src/share/vm/opto/divnode.cpp

Tue, 24 Jun 2008 16:00:14 -0700

author
never
date
Tue, 24 Jun 2008 16:00:14 -0700
changeset 657
2a1a77d3458f
parent 580
f3de1255b035
child 631
d1605aabd0a1
permissions
-rw-r--r--

6718676: putback for 6604014 is incomplete
Reviewed-by: kvn, jrose

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_divnode.cpp.incl"
    31 #include <math.h>
    33 //----------------------magic_int_divide_constants-----------------------------
    34 // Compute magic multiplier and shift constant for converting a 32 bit divide
    35 // by constant into a multiply/shift/add series. Return false if calculations
    36 // fail.
    37 //
    38 // Borrowed almost verbatum from Hacker's Delight by Henry S. Warren, Jr. with
    39 // minor type name and parameter changes.
    40 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
    41   int32_t p;
    42   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
    43   const uint32_t two31 = 0x80000000L;     // 2**31.
    45   ad = ABS(d);
    46   if (d == 0 || d == 1) return false;
    47   t = two31 + ((uint32_t)d >> 31);
    48   anc = t - 1 - t%ad;     // Absolute value of nc.
    49   p = 31;                 // Init. p.
    50   q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
    51   r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
    52   q2 = two31/ad;          // Init. q2 = 2**p/|d|.
    53   r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
    54   do {
    55     p = p + 1;
    56     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    57     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    58     if (r1 >= anc) {      // (Must be an unsigned
    59       q1 = q1 + 1;        // comparison here).
    60       r1 = r1 - anc;
    61     }
    62     q2 = 2*q2;            // Update q2 = 2**p/|d|.
    63     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    64     if (r2 >= ad) {       // (Must be an unsigned
    65       q2 = q2 + 1;        // comparison here).
    66       r2 = r2 - ad;
    67     }
    68     delta = ad - r2;
    69   } while (q1 < delta || (q1 == delta && r1 == 0));
    71   M = q2 + 1;
    72   if (d < 0) M = -M;      // Magic number and
    73   s = p - 32;             // shift amount to return.
    75   return true;
    76 }
    78 //--------------------------transform_int_divide-------------------------------
    79 // Convert a division by constant divisor into an alternate Ideal graph.
    80 // Return NULL if no transformation occurs.
    81 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
    83   // Check for invalid divisors
    84   assert( divisor != 0 && divisor != min_jint,
    85           "bad divisor for transforming to long multiply" );
    87   bool d_pos = divisor >= 0;
    88   jint d = d_pos ? divisor : -divisor;
    89   const int N = 32;
    91   // Result
    92   Node *q = NULL;
    94   if (d == 1) {
    95     // division by +/- 1
    96     if (!d_pos) {
    97       // Just negate the value
    98       q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
    99     }
   100   } else if ( is_power_of_2(d) ) {
   101     // division by +/- a power of 2
   103     // See if we can simply do a shift without rounding
   104     bool needs_rounding = true;
   105     const Type *dt = phase->type(dividend);
   106     const TypeInt *dti = dt->isa_int();
   107     if (dti && dti->_lo >= 0) {
   108       // we don't need to round a positive dividend
   109       needs_rounding = false;
   110     } else if( dividend->Opcode() == Op_AndI ) {
   111       // An AND mask of sufficient size clears the low bits and
   112       // I can avoid rounding.
   113       const TypeInt *andconi = phase->type( dividend->in(2) )->isa_int();
   114       if( andconi && andconi->is_con(-d) ) {
   115         dividend = dividend->in(1);
   116         needs_rounding = false;
   117       }
   118     }
   120     // Add rounding to the shift to handle the sign bit
   121     int l = log2_intptr(d-1)+1;
   122     if (needs_rounding) {
   123       // Divide-by-power-of-2 can be made into a shift, but you have to do
   124       // more math for the rounding.  You need to add 0 for positive
   125       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
   126       // shift is by 2.  You need to add 3 to negative dividends and 0 to
   127       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
   128       // (-2+3)>>2 becomes 0, etc.
   130       // Compute 0 or -1, based on sign bit
   131       Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
   132       // Mask sign bit to the low sign bits
   133       Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
   134       // Round up before shifting
   135       dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
   136     }
   138     // Shift for division
   139     q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
   141     if (!d_pos) {
   142       q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
   143     }
   144   } else {
   145     // Attempt the jint constant divide -> multiply transform found in
   146     //   "Division by Invariant Integers using Multiplication"
   147     //     by Granlund and Montgomery
   148     // See also "Hacker's Delight", chapter 10 by Warren.
   150     jint magic_const;
   151     jint shift_const;
   152     if (magic_int_divide_constants(d, magic_const, shift_const)) {
   153       Node *magic = phase->longcon(magic_const);
   154       Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
   156       // Compute the high half of the dividend x magic multiplication
   157       Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));
   159       if (magic_const < 0) {
   160         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
   161         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
   163         // The magic multiplier is too large for a 32 bit constant. We've adjusted
   164         // it down by 2^32, but have to add 1 dividend back in after the multiplication.
