src/cpu/x86/vm/interp_masm_x86_32.cpp

Tue, 19 Apr 2011 09:30:17 -0700

author
kvn
date
Tue, 19 Apr 2011 09:30:17 -0700
changeset 2808
2a34a4fbc52c
parent 2698
38fea01eb669
child 2868
2e038ad0c1d0
permissions
-rw-r--r--

7037812: few more defaults changes for new AMD processors
Summary: use PREFETCHW as default prefetch instruction, set UseXMMForArrayCopy and UseUnalignedLoadStores to true by default.
Reviewed-by: kvn
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_32.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/methodOop.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "thread_windows.inline.hpp"
    47 #endif
    50 // Implementation of InterpreterMacroAssembler
    51 #ifdef CC_INTERP
    52 void InterpreterMacroAssembler::get_method(Register reg) {
    53   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    54   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    55 }
    56 #endif // CC_INTERP
    59 #ifndef CC_INTERP
    60 void InterpreterMacroAssembler::call_VM_leaf_base(
    61   address entry_point,
    62   int     number_of_arguments
    63 ) {
    64   // interpreter specific
    65   //
    66   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    67   //       since these are callee saved registers and no blocking/
    68   //       GC can happen in leaf calls.
    69   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    70   // already saved them so that it can use rsi/rdi as temporaries
    71   // then a save/restore here will DESTROY the copy the caller
    72   // saved! There used to be a save_bcp() that only happened in
    73   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    74   // when jvm built with ASSERTs.
    75 #ifdef ASSERT
    76   { Label L;
    77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    78     jcc(Assembler::equal, L);
    79     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    80     bind(L);
    81   }
    82 #endif
    83   // super call
    84   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    85   // interpreter specific
    87   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    88   // but since they may not have been saved (and we don't want to
    89   // save them here (see note above) the assert is invalid.
    90 }
    93 void InterpreterMacroAssembler::call_VM_base(
    94   Register oop_result,
    95   Register java_thread,
    96   Register last_java_sp,
    97   address  entry_point,
    98   int      number_of_arguments,
    99   bool     check_exceptions
   100 ) {
   101 #ifdef ASSERT
   102   { Label L;
   103     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   104     jcc(Assembler::equal, L);
   105     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
   106     bind(L);
   107   }
   108 #endif /* ASSERT */
   109   // interpreter specific
   110   //
   111   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
   112   //       really make a difference for these runtime calls, since they are
   113   //       slow anyway. Btw., bcp must be saved/restored since it may change
   114   //       due to GC.
   115   assert(java_thread == noreg , "not expecting a precomputed java thread");
   116   save_bcp();
   117   // super call
   118   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   119   // interpreter specific
   120   restore_bcp();
   121   restore_locals();
   122 }
   125 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   126   if (JvmtiExport::can_pop_frame()) {
   127     Label L;
   128     // Initiate popframe handling only if it is not already being processed.  If the flag
   129     // has the popframe_processing bit set, it means that this code is called *during* popframe
   130     // handling - we don't want to reenter.
   131     Register pop_cond = java_thread;  // Not clear if any other register is available...
   132     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   133     testl(pop_cond, JavaThread::popframe_pending_bit);
   134     jcc(Assembler::zero, L);
   135     testl(pop_cond, JavaThread::popframe_processing_bit);
   136     jcc(Assembler::notZero, L);
   137     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   138     // address of the same-named entrypoint in the generated interpreter code.
   139     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   140     jmp(rax);
   141     bind(L);
   142     get_thread(java_thread);
   143   }
   144 }
   147 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   148   get_thread(rcx);
   149   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   150   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   151   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   152   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   153   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   154                              + in_ByteSize(wordSize));
   155   switch (state) {
   156     case atos: movptr(rax, oop_addr);
   157                movptr(oop_addr, NULL_WORD);
   158                verify_oop(rax, state);                break;
   159     case ltos:
   160                movl(rdx, val_addr1);               // fall through
   161     case btos:                                     // fall through
   162     case ctos:                                     // fall through
   163     case stos:                                     // fall through
   164     case itos: movl(rax, val_addr);                   break;
   165     case ftos: fld_s(val_addr);                       break;
   166     case dtos: fld_d(val_addr);                       break;
   167     case vtos: /* nothing to do */                    break;
   168     default  : ShouldNotReachHere();
   169   }
   170   // Clean up tos value in the thread object
   171   movl(tos_addr,  (int32_t) ilgl);
   172   movptr(val_addr,  NULL_WORD);
   173   NOT_LP64(movptr(val_addr1, NULL_WORD));
   174 }
   177 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   178   if (JvmtiExport::can_force_early_return()) {
   179     Label L;
   180     Register tmp = java_thread;
   181     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   182     testptr(tmp, tmp);
   183     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   185     // Initiate earlyret handling only if it is not already being processed.
