with this argument setup if dtrace is available
    32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
    33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
    34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
    35   intptr_t, intptr_t, bool);
    36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
    37   intptr_t, intptr_t, bool);
    39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
    40   {                                                                        \
    41     ResourceMark rm(this);                                                 \
    42     int len = 0;                                                           \
    43     const char* name = (javathread)->get_thread_name();                    \
    44     len = strlen(name);                                                    \
    45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
    46       name, len,                                                           \
    47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
    48       (javathread)->osthread()->thread_id(),                               \
    49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
    50   }
    52 #else //  ndef DTRACE_ENABLED
    54 #define DTRACE_THREAD_PROBE(probe, javathread)
    56 #endif // ndef DTRACE_ENABLED
    58 // Class hierarchy
    59 // - Thread
    60 //   - VMThread
    61 //   - WatcherThread
    62 //   - ConcurrentMarkSweepThread
    63 //   - JavaThread
    64 //     - CompilerThread
    66 // ======= Thread ========
    68 // Support for forcing alignment of thread objects for biased locking
    69 void* Thread::operator new(size_t size) {
    70   if (UseBiasedLocking) {
    71     const int alignment = markOopDesc::biased_lock_alignment;
    72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
    73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
    74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
    75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
    76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
    77            "JavaThread alignment code overflowed allocated storage");
    78     if (TraceBiasedLocking) {
    79       if (aligned_addr != real_malloc_addr)
    80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
    81                       real_malloc_addr, aligned_addr);
    82     }
    83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
    84     return aligned_addr;
    85   } else {
    86     return CHeapObj::operator new(size);
    87   }
    88 }
    90 void Thread::operator delete(void* p) {
    91   if (UseBiasedLocking) {
    92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
    93     CHeapObj::operator delete(real_malloc_addr);
    94   } else {
    95     CHeapObj::operator delete(p);
    96   }
    97 }
   100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   101 // JavaThread
   104 Thread::Thread() {
   105   // stack
   106   _stack_base   = NULL;
   107   _stack_size   = 0;
   108   _self_raw_id  = 0;
   109   _lgrp_id      = -1;
   110   _osthread     = NULL;
   112   // allocated data structures
   113   set_resource_area(new ResourceArea());
   114   set_handle_area(new HandleArea(NULL));
   115   set_active_handles(NULL);
   116   set_free_handle_block(NULL);
   117   set_last_handle_mark(NULL);
   118   set_osthread(NULL);
   120   // This initial value ==> never claimed.
   121   _oops_do_parity = 0;
   123   // the handle mark links itself to last_handle_mark
   124   new HandleMark(this);
   126   // plain initialization
   127   debug_only(_owned_locks = NULL;)
   128   debug_only(_allow_allocation_count = 0;)
   129   NOT_PRODUCT(_allow_safepoint_count = 0;)
   130   NOT_PRODUCT(_skip_gcalot = false;)
   131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   132   _jvmti_env_iteration_count = 0;
   133   _vm_operation_started_count = 0;
   134   _vm_operation_completed_count = 0;
   135   _current_pending_monitor = NULL;
   136   _current_pending_monitor_is_from_java = true;
   137   _current_waiting_monitor = NULL;
   138   _num_nested_signal = 0;
   139   omFreeList = NULL ;
   140   omFreeCount = 0 ;
   141   omFreeProvision = 32 ;
   142   omInUseList = NULL ;
   143   omInUseCount = 0 ;
   145   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   146   _suspend_flags = 0;
   148   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   149   _hashStateX = os::random() ;
   150   _hashStateY = 842502087 ;
   151   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   152   _hashStateW = 273326509 ;
   154   _OnTrap   = 0 ;
   155   _schedctl = NULL ;
   156   _Stalled  = 0 ;
   157   _TypeTag  = 0x2BAD ;
   159   // Many of the following fields are effectively final - immutable
   160   // Note that nascent threads can't use the Native Monitor-Mutex
   161   // construct until the _MutexEvent is initialized ...
   162   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   163   // we might instead use a stack of ParkEvents that we could provision on-demand.
   164   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   165   // and ::Release()
   166   _ParkEvent   = ParkEvent::Allocate (this) ;
   167   _SleepEvent  = ParkEvent::Allocate (this) ;
   168   _MutexEvent  = ParkEvent::Allocate (this) ;
   169   _MuxEvent    = ParkEvent::Allocate (this) ;
   171 #ifdef CHECK_UNHANDLED_OOPS
   172   if (CheckUnhandledOops) {
   173     _unhandled_oops = new UnhandledOops(this);
   174   }
   175 #endif // CHECK_UNHANDLED_OOPS
   176 #ifdef ASSERT
   177   if (UseBiasedLocking) {
   178     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   179     assert(this == _real_malloc_address ||
   180            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   181            "bug in forced alignment of thread objects");
   182   }
   183 #endif /* ASSERT */
   184 }
   186 void Thread::initialize_thread_local_storage() {
   187   // Note: Make sure this method only calls
   188   // non-blocking operations. Otherwise, it might not work
   189   // with the thread-startup/safepoint interaction.
   191   // During Java thread startup, safepoint code should allow this
   192   // method to complete because it may need to allocate memory to
   193   // store information for the new thread.
   195   // initialize structure dependent on thread local storage
   196   ThreadLocalStorage::set_thread(this);
   198   // set up any platform-specific state.
   199   os::initialize_thread();
   201 }
   203 void Thread::record_stack_base_and_size() {
   204   set_stack_base(os::current_stack_base());
   205   set_stack_size(os::current_stack_size());
   206 }
   209 Thread::~Thread() {
   210   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   211   ObjectSynchronizer::omFlush (this) ;
   213   // deallocate data structures
   214   delete resource_area();
   215   // since the handle marks are using the handle area, we have to deallocated the root
   216   // handle mark before deallocating the thread's handle area,
   217   assert(last_handle_mark() != NULL, "check we have an element");
   218   delete last_handle_mark();
   219   assert(last_handle_mark() == NULL, "check we have reached the end");
   221   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   222   // We NULL out the fields for good hygiene.
   223   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   224   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   225   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   226   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   228   delete handle_area();
   230   // osthread() can be NULL, if creation of thread failed.
   231   if (osthread() != NULL) os::free_thread(osthread());
   233   delete _SR_lock;
   235   // clear thread local storage if the Thread is deleting itself
   236   if (this == Thread::current()) {
   237     ThreadLocalStorage::set_thread(NULL);
   238   } else {
   239     // In the case where we're not the current thread, invalidate all the
   240     // caches in case some code tries to get the current thread or the
   241     // thread that was destroyed, and gets stale information.
   242     ThreadLocalStorage::invalidate_all();
   243   }
   244   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   245 }
   247 // NOTE: dummy function for assertion purpose.
   248 void Thread::run() {
   249   ShouldNotReachHere();
   250 }
   252 #ifdef ASSERT
   253 // Private method to check for dangling thread pointer
   254 void check_for_dangling_thread_pointer(Thread *thread) {
   255  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   256          "possibility of dangling Thread pointer");
   257 }
   258 #endif
   261 #ifndef PRODUCT
   262 // Tracing method for basic thread operations
   263 void Thread::trace(const char* msg, const Thread* const thread) {
   264   if (!TraceThreadEvents) return;
   265   ResourceMark rm;
   266   ThreadCritical tc;
   267   const char *name = "non-Java thread";
   268   int prio = -1;
   269   if (thread->is_Java_thread()
   270       && !thread->is_Compiler_thread()) {
   271     // The Threads_lock must be held to get information about
   272     // this thread but may not be in some situations when
   273     // tracing  thread events.
   274     bool release_Threads_lock = false;
   275     if (!Threads_lock->owned_by_self()) {
   276       Threads_lock->lock();
   277       release_Threads_lock = true;
   278     }
   279     JavaThread* jt = (JavaThread *)thread;
   280     name = (char *)jt->get_thread_name();
   281     oop thread_oop = jt->threadObj();
   282     if (thread_oop != NULL) {
   283       prio = java_lang_Thread::priority(thread_oop);
   284     }
   285     if (release_Threads_lock) {
   286       Threads_lock->unlock();
   287     }
   288   }
   289   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   290 }
   291 #endif
   294 ThreadPriority Thread::get_priority(const Thread* const thread) {
   295   trace("get priority", thread);
   296   ThreadPriority priority;
   297   // Can return an error!
   298   (void)os::get_priority(thread, priority);
   299   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   300   return priority;
   301 }
   303 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   304   trace("set priority", thread);
   305   debug_only(check_for_dangling_thread_pointer(thread);)
   306   // Can return an error!
   307   (void)os::set_priority(thread, priority);
   308 }
   311 void Thread::start(Thread* thread) {
   312   trace("start", thread);
   313   // Start is different from resume in that its safety is guaranteed by context or
   314   // being called from a Java method synchronized on the Thread object.
   315   if (!DisableStartThread) {
   316     if (thread->is_Java_thread()) {
   317       // Initialize the thread state to RUNNABLE before starting this thread.
   318       // Can not set it after the thread started because we do not know the
   319       // exact thread state at that time. It could be in MONITOR_WAIT or
   320       // in SLEEPING or some other state.
   321       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   322                                           java_lang_Thread::RUNNABLE);
   323     }
   324     os::start_thread(thread);
   325   }
   326 }
   328 // Enqueue a VM_Operation to do the job for us - sometime later
   329 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   330   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   331   VMThread::execute(vm_stop);
   332 }
   335 //
   336 // Check if an external suspend request has completed (or has been
   337 // cancelled). Returns true if the thread is externally suspended and
   338 // false otherwise.
   339 //
   340 // The bits parameter returns information about the code path through
   341 // the routine. Useful for debugging:
   342 //
   343 // set in is_ext_suspend_completed():
   344 // 0x00000001 - routine was entered
   345 // 0x00000010 - routine return false at end
   346 // 0x00000100 - thread exited (return false)
   347 // 0x00000200 - suspend request cancelled (return false)
   348 // 0x00000400 - thread suspended (return true)
   349 // 0x00001000 - thread is in a suspend equivalent state (return true)
   350 // 0x00002000 - thread is native and walkable (return true)
   351 // 0x00004000 - thread is native_trans and walkable (needed retry)
   352 //
   353 // set in wait_for_ext_suspend_completion():
   354 // 0x00010000 - routine was entered
   355 // 0x00020000 - suspend request cancelled before loop (return false)
   356 // 0x00040000 - thread suspended before loop (return true)
   357 // 0x00080000 - suspend request cancelled in loop (return false)
   358 // 0x00100000 - thread suspended in loop (return true)
   359 // 0x00200000 - suspend not completed during retry loop (return false)
   360 //
   362 // Helper class for tracing suspend wait debug bits.
   363 //
   364 // 0x00000100 indicates that the target thread exited before it could
   365 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   366 // 0x00080000 each indicate a cancelled suspend request so they don't
   367 // count as wait failures either.
   368 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   370 class TraceSuspendDebugBits : public StackObj {
   371  private:
   372   JavaThread * jt;
   373   bool         is_wait;
   374   bool         called_by_wait;  // meaningful when !is_wait
   375   uint32_t *   bits;
   377  public:
   378   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   379                         uint32_t *_bits) {
   380     jt             = _jt;
   381     is_wait        = _is_wait;
   382     called_by_wait = _called_by_wait;
   383     bits           = _bits;
   384   }
   386   ~TraceSuspendDebugBits() {
   387     if (!is_wait) {
   388 #if 1
   389       // By default, don't trace bits for is_ext_suspend_completed() calls.
   390       // That trace is very chatty.
   391       return;
   392 #else
   393       if (!called_by_wait) {
   394         // If tracing for is_ext_suspend_completed() is enabled, then only
   395         // trace calls to it from wait_for_ext_suspend_completion()
   396         return;
   397       }
   398 #endif
   399     }
   401     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   402       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   403         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   404         ResourceMark rm;
   406         tty->print_cr(
   407             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   408             jt->get_thread_name(), *bits);
   410         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   411       }
   412     }
   413   }
   414 };
   415 #undef DEBUG_FALSE_BITS
   418 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   419   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   421   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   422   bool do_trans_retry;           // flag to force the retry
   424   *bits |= 0x00000001;
   426   do {
   427     do_trans_retry = false;
   429     if (is_exiting()) {
   430       // Thread is in the process of exiting. This is always checked
   431       // first to reduce the risk of dereferencing a freed JavaThread.
   432       *bits |= 0x00000100;
   433       return false;
   434     }
   436     if (!is_external_suspend()) {
   437       // Suspend request is cancelled. This is always checked before
   438       // is_ext_suspended() to reduce the risk of a rogue resume
   439       // confusing the thread that made the suspend request.
   440       *bits |= 0x00000200;
   441       return false;
   442     }
   444     if (is_ext_suspended()) {
   445       // thread is suspended
   446       *bits |= 0x00000400;
   447       return true;
   448     }
   450     // Now that we no longer do hard suspends of threads running
   451     // native code, the target thread can be changing thread state
   452     // while we are in this routine:
   453     //
   454     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   455     //
   456     // We save a copy of the thread state as observed at this moment
   457     // and make our decision about suspend completeness based on the
   458     // copy. This closes the race where the thread state is seen as
   459     // _thread_in_native_trans in the if-thread_blocked check, but is
   460     // seen as _thread_blocked in if-thread_in_native_trans check.
   461     JavaThreadState save_state = thread_state();
   463     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   464       // If the thread's state is _thread_blocked and this blocking
   465       // condition is known to be equivalent to a suspend, then we can
   466       // consider the thread to be externally suspended. This means that
   467       // the code that sets _thread_blocked has been modified to do
   468       // self-suspension if the blocking condition releases. We also
   469       // used to check for CONDVAR_WAIT here, but that is now covered by
   470       // the _thread_blocked with self-suspension check.
   471       //
   472       // Return true since we wouldn't be here unless there was still an
   473       // external suspend request.
   474       *bits |= 0x00001000;
   475       return true;
   476     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   477       // Threads running native code will self-suspend on native==>VM/Java
   478       // transitions. If its stack is walkable (should always be the case
   479       // unless this function is called before the actual java_suspend()
   480       // call), then the wait is done.
   481       *bits |= 0x00002000;
   482       return true;
   483     } else if (!called_by_wait && !did_trans_retry &&
   484                save_state == _thread_in_native_trans &&
   485                frame_anchor()->walkable()) {
   486       // The thread is transitioning from thread_in_native to another
   487       // thread state. check_safepoint_and_suspend_for_native_trans()
   488       // will force the thread to self-suspend. If it hasn't gotten
   489       // there yet we may have caught the thread in-between the native
   490       // code check above and the self-suspend. Lucky us. If we were
   491       // called by wait_for_ext_suspend_completion(), then it
   492       // will be doing the retries so we don't have to.
   493       //
   494       // Since we use the saved thread state in the if-statement above,
   495       // there is a chance that the thread has already transitioned to
   496       // _thread_blocked by the time we get here. In that case, we will
   497       // make a single unnecessary pass through the logic below. This
   498       // doesn't hurt anything since we still do the trans retry.
   500       *bits |= 0x00004000;
   502       // Once the thread leaves thread_in_native_trans for another
   503       // thread state, we break out of this retry loop. We shouldn't
   504       // need this flag to prevent us from getting back here, but
   505       // sometimes paranoia is good.
   506       did_trans_retry = true;
   508       // We wait for the thread to transition to a more usable state.