   165         // This handles the "overflow" case described by Granlund and Montgomery.
   166         mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));
   168         // Shift over the (adjusted) mulhi
   169         if (shift_const != 0) {
   170           mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
   171         }
   172       } else {
   173         // No add is required, we can merge the shifts together.
   174         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
   175         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
   176       }
   178       // Get a 0 or -1 from the sign of the dividend.
   179       Node *addend0 = mul_hi;
   180       Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
   182       // If the divisor is negative, swap the order of the input addends;
   183       // this has the effect of negating the quotient.
   184       if (!d_pos) {
   185         Node *temp = addend0; addend0 = addend1; addend1 = temp;
   186       }
   188       // Adjust the final quotient by subtracting -1 (adding 1)
   189       // from the mul_hi.
   190       q = new (phase->C, 3) SubINode(addend0, addend1);
   191     }
   192   }
   194   return q;
   195 }
   197 //---------------------magic_long_divide_constants-----------------------------
   198 // Compute magic multiplier and shift constant for converting a 64 bit divide
   199 // by constant into a multiply/shift/add series. Return false if calculations
   200 // fail.
   201 //
   202 // Borrowed almost verbatum from Hacker's Delight by Henry S. Warren, Jr. with
   203 // minor type name and parameter changes.  Adjusted to 64 bit word width.
   204 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
   205   int64_t p;
   206   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
   207   const uint64_t two63 = 0x8000000000000000LL;     // 2**63.
   209   ad = ABS(d);
   210   if (d == 0 || d == 1) return false;
   211   t = two63 + ((uint64_t)d >> 63);
   212   anc = t - 1 - t%ad;     // Absolute value of nc.
   213   p = 63;                 // Init. p.
   214   q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
   215   r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
   216   q2 = two63/ad;          // Init. q2 = 2**p/|d|.
   217   r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
   218   do {
   219     p = p + 1;
   220     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
   221     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
   222     if (r1 >= anc) {      // (Must be an unsigned
   223       q1 = q1 + 1;        // comparison here).
   224       r1 = r1 - anc;
   225     }
   226     q2 = 2*q2;            // Update q2 = 2**p/|d|.
   227     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
   228     if (r2 >= ad) {       // (Must be an unsigned
   229       q2 = q2 + 1;        // comparison here).
   230       r2 = r2 - ad;
   231     }
   232     delta = ad - r2;
   233   } while (q1 < delta || (q1 == delta && r1 == 0));
   235   M = q2 + 1;
   236   if (d < 0) M = -M;      // Magic number and
   237   s = p - 64;             // shift amount to return.
   239   return true;
   240 }
   242 //---------------------long_by_long_mulhi--------------------------------------
   243 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
   244 static Node *long_by_long_mulhi( PhaseGVN *phase, Node *dividend, jlong magic_const) {
   245   // If the architecture supports a 64x64 mulhi, there is
   246   // no need to synthesize it in ideal nodes.
   247   if (Matcher::has_match_rule(Op_MulHiL)) {
   248     Node *v = phase->longcon(magic_const);
   249     return new (phase->C, 3) MulHiLNode(dividend, v);
   250   }
   252   const int N = 64;
   254   Node *u_hi = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
   255   Node *u_lo = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
   257   Node *v_hi = phase->longcon(magic_const >> N/2);
   258   Node *v_lo = phase->longcon(magic_const & 0XFFFFFFFF);
   260   Node *hihi_product = phase->transform(new (phase->C, 3) MulLNode(u_hi, v_hi));
   261   Node *hilo_product = phase->transform(new (phase->C, 3) MulLNode(u_hi, v_lo));
   262   Node *lohi_product = phase->transform(new (phase->C, 3) MulLNode(u_lo, v_hi));
   263   Node *lolo_product = phase->transform(new (phase->C, 3) MulLNode(u_lo, v_lo));
   265   Node *t1 = phase->transform(new (phase->C, 3) URShiftLNode(lolo_product, phase->intcon(N / 2)));
   266   Node *t2 = phase->transform(new (phase->C, 3) AddLNode(hilo_product, t1));
   267   Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(N / 2)));
   268   Node *t4 = phase->transform(new (phase->C, 3) AndLNode(t2, phase->longcon(0xFFFFFFFF)));
   269   Node *t5 = phase->transform(new (phase->C, 3) AddLNode(t4, lohi_product));
   270   Node *t6 = phase->transform(new (phase->C, 3) RShiftLNode(t5, phase->intcon(N / 2)));
   271   Node *t7 = phase->transform(new (phase->C, 3) AddLNode(t3, hihi_product));
   273   return new (phase->C, 3) AddLNode(t7, t6);
   274 }
   277 //--------------------------transform_long_divide------------------------------
   278 // Convert a division by constant divisor into an alternate Ideal graph.