   186     // If the flag has the earlyret_processing bit set, it means that this code
   187     // is called *during* earlyret handling - we don't want to reenter.
   188     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   189     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   190     jcc(Assembler::notEqual, L);
   192     // Call Interpreter::remove_activation_early_entry() to get the address of the
   193     // same-named entrypoint in the generated interpreter code.
   194     get_thread(java_thread);
   195     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   196     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   197     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   198     jmp(rax);
   199     bind(L);
   200     get_thread(java_thread);
   201   }
   202 }
   205 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   206   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   207   movl(reg, Address(rsi, bcp_offset));
   208   bswapl(reg);
   209   shrl(reg, 16);
   210 }
   213 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
   214   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   215   if (index_size == sizeof(u2)) {
   216     load_unsigned_short(reg, Address(rsi, bcp_offset));
   217   } else if (index_size == sizeof(u4)) {
   218     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   219     movl(reg, Address(rsi, bcp_offset));
   220     // Check if the secondary index definition is still ~x, otherwise
   221     // we have to change the following assembler code to calculate the
   222     // plain index.
   223     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   224     notl(reg);  // convert to plain index
   225   } else if (index_size == sizeof(u1)) {
   226     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
   227     load_unsigned_byte(reg, Address(rsi, bcp_offset));
   228   } else {
   229     ShouldNotReachHere();
   230   }
   231 }
   234 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
   235                                                            int bcp_offset, size_t index_size) {
   236   assert(cache != index, "must use different registers");
   237   get_cache_index_at_bcp(index, bcp_offset, index_size);
   238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   239   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   240   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   241 }
   244 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   245                                                                int bcp_offset, size_t index_size) {
   246   assert(cache != tmp, "must use different register");
   247   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   248   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   249                                // convert from field index to ConstantPoolCacheEntry index
   250                                // and from word offset to byte offset
   251   shll(tmp, 2 + LogBytesPerWord);
   252   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   253                                // skip past the header
   254   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   255   addptr(cache, tmp);            // construct pointer to cache entry
   256 }
   259   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   260   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   261   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   262 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   263   assert( Rsub_klass != rax, "rax, holds superklass" );
   264   assert( Rsub_klass != rcx, "used as a temp" );
   265   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   267   // Profile the not-null value's klass.
   268   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   270   // Do the check.
   271   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   273   // Profile the failure of the check.
   274   profile_typecheck_failed(rcx); // blows rcx
   275 }
   277 void InterpreterMacroAssembler::f2ieee() {
   278   if (IEEEPrecision) {
   279     fstp_s(Address(rsp, 0));
   280     fld_s(Address(rsp, 0));
   281   }
   282 }
   285 void InterpreterMacroAssembler::d2ieee() {
   286   if (IEEEPrecision) {
   287     fstp_d(Address(rsp, 0));
   288     fld_d(Address(rsp, 0));
   289   }
   290 }
   292 // Java Expression Stack
   294 void InterpreterMacroAssembler::pop_ptr(Register r) {
   295   pop(r);
   296 }
   298 void InterpreterMacroAssembler::pop_i(Register r) {
   299   pop(r);
   300 }
   302 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   303   pop(lo);
   304   pop(hi);
   305 }
   307 void InterpreterMacroAssembler::pop_f() {
   308   fld_s(Address(rsp, 0));
   309   addptr(rsp, 1 * wordSize);
   310 }
   312 void InterpreterMacroAssembler::pop_d() {
   313   fld_d(Address(rsp, 0));
   314   addptr(rsp, 2 * wordSize);
   315 }
   318 void InterpreterMacroAssembler::pop(TosState state) {
   319   switch (state) {
   320     case atos: pop_ptr(rax);                                 break;
   321     case btos:                                               // fall through
   322     case ctos:                                               // fall through
   323     case stos:                                               // fall through
   324     case itos: pop_i(rax);                                   break;
   325     case ltos: pop_l(rax, rdx);                              break;
   326     case ftos: pop_f();                                      break;
   327     case dtos: pop_d();                                      break;
   328     case vtos: /* nothing to do */                           break;
   329     default  : ShouldNotReachHere();
   330   }
   331   verify_oop(rax, state);
   332 }
   334 void InterpreterMacroAssembler::push_ptr(Register r) {
   335   push(r);
   336 }
   338 void InterpreterMacroAssembler::push_i(Register r) {
   339   push(r);
   340 }
   342 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   343   push(hi);
   344   push(lo);
   345 }
   347 void InterpreterMacroAssembler::push_f() {
   348   // Do not schedule for no AGI! Never write beyond rsp!
   349   subptr(rsp, 1 * wordSize);
   350   fstp_s(Address(rsp, 0));
   351 }
   353 void InterpreterMacroAssembler::push_d(Register r) {
   354   // Do not schedule for no AGI! Never write beyond rsp!