   509       for (int i = 1; i <= SuspendRetryCount; i++) {
   510         // We used to do an "os::yield_all(i)" call here with the intention
   511         // that yielding would increase on each retry. However, the parameter
   512         // is ignored on Linux which means the yield didn't scale up. Waiting
   513         // on the SR_lock below provides a much more predictable scale up for
   514         // the delay. It also provides a simple/direct point to check for any
   515         // safepoint requests from the VMThread
   517         // temporarily drops SR_lock while doing wait with safepoint check
   518         // (if we're a JavaThread - the WatcherThread can also call this)
   519         // and increase delay with each retry
   520         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   522         // check the actual thread state instead of what we saved above
   523         if (thread_state() != _thread_in_native_trans) {
   524           // the thread has transitioned to another thread state so
   525           // try all the checks (except this one) one more time.
   526           do_trans_retry = true;
   527           break;
   528         }
   529       } // end retry loop
   532     }
   533   } while (do_trans_retry);
   535   *bits |= 0x00000010;
   536   return false;
   537 }
   539 //
   540 // Wait for an external suspend request to complete (or be cancelled).
   541 // Returns true if the thread is externally suspended and false otherwise.
   542 //
   543 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   544        uint32_t *bits) {
   545   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   546                              false /* !called_by_wait */, bits);
   548   // local flag copies to minimize SR_lock hold time
   549   bool is_suspended;
   550   bool pending;
   551   uint32_t reset_bits;
   553   // set a marker so is_ext_suspend_completed() knows we are the caller
   554   *bits |= 0x00010000;
   556   // We use reset_bits to reinitialize the bits value at the top of
   557   // each retry loop. This allows the caller to make use of any
   558   // unused bits for their own marking purposes.
   559   reset_bits = *bits;
   561   {
   562     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   563     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   564                                             delay, bits);
   565     pending = is_external_suspend();
   566   }
   567   // must release SR_lock to allow suspension to complete
   569   if (!pending) {
   570     // A cancelled suspend request is the only false return from
   571     // is_ext_suspend_completed() that keeps us from entering the
   572     // retry loop.
   573     *bits |= 0x00020000;
   574     return false;
   575   }
   577   if (is_suspended) {
   578     *bits |= 0x00040000;
   579     return true;
   580   }
   582   for (int i = 1; i <= retries; i++) {
   583     *bits = reset_bits;  // reinit to only track last retry
   585     // We used to do an "os::yield_all(i)" call here with the intention
   586     // that yielding would increase on each retry. However, the parameter
   587     // is ignored on Linux which means the yield didn't scale up. Waiting
   588     // on the SR_lock below provides a much more predictable scale up for
   589     // the delay. It also provides a simple/direct point to check for any
   590     // safepoint requests from the VMThread
   592     {
   593       MutexLocker ml(SR_lock());
   594       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   595       // can also call this)  and increase delay with each retry
   596       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   599                                               delay, bits);
   601       // It is possible for the external suspend request to be cancelled
   602       // (by a resume) before the actual suspend operation is completed.
   603       // Refresh our local copy to see if we still need to wait.
   604       pending = is_external_suspend();
   605     }
   607     if (!pending) {
   608       // A cancelled suspend request is the only false return from
   609       // is_ext_suspend_completed() that keeps us from staying in the
   610       // retry loop.
   611       *bits |= 0x00080000;
   612       return false;
   613     }
   615     if (is_suspended) {
   616       *bits |= 0x00100000;
   617       return true;
   618     }
   619   } // end retry loop
   621   // thread did not suspend after all our retries
   622   *bits |= 0x00200000;
   623   return false;
   624 }
   626 #ifndef PRODUCT
   627 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   629   // This should not need to be atomic as the only way for simultaneous
   630   // updates is via interrupts. Even then this should be rare or non-existant
   631   // and we don't care that much anyway.
   633   int index = _jmp_ring_index;
   634   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   635   _jmp_ring[index]._target = (intptr_t) target;
   636   _jmp_ring[index]._instruction = (intptr_t) instr;
   637   _jmp_ring[index]._file = file;
   638   _jmp_ring[index]._line = line;
   639 }
   640 #endif /* PRODUCT */
   642 // Called by flat profiler
   643 // Callers have already called wait_for_ext_suspend_completion
   644 // The assertion for that is currently too complex to put here:
   645 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   646   bool gotframe = false;
   647   // self suspension saves needed state.
   648   if (has_last_Java_frame() && _anchor.walkable()) {
   649      *_fr = pd_last_frame();
   650      gotframe = true;
   651   }
   652   return gotframe;
   653 }
   655 void Thread::interrupt(Thread* thread) {
   656   trace("interrupt", thread);
   657   debug_only(check_for_dangling_thread_pointer(thread);)
   658   os::interrupt(thread);
   659 }
   661 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   662   trace("is_interrupted", thread);
   663   debug_only(check_for_dangling_thread_pointer(thread);)
   664   // Note:  If clear_interrupted==false, this simply fetches and
   665   // returns the value of the field osthread()->interrupted().
   666   return os::is_interrupted(thread, clear_interrupted);
   667 }
   670 // GC Support
   671 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   672   jint thread_parity = _oops_do_parity;
   673   if (thread_parity != strong_roots_parity) {
   674     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   675     if (res == thread_parity) return true;
   676     else {
   677       guarantee(res == strong_roots_parity, "Or else what?");
   678       assert(SharedHeap::heap()->n_par_threads() > 0,
   679              "Should only fail when parallel.");
   680       return false;
   681     }
   682   }
   683   assert(SharedHeap::heap()->n_par_threads() > 0,
   684          "Should only fail when parallel.");
   685   return false;
   686 }
   688 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   689   active_handles()->oops_do(f);
   690   // Do oop for ThreadShadow
   691   f->do_oop((oop*)&_pending_exception);
   692   handle_area()->oops_do(f);
   693 }
   695 void Thread::nmethods_do(CodeBlobClosure* cf) {
   696   // no nmethods in a generic thread...
   697 }
   699 void Thread::print_on(outputStream* st) const {
   700   // get_priority assumes osthread initialized
   701   if (osthread() != NULL) {
   702     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   703     osthread()->print_on(st);
   704   }
   705   debug_only(if (WizardMode) print_owned_locks_on(st);)
   706 }
   708 // Thread::print_on_error() is called by fatal error handler. Don't use
   709 // any lock or allocate memory.
   710 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   711   if      (is_VM_thread())                  st->print("VMThread");
   712   else if (is_Compiler_thread())            st->print("CompilerThread");
   713   else if (is_Java_thread())                st->print("JavaThread");
   714   else if (is_GC_task_thread())             st->print("GCTaskThread");
   715   else if (is_Watcher_thread())             st->print("WatcherThread");
   716   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   717   else st->print("Thread");
   719   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   720             _stack_base - _stack_size, _stack_base);
   722   if (osthread()) {
   723     st->print(" [id=%d]", osthread()->thread_id());
   724   }
   725 }
   727 #ifdef ASSERT
   728 void Thread::print_owned_locks_on(outputStream* st) const {
   729   Monitor *cur = _owned_locks;
   730   if (cur == NULL) {
   731     st->print(" (no locks) ");
   732   } else {
   733     st->print_cr(" Locks owned:");
   734     while(cur) {
   735       cur->print_on(st);
   736       cur = cur->next();
   737     }
   738   }
   739 }
   741 static int ref_use_count  = 0;
   743 bool Thread::owns_locks_but_compiled_lock() const {
   744   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   745     if (cur != Compile_lock) return true;
   746   }
   747   return false;
   748 }
   751 #endif
   753 #ifndef PRODUCT
   755 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   756 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   757 // no threads which allow_vm_block's are held
   758 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   759     // Check if current thread is allowed to block at a safepoint
   760     if (!(_allow_safepoint_count == 0))
   761       fatal("Possible safepoint reached by thread that does not allow it");
   762     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   763       fatal("LEAF method calling lock?");
   764     }
   766 #ifdef ASSERT
   767     if (potential_vm_operation && is_Java_thread()
   768         && !Universe::is_bootstrapping()) {
   769       // Make sure we do not hold any locks that the VM thread also uses.
   770       // This could potentially lead to deadlocks
   771       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   772         // Threads_lock is special, since the safepoint synchronization will not start before this is
   773         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   774         // since it is used to transfer control between JavaThreads and the VMThread
   775         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   776         if ( (cur->allow_vm_block() &&
   777               cur != Threads_lock &&
   778               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   779               cur != VMOperationRequest_lock &&
   780               cur != VMOperationQueue_lock) ||
   781               cur->rank() == Mutex::special) {
   782           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   783         }
   784       }
   785     }
   787     if (GCALotAtAllSafepoints) {
   788       // We could enter a safepoint here and thus have a gc
   789       InterfaceSupport::check_gc_alot();
   790     }
   791 #endif
   792 }
   793 #endif
   795 bool Thread::is_in_stack(address adr) const {
   796   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   797   address end = os::current_stack_pointer();
   798   if (stack_base() >= adr && adr >= end) return true;
   800   return false;
   801 }
   804 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   805 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   806 // used for compilation in the future. If that change is made, the need for these methods
   807 // should be revisited, and they should be removed if possible.
   809 bool Thread::is_lock_owned(address adr) const {
   810   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
   811 }
   813 bool Thread::set_as_starting_thread() {
   814  // NOTE: this must be called inside the main thread.
   815   return os::create_main_thread((JavaThread*)this);
   816 }
   818 static void initialize_class(symbolHandle class_name, TRAPS) {
   819   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   820   instanceKlass::cast(klass)->initialize(CHECK);
   821 }
   824 // Creates the initial ThreadGroup
   825 static Handle create_initial_thread_group(TRAPS) {
   826   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   827   instanceKlassHandle klass (THREAD, k);
   829   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   830   {
   831     JavaValue result(T_VOID);
   832     JavaCalls::call_special(&result,
   833                             system_instance,
   834                             klass,
   835                             vmSymbolHandles::object_initializer_name(),
   836                             vmSymbolHandles::void_method_signature(),
   837                             CHECK_NH);
   838   }
   839   Universe::set_system_thread_group(system_instance());
   841   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   842   {
   843     JavaValue result(T_VOID);
   844     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   845     JavaCalls::call_special(&result,
   846                             main_instance,
   847                             klass,
   848                             vmSymbolHandles::object_initializer_name(),
   849                             vmSymbolHandles::threadgroup_string_void_signature(),
   850                             system_instance,
   851                             string,
   852                             CHECK_NH);
   853   }
   854   return main_instance;
   855 }
   857 // Creates the initial Thread
   858 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   859   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   860   instanceKlassHandle klass (THREAD, k);
   861   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   863   java_lang_Thread::set_thread(thread_oop(), thread);
   864   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   865   thread->set_threadObj(thread_oop());
   867   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   869   JavaValue result(T_VOID);
   870   JavaCalls::call_special(&result, thread_oop,
   871                                    klass,
   872                                    vmSymbolHandles::object_initializer_name(),
   873                                    vmSymbolHandles::threadgroup_string_void_signature(),
   874                                    thread_group,
   875                                    string,
   876                                    CHECK_NULL);
   877   return thread_oop();
   878 }
   880 static void call_initializeSystemClass(TRAPS) {
   881   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   882   instanceKlassHandle klass (THREAD, k);
   884   JavaValue result(T_VOID);
   885   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   886                                          vmSymbolHandles::void_method_signature(), CHECK);
   887 }
   889 #ifdef KERNEL
   890 static void set_jkernel_boot_classloader_hook(TRAPS) {
   891   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   892   instanceKlassHandle klass (THREAD, k);
   894   if (k == NULL) {
   895     // sun.jkernel.DownloadManager may not present in the JDK; just return
   896     return;
   897   }
   899   JavaValue result(T_VOID);
   900   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   901                                          vmSymbolHandles::void_method_signature(), CHECK);
   902 }
   903 #endif // KERNEL
   905 static void reset_vm_info_property(TRAPS) {
   906   // the vm info string
   907   ResourceMark rm(THREAD);
   908   const char *vm_info = VM_Version::vm_info_string();
   910   // java.lang.System class
   911   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   912   instanceKlassHandle klass (THREAD, k);
   914   // setProperty arguments
   915   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   916   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   918   // return value
   919   JavaValue r(T_OBJECT);
   921   // public static String setProperty(String key, String value);
   922   JavaCalls::call_static(&r,
   923                          klass,
   924                          vmSymbolHandles::setProperty_name(),
   925                          vmSymbolHandles::string_string_string_signature(),
   926                          key_str,
   927                          value_str,
   928                          CHECK);
   929 }
   932 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
   933   assert(thread_group.not_null(), "thread group should be specified");
   934   assert(threadObj() == NULL, "should only create Java thread object once");
   936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   937   instanceKlassHandle klass (THREAD, k);
   938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   940   java_lang_Thread::set_thread(thread_oop(), this);
   941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   942   set_threadObj(thread_oop());
   944   JavaValue result(T_VOID);
   945   if (thread_name != NULL) {
   946     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
   947     // Thread gets assigned specified name and null target
   948     JavaCalls::call_special(&result,
   949                             thread_oop,
   950                             klass,
   951                             vmSymbolHandles::object_initializer_name(),
   952                             vmSymbolHandles::threadgroup_string_void_signature(),
   953                             thread_group, // Argument 1
   954                             name,         // Argument 2
   955                             THREAD);
   956   } else {
   957     // Thread gets assigned name "Thread-nnn" and null target
   958     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
   959     JavaCalls::call_special(&result,
   960                             thread_oop,
   961                             klass,
   962                             vmSymbolHandles::object_initializer_name(),
   963                             vmSymbolHandles::threadgroup_runnable_void_signature(),
   964                             thread_group, // Argument 1
   965                             Handle(),     // Argument 2
   966                             THREAD);
   967   }
   970   if (daemon) {
   971       java_lang_Thread::set_daemon(thread_oop());
   972   }
   974   if (HAS_PENDING_EXCEPTION) {
   975     return;
   976   }
   978   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
   979   Handle threadObj(this, this->threadObj());
   981   JavaCalls::call_special(&result,
   982                          thread_group,
   983                          group,
   984                          vmSymbolHandles::add_method_name(),
   985                          vmSymbolHandles::thread_void_signature(),
   986                          threadObj,          // Arg 1
   987                          THREAD);
   990 }
   992 // NamedThread --  non-JavaThread subclasses with multiple
   993 // uniquely named instances should derive from this.
   994 NamedThread::NamedThread() : Thread() {
   995   _name = NULL;
   996   _processed_thread = NULL;
   997 }
   999 NamedThread::~NamedThread() {
  1000   if (_name != NULL) {
  1001     FREE_C_HEAP_ARRAY(char, _name);
  1002     _name = NULL;
  1006 void NamedThread::set_name(const char* format, ...) {
  1007   guarantee(_name == NULL, "Only get to set name once.");
  1008   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1009   guarantee(_name != NULL, "alloc failure");
  1010   va_list ap;
  1011   va_start(ap, format);
  1012   jio_vsnprintf(_name, max_name_len, format, ap);
  1013   va_end(ap);
  1016 // ======= WatcherThread ========
  1018 // The watcher thread exists to simulate timer interrupts.  It should
  1019 // be replaced by an abstraction over whatever native support for
  1020 // timer interrupts exists on the platform.
  1022 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1023 bool           WatcherThread::_should_terminate = false;
  1025 WatcherThread::WatcherThread() : Thread() {
  1026   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1027   if (os::create_thread(this, os::watcher_thread)) {
  1028     _watcher_thread = this;
  1030     // Set the watcher thread to the highest OS priority which should not be
  1031     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1032     // is created. The only normal thread using this priority is the reference
  1033     // handler thread, which runs for very short intervals only.
  1034     // If the VMThread's priority is not lower than the WatcherThread profiling
  1035     // will be inaccurate.