   279 // Return NULL if no transformation occurs.
   280 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
   281   // Check for invalid divisors
   282   assert( divisor != 0L && divisor != min_jlong,
   283           "bad divisor for transforming to long multiply" );
   285   bool d_pos = divisor >= 0;
   286   jlong d = d_pos ? divisor : -divisor;
   287   const int N = 64;
   289   // Result
   290   Node *q = NULL;
   292   if (d == 1) {
   293     // division by +/- 1
   294     if (!d_pos) {
   295       // Just negate the value
   296       q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
   297     }
   298   } else if ( is_power_of_2_long(d) ) {
   300     // division by +/- a power of 2
   302     // See if we can simply do a shift without rounding
   303     bool needs_rounding = true;
   304     const Type *dt = phase->type(dividend);
   305     const TypeLong *dtl = dt->isa_long();
   307     if (dtl && dtl->_lo > 0) {
   308       // we don't need to round a positive dividend
   309       needs_rounding = false;
   310     } else if( dividend->Opcode() == Op_AndL ) {
   311       // An AND mask of sufficient size clears the low bits and
   312       // I can avoid rounding.
   313       const TypeLong *andconl = phase->type( dividend->in(2) )->isa_long();
   314       if( andconl && andconl->is_con(-d)) {
   315         dividend = dividend->in(1);
   316         needs_rounding = false;
   317       }
   318     }
   320     // Add rounding to the shift to handle the sign bit
   321     int l = log2_long(d-1)+1;
   322     if (needs_rounding) {
   323       // Divide-by-power-of-2 can be made into a shift, but you have to do
   324       // more math for the rounding.  You need to add 0 for positive
   325       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
   326       // shift is by 2.  You need to add 3 to negative dividends and 0 to
   327       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
   328       // (-2+3)>>2 becomes 0, etc.
   330       // Compute 0 or -1, based on sign bit
   331       Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
   332       // Mask sign bit to the low sign bits
   333       Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
   334       // Round up before shifting
   335       dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
   336     }
   338     // Shift for division
   339     q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));
   341     if (!d_pos) {
   342       q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
   343     }
   344   } else {
   345     // Attempt the jlong constant divide -> multiply transform found in
   346     //   "Division by Invariant Integers using Multiplication"
   347     //     by Granlund and Montgomery
   348     // See also "Hacker's Delight", chapter 10 by Warren.
   350     jlong magic_const;
   351     jint shift_const;
   352     if (magic_long_divide_constants(d, magic_const, shift_const)) {
   353       // Compute the high half of the dividend x magic multiplication
   354       Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
   356       // The high half of the 128-bit multiply is computed.
   357       if (magic_const < 0) {
   358         // The magic multiplier is too large for a 64 bit constant. We've adjusted
   359         // it down by 2^64, but have to add 1 dividend back in after the multiplication.
   360         // This handles the "overflow" case described by Granlund and Montgomery.
   361         mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
   362       }
   364       // Shift over the (adjusted) mulhi
   365       if (shift_const != 0) {
   366         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
   367       }
   369       // Get a 0 or -1 from the sign of the dividend.
   370       Node *addend0 = mul_hi;
   371       Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));
   373       // If the divisor is negative, swap the order of the input addends;
   374       // this has the effect of negating the quotient.
   375       if (!d_pos) {
   376         Node *temp = addend0; addend0 = addend1; addend1 = temp;
   377       }
   379       // Adjust the final quotient by subtracting -1 (adding 1)
   380       // from the mul_hi.
   381       q = new (phase->C, 3) SubLNode(addend0, addend1);
   382     }
   383   }
   385   return q;
   386 }
   388 //=============================================================================
   389 //------------------------------Identity---------------------------------------
   390 // If the divisor is 1, we are an identity on the dividend.
   391 Node *DivINode::Identity( PhaseTransform *phase ) {
   392   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
   393 }
   395 //------------------------------Idealize---------------------------------------
   396 // Divides can be changed to multiplies and/or shifts
   397 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   398   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   400   const Type *t = phase->type( in(2) );
   401   if( t == TypeInt::ONE )       // Identity?
   402     return NULL;                // Skip it
   404   const TypeInt *ti = t->isa_int();
   405   if( !ti ) return NULL;
   406   if( !ti->is_con() ) return NULL;
   407   jint i = ti->get_con();       // Get divisor
   409   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
   411   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
   413   // Dividing by MININT does not optimize as a power-of-2 shift.
   414   if( i == min_jint ) return NULL;
   416   return transform_int_divide( phase, in(1), i );
   417 }
   419 //------------------------------Value------------------------------------------
   420 // A DivINode divides its inputs.  The third input is a Control input, used to
   421 // prevent hoisting the divide above an unsafe test.