   355   subptr(rsp, 2 * wordSize);
   356   fstp_d(Address(rsp, 0));
   357 }
   360 void InterpreterMacroAssembler::push(TosState state) {
   361   verify_oop(rax, state);
   362   switch (state) {
   363     case atos: push_ptr(rax); break;
   364     case btos:                                               // fall through
   365     case ctos:                                               // fall through
   366     case stos:                                               // fall through
   367     case itos: push_i(rax);                                    break;
   368     case ltos: push_l(rax, rdx);                               break;
   369     case ftos: push_f();                                       break;
   370     case dtos: push_d(rax);                                    break;
   371     case vtos: /* nothing to do */                             break;
   372     default  : ShouldNotReachHere();
   373   }
   374 }
   377 // Helpers for swap and dup
   378 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   379   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   380 }
   382 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   383   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   384 }
   386 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   387   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   388 }
   391 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
   392   push(arg_1);
   393   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   394 }
   397 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
   398   push(arg_2);
   399   push(arg_1);
   400   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   401 }
   404 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
   405   push(arg_3);
   406   push(arg_2);
   407   push(arg_1);
   408   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   409 }
   412 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   413   // set sender sp
   414   lea(rsi, Address(rsp, wordSize));
   415   // record last_sp
   416   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   417 }
   420 // Jump to from_interpreted entry of a call unless single stepping is possible
   421 // in this thread in which case we must call the i2i entry
   422 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   423   prepare_to_jump_from_interpreted();
   425   if (JvmtiExport::can_post_interpreter_events()) {
   426     Label run_compiled_code;
   427     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   428     // compiled code in threads for which the event is enabled.  Check here for
   429     // interp_only_mode if these events CAN be enabled.
   430     get_thread(temp);
   431     // interp_only is an int, on little endian it is sufficient to test the byte only
   432     // Is a cmpl faster (ce
   433     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   434     jcc(Assembler::zero, run_compiled_code);
   435     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   436     bind(run_compiled_code);
   437   }
   439   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   441 }
   444 // The following two routines provide a hook so that an implementation
   445 // can schedule the dispatch in two parts.  Intel does not do this.
   446 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   447   // Nothing Intel-specific to be done here.
   448 }
   450 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   451   dispatch_next(state, step);
   452 }
   454 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   455                                               bool verifyoop) {
   456   verify_FPU(1, state);
   457   if (VerifyActivationFrameSize) {
   458     Label L;
   459     mov(rcx, rbp);
   460     subptr(rcx, rsp);
   461     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   462     cmpptr(rcx, min_frame_size);
   463     jcc(Assembler::greaterEqual, L);
   464     stop("broken stack frame");
   465     bind(L);
   466   }
   467   if (verifyoop) verify_oop(rax, state);
   468   Address index(noreg, rbx, Address::times_ptr);
   469   ExternalAddress tbl((address)table);
   470   ArrayAddress dispatch(tbl, index);
   471   jump(dispatch);
   472 }
   475 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   476   dispatch_base(state, Interpreter::dispatch_table(state));
   477 }
   480 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   481   dispatch_base(state, Interpreter::normal_table(state));
   482 }
   484 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   485   dispatch_base(state, Interpreter::normal_table(state), false);
   486 }
   489 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   490   // load next bytecode (load before advancing rsi to prevent AGI)
   491   load_unsigned_byte(rbx, Address(rsi, step));
   492   // advance rsi
   493   increment(rsi, step);
   494   dispatch_base(state, Interpreter::dispatch_table(state));
   495 }
   498 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   499   // load current bytecode
   500   load_unsigned_byte(rbx, Address(rsi, 0));
   501   dispatch_base(state, table);
   502 }
   504 // remove activation
   505 //
   506 // Unlock the receiver if this is a synchronized method.
   507 // Unlock any Java monitors from syncronized blocks.
   508 // Remove the activation from the stack.
   509 //
   510 // If there are locked Java monitors
   511 //    If throw_monitor_exception
   512 //       throws IllegalMonitorStateException
   513 //    Else if install_monitor_exception
   514 //       installs IllegalMonitorStateException
   515 //    Else
   516 //       no error processing
   517 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   518                                                   bool throw_monitor_exception,
   519                                                   bool install_monitor_exception,
   520                                                   bool notify_jvmdi) {
   521   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   522   // check if synchronized method
   523   Label unlocked, unlock, no_unlock;
   525   get_thread(rcx);
   526   const Address do_not_unlock_if_synchronized(rcx,
   527     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   529   movbool(rbx, do_not_unlock_if_synchronized);
   530   mov(rdi,rbx);
   531   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   533   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   534   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   536   testl(rcx, JVM_ACC_SYNCHRONIZED);
   537   jcc(Assembler::zero, unlocked);
   539   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   540   // is set.