  1036     os::set_priority(this, MaxPriority);
  1037     if (!DisableStartThread) {
  1038       os::start_thread(this);
  1043 void WatcherThread::run() {
  1044   assert(this == watcher_thread(), "just checking");
  1046   this->record_stack_base_and_size();
  1047   this->initialize_thread_local_storage();
  1048   this->set_active_handles(JNIHandleBlock::allocate_block());
  1049   while(!_should_terminate) {
  1050     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1051     assert(watcher_thread() == this,  "thread consistency check");
  1053     // Calculate how long it'll be until the next PeriodicTask work
  1054     // should be done, and sleep that amount of time.
  1055     const size_t time_to_wait = PeriodicTask::time_to_wait();
  1056     os::sleep(this, time_to_wait, false);
  1058     if (is_error_reported()) {
  1059       // A fatal error has happened, the error handler(VMError::report_and_die)
  1060       // should abort JVM after creating an error log file. However in some
  1061       // rare cases, the error handler itself might deadlock. Here we try to
  1062       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1063       //
  1064       // This code is in WatcherThread because WatcherThread wakes up
  1065       // periodically so the fatal error handler doesn't need to do anything;
  1066       // also because the WatcherThread is less likely to crash than other
  1067       // threads.
  1069       for (;;) {
  1070         if (!ShowMessageBoxOnError
  1071          && (OnError == NULL || OnError[0] == '\0')
  1072          && Arguments::abort_hook() == NULL) {
  1073              os::sleep(this, 2 * 60 * 1000, false);
  1074              fdStream err(defaultStream::output_fd());
  1075              err.print_raw_cr("# [ timer expired, abort... ]");
  1076              // skip atexit/vm_exit/vm_abort hooks
  1077              os::die();
  1080         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1081         // ShowMessageBoxOnError when it is ready to abort.
  1082         os::sleep(this, 5 * 1000, false);
  1086     PeriodicTask::real_time_tick(time_to_wait);
  1088     // If we have no more tasks left due to dynamic disenrollment,
  1089     // shut down the thread since we don't currently support dynamic enrollment
  1090     if (PeriodicTask::num_tasks() == 0) {
  1091       _should_terminate = true;
  1095   // Signal that it is terminated
  1097     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1098     _watcher_thread = NULL;
  1099     Terminator_lock->notify();
  1102   // Thread destructor usually does this..
  1103   ThreadLocalStorage::set_thread(NULL);
  1106 void WatcherThread::start() {
  1107   if (watcher_thread() == NULL) {
  1108     _should_terminate = false;
  1109     // Create the single instance of WatcherThread
  1110     new WatcherThread();
  1114 void WatcherThread::stop() {
  1115   // it is ok to take late safepoints here, if needed
  1116   MutexLocker mu(Terminator_lock);
  1117   _should_terminate = true;
  1118   while(watcher_thread() != NULL) {
  1119     // This wait should make safepoint checks, wait without a timeout,
  1120     // and wait as a suspend-equivalent condition.
  1121     //
  1122     // Note: If the FlatProfiler is running, then this thread is waiting
  1123     // for the WatcherThread to terminate and the WatcherThread, via the
  1124     // FlatProfiler task, is waiting for the external suspend request on
  1125     // this thread to complete. wait_for_ext_suspend_completion() will
  1126     // eventually timeout, but that takes time. Making this wait a
  1127     // suspend-equivalent condition solves that timeout problem.
  1128     //
  1129     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1130                           Mutex::_as_suspend_equivalent_flag);
  1134 void WatcherThread::print_on(outputStream* st) const {
  1135   st->print("\"%s\" ", name());
  1136   Thread::print_on(st);
  1137   st->cr();
  1140 // ======= JavaThread ========
  1142 // A JavaThread is a normal Java thread
  1144 void JavaThread::initialize() {
  1145   // Initialize fields
  1147   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1148   set_claimed_par_id(-1);
  1150   set_saved_exception_pc(NULL);
  1151   set_threadObj(NULL);
  1152   _anchor.clear();
  1153   set_entry_point(NULL);
  1154   set_jni_functions(jni_functions());
  1155   set_callee_target(NULL);
  1156   set_vm_result(NULL);
  1157   set_vm_result_2(NULL);
  1158   set_vframe_array_head(NULL);
  1159   set_vframe_array_last(NULL);
  1160   set_deferred_locals(NULL);
  1161   set_deopt_mark(NULL);
  1162   clear_must_deopt_id();
  1163   set_monitor_chunks(NULL);
  1164   set_next(NULL);
  1165   set_thread_state(_thread_new);
  1166   _terminated = _not_terminated;
  1167   _privileged_stack_top = NULL;
  1168   _array_for_gc = NULL;
  1169   _suspend_equivalent = false;
  1170   _in_deopt_handler = 0;
  1171   _doing_unsafe_access = false;
  1172   _stack_guard_state = stack_guard_unused;
  1173   _exception_oop = NULL;
  1174   _exception_pc  = 0;
  1175   _exception_handler_pc = 0;
  1176   _exception_stack_size = 0;
  1177   _jvmti_thread_state= NULL;
  1178   _should_post_on_exceptions_flag = JNI_FALSE;
  1179   _jvmti_get_loaded_classes_closure = NULL;
  1180   _interp_only_mode    = 0;
  1181   _special_runtime_exit_condition = _no_async_condition;
  1182   _pending_async_exception = NULL;
  1183   _is_compiling = false;
  1184   _thread_stat = NULL;
  1185   _thread_stat = new ThreadStatistics();
  1186   _blocked_on_compilation = false;
  1187   _jni_active_critical = 0;
  1188   _do_not_unlock_if_synchronized = false;
  1189   _cached_monitor_info = NULL;
  1190   _parker = Parker::Allocate(this) ;
  1192 #ifndef PRODUCT
  1193   _jmp_ring_index = 0;
  1194   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1195     record_jump(NULL, NULL, NULL, 0);
  1197 #endif /* PRODUCT */
  1199   set_thread_profiler(NULL);
  1200   if (FlatProfiler::is_active()) {
  1201     // This is where we would decide to either give each thread it's own profiler
  1202     // or use one global one from FlatProfiler,
  1203     // or up to some count of the number of profiled threads, etc.
  1204     ThreadProfiler* pp = new ThreadProfiler();
  1205     pp->engage();
  1206     set_thread_profiler(pp);
  1209   // Setup safepoint state info for this thread
  1210   ThreadSafepointState::create(this);
  1212   debug_only(_java_call_counter = 0);
  1214   // JVMTI PopFrame support
  1215   _popframe_condition = popframe_inactive;
  1216   _popframe_preserved_args = NULL;
  1217   _popframe_preserved_args_size = 0;
  1219   pd_initialize();
  1222 #ifndef SERIALGC
  1223 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1224 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1225 #endif // !SERIALGC
  1227 JavaThread::JavaThread(bool is_attaching) :
  1228   Thread()
  1229 #ifndef SERIALGC
  1230   , _satb_mark_queue(&_satb_mark_queue_set),
  1231   _dirty_card_queue(&_dirty_card_queue_set)
  1232 #endif // !SERIALGC
  1234   initialize();
  1235   _is_attaching = is_attaching;
  1236   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1239 bool JavaThread::reguard_stack(address cur_sp) {
  1240   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1241     return true; // Stack already guarded or guard pages not needed.
  1244   if (register_stack_overflow()) {
  1245     // For those architectures which have separate register and
  1246     // memory stacks, we must check the register stack to see if
  1247     // it has overflowed.
  1248     return false;
  1251   // Java code never executes within the yellow zone: the latter is only
  1252   // there to provoke an exception during stack banging.  If java code
  1253   // is executing there, either StackShadowPages should be larger, or
  1254   // some exception code in c1, c2 or the interpreter isn't unwinding
  1255   // when it should.
  1256   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1258   enable_stack_yellow_zone();
  1259   return true;
  1262 bool JavaThread::reguard_stack(void) {
  1263   return reguard_stack(os::current_stack_pointer());
  1267 void JavaThread::block_if_vm_exited() {
  1268   if (_terminated == _vm_exited) {
  1269     // _vm_exited is set at safepoint, and Threads_lock is never released
  1270     // we will block here forever
  1271     Threads_lock->lock_without_safepoint_check();
  1272     ShouldNotReachHere();
  1277 // Remove this ifdef when C1 is ported to the compiler interface.
  1278 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1280 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1281   Thread()
  1282 #ifndef SERIALGC
  1283   , _satb_mark_queue(&_satb_mark_queue_set),
  1284   _dirty_card_queue(&_dirty_card_queue_set)
  1285 #endif // !SERIALGC
  1287   if (TraceThreadEvents) {
  1288     tty->print_cr("creating thread %p", this);
  1290   initialize();
  1291   _is_attaching = false;
  1292   set_entry_point(entry_point);
  1293   // Create the native thread itself.
  1294   // %note runtime_23
  1295   os::ThreadType thr_type = os::java_thread;
  1296   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1297                                                      os::java_thread;
  1298   os::create_thread(this, thr_type, stack_sz);
  1300   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1301   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1302   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1303   // the exception consists of creating the exception object & initializing it, initialization
  1304   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1305   //
  1306   // The thread is still suspended when we reach here. Thread must be explicit started
  1307   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1308   // by calling Threads:add. The reason why this is not done here, is because the thread
  1309   // object must be fully initialized (take a look at JVM_Start)
  1312 JavaThread::~JavaThread() {
  1313   if (TraceThreadEvents) {
  1314       tty->print_cr("terminate thread %p", this);
  1317   // JSR166 -- return the parker to the free list
  1318   Parker::Release(_parker);
  1319   _parker = NULL ;
  1321   // Free any remaining  previous UnrollBlock
  1322   vframeArray* old_array = vframe_array_last();
  1324   if (old_array != NULL) {
  1325     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1326     old_array->set_unroll_block(NULL);
  1327     delete old_info;
  1328     delete old_array;
  1331   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1332   if (deferred != NULL) {
  1333     // This can only happen if thread is destroyed before deoptimization occurs.
  1334     assert(deferred->length() != 0, "empty array!");
  1335     do {
  1336       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1337       deferred->remove_at(0);
  1338       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1339       delete dlv;
  1340     } while (deferred->length() != 0);
  1341     delete deferred;
  1344   // All Java related clean up happens in exit
  1345   ThreadSafepointState::destroy(this);
  1346   if (_thread_profiler != NULL) delete _thread_profiler;
  1347   if (_thread_stat != NULL) delete _thread_stat;
  1351 // The first routine called by a new Java thread
  1352 void JavaThread::run() {
  1353   // initialize thread-local alloc buffer related fields
  1354   this->initialize_tlab();
  1356   // used to test validitity of stack trace backs
  1357   this->record_base_of_stack_pointer();
  1359   // Record real stack base and size.
  1360   this->record_stack_base_and_size();
  1362   // Initialize thread local storage; set before calling MutexLocker
  1363   this->initialize_thread_local_storage();
  1365   this->create_stack_guard_pages();
  1367   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1368   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1369   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1371   assert(JavaThread::current() == this, "sanity check");
  1372   assert(!Thread::current()->owns_locks(), "sanity check");
  1374   DTRACE_THREAD_PROBE(start, this);
  1376   // This operation might block. We call that after all safepoint checks for a new thread has
  1377   // been completed.
  1378   this->set_active_handles(JNIHandleBlock::allocate_block());
  1380   if (JvmtiExport::should_post_thread_life()) {
  1381     JvmtiExport::post_thread_start(this);
  1384   // We call another function to do the rest so we are sure that the stack addresses used
  1385   // from there will be lower than the stack base just computed
  1386   thread_main_inner();
  1388   // Note, thread is no longer valid at this point!
  1392 void JavaThread::thread_main_inner() {
  1393   assert(JavaThread::current() == this, "sanity check");
  1394   assert(this->threadObj() != NULL, "just checking");
  1396   // Execute thread entry point. If this thread is being asked to restart,
  1397   // or has been stopped before starting, do not reexecute entry point.
  1398   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1399   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1400     // enter the thread's entry point only if we have no pending exceptions
  1401     HandleMark hm(this);
  1402     this->entry_point()(this, this);
  1405   DTRACE_THREAD_PROBE(stop, this);
  1407   this->exit(false);
  1408   delete this;
  1412 static void ensure_join(JavaThread* thread) {
  1413   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1414   Handle threadObj(thread, thread->threadObj());
  1415   assert(threadObj.not_null(), "java thread object must exist");
  1416   ObjectLocker lock(threadObj, thread);
  1417   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1418   thread->clear_pending_exception();
  1419   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1420   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1421   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1422   // is dead when it gets notified.
  1423   java_lang_Thread::set_stillborn(threadObj());
  1424   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1425   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1426   java_lang_Thread::set_thread(threadObj(), NULL);
  1427   lock.notify_all(thread);
  1428   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1429   thread->clear_pending_exception();
  1433 // For any new cleanup additions, please check to see if they need to be applied to
  1434 // cleanup_failed_attach_current_thread as well.
  1435 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1436   assert(this == JavaThread::current(),  "thread consistency check");
  1437   if (!InitializeJavaLangSystem) return;
  1439   HandleMark hm(this);
  1440   Handle uncaught_exception(this, this->pending_exception());
  1441   this->clear_pending_exception();
  1442   Handle threadObj(this, this->threadObj());
  1443   assert(threadObj.not_null(), "Java thread object should be created");
  1445   if (get_thread_profiler() != NULL) {
  1446     get_thread_profiler()->disengage();
  1447     ResourceMark rm;
  1448     get_thread_profiler()->print(get_thread_name());
  1452   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1454     EXCEPTION_MARK;
  1456     CLEAR_PENDING_EXCEPTION;
  1458   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1459   // has to be fixed by a runtime query method
  1460   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1461     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1462     // java.lang.Thread.dispatchUncaughtException
  1463     if (uncaught_exception.not_null()) {
  1464       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1465       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1466         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1468         EXCEPTION_MARK;
  1469         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1470         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1471         // so call ThreadGroup.uncaughtException()
  1472         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1473         CallInfo callinfo;
  1474         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1475         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1476                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1477                                            vmSymbolHandles::throwable_void_signature(),
  1478                                            KlassHandle(), false, false, THREAD);
  1479         CLEAR_PENDING_EXCEPTION;
  1480         methodHandle method = callinfo.selected_method();
  1481         if (method.not_null()) {
  1482           JavaValue result(T_VOID);
  1483           JavaCalls::call_virtual(&result,
  1484                                   threadObj, thread_klass,
  1485                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1486                                   vmSymbolHandles::throwable_void_signature(),
  1487                                   uncaught_exception,
  1488                                   THREAD);
  1489         } else {
  1490           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1491           JavaValue result(T_VOID);
  1492           JavaCalls::call_virtual(&result,
  1493                                   group, thread_group,
  1494                                   vmSymbolHandles::uncaughtException_name(),
  1495                                   vmSymbolHandles::thread_throwable_void_signature(),
  1496                                   threadObj,           // Arg 1
  1497                                   uncaught_exception,  // Arg 2
  1498                                   THREAD);
  1500         CLEAR_PENDING_EXCEPTION;
  1504     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1505     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1506     // is deprecated anyhow.
  1507     { int count = 3;
  1508       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1509         EXCEPTION_MARK;
  1510         JavaValue result(T_VOID);
  1511         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1512         JavaCalls::call_virtual(&result,
  1513                               threadObj, thread_klass,
  1514                               vmSymbolHandles::exit_method_name(),
  1515                               vmSymbolHandles::void_method_signature(),
  1516                               THREAD);
  1517         CLEAR_PENDING_EXCEPTION;
  1521     // notify JVMTI
  1522     if (JvmtiExport::should_post_thread_life()) {
  1523       JvmtiExport::post_thread_end(this);
  1526     // We have notified the agents that we are exiting, before we go on,
  1527     // we must check for a pending external suspend request and honor it
  1528     // in order to not surprise the thread that made the suspend request.