   422 const Type *DivINode::Value( PhaseTransform *phase ) const {
   423   // Either input is TOP ==> the result is TOP
   424   const Type *t1 = phase->type( in(1) );
   425   const Type *t2 = phase->type( in(2) );
   426   if( t1 == Type::TOP ) return Type::TOP;
   427   if( t2 == Type::TOP ) return Type::TOP;
   429   // x/x == 1 since we always generate the dynamic divisor check for 0.
   430   if( phase->eqv( in(1), in(2) ) )
   431     return TypeInt::ONE;
   433   // Either input is BOTTOM ==> the result is the local BOTTOM
   434   const Type *bot = bottom_type();
   435   if( (t1 == bot) || (t2 == bot) ||
   436       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   437     return bot;
   439   // Divide the two numbers.  We approximate.
   440   // If divisor is a constant and not zero
   441   const TypeInt *i1 = t1->is_int();
   442   const TypeInt *i2 = t2->is_int();
   443   int widen = MAX2(i1->_widen, i2->_widen);
   445   if( i2->is_con() && i2->get_con() != 0 ) {
   446     int32 d = i2->get_con(); // Divisor
   447     jint lo, hi;
   448     if( d >= 0 ) {
   449       lo = i1->_lo/d;
   450       hi = i1->_hi/d;
   451     } else {
   452       if( d == -1 && i1->_lo == min_jint ) {
   453         // 'min_jint/-1' throws arithmetic exception during compilation
   454         lo = min_jint;
   455         // do not support holes, 'hi' must go to either min_jint or max_jint:
   456         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
   457         hi = i1->_hi == min_jint ? min_jint : max_jint;
   458       } else {
   459         lo = i1->_hi/d;
   460         hi = i1->_lo/d;
   461       }
   462     }
   463     return TypeInt::make(lo, hi, widen);
   464   }
   466   // If the dividend is a constant
   467   if( i1->is_con() ) {
   468     int32 d = i1->get_con();
   469     if( d < 0 ) {
   470       if( d == min_jint ) {
   471         //  (-min_jint) == min_jint == (min_jint / -1)
   472         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
   473       } else {
   474         return TypeInt::make(d, -d, widen);
   475       }
   476     }
   477     return TypeInt::make(-d, d, widen);
   478   }
   480   // Otherwise we give up all hope
   481   return TypeInt::INT;
   482 }
   485 //=============================================================================
   486 //------------------------------Identity---------------------------------------
   487 // If the divisor is 1, we are an identity on the dividend.
   488 Node *DivLNode::Identity( PhaseTransform *phase ) {
   489   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
   490 }
   492 //------------------------------Idealize---------------------------------------
   493 // Dividing by a power of 2 is a shift.
   494 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
   495   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   497   const Type *t = phase->type( in(2) );
   498   if( t == TypeLong::ONE )      // Identity?
   499     return NULL;                // Skip it
   501   const TypeLong *tl = t->isa_long();
   502   if( !tl ) return NULL;
   503   if( !tl->is_con() ) return NULL;
   504   jlong l = tl->get_con();      // Get divisor
   506   if (l == 0) return NULL;      // Dividing by zero constant does not idealize
   508   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
   510   // Dividing by MININT does not optimize as a power-of-2 shift.
   511   if( l == min_jlong ) return NULL;
   513   return transform_long_divide( phase, in(1), l );
   514 }
   516 //------------------------------Value------------------------------------------
   517 // A DivLNode divides its inputs.  The third input is a Control input, used to
   518 // prevent hoisting the divide above an unsafe test.
   519 const Type *DivLNode::Value( PhaseTransform *phase ) const {
   520   // Either input is TOP ==> the result is TOP
   521   const Type *t1 = phase->type( in(1) );
   522   const Type *t2 = phase->type( in(2) );
   523   if( t1 == Type::TOP ) return Type::TOP;
   524   if( t2 == Type::TOP ) return Type::TOP;
   526   // x/x == 1 since we always generate the dynamic divisor check for 0.
   527   if( phase->eqv( in(1), in(2) ) )
   528     return TypeLong::ONE;
   530   // Either input is BOTTOM ==> the result is the local BOTTOM
   531   const Type *bot = bottom_type();
   532   if( (t1 == bot) || (t2 == bot) ||
   533       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   534     return bot;
   536   // Divide the two numbers.  We approximate.