   541   mov(rcx,rdi);
   542   testbool(rcx);
   543   jcc(Assembler::notZero, no_unlock);
   545   // unlock monitor
   546   push(state);                                   // save result
   548   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   549   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   550   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   551   lea   (rdx, monitor);                          // address of first monitor
   553   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   554   testptr(rax, rax);
   555   jcc    (Assembler::notZero, unlock);
   557   pop(state);
   558   if (throw_monitor_exception) {
   559     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   561     // Entry already unlocked, need to throw exception
   562     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   563     should_not_reach_here();
   564   } else {
   565     // Monitor already unlocked during a stack unroll.
   566     // If requested, install an illegal_monitor_state_exception.
   567     // Continue with stack unrolling.
   568     if (install_monitor_exception) {
   569       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   570       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   571     }
   572     jmp(unlocked);
   573   }
   575   bind(unlock);
   576   unlock_object(rdx);
   577   pop(state);
   579   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   580   bind(unlocked);
   582   // rax, rdx: Might contain return value
   584   // Check that all monitors are unlocked
   585   {
   586     Label loop, exception, entry, restart;
   587     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   588     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   589     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   591     bind(restart);
   592     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   593     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   594     jmp(entry);
   596     // Entry already locked, need to throw exception
   597     bind(exception);
   599     if (throw_monitor_exception) {
   600       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   602       // Throw exception
   603       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   604       should_not_reach_here();
   605     } else {
   606       // Stack unrolling. Unlock object and install illegal_monitor_exception
   607       // Unlock does not block, so don't have to worry about the frame
   609       push(state);
   610       mov(rdx, rcx);
   611       unlock_object(rdx);
   612       pop(state);
   614       if (install_monitor_exception) {
   615         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   616         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   617       }
   619       jmp(restart);
   620     }
   622     bind(loop);
   623     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   624     jcc(Assembler::notEqual, exception);
   626     addptr(rcx, entry_size);                     // otherwise advance to next entry
   627     bind(entry);
   628     cmpptr(rcx, rbx);                            // check if bottom reached
   629     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   630   }
   632   bind(no_unlock);
   634   // jvmti support
   635   if (notify_jvmdi) {
   636     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   637   } else {
   638     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   639   }
   641   // remove activation
   642   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   643   leave();                                     // remove frame anchor
   644   pop(ret_addr);                               // get return address
   645   mov(rsp, rbx);                               // set sp to sender sp
   646   if (UseSSE) {
   647     // float and double are returned in xmm register in SSE-mode
   648     if (state == ftos && UseSSE >= 1) {
   649       subptr(rsp, wordSize);
   650       fstp_s(Address(rsp, 0));
   651       movflt(xmm0, Address(rsp, 0));
   652       addptr(rsp, wordSize);
   653     } else if (state == dtos && UseSSE >= 2) {
   654       subptr(rsp, 2*wordSize);
   655       fstp_d(Address(rsp, 0));
   656       movdbl(xmm0, Address(rsp, 0));
   657       addptr(rsp, 2*wordSize);
   658     }
   659   }
   660 }
   662 #endif /* !CC_INTERP */
   665 // Lock object
   666 //
   667 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   668 // be initialized with object to lock
   669 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   670   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   672   if (UseHeavyMonitors) {
   673     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   674   } else {
   676     Label done;
   678     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   679     const Register obj_reg  = rcx;  // Will contain the oop
   681     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   682     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   683     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   685     Label slow_case;
   687     // Load object pointer into obj_reg %rcx
   688     movptr(obj_reg, Address(lock_reg, obj_offset));
   690     if (UseBiasedLocking) {
   691       // Note: we use noreg for the temporary register since it's hard
   692       // to come up with a free register on all incoming code paths
   693       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   694     }
   696     // Load immediate 1 into swap_reg %rax,
   697     movptr(swap_reg, (int32_t)1);
   699     // Load (object->mark() | 1) into swap_reg %rax,
   700     orptr(swap_reg, Address(obj_reg, 0));
   702     // Save (object->mark() | 1) into BasicLock's displaced header
   703     movptr(Address(lock_reg, mark_offset), swap_reg);
   705     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   706     if (os::is_MP()) {
   707       lock();
   708     }
   709     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   710     if (PrintBiasedLockingStatistics) {
   711       cond_inc32(Assembler::zero,
   712                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   713     }
   714     jcc(Assembler::zero, done);
   716     // Test if the oopMark is an obvious stack pointer, i.e.,
   717     //  1) (mark & 3) == 0, and
   718     //  2) rsp <= mark < mark + os::pagesize()
   719     //
   720     // These 3 tests can be done by evaluating the following
   721     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   722     // assuming both stack pointer and pagesize have their
   723     // least significant 2 bits clear.