  1529     while (true) {
  1531         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1532         if (!is_external_suspend()) {
  1533           set_terminated(_thread_exiting);
  1534           ThreadService::current_thread_exiting(this);
  1535           break;
  1537         // Implied else:
  1538         // Things get a little tricky here. We have a pending external
  1539         // suspend request, but we are holding the SR_lock so we
  1540         // can't just self-suspend. So we temporarily drop the lock
  1541         // and then self-suspend.
  1544       ThreadBlockInVM tbivm(this);
  1545       java_suspend_self();
  1547       // We're done with this suspend request, but we have to loop around
  1548       // and check again. Eventually we will get SR_lock without a pending
  1549       // external suspend request and will be able to mark ourselves as
  1550       // exiting.
  1552     // no more external suspends are allowed at this point
  1553   } else {
  1554     // before_exit() has already posted JVMTI THREAD_END events
  1557   // Notify waiters on thread object. This has to be done after exit() is called
  1558   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1559   // group should have the destroyed bit set before waiters are notified).
  1560   ensure_join(this);
  1561   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1563   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1564   // held by this thread must be released.  A detach operation must only
  1565   // get here if there are no Java frames on the stack.  Therefore, any
  1566   // owned monitors at this point MUST be JNI-acquired monitors which are
  1567   // pre-inflated and in the monitor cache.
  1568   //
  1569   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1570   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1571     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1572     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1573     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1576   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1577   // is in a consistent state, in case GC happens
  1578   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1580   if (active_handles() != NULL) {
  1581     JNIHandleBlock* block = active_handles();
  1582     set_active_handles(NULL);
  1583     JNIHandleBlock::release_block(block);
  1586   if (free_handle_block() != NULL) {
  1587     JNIHandleBlock* block = free_handle_block();
  1588     set_free_handle_block(NULL);
  1589     JNIHandleBlock::release_block(block);
  1592   // These have to be removed while this is still a valid thread.
  1593   remove_stack_guard_pages();
  1595   if (UseTLAB) {
  1596     tlab().make_parsable(true);  // retire TLAB
  1599   if (jvmti_thread_state() != NULL) {
  1600     JvmtiExport::cleanup_thread(this);
  1603 #ifndef SERIALGC
  1604   // We must flush G1-related buffers before removing a thread from
  1605   // the list of active threads.
  1606   if (UseG1GC) {
  1607     flush_barrier_queues();
  1609 #endif
  1611   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1612   Threads::remove(this);
  1615 #ifndef SERIALGC
  1616 // Flush G1-related queues.
  1617 void JavaThread::flush_barrier_queues() {
  1618   satb_mark_queue().flush();
  1619   dirty_card_queue().flush();
  1621 #endif
  1623 void JavaThread::cleanup_failed_attach_current_thread() {
  1624   if (get_thread_profiler() != NULL) {
  1625     get_thread_profiler()->disengage();
  1626     ResourceMark rm;
  1627     get_thread_profiler()->print(get_thread_name());
  1630   if (active_handles() != NULL) {
  1631     JNIHandleBlock* block = active_handles();
  1632     set_active_handles(NULL);
  1633     JNIHandleBlock::release_block(block);
  1636   if (free_handle_block() != NULL) {
  1637     JNIHandleBlock* block = free_handle_block();
  1638     set_free_handle_block(NULL);
  1639     JNIHandleBlock::release_block(block);
  1642   // These have to be removed while this is still a valid thread.
  1643   remove_stack_guard_pages();
  1645   if (UseTLAB) {
  1646     tlab().make_parsable(true);  // retire TLAB, if any
  1649 #ifndef SERIALGC
  1650   if (UseG1GC) {
  1651     flush_barrier_queues();
  1653 #endif
  1655   Threads::remove(this);
  1656   delete this;
  1662 JavaThread* JavaThread::active() {
  1663   Thread* thread = ThreadLocalStorage::thread();
  1664   assert(thread != NULL, "just checking");
  1665   if (thread->is_Java_thread()) {
  1666     return (JavaThread*) thread;
  1667   } else {
  1668     assert(thread->is_VM_thread(), "this must be a vm thread");
  1669     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1670     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1671     assert(ret->is_Java_thread(), "must be a Java thread");
  1672     return ret;
  1676 bool JavaThread::is_lock_owned(address adr) const {
  1677   if (Thread::is_lock_owned(adr)) return true;
  1679   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1680     if (chunk->contains(adr)) return true;
  1683   return false;
  1687 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1688   chunk->set_next(monitor_chunks());
  1689   set_monitor_chunks(chunk);
  1692 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1693   guarantee(monitor_chunks() != NULL, "must be non empty");
  1694   if (monitor_chunks() == chunk) {
  1695     set_monitor_chunks(chunk->next());
  1696   } else {
  1697     MonitorChunk* prev = monitor_chunks();
  1698     while (prev->next() != chunk) prev = prev->next();
  1699     prev->set_next(chunk->next());
  1703 // JVM support.
  1705 // Note: this function shouldn't block if it's called in
  1706 // _thread_in_native_trans state (such as from
  1707 // check_special_condition_for_native_trans()).
  1708 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1710   if (has_last_Java_frame() && has_async_condition()) {
  1711     // If we are at a polling page safepoint (not a poll return)
  1712     // then we must defer async exception because live registers
  1713     // will be clobbered by the exception path. Poll return is
  1714     // ok because the call we a returning from already collides
  1715     // with exception handling registers and so there is no issue.
  1716     // (The exception handling path kills call result registers but
  1717     //  this is ok since the exception kills the result anyway).
  1719     if (is_at_poll_safepoint()) {
  1720       // if the code we are returning to has deoptimized we must defer
  1721       // the exception otherwise live registers get clobbered on the
  1722       // exception path before deoptimization is able to retrieve them.
  1723       //
  1724       RegisterMap map(this, false);
  1725       frame caller_fr = last_frame().sender(&map);
  1726       assert(caller_fr.is_compiled_frame(), "what?");
  1727       if (caller_fr.is_deoptimized_frame()) {
  1728         if (TraceExceptions) {
  1729           ResourceMark rm;
  1730           tty->print_cr("deferred async exception at compiled safepoint");
  1732         return;
  1737   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1738   if (condition == _no_async_condition) {
  1739     // Conditions have changed since has_special_runtime_exit_condition()
  1740     // was called:
  1741     // - if we were here only because of an external suspend request,
  1742     //   then that was taken care of above (or cancelled) so we are done
  1743     // - if we were here because of another async request, then it has
  1744     //   been cleared between the has_special_runtime_exit_condition()
  1745     //   and now so again we are done
  1746     return;
  1749   // Check for pending async. exception
  1750   if (_pending_async_exception != NULL) {
  1751     // Only overwrite an already pending exception, if it is not a threadDeath.
  1752     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1754       // We cannot call Exceptions::_throw(...) here because we cannot block
  1755       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1757       if (TraceExceptions) {
  1758         ResourceMark rm;
  1759         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1760         if (has_last_Java_frame() ) {
  1761           frame f = last_frame();
  1762           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1764         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1766       _pending_async_exception = NULL;
  1767       clear_has_async_exception();
  1771   if (check_unsafe_error &&
  1772       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1773     condition = _no_async_condition;  // done
  1774     switch (thread_state()) {
  1775     case _thread_in_vm:
  1777         JavaThread* THREAD = this;
  1778         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1780     case _thread_in_native:
  1782         ThreadInVMfromNative tiv(this);
  1783         JavaThread* THREAD = this;
  1784         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1786     case _thread_in_Java:
  1788         ThreadInVMfromJava tiv(this);
  1789         JavaThread* THREAD = this;
  1790         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1792     default:
  1793       ShouldNotReachHere();
  1797   assert(condition == _no_async_condition || has_pending_exception() ||
  1798          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1799          "must have handled the async condition, if no exception");
  1802 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1803   //
  1804   // Check for pending external suspend. Internal suspend requests do
  1805   // not use handle_special_runtime_exit_condition().
  1806   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1807   // thread is not the current thread. In older versions of jdbx, jdbx
  1808   // threads could call into the VM with another thread's JNIEnv so we
  1809   // can be here operating on behalf of a suspended thread (4432884).
  1810   bool do_self_suspend = is_external_suspend_with_lock();
  1811   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1812     //
  1813     // Because thread is external suspended the safepoint code will count
  1814     // thread as at a safepoint. This can be odd because we can be here
  1815     // as _thread_in_Java which would normally transition to _thread_blocked
  1816     // at a safepoint. We would like to mark the thread as _thread_blocked
  1817     // before calling java_suspend_self like all other callers of it but
  1818     // we must then observe proper safepoint protocol. (We can't leave
  1819     // _thread_blocked with a safepoint in progress). However we can be
  1820     // here as _thread_in_native_trans so we can't use a normal transition
  1821     // constructor/destructor pair because they assert on that type of
  1822     // transition. We could do something like:
  1823     //
  1824     // JavaThreadState state = thread_state();
  1825     // set_thread_state(_thread_in_vm);
  1826     // {
  1827     //   ThreadBlockInVM tbivm(this);
  1828     //   java_suspend_self()
  1829     // }
  1830     // set_thread_state(_thread_in_vm_trans);
  1831     // if (safepoint) block;
  1832     // set_thread_state(state);
  1833     //
  1834     // but that is pretty messy. Instead we just go with the way the
  1835     // code has worked before and note that this is the only path to
  1836     // java_suspend_self that doesn't put the thread in _thread_blocked
  1837     // mode.
  1839     frame_anchor()->make_walkable(this);
  1840     java_suspend_self();
  1842     // We might be here for reasons in addition to the self-suspend request
  1843     // so check for other async requests.
  1846   if (check_asyncs) {
  1847     check_and_handle_async_exceptions();
  1851 void JavaThread::send_thread_stop(oop java_throwable)  {
  1852   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1853   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1854   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1856   // Do not throw asynchronous exceptions against the compiler thread
  1857   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1858   if (is_Compiler_thread()) return;
  1860   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1861   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  1862     java_lang_Thread::set_stillborn(threadObj());
  1866     // Actually throw the Throwable against the target Thread - however
  1867     // only if there is no thread death exception installed already.
  1868     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1869       // If the topmost frame is a runtime stub, then we are calling into
  1870       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1871       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1872       // may not be valid
  1873       if (has_last_Java_frame()) {
  1874         frame f = last_frame();
  1875         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  1876           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  1877           RegisterMap reg_map(this, UseBiasedLocking);
  1878           frame compiled_frame = f.sender(&reg_map);
  1879           if (compiled_frame.can_be_deoptimized()) {
  1880             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  1885       // Set async. pending exception in thread.
  1886       set_pending_async_exception(java_throwable);
  1888       if (TraceExceptions) {
  1889        ResourceMark rm;
  1890        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1892       // for AbortVMOnException flag
  1893       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  1898   // Interrupt thread so it will wake up from a potential wait()
  1899   Thread::interrupt(this);
  1902 // External suspension mechanism.
  1903 //
  1904 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  1905 // to any VM_locks and it is at a transition
  1906 // Self-suspension will happen on the transition out of the vm.
  1907 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  1908 //
  1909 // Guarantees on return:
  1910 //   + Target thread will not execute any new bytecode (that's why we need to
  1911 //     force a safepoint)
  1912 //   + Target thread will not enter any new monitors
  1913 //
  1914 void JavaThread::java_suspend() {
  1915   { MutexLocker mu(Threads_lock);
  1916     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  1917        return;
  1921   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1922     if (!is_external_suspend()) {
  1923       // a racing resume has cancelled us; bail out now
  1924       return;
  1927     // suspend is done
  1928     uint32_t debug_bits = 0;
  1929     // Warning: is_ext_suspend_completed() may temporarily drop the
  1930     // SR_lock to allow the thread to reach a stable thread state if
  1931     // it is currently in a transient thread state.
  1932     if (is_ext_suspend_completed(false /* !called_by_wait */,
  1933                                  SuspendRetryDelay, &debug_bits) ) {
  1934       return;
  1938   VM_ForceSafepoint vm_suspend;
  1939   VMThread::execute(&vm_suspend);
  1942 // Part II of external suspension.
  1943 // A JavaThread self suspends when it detects a pending external suspend
  1944 // request. This is usually on transitions. It is also done in places
  1945 // where continuing to the next transition would surprise the caller,
  1946 // e.g., monitor entry.
  1947 //
  1948 // Returns the number of times that the thread self-suspended.
  1949 //
  1950 // Note: DO NOT call java_suspend_self() when you just want to block current
  1951 //       thread. java_suspend_self() is the second stage of cooperative
  1952 //       suspension for external suspend requests and should only be used
  1953 //       to complete an external suspend request.
  1954 //
  1955 int JavaThread::java_suspend_self() {
  1956   int ret = 0;
  1958   // we are in the process of exiting so don't suspend
  1959   if (is_exiting()) {
  1960      clear_external_suspend();
  1961      return ret;
  1964   assert(_anchor.walkable() ||
  1965     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  1966     "must have walkable stack");
  1968   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1970   assert(!this->is_ext_suspended(),
  1971     "a thread trying to self-suspend should not already be suspended");
  1973   if (this->is_suspend_equivalent()) {
  1974     // If we are self-suspending as a result of the lifting of a
  1975     // suspend equivalent condition, then the suspend_equivalent
  1976     // flag is not cleared until we set the ext_suspended flag so
  1977     // that wait_for_ext_suspend_completion() returns consistent
  1978     // results.
  1979     this->clear_suspend_equivalent();
  1982   // A racing resume may have cancelled us before we grabbed SR_lock
  1983   // above. Or another external suspend request could be waiting for us
  1984   // by the time we return from SR_lock()->wait(). The thread
  1985   // that requested the suspension may already be trying to walk our
  1986   // stack and if we return now, we can change the stack out from under
  1987   // it. This would be a "bad thing (TM)" and cause the stack walker
  1988   // to crash. We stay self-suspended until there are no more pending
  1989   // external suspend requests.
  1990   while (is_external_suspend()) {
  1991     ret++;
  1992     this->set_ext_suspended();
  1994     // _ext_suspended flag is cleared by java_resume()
  1995     while (is_ext_suspended()) {
  1996       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2000   return ret;
  2003 #ifdef ASSERT
  2004 // verify the JavaThread has not yet been published in the Threads::list, and
  2005 // hence doesn't need protection from concurrent access at this stage
  2006 void JavaThread::verify_not_published() {
  2007   if (!Threads_lock->owned_by_self()) {
  2008    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2009    assert( !Threads::includes(this),
  2010            "java thread shouldn't have been published yet!");
  2012   else {
  2013    assert( !Threads::includes(this),
  2014            "java thread shouldn't have been published yet!");
  2017 #endif
  2019 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2020 // progress or when _suspend_flags is non-zero.
  2021 // Current thread needs to self-suspend if there is a suspend request and/or
  2022 // block if a safepoint is in progress.
  2023 // Async exception ISN'T checked.
  2024 // Note only the ThreadInVMfromNative transition can call this function
  2025 // directly and when thread state is _thread_in_native_trans
  2026 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2027   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2029   JavaThread *curJT = JavaThread::current();
  2030   bool do_self_suspend = thread->is_external_suspend();
  2032   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2034   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2035   // thread is not the current thread. In older versions of jdbx, jdbx
  2036   // threads could call into the VM with another thread's JNIEnv so we
  2037   // can be here operating on behalf of a suspended thread (4432884).
  2038   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2039     JavaThreadState state = thread->thread_state();
  2041     // We mark this thread_blocked state as a suspend-equivalent so
  2042     // that a caller to is_ext_suspend_completed() won't be confused.
  2043     // The suspend-equivalent state is cleared by java_suspend_self().