   537   // If divisor is a constant and not zero
   538   const TypeLong *i1 = t1->is_long();
   539   const TypeLong *i2 = t2->is_long();
   540   int widen = MAX2(i1->_widen, i2->_widen);
   542   if( i2->is_con() && i2->get_con() != 0 ) {
   543     jlong d = i2->get_con();    // Divisor
   544     jlong lo, hi;
   545     if( d >= 0 ) {
   546       lo = i1->_lo/d;
   547       hi = i1->_hi/d;
   548     } else {
   549       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
   550         // 'min_jlong/-1' throws arithmetic exception during compilation
   551         lo = min_jlong;
   552         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
   553         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
   554         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
   555       } else {
   556         lo = i1->_hi/d;
   557         hi = i1->_lo/d;
   558       }
   559     }
   560     return TypeLong::make(lo, hi, widen);
   561   }
   563   // If the dividend is a constant
   564   if( i1->is_con() ) {
   565     jlong d = i1->get_con();
   566     if( d < 0 ) {
   567       if( d == min_jlong ) {
   568         //  (-min_jlong) == min_jlong == (min_jlong / -1)
   569         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
   570       } else {
   571         return TypeLong::make(d, -d, widen);
   572       }
   573     }
   574     return TypeLong::make(-d, d, widen);
   575   }
   577   // Otherwise we give up all hope
   578   return TypeLong::LONG;
   579 }
   582 //=============================================================================
   583 //------------------------------Value------------------------------------------
   584 // An DivFNode divides its inputs.  The third input is a Control input, used to
   585 // prevent hoisting the divide above an unsafe test.
   586 const Type *DivFNode::Value( PhaseTransform *phase ) const {
   587   // Either input is TOP ==> the result is TOP
   588   const Type *t1 = phase->type( in(1) );
   589   const Type *t2 = phase->type( in(2) );
   590   if( t1 == Type::TOP ) return Type::TOP;
   591   if( t2 == Type::TOP ) return Type::TOP;
   593   // Either input is BOTTOM ==> the result is the local BOTTOM
   594   const Type *bot = bottom_type();
   595   if( (t1 == bot) || (t2 == bot) ||
   596       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   597     return bot;
   599   // x/x == 1, we ignore 0/0.
   600   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   601   // Does not work for variables because of NaN's
   602   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
   603     if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
   604       return TypeF::ONE;
   606   if( t2 == TypeF::ONE )
   607     return t1;
   609   // If divisor is a constant and not zero, divide them numbers
   610   if( t1->base() == Type::FloatCon &&
   611       t2->base() == Type::FloatCon &&
   612       t2->getf() != 0.0 ) // could be negative zero
   613     return TypeF::make( t1->getf()/t2->getf() );
   615   // If the dividend is a constant zero
   616   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   617   // Test TypeF::ZERO is not sufficient as it could be negative zero
   619   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
   620     return TypeF::ZERO;
   622   // Otherwise we give up all hope
   623   return Type::FLOAT;
   624 }
   626 //------------------------------isA_Copy---------------------------------------
   627 // Dividing by self is 1.
   628 // If the divisor is 1, we are an identity on the dividend.
   629 Node *DivFNode::Identity( PhaseTransform *phase ) {
   630   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
   631 }
   634 //------------------------------Idealize---------------------------------------
   635 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   636   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   638   const Type *t2 = phase->type( in(2) );
   639   if( t2 == TypeF::ONE )         // Identity?
   640     return NULL;                // Skip it
   642   const TypeF *tf = t2->isa_float_constant();
   643   if( !tf ) return NULL;
   644   if( tf->base() != Type::FloatCon ) return NULL;
   646   // Check for out of range values
   647   if( tf->is_nan() || !tf->is_finite() ) return NULL;
   649   // Get the value
   650   float f = tf->getf();
   651   int exp;
   653   // Only for special case of dividing by a power of 2
   654   if( frexp((double)f, &exp) != 0.5 ) return NULL;
   656   // Limit the range of acceptable exponents
   657   if( exp < -126 || exp > 126 ) return NULL;
   659   // Compute the reciprocal
   660   float reciprocal = ((float)1.0) / f;
   662   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
   664   // return multiplication by the reciprocal
   665   return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
   666 }
   668 //=============================================================================
   669 //------------------------------Value------------------------------------------
   670 // An DivDNode divides its inputs.  The third input is a Control input, used to
   671 // prevent hoisting the divide above an unsafe test.
   672 const Type *DivDNode::Value( PhaseTransform *phase ) const {
   673   // Either input is TOP ==> the result is TOP
   674   const Type *t1 = phase->type( in(1) );
   675   const Type *t2 = phase->type( in(2) );
   676   if( t1 == Type::TOP ) return Type::TOP;
   677   if( t2 == Type::TOP ) return Type::TOP;
   679   // Either input is BOTTOM ==> the result is the local BOTTOM
   680   const Type *bot = bottom_type();
   681   if( (t1 == bot) || (t2 == bot) ||
   682       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   683     return bot;
   685   // x/x == 1, we ignore 0/0.