   724     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   725     subptr(swap_reg, rsp);
   726     andptr(swap_reg, 3 - os::vm_page_size());
   728     // Save the test result, for recursive case, the result is zero
   729     movptr(Address(lock_reg, mark_offset), swap_reg);
   731     if (PrintBiasedLockingStatistics) {
   732       cond_inc32(Assembler::zero,
   733                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   734     }
   735     jcc(Assembler::zero, done);
   737     bind(slow_case);
   739     // Call the runtime routine for slow case
   740     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   742     bind(done);
   743   }
   744 }
   747 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   748 //
   749 // Argument: rdx : Points to BasicObjectLock structure for lock
   750 // Throw an IllegalMonitorException if object is not locked by current thread
   751 //
   752 // Uses: rax, rbx, rcx, rdx
   753 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   754   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   756   if (UseHeavyMonitors) {
   757     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   758   } else {
   759     Label done;
   761     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   762     const Register header_reg = rbx;  // Will contain the old oopMark
   763     const Register obj_reg    = rcx;  // Will contain the oop
   765     save_bcp(); // Save in case of exception
   767     // Convert from BasicObjectLock structure to object and BasicLock structure
   768     // Store the BasicLock address into %rax,
   769     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   771     // Load oop into obj_reg(%rcx)
   772     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   774     // Free entry
   775     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   777     if (UseBiasedLocking) {
   778       biased_locking_exit(obj_reg, header_reg, done);
   779     }
   781     // Load the old header from BasicLock structure
   782     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   784     // Test for recursion
   785     testptr(header_reg, header_reg);
   787     // zero for recursive case
   788     jcc(Assembler::zero, done);
   790     // Atomic swap back the old header
   791     if (os::is_MP()) lock();
   792     cmpxchgptr(header_reg, Address(obj_reg, 0));
   794     // zero for recursive case
   795     jcc(Assembler::zero, done);
   797     // Call the runtime routine for slow case.
   798     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   799     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   801     bind(done);
   803     restore_bcp();
   804   }
   805 }
   808 #ifndef CC_INTERP
   810 // Test ImethodDataPtr.  If it is null, continue at the specified label
   811 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   812   assert(ProfileInterpreter, "must be profiling interpreter");
   813   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   814   testptr(mdp, mdp);
   815   jcc(Assembler::zero, zero_continue);
   816 }
   819 // Set the method data pointer for the current bcp.
   820 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   821   assert(ProfileInterpreter, "must be profiling interpreter");
   822   Label set_mdp;
   823   push(rax);
   824   push(rbx);
   826   get_method(rbx);
   827   // Test MDO to avoid the call if it is NULL.
   828   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   829   testptr(rax, rax);
   830   jcc(Assembler::zero, set_mdp);
   831   // rbx,: method
   832   // rsi: bcp
   833   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   834   // rax,: mdi
   835   // mdo is guaranteed to be non-zero here, we checked for it before the call.
   836   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   837   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   838   addptr(rax, rbx);
   839   bind(set_mdp);
   840   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
   841   pop(rbx);
   842   pop(rax);
   843 }
   845 void InterpreterMacroAssembler::verify_method_data_pointer() {
   846   assert(ProfileInterpreter, "must be profiling interpreter");
   847 #ifdef ASSERT
   848   Label verify_continue;
   849   push(rax);
   850   push(rbx);
   851   push(rcx);
   852   push(rdx);
   853   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
   854   get_method(rbx);
   856   // If the mdp is valid, it will point to a DataLayout header which is
   857   // consistent with the bcp.  The converse is highly probable also.
   858   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
   859   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   860   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   861   cmpptr(rdx, rsi);
   862   jcc(Assembler::equal, verify_continue);
   863   // rbx,: method
   864   // rsi: bcp
   865   // rcx: mdp
   866   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
   867   bind(verify_continue);
   868   pop(rdx);
   869   pop(rcx);
   870   pop(rbx);
   871   pop(rax);
   872 #endif // ASSERT
   873 }
   876 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
   877   // %%% this seems to be used to store counter data which is surely 32bits
   878   // however 64bit side stores 64 bits which seems wrong
   879   assert(ProfileInterpreter, "must be profiling interpreter");
   880   Address data(mdp_in, constant);
   881   movptr(data, value);
   882 }
   885 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   886                                                       int constant,
   887                                                       bool decrement) {
   888   // Counter address
   889   Address data(mdp_in, constant);
   891   increment_mdp_data_at(data, decrement);
   892 }
   895 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   896                                                       bool decrement) {
   898   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   899   assert(ProfileInterpreter, "must be profiling interpreter");
   901   // %%% 64bit treats this as 64 bit which seems unlikely
   902   if (decrement) {
   903     // Decrement the register.  Set condition codes.