  2044     thread->set_suspend_equivalent();
  2046     // If the safepoint code sees the _thread_in_native_trans state, it will
  2047     // wait until the thread changes to other thread state. There is no
  2048     // guarantee on how soon we can obtain the SR_lock and complete the
  2049     // self-suspend request. It would be a bad idea to let safepoint wait for
  2050     // too long. Temporarily change the state to _thread_blocked to
  2051     // let the VM thread know that this thread is ready for GC. The problem
  2052     // of changing thread state is that safepoint could happen just after
  2053     // java_suspend_self() returns after being resumed, and VM thread will
  2054     // see the _thread_blocked state. We must check for safepoint
  2055     // after restoring the state and make sure we won't leave while a safepoint
  2056     // is in progress.
  2057     thread->set_thread_state(_thread_blocked);
  2058     thread->java_suspend_self();
  2059     thread->set_thread_state(state);
  2060     // Make sure new state is seen by VM thread
  2061     if (os::is_MP()) {
  2062       if (UseMembar) {
  2063         // Force a fence between the write above and read below
  2064         OrderAccess::fence();
  2065       } else {
  2066         // Must use this rather than serialization page in particular on Windows
  2067         InterfaceSupport::serialize_memory(thread);
  2072   if (SafepointSynchronize::do_call_back()) {
  2073     // If we are safepointing, then block the caller which may not be
  2074     // the same as the target thread (see above).
  2075     SafepointSynchronize::block(curJT);
  2078   if (thread->is_deopt_suspend()) {
  2079     thread->clear_deopt_suspend();
  2080     RegisterMap map(thread, false);
  2081     frame f = thread->last_frame();
  2082     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2083       f = f.sender(&map);
  2085     if (f.id() == thread->must_deopt_id()) {
  2086       thread->clear_must_deopt_id();
  2087       // Since we know we're safe to deopt the current state is a safe state
  2088       f.deoptimize(thread, true);
  2089     } else {
  2090       fatal("missed deoptimization!");
  2095 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2096 // progress or when _suspend_flags is non-zero.
  2097 // Current thread needs to self-suspend if there is a suspend request and/or
  2098 // block if a safepoint is in progress.
  2099 // Also check for pending async exception (not including unsafe access error).
  2100 // Note only the native==>VM/Java barriers can call this function and when
  2101 // thread state is _thread_in_native_trans.
  2102 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2103   check_safepoint_and_suspend_for_native_trans(thread);
  2105   if (thread->has_async_exception()) {
  2106     // We are in _thread_in_native_trans state, don't handle unsafe
  2107     // access error since that may block.
  2108     thread->check_and_handle_async_exceptions(false);
  2112 // We need to guarantee the Threads_lock here, since resumes are not
  2113 // allowed during safepoint synchronization
  2114 // Can only resume from an external suspension
  2115 void JavaThread::java_resume() {
  2116   assert_locked_or_safepoint(Threads_lock);
  2118   // Sanity check: thread is gone, has started exiting or the thread
  2119   // was not externally suspended.
  2120   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2121     return;
  2124   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2126   clear_external_suspend();
  2128   if (is_ext_suspended()) {
  2129     clear_ext_suspended();
  2130     SR_lock()->notify_all();
  2134 void JavaThread::create_stack_guard_pages() {
  2135   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2136   address low_addr = stack_base() - stack_size();
  2137   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2139   int allocate = os::allocate_stack_guard_pages();
  2140   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2142   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2143     warning("Attempt to allocate stack guard pages failed.");
  2144     return;
  2147   if (os::guard_memory((char *) low_addr, len)) {
  2148     _stack_guard_state = stack_guard_enabled;
  2149   } else {
  2150     warning("Attempt to protect stack guard pages failed.");
  2151     if (os::uncommit_memory((char *) low_addr, len)) {
  2152       warning("Attempt to deallocate stack guard pages failed.");
  2157 void JavaThread::remove_stack_guard_pages() {
  2158   if (_stack_guard_state == stack_guard_unused) return;
  2159   address low_addr = stack_base() - stack_size();
  2160   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2162   if (os::allocate_stack_guard_pages()) {
  2163     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2164       _stack_guard_state = stack_guard_unused;
  2165     } else {
  2166       warning("Attempt to deallocate stack guard pages failed.");
  2168   } else {
  2169     if (_stack_guard_state == stack_guard_unused) return;
  2170     if (os::unguard_memory((char *) low_addr, len)) {
  2171       _stack_guard_state = stack_guard_unused;
  2172     } else {
  2173         warning("Attempt to unprotect stack guard pages failed.");
  2178 void JavaThread::enable_stack_yellow_zone() {
  2179   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2180   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2182   // The base notation is from the stacks point of view, growing downward.
  2183   // We need to adjust it to work correctly with guard_memory()
  2184   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2186   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2187   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2189   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2190     _stack_guard_state = stack_guard_enabled;
  2191   } else {
  2192     warning("Attempt to guard stack yellow zone failed.");
  2194   enable_register_stack_guard();
  2197 void JavaThread::disable_stack_yellow_zone() {
  2198   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2199   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2201   // Simply return if called for a thread that does not use guard pages.
  2202   if (_stack_guard_state == stack_guard_unused) return;
  2204   // The base notation is from the stacks point of view, growing downward.
  2205   // We need to adjust it to work correctly with guard_memory()
  2206   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2208   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2209     _stack_guard_state = stack_guard_yellow_disabled;
  2210   } else {
  2211     warning("Attempt to unguard stack yellow zone failed.");
  2213   disable_register_stack_guard();
  2216 void JavaThread::enable_stack_red_zone() {
  2217   // The base notation is from the stacks point of view, growing downward.
  2218   // We need to adjust it to work correctly with guard_memory()
  2219   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2220   address base = stack_red_zone_base() - stack_red_zone_size();
  2222   guarantee(base < stack_base(),"Error calculating stack red zone");
  2223   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2225   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2226     warning("Attempt to guard stack red zone failed.");
  2230 void JavaThread::disable_stack_red_zone() {
  2231   // The base notation is from the stacks point of view, growing downward.
  2232   // We need to adjust it to work correctly with guard_memory()
  2233   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2234   address base = stack_red_zone_base() - stack_red_zone_size();
  2235   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2236     warning("Attempt to unguard stack red zone failed.");
  2240 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2241   // ignore is there is no stack
  2242   if (!has_last_Java_frame()) return;
  2243   // traverse the stack frames. Starts from top frame.
  2244   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2245     frame* fr = fst.current();
  2246     f(fr, fst.register_map());
  2251 #ifndef PRODUCT
  2252 // Deoptimization
  2253 // Function for testing deoptimization
  2254 void JavaThread::deoptimize() {
  2255   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2256   StackFrameStream fst(this, UseBiasedLocking);
  2257   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2258   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2259   // Iterate over all frames in the thread and deoptimize
  2260   for(; !fst.is_done(); fst.next()) {
  2261     if(fst.current()->can_be_deoptimized()) {
  2263       if (only_at) {
  2264         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2265         // consists of comma or carriage return separated numbers so
  2266         // search for the current bci in that string.
  2267         address pc = fst.current()->pc();
  2268         nmethod* nm =  (nmethod*) fst.current()->cb();
  2269         ScopeDesc* sd = nm->scope_desc_at( pc);
  2270         char buffer[8];
  2271         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2272         size_t len = strlen(buffer);
  2273         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2274         while (found != NULL) {
  2275           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2276               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2277             // Check that the bci found is bracketed by terminators.
  2278             break;
  2280           found = strstr(found + 1, buffer);
  2282         if (!found) {
  2283           continue;
  2287       if (DebugDeoptimization && !deopt) {
  2288         deopt = true; // One-time only print before deopt
  2289         tty->print_cr("[BEFORE Deoptimization]");
  2290         trace_frames();
  2291         trace_stack();
  2293       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2297   if (DebugDeoptimization && deopt) {
  2298     tty->print_cr("[AFTER Deoptimization]");
  2299     trace_frames();
  2304 // Make zombies
  2305 void JavaThread::make_zombies() {
  2306   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2307     if (fst.current()->can_be_deoptimized()) {
  2308       // it is a Java nmethod
  2309       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2310       nm->make_not_entrant();
  2314 #endif // PRODUCT
  2317 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2318   if (!has_last_Java_frame()) return;
  2319   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2320   StackFrameStream fst(this, UseBiasedLocking);
  2321   for(; !fst.is_done(); fst.next()) {
  2322     if (fst.current()->should_be_deoptimized()) {
  2323       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2329 // GC support
  2330 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2332 void JavaThread::gc_epilogue() {
  2333   frames_do(frame_gc_epilogue);
  2337 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2339 void JavaThread::gc_prologue() {
  2340   frames_do(frame_gc_prologue);
  2343 // If the caller is a NamedThread, then remember, in the current scope,
  2344 // the given JavaThread in its _processed_thread field.
  2345 class RememberProcessedThread: public StackObj {
  2346   NamedThread* _cur_thr;
  2347 public:
  2348   RememberProcessedThread(JavaThread* jthr) {
  2349     Thread* thread = Thread::current();
  2350     if (thread->is_Named_thread()) {
  2351       _cur_thr = (NamedThread *)thread;
  2352       _cur_thr->set_processed_thread(jthr);
  2353     } else {
  2354       _cur_thr = NULL;
  2358   ~RememberProcessedThread() {
  2359     if (_cur_thr) {
  2360       _cur_thr->set_processed_thread(NULL);
  2363 };
  2365 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2366   // Verify that the deferred card marks have been flushed.
  2367   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2369   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2370   // since there may be more than one thread using each ThreadProfiler.
  2372   // Traverse the GCHandles
  2373   Thread::oops_do(f, cf);
  2375   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2376           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2378   if (has_last_Java_frame()) {
  2379     // Record JavaThread to GC thread
  2380     RememberProcessedThread rpt(this);
  2382     // Traverse the privileged stack
  2383     if (_privileged_stack_top != NULL) {
  2384       _privileged_stack_top->oops_do(f);
  2387     // traverse the registered growable array
  2388     if (_array_for_gc != NULL) {
  2389       for (int index = 0; index < _array_for_gc->length(); index++) {
  2390         f->do_oop(_array_for_gc->adr_at(index));
  2394     // Traverse the monitor chunks
  2395     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2396       chunk->oops_do(f);
  2399     // Traverse the execution stack
  2400     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2401       fst.current()->oops_do(f, cf, fst.register_map());
  2405   // callee_target is never live across a gc point so NULL it here should
  2406   // it still contain a methdOop.
  2408   set_callee_target(NULL);
  2410   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2411   // If we have deferred set_locals there might be oops waiting to be
  2412   // written
  2413   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2414   if (list != NULL) {
  2415     for (int i = 0; i < list->length(); i++) {
  2416       list->at(i)->oops_do(f);
  2420   // Traverse instance variables at the end since the GC may be moving things
  2421   // around using this function
  2422   f->do_oop((oop*) &_threadObj);
  2423   f->do_oop((oop*) &_vm_result);
  2424   f->do_oop((oop*) &_vm_result_2);
  2425   f->do_oop((oop*) &_exception_oop);
  2426   f->do_oop((oop*) &_pending_async_exception);
  2428   if (jvmti_thread_state() != NULL) {
  2429     jvmti_thread_state()->oops_do(f);
  2433 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2434   Thread::nmethods_do(cf);  // (super method is a no-op)
  2436   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2437           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2439   if (has_last_Java_frame()) {
  2440     // Traverse the execution stack
  2441     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2442       fst.current()->nmethods_do(cf);
  2447 // Printing
  2448 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2449   switch (_thread_state) {
  2450   case _thread_uninitialized:     return "_thread_uninitialized";
  2451   case _thread_new:               return "_thread_new";
  2452   case _thread_new_trans:         return "_thread_new_trans";
  2453   case _thread_in_native:         return "_thread_in_native";
  2454   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2455   case _thread_in_vm:             return "_thread_in_vm";
  2456   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2457   case _thread_in_Java:           return "_thread_in_Java";
  2458   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2459   case _thread_blocked:           return "_thread_blocked";
  2460   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2461   default:                        return "unknown thread state";
  2465 #ifndef PRODUCT
  2466 void JavaThread::print_thread_state_on(outputStream *st) const {
  2467   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2468 };
  2469 void JavaThread::print_thread_state() const {
  2470   print_thread_state_on(tty);
  2471 };
  2472 #endif // PRODUCT
  2474 // Called by Threads::print() for VM_PrintThreads operation
  2475 void JavaThread::print_on(outputStream *st) const {
  2476   st->print("\"%s\" ", get_thread_name());
  2477   oop thread_oop = threadObj();
  2478   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2479   Thread::print_on(st);
  2480   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2481   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2482   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2483     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2485 #ifndef PRODUCT
  2486   print_thread_state_on(st);
  2487   _safepoint_state->print_on(st);
  2488 #endif // PRODUCT
  2491 // Called by fatal error handler. The difference between this and
  2492 // JavaThread::print() is that we can't grab lock or allocate memory.
  2493 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2494   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2495   oop thread_obj = threadObj();
  2496   if (thread_obj != NULL) {
  2497      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2499   st->print(" [");
  2500   st->print("%s", _get_thread_state_name(_thread_state));
  2501   if (osthread()) {
  2502     st->print(", id=%d", osthread()->thread_id());
  2504   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2505             _stack_base - _stack_size, _stack_base);
  2506   st->print("]");
  2507   return;
  2510 // Verification
  2512 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2514 void JavaThread::verify() {
  2515   // Verify oops in the thread.
  2516   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2518   // Verify the stack frames.
  2519   frames_do(frame_verify);
  2522 // CR 6300358 (sub-CR 2137150)
  2523 // Most callers of this method assume that it can't return NULL but a
  2524 // thread may not have a name whilst it is in the process of attaching to
  2525 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2526 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2527 // if vm exit occurs during initialization). These cases can all be accounted
  2528 // for such that this method never returns NULL.
  2529 const char* JavaThread::get_thread_name() const {
  2530 #ifdef ASSERT
  2531   // early safepoints can hit while current thread does not yet have TLS
  2532   if (!SafepointSynchronize::is_at_safepoint()) {
  2533     Thread *cur = Thread::current();
  2534     if (!(cur->is_Java_thread() && cur == this)) {
  2535       // Current JavaThreads are allowed to get their own name without
  2536       // the Threads_lock.
  2537       assert_locked_or_safepoint(Threads_lock);
  2540 #endif // ASSERT
  2541     return get_thread_name_string();
  2544 // Returns a non-NULL representation of this thread's name, or a suitable
  2545 // descriptive string if there is no set name
  2546 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2547   const char* name_str;
  2548   oop thread_obj = threadObj();
  2549   if (thread_obj != NULL) {
  2550     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2551     if (name != NULL) {
  2552       if (buf == NULL) {
  2553         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2555       else {
  2556         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2559     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2560       name_str = "<no-name - thread is attaching>";
  2562     else {
  2563       name_str = Thread::name();
  2566   else {
  2567     name_str = Thread::name();
  2569   assert(name_str != NULL, "unexpected NULL thread name");
  2570   return name_str;
  2574 const char* JavaThread::get_threadgroup_name() const {
  2575   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2576   oop thread_obj = threadObj();
  2577   if (thread_obj != NULL) {
  2578     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2579     if (thread_group != NULL) {
  2580       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2581       // ThreadGroup.name can be null
  2582       if (name != NULL) {
  2583         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2584         return str;
  2588   return NULL;
  2591 const char* JavaThread::get_parent_name() const {
  2592   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2593   oop thread_obj = threadObj();
  2594   if (thread_obj != NULL) {
  2595     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2596     if (thread_group != NULL) {
  2597       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2598       if (parent != NULL) {
  2599         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2600         // ThreadGroup.name can be null
  2601         if (name != NULL) {
  2602           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2603           return str;
  2608   return NULL;
  2611 ThreadPriority JavaThread::java_priority() const {
  2612   oop thr_oop = threadObj();
  2613   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2614   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2615   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2616   return priority;
  2619 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2621   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2622   // Link Java Thread object <-> C++ Thread
  2624   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2625   // and put it into a new Handle.  The Handle "thread_oop" can then
  2626   // be used to pass the C++ thread object to other methods.