   686   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   687   // Does not work for variables because of NaN's
   688   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
   689     if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
   690       return TypeD::ONE;
   692   if( t2 == TypeD::ONE )
   693     return t1;
   695   // If divisor is a constant and not zero, divide them numbers
   696   if( t1->base() == Type::DoubleCon &&
   697       t2->base() == Type::DoubleCon &&
   698       t2->getd() != 0.0 ) // could be negative zero
   699     return TypeD::make( t1->getd()/t2->getd() );
   701   // If the dividend is a constant zero
   702   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   703   // Test TypeF::ZERO is not sufficient as it could be negative zero
   704   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
   705     return TypeD::ZERO;
   707   // Otherwise we give up all hope
   708   return Type::DOUBLE;
   709 }
   712 //------------------------------isA_Copy---------------------------------------
   713 // Dividing by self is 1.
   714 // If the divisor is 1, we are an identity on the dividend.
   715 Node *DivDNode::Identity( PhaseTransform *phase ) {
   716   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
   717 }
   719 //------------------------------Idealize---------------------------------------
   720 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   721   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   723   const Type *t2 = phase->type( in(2) );
   724   if( t2 == TypeD::ONE )         // Identity?
   725     return NULL;                // Skip it
   727   const TypeD *td = t2->isa_double_constant();
   728   if( !td ) return NULL;
   729   if( td->base() != Type::DoubleCon ) return NULL;
   731   // Check for out of range values
   732   if( td->is_nan() || !td->is_finite() ) return NULL;
   734   // Get the value
   735   double d = td->getd();
   736   int exp;
   738   // Only for special case of dividing by a power of 2
   739   if( frexp(d, &exp) != 0.5 ) return NULL;
   741   // Limit the range of acceptable exponents
   742   if( exp < -1021 || exp > 1022 ) return NULL;
   744   // Compute the reciprocal
   745   double reciprocal = 1.0 / d;
   747   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
   749   // return multiplication by the reciprocal
   750   return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
   751 }
   753 //=============================================================================
   754 //------------------------------Idealize---------------------------------------
   755 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   756   // Check for dead control input
   757   if( remove_dead_region(phase, can_reshape) )  return this;
   759   // Get the modulus
   760   const Type *t = phase->type( in(2) );
   761   if( t == Type::TOP ) return NULL;
   762   const TypeInt *ti = t->is_int();
   764   // Check for useless control input
   765   // Check for excluding mod-zero case
   766   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
   767     set_req(0, NULL);        // Yank control input
   768     return this;
   769   }
   771   // See if we are MOD'ing by 2^k or 2^k-1.
   772   if( !ti->is_con() ) return NULL;
   773   jint con = ti->get_con();
   775   Node *hook = new (phase->C, 1) Node(1);
   777   // First, special check for modulo 2^k-1
   778   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
   779     uint k = exact_log2(con+1);  // Extract k
   781     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
   782     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
   783     int trip_count = 1;
   784     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
   786     // If the unroll factor is not too large, and if conditional moves are
   787     // ok, then use this case
   788     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
   789       Node *x = in(1);            // Value being mod'd
   790       Node *divisor = in(2);      // Also is mask
   792       hook->init_req(0, x);       // Add a use to x to prevent him from dying
   793       // Generate code to reduce X rapidly to nearly 2^k-1.
   794       for( int i = 0; i < trip_count; i++ ) {
   795         Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
   796         Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
   797         x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
   798         hook->set_req(0, x);
   799       }
   801       // Generate sign-fixup code.  Was original value positive?
   802       // int hack_res = (i >= 0) ? divisor : 1;
   803       Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
   804       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
   805       Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
   806       // if( x >= hack_res ) x -= divisor;
   807       Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
   808       Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
   809       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
   810       // Convention is to not transform the return value of an Ideal
   811       // since Ideal is expected to return a modified 'this' or a new node.
   812       Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
   813       // cmov2 is now the mod
   815       // Now remove the bogus extra edges used to keep things alive
   816       if (can_reshape) {
   817         phase->is_IterGVN()->remove_dead_node(hook);
   818       } else {
   819         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
   820       }
   821       return cmov2;
   822     }
   823   }
   825   // Fell thru, the unroll case is not appropriate. Transform the modulo
   826   // into a long multiply/int multiply/subtract case
   828   // Cannot handle mod 0, and min_jint isn't handled by the transform
   829   if( con == 0 || con == min_jint ) return NULL;
   831   // Get the absolute value of the constant; at this point, we can use this
   832   jint pos_con = (con >= 0) ? con : -con;
   834   // integer Mod 1 is always 0
   835   if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
   837   int log2_con = -1;
   839   // If this is a power of two, they maybe we can mask it
   840   if( is_power_of_2(pos_con) ) {
   841     log2_con = log2_intptr((intptr_t)pos_con);
   843     const Type *dt = phase->type(in(1));
   844     const TypeInt *dti = dt->isa_int();
   846     // See if this can be masked, if the dividend is non-negative
   847     if( dti && dti->_lo >= 0 )
   848       return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
   849   }
   851   // Save in(1) so that it cannot be changed or deleted
   852   hook->init_req(0, in(1));
   854   // Divide using the transform from DivI to MulL
   855   Node *result = transform_int_divide( phase, in(1), pos_con );
   856   if (result != NULL) {
   857     Node *divide = phase->transform(result);
   859     // Re-multiply, using a shift if this is a power of two
   860     Node *mult = NULL;
   862     if( log2_con >= 0 )
   863       mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
   864     else
   865       mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
   867     // Finally, subtract the multiplied divided value from the original
   868     result = new (phase->C, 3) SubINode( in(1), mult );
   869   }
   871   // Now remove the bogus extra edges used to keep things alive
   872   if (can_reshape) {
   873     phase->is_IterGVN()->remove_dead_node(hook);
   874   } else {
   875     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
   876   }
   878   // return the value
   879   return result;
   880 }
   882 //------------------------------Value------------------------------------------
   883 const Type *ModINode::Value( PhaseTransform *phase ) const {
   884   // Either input is TOP ==> the result is TOP
   885   const Type *t1 = phase->type( in(1) );
   886   const Type *t2 = phase->type( in(2) );
   887   if( t1 == Type::TOP ) return Type::TOP;
   888   if( t2 == Type::TOP ) return Type::TOP;
   890   // We always generate the dynamic check for 0.