   904     addl(data, -DataLayout::counter_increment);
   905     // If the decrement causes the counter to overflow, stay negative
   906     Label L;
   907     jcc(Assembler::negative, L);
   908     addl(data, DataLayout::counter_increment);
   909     bind(L);
   910   } else {
   911     assert(DataLayout::counter_increment == 1,
   912            "flow-free idiom only works with 1");
   913     // Increment the register.  Set carry flag.
   914     addl(data, DataLayout::counter_increment);
   915     // If the increment causes the counter to overflow, pull back by 1.
   916     sbbl(data, 0);
   917   }
   918 }
   921 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   922                                                       Register reg,
   923                                                       int constant,
   924                                                       bool decrement) {
   925   Address data(mdp_in, reg, Address::times_1, constant);
   927   increment_mdp_data_at(data, decrement);
   928 }
   931 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
   932   assert(ProfileInterpreter, "must be profiling interpreter");
   933   int header_offset = in_bytes(DataLayout::header_offset());
   934   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   935   // Set the flag
   936   orl(Address(mdp_in, header_offset), header_bits);
   937 }
   941 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   942                                                  int offset,
   943                                                  Register value,
   944                                                  Register test_value_out,
   945                                                  Label& not_equal_continue) {
   946   assert(ProfileInterpreter, "must be profiling interpreter");
   947   if (test_value_out == noreg) {
   948     cmpptr(value, Address(mdp_in, offset));
   949   } else {
   950     // Put the test value into a register, so caller can use it:
   951     movptr(test_value_out, Address(mdp_in, offset));
   952     cmpptr(test_value_out, value);
   953   }
   954   jcc(Assembler::notEqual, not_equal_continue);
   955 }
   958 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
   959   assert(ProfileInterpreter, "must be profiling interpreter");
   960   Address disp_address(mdp_in, offset_of_disp);
   961   addptr(mdp_in,disp_address);
   962   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   963 }
   966 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
   967   assert(ProfileInterpreter, "must be profiling interpreter");
   968   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   969   addptr(mdp_in, disp_address);
   970   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   971 }
   974 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
   975   assert(ProfileInterpreter, "must be profiling interpreter");
   976   addptr(mdp_in, constant);
   977   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   978 }
   981 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
   982   assert(ProfileInterpreter, "must be profiling interpreter");
   983   push(return_bci);             // save/restore across call_VM
   984   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
   985   pop(return_bci);
   986 }
   989 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
   990   if (ProfileInterpreter) {
   991     Label profile_continue;
   993     // If no method data exists, go to profile_continue.
   994     // Otherwise, assign to mdp
   995     test_method_data_pointer(mdp, profile_continue);
   997     // We are taking a branch.  Increment the taken count.
   998     // We inline increment_mdp_data_at to return bumped_count in a register
   999     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1000     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1002     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
  1003     movl(bumped_count,data);
  1004     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1005     addl(bumped_count, DataLayout::counter_increment);
  1006     sbbl(bumped_count, 0);
  1007     movl(data,bumped_count);    // Store back out
  1009     // The method data pointer needs to be updated to reflect the new target.
  1010     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1011     bind (profile_continue);
  1016 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1017   if (ProfileInterpreter) {
  1018     Label profile_continue;
  1020     // If no method data exists, go to profile_continue.
  1021     test_method_data_pointer(mdp, profile_continue);
  1023     // We are taking a branch.  Increment the not taken count.
  1024     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1026     // The method data pointer needs to be updated to correspond to the next bytecode
  1027     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1028     bind (profile_continue);
  1033 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1034   if (ProfileInterpreter) {
  1035     Label profile_continue;
  1037     // If no method data exists, go to profile_continue.
  1038     test_method_data_pointer(mdp, profile_continue);
  1040     // We are making a call.  Increment the count.
  1041     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1043     // The method data pointer needs to be updated to reflect the new target.
  1044     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1045     bind (profile_continue);
  1050 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1051   if (ProfileInterpreter) {
  1052     Label profile_continue;
  1054     // If no method data exists, go to profile_continue.
  1055     test_method_data_pointer(mdp, profile_continue);
  1057     // We are making a call.  Increment the count.
  1058     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1060     // The method data pointer needs to be updated to reflect the new target.
  1061     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1062     bind (profile_continue);
  1067 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
  1068                                                      Register reg2,
  1069                                                      bool receiver_can_be_null) {
  1070   if (ProfileInterpreter) {
  1071     Label profile_continue;
  1073     // If no method data exists, go to profile_continue.
  1074     test_method_data_pointer(mdp, profile_continue);
  1076     Label skip_receiver_profile;
  1077     if (receiver_can_be_null) {
  1078       Label not_null;
  1079       testptr(receiver, receiver);
  1080       jccb(Assembler::notZero, not_null);
  1081       // We are making a call.  Increment the count for null receiver.