  2628   // Set the Java level thread object (jthread) field of the
  2629   // new thread (a JavaThread *) to C++ thread object using the
  2630   // "thread_oop" handle.
  2632   // Set the thread field (a JavaThread *) of the
  2633   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2635   Handle thread_oop(Thread::current(),
  2636                     JNIHandles::resolve_non_null(jni_thread));
  2637   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2638     "must be initialized");
  2639   set_threadObj(thread_oop());
  2640   java_lang_Thread::set_thread(thread_oop(), this);
  2642   if (prio == NoPriority) {
  2643     prio = java_lang_Thread::priority(thread_oop());
  2644     assert(prio != NoPriority, "A valid priority should be present");
  2647   // Push the Java priority down to the native thread; needs Threads_lock
  2648   Thread::set_priority(this, prio);
  2650   // Add the new thread to the Threads list and set it in motion.
  2651   // We must have threads lock in order to call Threads::add.
  2652   // It is crucial that we do not block before the thread is
  2653   // added to the Threads list for if a GC happens, then the java_thread oop
  2654   // will not be visited by GC.
  2655   Threads::add(this);
  2658 oop JavaThread::current_park_blocker() {
  2659   // Support for JSR-166 locks
  2660   oop thread_oop = threadObj();
  2661   if (thread_oop != NULL &&
  2662       JDK_Version::current().supports_thread_park_blocker()) {
  2663     return java_lang_Thread::park_blocker(thread_oop);
  2665   return NULL;
  2669 void JavaThread::print_stack_on(outputStream* st) {
  2670   if (!has_last_Java_frame()) return;
  2671   ResourceMark rm;
  2672   HandleMark   hm;
  2674   RegisterMap reg_map(this);
  2675   vframe* start_vf = last_java_vframe(&reg_map);
  2676   int count = 0;
  2677   for (vframe* f = start_vf; f; f = f->sender() ) {
  2678     if (f->is_java_frame()) {
  2679       javaVFrame* jvf = javaVFrame::cast(f);
  2680       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2682       // Print out lock information
  2683       if (JavaMonitorsInStackTrace) {
  2684         jvf->print_lock_info_on(st, count);
  2686     } else {
  2687       // Ignore non-Java frames
  2690     // Bail-out case for too deep stacks
  2691     count++;
  2692     if (MaxJavaStackTraceDepth == count) return;
  2697 // JVMTI PopFrame support
  2698 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2699   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2700   if (in_bytes(size_in_bytes) != 0) {
  2701     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2702     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2703     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2707 void* JavaThread::popframe_preserved_args() {
  2708   return _popframe_preserved_args;
  2711 ByteSize JavaThread::popframe_preserved_args_size() {
  2712   return in_ByteSize(_popframe_preserved_args_size);
  2715 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2716   int sz = in_bytes(popframe_preserved_args_size());
  2717   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2718   return in_WordSize(sz / wordSize);
  2721 void JavaThread::popframe_free_preserved_args() {
  2722   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2723   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2724   _popframe_preserved_args = NULL;
  2725   _popframe_preserved_args_size = 0;
  2728 #ifndef PRODUCT
  2730 void JavaThread::trace_frames() {
  2731   tty->print_cr("[Describe stack]");
  2732   int frame_no = 1;
  2733   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2734     tty->print("  %d. ", frame_no++);
  2735     fst.current()->print_value_on(tty,this);
  2736     tty->cr();
  2741 void JavaThread::trace_stack_from(vframe* start_vf) {
  2742   ResourceMark rm;
  2743   int vframe_no = 1;
  2744   for (vframe* f = start_vf; f; f = f->sender() ) {
  2745     if (f->is_java_frame()) {
  2746       javaVFrame::cast(f)->print_activation(vframe_no++);
  2747     } else {
  2748       f->print();
  2750     if (vframe_no > StackPrintLimit) {
  2751       tty->print_cr("...<more frames>...");
  2752       return;
  2758 void JavaThread::trace_stack() {
  2759   if (!has_last_Java_frame()) return;
  2760   ResourceMark rm;
  2761   HandleMark   hm;
  2762   RegisterMap reg_map(this);
  2763   trace_stack_from(last_java_vframe(&reg_map));
  2767 #endif // PRODUCT
  2770 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2771   assert(reg_map != NULL, "a map must be given");
  2772   frame f = last_frame();
  2773   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2774     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2776   return NULL;
  2780 klassOop JavaThread::security_get_caller_class(int depth) {
  2781   vframeStream vfst(this);
  2782   vfst.security_get_caller_frame(depth);
  2783   if (!vfst.at_end()) {
  2784     return vfst.method()->method_holder();
  2786   return NULL;
  2789 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2790   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2791   CompileBroker::compiler_thread_loop();
  2794 // Create a CompilerThread
  2795 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2796 : JavaThread(&compiler_thread_entry) {
  2797   _env   = NULL;
  2798   _log   = NULL;
  2799   _task  = NULL;
  2800   _queue = queue;
  2801   _counters = counters;
  2802   _buffer_blob = NULL;
  2804 #ifndef PRODUCT
  2805   _ideal_graph_printer = NULL;
  2806 #endif
  2810 // ======= Threads ========
  2812 // The Threads class links together all active threads, and provides
  2813 // operations over all threads.  It is protected by its own Mutex
  2814 // lock, which is also used in other contexts to protect thread
  2815 // operations from having the thread being operated on from exiting
  2816 // and going away unexpectedly (e.g., safepoint synchronization)
  2818 JavaThread* Threads::_thread_list = NULL;
  2819 int         Threads::_number_of_threads = 0;
  2820 int         Threads::_number_of_non_daemon_threads = 0;
  2821 int         Threads::_return_code = 0;
  2822 size_t      JavaThread::_stack_size_at_create = 0;
  2824 // All JavaThreads
  2825 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2827 void os_stream();
  2829 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2830 void Threads::threads_do(ThreadClosure* tc) {
  2831   assert_locked_or_safepoint(Threads_lock);
  2832   // ALL_JAVA_THREADS iterates through all JavaThreads
  2833   ALL_JAVA_THREADS(p) {
  2834     tc->do_thread(p);
  2836   // Someday we could have a table or list of all non-JavaThreads.
  2837   // For now, just manually iterate through them.
  2838   tc->do_thread(VMThread::vm_thread());
  2839   Universe::heap()->gc_threads_do(tc);
  2840   WatcherThread *wt = WatcherThread::watcher_thread();
  2841   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2842   // the data for WatcherThread is still valid upon being examined. However,
  2843   // considering that WatchThread terminates when the VM is on the way to
  2844   // exit at safepoint, the chance of the above is extremely small. The right
  2845   // way to prevent termination of WatcherThread would be to acquire
  2846   // Terminator_lock, but we can't do that without violating the lock rank
  2847   // checking in some cases.
  2848   if (wt != NULL)
  2849     tc->do_thread(wt);
  2851   // If CompilerThreads ever become non-JavaThreads, add them here
  2854 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2856   extern void JDK_Version_init();
  2858   // Check version
  2859   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2861   // Initialize the output stream module
  2862   ostream_init();
  2864   // Process java launcher properties.
  2865   Arguments::process_sun_java_launcher_properties(args);
  2867   // Initialize the os module before using TLS
  2868   os::init();
  2870   // Initialize system properties.
  2871   Arguments::init_system_properties();
  2873   // So that JDK version can be used as a discrimintor when parsing arguments
  2874   JDK_Version_init();
  2876   // Parse arguments
  2877   jint parse_result = Arguments::parse(args);
  2878   if (parse_result != JNI_OK) return parse_result;
  2880   if (PauseAtStartup) {
  2881     os::pause();
  2884   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  2886   // Record VM creation timing statistics
  2887   TraceVmCreationTime create_vm_timer;
  2888   create_vm_timer.start();
  2890   // Timing (must come after argument parsing)
  2891   TraceTime timer("Create VM", TraceStartupTime);
  2893   // Initialize the os module after parsing the args
  2894   jint os_init_2_result = os::init_2();
  2895   if (os_init_2_result != JNI_OK) return os_init_2_result;
  2897   // Initialize output stream logging
  2898   ostream_init_log();
  2900   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  2901   // Must be before create_vm_init_agents()
  2902   if (Arguments::init_libraries_at_startup()) {
  2903     convert_vm_init_libraries_to_agents();
  2906   // Launch -agentlib/-agentpath and converted -Xrun agents
  2907   if (Arguments::init_agents_at_startup()) {
  2908     create_vm_init_agents();
  2911   // Initialize Threads state
  2912   _thread_list = NULL;
  2913   _number_of_threads = 0;
  2914   _number_of_non_daemon_threads = 0;
  2916   // Initialize TLS
  2917   ThreadLocalStorage::init();
  2919   // Initialize global data structures and create system classes in heap
  2920   vm_init_globals();
  2922   // Attach the main thread to this os thread
  2923   JavaThread* main_thread = new JavaThread();
  2924   main_thread->set_thread_state(_thread_in_vm);
  2925   // must do this before set_active_handles and initialize_thread_local_storage
  2926   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  2927   // change the stack size recorded here to one based on the java thread
  2928   // stacksize. This adjusted size is what is used to figure the placement
  2929   // of the guard pages.
  2930   main_thread->record_stack_base_and_size();
  2931   main_thread->initialize_thread_local_storage();
  2933   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  2935   if (!main_thread->set_as_starting_thread()) {
  2936     vm_shutdown_during_initialization(
  2937       "Failed necessary internal allocation. Out of swap space");
  2938     delete main_thread;
  2939     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2940     return JNI_ENOMEM;
  2943   // Enable guard page *after* os::create_main_thread(), otherwise it would
  2944   // crash Linux VM, see notes in os_linux.cpp.
  2945   main_thread->create_stack_guard_pages();
  2947   // Initialize Java-Leve synchronization subsystem
  2948   ObjectSynchronizer::Initialize() ;
  2950   // Initialize global modules
  2951   jint status = init_globals();
  2952   if (status != JNI_OK) {
  2953     delete main_thread;
  2954     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2955     return status;
  2958   HandleMark hm;
  2960   { MutexLocker mu(Threads_lock);
  2961     Threads::add(main_thread);
  2964   // Any JVMTI raw monitors entered in onload will transition into
  2965   // real raw monitor. VM is setup enough here for raw monitor enter.
  2966   JvmtiExport::transition_pending_onload_raw_monitors();
  2968   if (VerifyBeforeGC &&
  2969       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  2970     Universe::heap()->prepare_for_verify();
  2971     Universe::verify();   // make sure we're starting with a clean slate
  2974   // Create the VMThread
  2975   { TraceTime timer("Start VMThread", TraceStartupTime);
  2976     VMThread::create();
  2977     Thread* vmthread = VMThread::vm_thread();
  2979     if (!os::create_thread(vmthread, os::vm_thread))
  2980       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  2982     // Wait for the VM thread to become ready, and VMThread::run to initialize
  2983     // Monitors can have spurious returns, must always check another state flag
  2985       MutexLocker ml(Notify_lock);
  2986       os::start_thread(vmthread);
  2987       while (vmthread->active_handles() == NULL) {
  2988         Notify_lock->wait();
  2993   assert (Universe::is_fully_initialized(), "not initialized");
  2994   EXCEPTION_MARK;
  2996   // At this point, the Universe is initialized, but we have not executed
  2997   // any byte code.  Now is a good time (the only time) to dump out the
  2998   // internal state of the JVM for sharing.
  3000   if (DumpSharedSpaces) {
  3001     Universe::heap()->preload_and_dump(CHECK_0);
  3002     ShouldNotReachHere();
  3005   // Always call even when there are not JVMTI environments yet, since environments
  3006   // may be attached late and JVMTI must track phases of VM execution
  3007   JvmtiExport::enter_start_phase();
  3009   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3010   JvmtiExport::post_vm_start();
  3013     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3015     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3016       create_vm_init_libraries();
  3019     if (InitializeJavaLangString) {
  3020       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3021     } else {
  3022       warning("java.lang.String not initialized");
  3025     if (AggressiveOpts) {
  3027         // Forcibly initialize java/util/HashMap and mutate the private
  3028         // static final "frontCacheEnabled" field before we start creating instances
  3029 #ifdef ASSERT
  3030         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3031         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3032 #endif
  3033         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3034         KlassHandle k = KlassHandle(THREAD, k_o);
  3035         guarantee(k.not_null(), "Must find java/util/HashMap");
  3036         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3037         ik->initialize(CHECK_0);
  3038         fieldDescriptor fd;
  3039         // Possible we might not find this field; if so, don't break
  3040         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3041           k()->bool_field_put(fd.offset(), true);
  3045       if (UseStringCache) {
  3046         // Forcibly initialize java/lang/StringValue and mutate the private
  3047         // static final "stringCacheEnabled" field before we start creating instances
  3048         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3049         // Possible that StringValue isn't present: if so, silently don't break
  3050         if (k_o != NULL) {
  3051           KlassHandle k = KlassHandle(THREAD, k_o);
  3052           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3053           ik->initialize(CHECK_0);
  3054           fieldDescriptor fd;
  3055           // Possible we might not find this field: if so, silently don't break
  3056           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3057             k()->bool_field_put(fd.offset(), true);
  3063     // Initialize java_lang.System (needed before creating the thread)
  3064     if (InitializeJavaLangSystem) {
  3065       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3066       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3067       Handle thread_group = create_initial_thread_group(CHECK_0);
  3068       Universe::set_main_thread_group(thread_group());
  3069       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3070       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3071       main_thread->set_threadObj(thread_object);
  3072       // Set thread status to running since main thread has
  3073       // been started and running.
  3074       java_lang_Thread::set_thread_status(thread_object,
  3075                                           java_lang_Thread::RUNNABLE);
  3077       // The VM preresolve methods to these classes. Make sure that get initialized
  3078       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3079       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3080       // The VM creates & returns objects of this class. Make sure it's initialized.
  3081       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3082       call_initializeSystemClass(CHECK_0);
  3083     } else {
  3084       warning("java.lang.System not initialized");
  3087     // an instance of OutOfMemory exception has been allocated earlier
  3088     if (InitializeJavaLangExceptionsErrors) {
  3089       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3090       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3091       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3092       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3093       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3094       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3095       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3096     } else {
  3097       warning("java.lang.OutOfMemoryError has not been initialized");
  3098       warning("java.lang.NullPointerException has not been initialized");
  3099       warning("java.lang.ClassCastException has not been initialized");
  3100       warning("java.lang.ArrayStoreException has not been initialized");
  3101       warning("java.lang.ArithmeticException has not been initialized");
  3102       warning("java.lang.StackOverflowError has not been initialized");
  3105     if (EnableInvokeDynamic) {
  3106       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
  3107       // the compiler.
  3108       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
  3112   // See        : bugid 4211085.
  3113   // Background : the static initializer of java.lang.Compiler tries to read
  3114   //              property"java.compiler" and read & write property "java.vm.info".
  3115   //              When a security manager is installed through the command line
  3116   //              option "-Djava.security.manager", the above properties are not
  3117   //              readable and the static initializer for java.lang.Compiler fails
  3118   //              resulting in a NoClassDefFoundError.  This can happen in any
  3119   //              user code which calls methods in java.lang.Compiler.
  3120   // Hack :       the hack is to pre-load and initialize this class, so that only
  3121   //              system domains are on the stack when the properties are read.