   891   // 0 MOD X is 0
   892   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   893   // X MOD X is 0
   894   if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
   896   // Either input is BOTTOM ==> the result is the local BOTTOM
   897   const Type *bot = bottom_type();
   898   if( (t1 == bot) || (t2 == bot) ||
   899       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   900     return bot;
   902   const TypeInt *i1 = t1->is_int();
   903   const TypeInt *i2 = t2->is_int();
   904   if( !i1->is_con() || !i2->is_con() ) {
   905     if( i1->_lo >= 0 && i2->_lo >= 0 )
   906       return TypeInt::POS;
   907     // If both numbers are not constants, we know little.
   908     return TypeInt::INT;
   909   }
   910   // Mod by zero?  Throw exception at runtime!
   911   if( !i2->get_con() ) return TypeInt::POS;
   913   // We must be modulo'ing 2 float constants.
   914   // Check for min_jint % '-1', result is defined to be '0'.
   915   if( i1->get_con() == min_jint && i2->get_con() == -1 )
   916     return TypeInt::ZERO;
   918   return TypeInt::make( i1->get_con() % i2->get_con() );
   919 }
   922 //=============================================================================
   923 //------------------------------Idealize---------------------------------------
   924 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   925   // Check for dead control input
   926   if( remove_dead_region(phase, can_reshape) )  return this;
   928   // Get the modulus
   929   const Type *t = phase->type( in(2) );
   930   if( t == Type::TOP ) return NULL;
   931   const TypeLong *tl = t->is_long();
   933   // Check for useless control input
   934   // Check for excluding mod-zero case
   935   if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
   936     set_req(0, NULL);        // Yank control input
   937     return this;
   938   }
   940   // See if we are MOD'ing by 2^k or 2^k-1.
   941   if( !tl->is_con() ) return NULL;
   942   jlong con = tl->get_con();
   944   Node *hook = new (phase->C, 1) Node(1);
   946   // Expand mod
   947   if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
   948     uint k = log2_long(con);       // Extract k
   950     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
   951     // Used to help a popular random number generator which does a long-mod
   952     // of 2^31-1 and shows up in SpecJBB and SciMark.
   953     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
   954     int trip_count = 1;
   955     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
   957     // If the unroll factor is not too large, and if conditional moves are
   958     // ok, then use this case
   959     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
   960       Node *x = in(1);            // Value being mod'd
   961       Node *divisor = in(2);      // Also is mask
   963       hook->init_req(0, x);       // Add a use to x to prevent him from dying
   964       // Generate code to reduce X rapidly to nearly 2^k-1.
   965       for( int i = 0; i < trip_count; i++ ) {
   966         Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
   967         Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
   968         x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
   969         hook->set_req(0, x);    // Add a use to x to prevent him from dying
   970       }
   972       // Generate sign-fixup code.  Was original value positive?
   973       // long hack_res = (i >= 0) ? divisor : CONST64(1);
   974       Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
   975       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
   976       Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
   977       // if( x >= hack_res ) x -= divisor;
   978       Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
   979       Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
   980       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
   981       // Convention is to not transform the return value of an Ideal
   982       // since Ideal is expected to return a modified 'this' or a new node.