  1082       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1083       jmp(skip_receiver_profile);
  1084       bind(not_null);
  1087     // Record the receiver type.
  1088     record_klass_in_profile(receiver, mdp, reg2, true);
  1089     bind(skip_receiver_profile);
  1091     // The method data pointer needs to be updated to reflect the new target.
  1092     update_mdp_by_constant(mdp,
  1093                            in_bytes(VirtualCallData::
  1094                                     virtual_call_data_size()));
  1095     bind(profile_continue);
  1100 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1101                                         Register receiver, Register mdp,
  1102                                         Register reg2, int start_row,
  1103                                         Label& done, bool is_virtual_call) {
  1104   if (TypeProfileWidth == 0) {
  1105     if (is_virtual_call) {
  1106       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1108     return;
  1111   int last_row = VirtualCallData::row_limit() - 1;
  1112   assert(start_row <= last_row, "must be work left to do");
  1113   // Test this row for both the receiver and for null.
  1114   // Take any of three different outcomes:
  1115   //   1. found receiver => increment count and goto done
  1116   //   2. found null => keep looking for case 1, maybe allocate this cell
  1117   //   3. found something else => keep looking for cases 1 and 2
  1118   // Case 3 is handled by a recursive call.
  1119   for (int row = start_row; row <= last_row; row++) {
  1120     Label next_test;
  1121     bool test_for_null_also = (row == start_row);
  1123     // See if the receiver is receiver[n].
  1124     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1125     test_mdp_data_at(mdp, recvr_offset, receiver,
  1126                      (test_for_null_also ? reg2 : noreg),
  1127                      next_test);
  1128     // (Reg2 now contains the receiver from the CallData.)
  1130     // The receiver is receiver[n].  Increment count[n].
  1131     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1132     increment_mdp_data_at(mdp, count_offset);
  1133     jmp(done);
  1134     bind(next_test);
  1136     if (row == start_row) {
  1137       Label found_null;
  1138       // Failed the equality check on receiver[n]...  Test for null.
  1139       testptr(reg2, reg2);
  1140       if (start_row == last_row) {
  1141         // The only thing left to do is handle the null case.
  1142         if (is_virtual_call) {
  1143           jccb(Assembler::zero, found_null);
  1144           // Receiver did not match any saved receiver and there is no empty row for it.
  1145           // Increment total counter to indicate polymorphic case.
  1146           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1147           jmp(done);
  1148           bind(found_null);
  1149         } else {
  1150           jcc(Assembler::notZero, done);
  1152         break;
  1154       // Since null is rare, make it be the branch-taken case.
  1155       jcc(Assembler::zero, found_null);
  1157       // Put all the "Case 3" tests here.
  1158       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1160       // Found a null.  Keep searching for a matching receiver,
  1161       // but remember that this is an empty (unused) slot.
  1162       bind(found_null);
  1166   // In the fall-through case, we found no matching receiver, but we
  1167   // observed the receiver[start_row] is NULL.
  1169   // Fill in the receiver field and increment the count.
  1170   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1171   set_mdp_data_at(mdp, recvr_offset, receiver);
  1172   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1173   movptr(reg2, (int32_t)DataLayout::counter_increment);
  1174   set_mdp_data_at(mdp, count_offset, reg2);
  1175   if (start_row > 0) {
  1176     jmp(done);
  1180 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1181                                                         Register mdp, Register reg2,
  1182                                                         bool is_virtual_call) {
  1183   assert(ProfileInterpreter, "must be profiling");
  1184   Label done;
  1186   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1188   bind (done);
  1191 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1192   if (ProfileInterpreter) {
  1193     Label profile_continue;
  1194     uint row;
  1196     // If no method data exists, go to profile_continue.
  1197     test_method_data_pointer(mdp, profile_continue);
  1199     // Update the total ret count.
  1200     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1202     for (row = 0; row < RetData::row_limit(); row++) {
  1203       Label next_test;
  1205       // See if return_bci is equal to bci[n]:
  1206       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1207                        noreg, next_test);
  1209       // return_bci is equal to bci[n].  Increment the count.
  1210       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1212       // The method data pointer needs to be updated to reflect the new target.
  1213       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1214       jmp(profile_continue);
  1215       bind(next_test);
  1218     update_mdp_for_ret(return_bci);
  1220     bind (profile_continue);
  1225 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1226   if (ProfileInterpreter) {
  1227     Label profile_continue;
  1229     // If no method data exists, go to profile_continue.
  1230     test_method_data_pointer(mdp, profile_continue);
  1232     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1234     // The method data pointer needs to be updated.