  3122   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3123   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3124   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3125   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3126   //              Once that is done, we should remove this hack.
  3127   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3129   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3130   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3131   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3132   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3133   // This should also be taken out as soon as 4211383 gets fixed.
  3134   reset_vm_info_property(CHECK_0);
  3136   quicken_jni_functions();
  3138   // Set flag that basic initialization has completed. Used by exceptions and various
  3139   // debug stuff, that does not work until all basic classes have been initialized.
  3140   set_init_completed();
  3142   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3144   // record VM initialization completion time
  3145   Management::record_vm_init_completed();
  3147   // Compute system loader. Note that this has to occur after set_init_completed, since
  3148   // valid exceptions may be thrown in the process.
  3149   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3150   // set_init_completed has just been called, causing exceptions not to be shortcut
  3151   // anymore. We call vm_exit_during_initialization directly instead.
  3152   SystemDictionary::compute_java_system_loader(THREAD);
  3153   if (HAS_PENDING_EXCEPTION) {
  3154     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3157 #ifdef KERNEL
  3158   if (JDK_Version::is_gte_jdk17x_version()) {
  3159     set_jkernel_boot_classloader_hook(THREAD);
  3161 #endif // KERNEL
  3163 #ifndef SERIALGC
  3164   // Support for ConcurrentMarkSweep. This should be cleaned up
  3165   // and better encapsulated. The ugly nested if test would go away
  3166   // once things are properly refactored. XXX YSR
  3167   if (UseConcMarkSweepGC || UseG1GC) {
  3168     if (UseConcMarkSweepGC) {
  3169       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3170     } else {
  3171       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3173     if (HAS_PENDING_EXCEPTION) {
  3174       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3177 #endif // SERIALGC
  3179   // Always call even when there are not JVMTI environments yet, since environments
  3180   // may be attached late and JVMTI must track phases of VM execution
  3181   JvmtiExport::enter_live_phase();
  3183   // Signal Dispatcher needs to be started before VMInit event is posted
  3184   os::signal_init();
  3186   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3187   if (!DisableAttachMechanism) {
  3188     if (StartAttachListener || AttachListener::init_at_startup()) {
  3189       AttachListener::init();
  3193   // Launch -Xrun agents
  3194   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3195   // back-end can launch with -Xdebug -Xrunjdwp.
  3196   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3197     create_vm_init_libraries();
  3200   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3201   JvmtiExport::post_vm_initialized();
  3203   Chunk::start_chunk_pool_cleaner_task();
  3205   // initialize compiler(s)
  3206   CompileBroker::compilation_init();
  3208   Management::initialize(THREAD);
  3209   if (HAS_PENDING_EXCEPTION) {
  3210     // management agent fails to start possibly due to
  3211     // configuration problem and is responsible for printing
  3212     // stack trace if appropriate. Simply exit VM.
  3213     vm_exit(1);
  3216   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3217   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3218   if (MemProfiling)                   MemProfiler::engage();
  3219   StatSampler::engage();
  3220   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3222   BiasedLocking::init();
  3225   // Start up the WatcherThread if there are any periodic tasks
  3226   // NOTE:  All PeriodicTasks should be registered by now. If they
  3227   //   aren't, late joiners might appear to start slowly (we might
  3228   //   take a while to process their first tick).
  3229   if (PeriodicTask::num_tasks() > 0) {
  3230     WatcherThread::start();
  3233   create_vm_timer.end();
  3234   return JNI_OK;
  3237 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3238 extern "C" {
  3239   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3241 // Find a command line agent library and return its entry point for
  3242 //         -agentlib:  -agentpath:   -Xrun
  3243 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3244 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3245   OnLoadEntry_t on_load_entry = NULL;
  3246   void *library = agent->os_lib();  // check if we have looked it up before
  3248   if (library == NULL) {
  3249     char buffer[JVM_MAXPATHLEN];
  3250     char ebuf[1024];
  3251     const char *name = agent->name();
  3253     if (agent->is_absolute_path()) {
  3254       library = hpi::dll_load(name, ebuf, sizeof ebuf);
  3255       if (library == NULL) {
  3256         // If we can't find the agent, exit.
  3257         vm_exit_during_initialization("Could not find agent library in absolute path", name);
  3259     } else {
  3260       // Try to load the agent from the standard dll directory
  3261       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3262       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3263 #ifdef KERNEL
  3264       // Download instrument dll
  3265       if (library == NULL && strcmp(name, "instrument") == 0) {
  3266         char *props = Arguments::get_kernel_properties();
  3267         char *home  = Arguments::get_java_home();
  3268         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3269                       " sun.jkernel.DownloadManager -download client_jvm";
  3270         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3271         char *cmd = AllocateHeap(length);
  3272         jio_snprintf(cmd, length, fmt, home, props);
  3273         int status = os::fork_and_exec(cmd);
  3274         FreeHeap(props);
  3275         FreeHeap(cmd);
  3276         if (status == -1) {
  3277           warning(cmd);
  3278           vm_exit_during_initialization("fork_and_exec failed: %s",
  3279                                          strerror(errno));
  3281         // when this comes back the instrument.dll should be where it belongs.
  3282         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3284 #endif // KERNEL
  3285       if (library == NULL) { // Try the local directory
  3286         char ns[1] = {0};
  3287         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
  3288         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3289         if (library == NULL) {
  3290           // If we can't find the agent, exit.
  3291           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
  3295     agent->set_os_lib(library);
  3298   // Find the OnLoad function.
  3299   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3300     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
  3301     if (on_load_entry != NULL) break;
  3303   return on_load_entry;
  3306 // Find the JVM_OnLoad entry point
  3307 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3308   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3309   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3312 // Find the Agent_OnLoad entry point
  3313 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3314   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3315   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3318 // For backwards compatibility with -Xrun
  3319 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3320 // treated like -agentpath:
  3321 // Must be called before agent libraries are created
  3322 void Threads::convert_vm_init_libraries_to_agents() {
  3323   AgentLibrary* agent;
  3324   AgentLibrary* next;
  3326   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3327     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3328     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3330     // If there is an JVM_OnLoad function it will get called later,
  3331     // otherwise see if there is an Agent_OnLoad
  3332     if (on_load_entry == NULL) {
  3333       on_load_entry = lookup_agent_on_load(agent);
  3334       if (on_load_entry != NULL) {
  3335         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3336         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3337         Arguments::convert_library_to_agent(agent);
  3338       } else {
  3339         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3345 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3346 // Invokes Agent_OnLoad
  3347 // Called very early -- before JavaThreads exist
  3348 void Threads::create_vm_init_agents() {
  3349   extern struct JavaVM_ main_vm;
  3350   AgentLibrary* agent;
  3352   JvmtiExport::enter_onload_phase();
  3353   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3354     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3356     if (on_load_entry != NULL) {
  3357       // Invoke the Agent_OnLoad function
  3358       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3359       if (err != JNI_OK) {
  3360         vm_exit_during_initialization("agent library failed to init", agent->name());
  3362     } else {
  3363       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3366   JvmtiExport::enter_primordial_phase();
  3369 extern "C" {
  3370   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3373 void Threads::shutdown_vm_agents() {
  3374   // Send any Agent_OnUnload notifications
  3375   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3376   extern struct JavaVM_ main_vm;
  3377   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3379     // Find the Agent_OnUnload function.
  3380     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3381       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3382                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3384       // Invoke the Agent_OnUnload function
  3385       if (unload_entry != NULL) {
  3386         JavaThread* thread = JavaThread::current();
  3387         ThreadToNativeFromVM ttn(thread);
  3388         HandleMark hm(thread);
  3389         (*unload_entry)(&main_vm);
  3390         break;
  3396 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3397 // Invokes JVM_OnLoad
  3398 void Threads::create_vm_init_libraries() {
  3399   extern struct JavaVM_ main_vm;
  3400   AgentLibrary* agent;
  3402   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3403     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3405     if (on_load_entry != NULL) {
  3406       // Invoke the JVM_OnLoad function
  3407       JavaThread* thread = JavaThread::current();
  3408       ThreadToNativeFromVM ttn(thread);
  3409       HandleMark hm(thread);
  3410       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3411       if (err != JNI_OK) {
  3412         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3414     } else {
  3415       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3420 // Last thread running calls java.lang.Shutdown.shutdown()
  3421 void JavaThread::invoke_shutdown_hooks() {
  3422   HandleMark hm(this);
  3424   // We could get here with a pending exception, if so clear it now.
  3425   if (this->has_pending_exception()) {
  3426     this->clear_pending_exception();
  3429   EXCEPTION_MARK;
  3430   klassOop k =
  3431     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3432                                       THREAD);
  3433   if (k != NULL) {
  3434     // SystemDictionary::resolve_or_null will return null if there was
  3435     // an exception.  If we cannot load the Shutdown class, just don't
  3436     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3437     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3438     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3439     // was called, the Shutdown class would have already been loaded
  3440     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3441     instanceKlassHandle shutdown_klass (THREAD, k);
  3442     JavaValue result(T_VOID);
  3443     JavaCalls::call_static(&result,
  3444                            shutdown_klass,
  3445                            vmSymbolHandles::shutdown_method_name(),
  3446                            vmSymbolHandles::void_method_signature(),
  3447                            THREAD);
  3449   CLEAR_PENDING_EXCEPTION;
  3452 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3453 // the program falls off the end of main(). Another VM exit path is through
  3454 // vm_exit() when the program calls System.exit() to return a value or when
  3455 // there is a serious error in VM. The two shutdown paths are not exactly
  3456 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3457 // and VM_Exit op at VM level.
  3458 //
  3459 // Shutdown sequence:
  3460 //   + Wait until we are the last non-daemon thread to execute
  3461 //     <-- every thing is still working at this moment -->
  3462 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3463 //        shutdown hooks, run finalizers if finalization-on-exit
  3464 //   + Call before_exit(), prepare for VM exit
  3465 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3466 //        currently the only user of this mechanism is File.deleteOnExit())
  3467 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3468 //        post thread end and vm death events to JVMTI,
  3469 //        stop signal thread
  3470 //   + Call JavaThread::exit(), it will:
  3471 //      > release JNI handle blocks, remove stack guard pages
  3472 //      > remove this thread from Threads list
  3473 //     <-- no more Java code from this thread after this point -->
  3474 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3475 //     the compiler threads at safepoint
  3476 //     <-- do not use anything that could get blocked by Safepoint -->
  3477 //   + Disable tracing at JNI/JVM barriers
  3478 //   + Set _vm_exited flag for threads that are still running native code
  3479 //   + Delete this thread
  3480 //   + Call exit_globals()
  3481 //      > deletes tty
  3482 //      > deletes PerfMemory resources
  3483 //   + Return to caller
  3485 bool Threads::destroy_vm() {
  3486   JavaThread* thread = JavaThread::current();
  3488   // Wait until we are the last non-daemon thread to execute
  3489   { MutexLocker nu(Threads_lock);
  3490     while (Threads::number_of_non_daemon_threads() > 1 )
  3491       // This wait should make safepoint checks, wait without a timeout,
  3492       // and wait as a suspend-equivalent condition.
  3493       //
  3494       // Note: If the FlatProfiler is running and this thread is waiting
  3495       // for another non-daemon thread to finish, then the FlatProfiler
  3496       // is waiting for the external suspend request on this thread to
  3497       // complete. wait_for_ext_suspend_completion() will eventually
  3498       // timeout, but that takes time. Making this wait a suspend-
  3499       // equivalent condition solves that timeout problem.
  3500       //
  3501       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3502                          Mutex::_as_suspend_equivalent_flag);
  3505   // Hang forever on exit if we are reporting an error.
  3506   if (ShowMessageBoxOnError && is_error_reported()) {
  3507     os::infinite_sleep();
  3510   if (JDK_Version::is_jdk12x_version()) {
  3511     // We are the last thread running, so check if finalizers should be run.
  3512     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3513     HandleMark rm(thread);
  3514     Universe::run_finalizers_on_exit();
  3515   } else {
  3516     // run Java level shutdown hooks
  3517     thread->invoke_shutdown_hooks();
  3520   before_exit(thread);
  3522   thread->exit(true);
  3524   // Stop VM thread.
  3526     // 4945125 The vm thread comes to a safepoint during exit.
  3527     // GC vm_operations can get caught at the safepoint, and the
  3528     // heap is unparseable if they are caught. Grab the Heap_lock
  3529     // to prevent this. The GC vm_operations will not be able to
  3530     // queue until after the vm thread is dead.
  3531     MutexLocker ml(Heap_lock);
  3533     VMThread::wait_for_vm_thread_exit();
  3534     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3535     VMThread::destroy();
  3538   // clean up ideal graph printers
  3539 #if defined(COMPILER2) && !defined(PRODUCT)
  3540   IdealGraphPrinter::clean_up();
  3541 #endif
  3543   // Now, all Java threads are gone except daemon threads. Daemon threads
  3544   // running Java code or in VM are stopped by the Safepoint. However,
  3545   // daemon threads executing native code are still running.  But they
  3546   // will be stopped at native=>Java/VM barriers. Note that we can't
  3547   // simply kill or suspend them, as it is inherently deadlock-prone.
  3549 #ifndef PRODUCT
  3550   // disable function tracing at JNI/JVM barriers
  3551   TraceHPI = false;
  3552   TraceJNICalls = false;
  3553   TraceJVMCalls = false;
  3554   TraceRuntimeCalls = false;
  3555 #endif
  3557   VM_Exit::set_vm_exited();
  3559   notify_vm_shutdown();
  3561   delete thread;
  3563   // exit_globals() will delete tty
  3564   exit_globals();
  3566   return true;
  3570 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3571   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3572   return is_supported_jni_version(version);
  3576 jboolean Threads::is_supported_jni_version(jint version) {
  3577   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3578   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3579   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3580   return JNI_FALSE;
  3584 void Threads::add(JavaThread* p, bool force_daemon) {
  3585   // The threads lock must be owned at this point
  3586   assert_locked_or_safepoint(Threads_lock);
  3587   p->set_next(_thread_list);
  3588   _thread_list = p;
  3589   _number_of_threads++;
  3590   oop threadObj = p->threadObj();
  3591   bool daemon = true;
  3592   // Bootstrapping problem: threadObj can be null for initial
  3593   // JavaThread (or for threads attached via JNI)
  3594   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3595     _number_of_non_daemon_threads++;
  3596     daemon = false;
  3599   ThreadService::add_thread(p, daemon);
  3601   // Possible GC point.
  3602   Events::log("Thread added: " INTPTR_FORMAT, p);
  3605 void Threads::remove(JavaThread* p) {
  3606   // Extra scope needed for Thread_lock, so we can check
  3607   // that we do not remove thread without safepoint code notice
  3608   { MutexLocker ml(Threads_lock);
  3610     assert(includes(p), "p must be present");
  3612     JavaThread* current = _thread_list;
  3613     JavaThread* prev    = NULL;
  3615     while (current != p) {
  3616       prev    = current;
  3617       current = current->next();
  3620     if (prev) {
  3621       prev->set_next(current->next());
  3622     } else {
  3623       _thread_list = p->next();
  3625     _number_of_threads--;
  3626     oop threadObj = p->threadObj();
  3627     bool daemon = true;
  3628     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3629       _number_of_non_daemon_threads--;
  3630       daemon = false;
  3632       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3633       // on destroy_vm will wake up.
  3634       if (number_of_non_daemon_threads() == 1)
  3635         Threads_lock->notify_all();
  3637     ThreadService::remove_thread(p, daemon);
  3639     // Make sure that safepoint code disregard this thread. This is needed since
  3640     // the thread might mess around with locks after this point. This can cause it
  3641     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3642     // of this thread since it is removed from the queue.
  3643     p->set_terminated_value();
  3644   } // unlock Threads_lock
  3646   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3647   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3650 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3651 bool Threads::includes(JavaThread* p) {
  3652   assert(Threads_lock->is_locked(), "sanity check");
  3653   ALL_JAVA_THREADS(q) {
  3654     if (q == p ) {
  3655       return true;
  3658   return false;
  3661 // Operations on the Threads list for GC.  These are not explicitly locked,
  3662 // but the garbage collector must provide a safe context for them to run.
  3663 // In particular, these things should never be called when the Threads_lock
  3664 // is held by some other thread. (Note: the Safepoint abstraction also
  3665 // uses the Threads_lock to gurantee this property. It also makes sure that
  3666 // all threads gets blocked when exiting or starting).
  3668 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3669   ALL_JAVA_THREADS(p) {
  3670     p->oops_do(f, cf);
  3672   VMThread::vm_thread()->oops_do(f, cf);
  3675 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3676   // Introduce a mechanism allowing parallel threads to claim threads as
  3677   // root groups.  Overhead should be small enough to use all the time,
  3678   // even in sequential code.
  3679   SharedHeap* sh = SharedHeap::heap();
  3680   bool is_par = (sh->n_par_threads() > 0);
  3681   int cp = SharedHeap::heap()->strong_roots_parity();
  3682   ALL_JAVA_THREADS(p) {
  3683     if (p->claim_oops_do(is_par, cp)) {
  3684       p->oops_do(f, cf);
  3687   VMThread* vmt = VMThread::vm_thread();
  3688   if (vmt->claim_oops_do(is_par, cp))
  3689     vmt->oops_do(f, cf);
  3692 #ifndef SERIALGC
  3693 // Used by ParallelScavenge
  3694 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3695   ALL_JAVA_THREADS(p) {
  3696     q->enqueue(new ThreadRootsTask(p));
  3698   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3701 // Used by Parallel Old
  3702 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3703   ALL_JAVA_THREADS(p) {
  3704     q->enqueue(new ThreadRootsMarkingTask(p));
  3706   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3708 #endif // SERIALGC
  3710 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3711   ALL_JAVA_THREADS(p) {
  3712     p->nmethods_do(cf);
  3714   VMThread::vm_thread()->nmethods_do(cf);
  3717 void Threads::gc_epilogue() {
  3718   ALL_JAVA_THREADS(p) {
  3719     p->gc_epilogue();
  3723 void Threads::gc_prologue() {
  3724   ALL_JAVA_THREADS(p) {
  3725     p->gc_prologue();
  3729 void Threads::deoptimized_wrt_marked_nmethods() {
  3730   ALL_JAVA_THREADS(p) {
  3731     p->deoptimized_wrt_marked_nmethods();
  3736 // Get count Java threads that are waiting to enter the specified monitor.
  3737 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3738   address monitor, bool doLock) {
  3739   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3740     "must grab Threads_lock or be at safepoint");
  3741   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3743   int i = 0;
  3745     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3746     ALL_JAVA_THREADS(p) {
  3747       if (p->is_Compiler_thread()) continue;
  3749       address pending = (address)p->current_pending_monitor();
  3750       if (pending == monitor) {             // found a match
  3751         if (i < count) result->append(p);   // save the first count matches
  3752         i++;
  3756   return result;
  3760 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3761   assert(doLock ||
  3762          Threads_lock->owned_by_self() ||
  3763          SafepointSynchronize::is_at_safepoint(),
  3764          "must grab Threads_lock or be at safepoint");
  3766   // NULL owner means not locked so we can skip the search
  3767   if (owner == NULL) return NULL;
  3770     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3771     ALL_JAVA_THREADS(p) {
  3772       // first, see if owner is the address of a Java thread
  3773       if (owner == (address)p) return p;
  3776   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3777   if (UseHeavyMonitors) return NULL;
  3779   //
  3780   // If we didn't find a matching Java thread and we didn't force use of
  3781   // heavyweight monitors, then the owner is the stack address of the
  3782   // Lock Word in the owning Java thread's stack.
  3783   //
  3784   JavaThread* the_owner = NULL;
  3786     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3787     ALL_JAVA_THREADS(q) {
  3788       if (q->is_lock_owned(owner)) {
  3789         the_owner = q;
  3790         break;
  3794   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3795   return the_owner;
  3798 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3799 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3800   char buf[32];
  3801   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3803   st->print_cr("Full thread dump %s (%s %s):",
  3804                 Abstract_VM_Version::vm_name(),
  3805                 Abstract_VM_Version::vm_release(),
  3806                 Abstract_VM_Version::vm_info_string()
  3807                );
  3808   st->cr();
  3810 #ifndef SERIALGC
  3811   // Dump concurrent locks
  3812   ConcurrentLocksDump concurrent_locks;
  3813   if (print_concurrent_locks) {
  3814     concurrent_locks.dump_at_safepoint();
  3816 #endif // SERIALGC
  3818   ALL_JAVA_THREADS(p) {
  3819     ResourceMark rm;
  3820     p->print_on(st);
  3821     if (print_stacks) {
  3822       if (internal_format) {
  3823         p->trace_stack();
  3824       } else {
  3825         p->print_stack_on(st);
  3828     st->cr();
  3829 #ifndef SERIALGC
  3830     if (print_concurrent_locks) {
  3831       concurrent_locks.print_locks_on(p, st);
  3833 #endif // SERIALGC
  3836   VMThread::vm_thread()->print_on(st);
  3837   st->cr();
  3838   Universe::heap()->print_gc_threads_on(st);
  3839   WatcherThread* wt = WatcherThread::watcher_thread();
  3840   if (wt != NULL) wt->print_on(st);
  3841   st->cr();
  3842   CompileBroker::print_compiler_threads_on(st);
  3843   st->flush();
  3846 // Threads::print_on_error() is called by fatal error handler. It's possible
  3847 // that VM is not at safepoint and/or current thread is inside signal handler.
  3848 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3849 // memory (even in resource area), it might deadlock the error handler.
  3850 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3851   bool found_current = false;
  3852   st->print_cr("Java Threads: ( => current thread )");
  3853   ALL_JAVA_THREADS(thread) {
  3854     bool is_current = (current == thread);
  3855     found_current = found_current || is_current;
  3857     st->print("%s", is_current ? "=>" : "  ");
  3859     st->print(PTR_FORMAT, thread);
  3860     st->print(" ");
  3861     thread->print_on_error(st, buf, buflen);
  3862     st->cr();
  3864   st->cr();
  3866   st->print_cr("Other Threads:");
  3867   if (VMThread::vm_thread()) {
  3868     bool is_current = (current == VMThread::vm_thread());
  3869     found_current = found_current || is_current;
  3870     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  3872     st->print(PTR_FORMAT, VMThread::vm_thread());
  3873     st->print(" ");
  3874     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  3875     st->cr();
  3877   WatcherThread* wt = WatcherThread::watcher_thread();
  3878   if (wt != NULL) {
  3879     bool is_current = (current == wt);
  3880     found_current = found_current || is_current;
  3881     st->print("%s", is_current ? "=>" : "  ");
  3883     st->print(PTR_FORMAT, wt);
  3884     st->print(" ");
  3885     wt->print_on_error(st, buf, buflen);
  3886     st->cr();
  3888   if (!found_current) {
  3889     st->cr();
  3890     st->print("=>" PTR_FORMAT " (exited) ", current);
  3891     current->print_on_error(st, buf, buflen);
  3892     st->cr();
  3897 // Lifecycle management for TSM ParkEvents.
  3898 // ParkEvents are type-stable (TSM).
  3899 // In our particular implementation they happen to be immortal.
  3900 //
  3901 // We manage concurrency on the FreeList with a CAS-based
  3902 // detach-modify-reattach idiom that avoids the ABA problems
  3903 // that would otherwise be present in a simple CAS-based
  3904 // push-pop implementation.   (push-one and pop-all)
  3905 //
  3906 // Caveat: Allocate() and Release() may be called from threads
  3907 // other than the thread associated with the Event!
  3908 // If we need to call Allocate() when running as the thread in
  3909 // question then look for the PD calls to initialize native TLS.
  3910 // Native TLS (Win32/Linux/Solaris) can only be initialized or
  3911 // accessed by the associated thread.
  3912 // See also pd_initialize().
  3913 //
  3914 // Note that we could defer associating a ParkEvent with a thread
  3915 // until the 1st time the thread calls park().  unpark() calls to
  3916 // an unprovisioned thread would be ignored.  The first park() call
  3917 // for a thread would allocate and associate a ParkEvent and return
  3918 // immediately.
  3920 volatile int ParkEvent::ListLock = 0 ;
  3921 ParkEvent * volatile ParkEvent::FreeList = NULL ;
  3923 ParkEvent * ParkEvent::Allocate (Thread * t) {
  3924   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
  3925   ParkEvent * ev ;
  3927   // Start by trying to recycle an existing but unassociated
  3928   // ParkEvent from the global free list.
  3929   for (;;) {
  3930     ev = FreeList ;
  3931     if (ev == NULL) break ;
  3932     // 1: Detach - sequester or privatize the list
  3933     // Tantamount to ev = Swap (&FreeList, NULL)
  3934     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
  3935        continue ;
  3938     // We've detached the list.  The list in-hand is now
  3939     // local to this thread.   This thread can operate on the
  3940     // list without risk of interference from other threads.
  3941     // 2: Extract -- pop the 1st element from the list.
  3942     ParkEvent * List = ev->FreeNext ;
  3943     if (List == NULL) break ;
  3944     for (;;) {
  3945         // 3: Try to reattach the residual list
  3946         guarantee (List != NULL, "invariant") ;
  3947         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  3948         if (Arv == NULL) break ;
  3950         // New nodes arrived.  Try to detach the recent arrivals.
  3951         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  3952             continue ;
  3954         guarantee (Arv != NULL, "invariant") ;
  3955         // 4: Merge Arv into List
  3956         ParkEvent * Tail = List ;
  3957         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  3958         Tail->FreeNext = Arv ;
  3960     break ;
  3963   if (ev != NULL) {
  3964     guarantee (ev->AssociatedWith == NULL, "invariant") ;
  3965   } else {
  3966     // Do this the hard way -- materialize a new ParkEvent.
  3967     // In rare cases an allocating thread might detach a long list --
  3968     // installing null into FreeList -- and then stall or be obstructed.
  3969     // A 2nd thread calling Allocate() would see FreeList == null.
  3970     // The list held privately by the 1st thread is unavailable to the 2nd thread.
  3971     // In that case the 2nd thread would have to materialize a new ParkEvent,
  3972     // even though free ParkEvents existed in the system.  In this case we end up
  3973     // with more ParkEvents in circulation than we need, but the race is
  3974     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
  3975     // is equal to the maximum # of threads that existed at any one time.
  3976     // Because of the race mentioned above, segments of the freelist
  3977     // can be transiently inaccessible.  At worst we may end up with the
  3978     // # of ParkEvents in circulation slightly above the ideal.
  3979     // Note that if we didn't have the TSM/immortal constraint, then
  3980     // when reattaching, above, we could trim the list.
  3981     ev = new ParkEvent () ;
  3982     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
  3984   ev->reset() ;                     // courtesy to caller
  3985   ev->AssociatedWith = t ;          // Associate ev with t
  3986   ev->FreeNext       = NULL ;
  3987   return ev ;
  3990 void ParkEvent::Release (ParkEvent * ev) {
  3991   if (ev == NULL) return ;
  3992   guarantee (ev->FreeNext == NULL      , "invariant") ;
  3993   ev->AssociatedWith = NULL ;
  3994   for (;;) {
  3995     // Push ev onto FreeList
  3996     // The mechanism is "half" lock-free.
  3997     ParkEvent * List = FreeList ;
  3998     ev->FreeNext = List ;
  3999     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
  4003 // Override operator new and delete so we can ensure that the
  4004 // least significant byte of ParkEvent addresses is 0.
  4005 // Beware that excessive address alignment is undesirable
  4006 // as it can result in D$ index usage imbalance as
  4007 // well as bank access imbalance on Niagara-like platforms,
  4008 // although Niagara's hash function should help.
  4010 void * ParkEvent::operator new (size_t sz) {
  4011   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
  4014 void ParkEvent::operator delete (void * a) {
  4015   // ParkEvents are type-stable and immortal ...
  4016   ShouldNotReachHere();
  4020 // 6399321 As a temporary measure we copied & modified the ParkEvent::
  4021 // allocate() and release() code for use by Parkers.  The Parker:: forms
  4022 // will eventually be removed as we consolide and shift over to ParkEvents
  4023 // for both builtin synchronization and JSR166 operations.
  4025 volatile int Parker::ListLock = 0 ;
  4026 Parker * volatile Parker::FreeList = NULL ;
  4028 Parker * Parker::Allocate (JavaThread * t) {
  4029   guarantee (t != NULL, "invariant") ;
  4030   Parker * p ;
  4032   // Start by trying to recycle an existing but unassociated
  4033   // Parker from the global free list.
  4034   for (;;) {
  4035     p = FreeList ;
  4036     if (p  == NULL) break ;
  4037     // 1: Detach
  4038     // Tantamount to p = Swap (&FreeList, NULL)
  4039     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
  4040        continue ;
  4043     // We've detached the list.  The list in-hand is now
  4044     // local to this thread.   This thread can operate on the
  4045     // list without risk of interference from other threads.
  4046     // 2: Extract -- pop the 1st element from the list.
  4047     Parker * List = p->FreeNext ;
  4048     if (List == NULL) break ;
  4049     for (;;) {
  4050         // 3: Try to reattach the residual list
  4051         guarantee (List != NULL, "invariant") ;
  4052         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  4053         if (Arv == NULL) break ;
  4055         // New nodes arrived.  Try to detach the recent arrivals.
  4056         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  4057             continue ;
  4059         guarantee (Arv != NULL, "invariant") ;
  4060         // 4: Merge Arv into List
  4061         Parker * Tail = List ;
  4062         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  4063         Tail->FreeNext = Arv ;
  4065     break ;
  4068   if (p != NULL) {
  4069     guarantee (p->AssociatedWith == NULL, "invariant") ;
  4070   } else {
  4071     // Do this the hard way -- materialize a new Parker..
  4072     // In rare cases an allocating thread might detach
  4073     // a long list -- installing null into FreeList --and
  4074     // then stall.  Another thread calling Allocate() would see
  4075     // FreeList == null and then invoke the ctor.  In this case we
  4076     // end up with more Parkers in circulation than we need, but
  4077     // the race is rare and the outcome is benign.
  4078     // Ideally, the # of extant Parkers is equal to the
  4079     // maximum # of threads that existed at any one time.
  4080     // Because of the race mentioned above, segments of the
  4081     // freelist can be transiently inaccessible.  At worst
  4082     // we may end up with the # of Parkers in circulation
  4083     // slightly above the ideal.
  4084     p = new Parker() ;
  4086   p->AssociatedWith = t ;          // Associate p with t
  4087   p->FreeNext       = NULL ;
  4088   return p ;
  4092 void Parker::Release (Parker * p) {
  4093   if (p == NULL) return ;
  4094   guarantee (p->AssociatedWith != NULL, "invariant") ;
  4095   guarantee (p->FreeNext == NULL      , "invariant") ;
  4096   p->AssociatedWith = NULL ;
  4097   for (;;) {
  4098     // Push p onto FreeList
  4099     Parker * List = FreeList ;
  4100     p->FreeNext = List ;
  4101     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
  4105 void Threads::verify() {
  4106   ALL_JAVA_THREADS(p) {
  4107     p->verify();
  4109   VMThread* thread = VMThread::vm_thread();
  4110   if (thread != NULL) thread->verify();

mercurial