  1235     int mdp_delta = in_bytes(BitData::bit_data_size());
  1236     if (TypeProfileCasts) {
  1237       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1239     update_mdp_by_constant(mdp, mdp_delta);
  1241     bind (profile_continue);
  1246 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1247   if (ProfileInterpreter && TypeProfileCasts) {
  1248     Label profile_continue;
  1250     // If no method data exists, go to profile_continue.
  1251     test_method_data_pointer(mdp, profile_continue);
  1253     int count_offset = in_bytes(CounterData::count_offset());
  1254     // Back up the address, since we have already bumped the mdp.
  1255     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1257     // *Decrement* the counter.  We expect to see zero or small negatives.
  1258     increment_mdp_data_at(mdp, count_offset, true);
  1260     bind (profile_continue);
  1265 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1267   if (ProfileInterpreter) {
  1268     Label profile_continue;
  1270     // If no method data exists, go to profile_continue.
  1271     test_method_data_pointer(mdp, profile_continue);
  1273     // The method data pointer needs to be updated.
  1274     int mdp_delta = in_bytes(BitData::bit_data_size());
  1275     if (TypeProfileCasts) {
  1276       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1278       // Record the object type.
  1279       record_klass_in_profile(klass, mdp, reg2, false);
  1280       assert(reg2 == rdi, "we know how to fix this blown reg");
  1281       restore_locals();         // Restore EDI
  1283     update_mdp_by_constant(mdp, mdp_delta);
  1285     bind(profile_continue);
  1290 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1291   if (ProfileInterpreter) {
  1292     Label profile_continue;
  1294     // If no method data exists, go to profile_continue.
  1295     test_method_data_pointer(mdp, profile_continue);
  1297     // Update the default case count
  1298     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1300     // The method data pointer needs to be updated.
  1301     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1303     bind (profile_continue);
  1308 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1309   if (ProfileInterpreter) {
  1310     Label profile_continue;
  1312     // If no method data exists, go to profile_continue.
  1313     test_method_data_pointer(mdp, profile_continue);
  1315     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1316     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
  1317     // index is positive and so should have correct value if this code were
  1318     // used on 64bits
  1319     imulptr(index, reg2);
  1320     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1322     // Update the case count
  1323     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1325     // The method data pointer needs to be updated.
  1326     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1328     bind (profile_continue);
  1332 #endif // !CC_INTERP
  1336 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1337   if (state == atos) MacroAssembler::verify_oop(reg);
  1341 #ifndef CC_INTERP
  1342 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1343   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1346 #endif /* CC_INTERP */
  1349 void InterpreterMacroAssembler::notify_method_entry() {
  1350   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1351   // track stack depth.  If it is possible to enter interp_only_mode we add
  1352   // the code to check if the event should be sent.
  1353   if (JvmtiExport::can_post_interpreter_events()) {
  1354     Label L;
  1355     get_thread(rcx);
  1356     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1357     testl(rcx,rcx);
  1358     jcc(Assembler::zero, L);
  1359     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1360     bind(L);
  1364     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1365     get_thread(rcx);
  1366     get_method(rbx);
  1367     call_VM_leaf(
  1368       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1371   // RedefineClasses() tracing support for obsolete method entry
  1372   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1373     get_thread(rcx);
  1374     get_method(rbx);
  1375     call_VM_leaf(
  1376       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1377       rcx, rbx);
  1382 void InterpreterMacroAssembler::notify_method_exit(
  1383     TosState state, NotifyMethodExitMode mode) {
  1384   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1385   // track stack depth.  If it is possible to enter interp_only_mode we add
  1386   // the code to check if the event should be sent.
  1387   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1388     Label L;
  1389     // Note: frame::interpreter_frame_result has a dependency on how the
  1390     // method result is saved across the call to post_method_exit. If this
  1391     // is changed then the interpreter_frame_result implementation will
  1392     // need to be updated too.
  1394     // For c++ interpreter the result is always stored at a known location in the frame
  1395     // template interpreter will leave it on the top of the stack.
  1396     NOT_CC_INTERP(push(state);)
  1397     get_thread(rcx);
  1398     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1399     testl(rcx,rcx);
  1400     jcc(Assembler::zero, L);
  1401     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1402     bind(L);
  1403     NOT_CC_INTERP(pop(state);)
  1407     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1408     NOT_CC_INTERP(push(state));
  1409     get_thread(rbx);
  1410     get_method(rcx);
  1411     call_VM_leaf(
  1412       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1413       rbx, rcx);
  1414     NOT_CC_INTERP(pop(state));
  1418 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1419 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1420                                                         int increment, int mask,
  1421                                                         Register scratch, bool preloaded,
  1422                                                         Condition cond, Label* where) {
  1423   if (!preloaded) {
  1424     movl(scratch, counter_addr);
  1426   incrementl(scratch, increment);
  1427   movl(counter_addr, scratch);
  1428   andl(scratch, mask);
  1429   jcc(cond, *where);

mercurial