   983       Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
   984       // cmov2 is now the mod
   986       // Now remove the bogus extra edges used to keep things alive
   987       if (can_reshape) {
   988         phase->is_IterGVN()->remove_dead_node(hook);
   989       } else {
   990         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
   991       }
   992       return cmov2;
   993     }
   994   }
   996   // Fell thru, the unroll case is not appropriate. Transform the modulo
   997   // into a long multiply/int multiply/subtract case
   999   // Cannot handle mod 0, and min_jint isn't handled by the transform
  1000   if( con == 0 || con == min_jlong ) return NULL;
  1002   // Get the absolute value of the constant; at this point, we can use this
  1003   jlong pos_con = (con >= 0) ? con : -con;
  1005   // integer Mod 1 is always 0
  1006   if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);
  1008   int log2_con = -1;
  1010   // If this is a power of two, they maybe we can mask it
  1011   if( is_power_of_2_long(pos_con) ) {
  1012     log2_con = log2_long(pos_con);
  1014     const Type *dt = phase->type(in(1));
  1015     const TypeLong *dtl = dt->isa_long();
  1017     // See if this can be masked, if the dividend is non-negative
  1018     if( dtl && dtl->_lo >= 0 )
  1019       return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  1022   // Save in(1) so that it cannot be changed or deleted
  1023   hook->init_req(0, in(1));
  1025   // Divide using the transform from DivI to MulL
  1026   Node *result = transform_long_divide( phase, in(1), pos_con );
  1027   if (result != NULL) {
  1028     Node *divide = phase->transform(result);
  1030     // Re-multiply, using a shift if this is a power of two
  1031     Node *mult = NULL;
  1033     if( log2_con >= 0 )
  1034       mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
  1035     else
  1036       mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );
  1038     // Finally, subtract the multiplied divided value from the original
  1039     result = new (phase->C, 3) SubLNode( in(1), mult );
  1042   // Now remove the bogus extra edges used to keep things alive
  1043   if (can_reshape) {
  1044     phase->is_IterGVN()->remove_dead_node(hook);
  1045   } else {
  1046     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  1049   // return the value
  1050   return result;
  1053 //------------------------------Value------------------------------------------
  1054 const Type *ModLNode::Value( PhaseTransform *phase ) const {
  1055   // Either input is TOP ==> the result is TOP
  1056   const Type *t1 = phase->type( in(1) );
  1057   const Type *t2 = phase->type( in(2) );
  1058   if( t1 == Type::TOP ) return Type::TOP;
  1059   if( t2 == Type::TOP ) return Type::TOP;
  1061   // We always generate the dynamic check for 0.
  1062   // 0 MOD X is 0
  1063   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1064   // X MOD X is 0
  1065   if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
  1067   // Either input is BOTTOM ==> the result is the local BOTTOM
  1068   const Type *bot = bottom_type();
  1069   if( (t1 == bot) || (t2 == bot) ||
  1070       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1071     return bot;
  1073   const TypeLong *i1 = t1->is_long();
  1074   const TypeLong *i2 = t2->is_long();
  1075   if( !i1->is_con() || !i2->is_con() ) {
  1076     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
  1077       return TypeLong::POS;
  1078     // If both numbers are not constants, we know little.
  1079     return TypeLong::LONG;
  1081   // Mod by zero?  Throw exception at runtime!
  1082   if( !i2->get_con() ) return TypeLong::POS;
  1084   // We must be modulo'ing 2 float constants.
  1085   // Check for min_jint % '-1', result is defined to be '0'.
  1086   if( i1->get_con() == min_jlong && i2->get_con() == -1 )
  1087     return TypeLong::ZERO;
  1089   return TypeLong::make( i1->get_con() % i2->get_con() );
  1093 //=============================================================================
  1094 //------------------------------Value------------------------------------------
  1095 const Type *ModFNode::Value( PhaseTransform *phase ) const {
  1096   // Either input is TOP ==> the result is TOP
  1097   const Type *t1 = phase->type( in(1) );
  1098   const Type *t2 = phase->type( in(2) );
  1099   if( t1 == Type::TOP ) return Type::TOP;
  1100   if( t2 == Type::TOP ) return Type::TOP;
  1102   // Either input is BOTTOM ==> the result is the local BOTTOM
  1103   const Type *bot = bottom_type();
  1104   if( (t1 == bot) || (t2 == bot) ||
  1105       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1106     return bot;
  1108   // If either number is not a constant, we know nothing.
  1109   if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
  1110     return Type::FLOAT;         // note: x%x can be either NaN or 0
  1113   float f1 = t1->getf();
  1114   float f2 = t2->getf();
  1115   jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  1116   jint  x2 = jint_cast(f2);
  1118   // If either is a NaN, return an input NaN
  1119   if (g_isnan(f1))    return t1;
  1120   if (g_isnan(f2))    return t2;
  1122   // If an operand is infinity or the divisor is +/- zero, punt.
  1123   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
  1124     return Type::FLOAT;
  1126   // We must be modulo'ing 2 float constants.
  1127   // Make sure that the sign of the fmod is equal to the sign of the dividend
  1128   jint xr = jint_cast(fmod(f1, f2));
  1129   if ((x1 ^ xr) < 0) {
  1130     xr ^= min_jint;
  1133   return TypeF::make(jfloat_cast(xr));
  1137 //=============================================================================
  1138 //------------------------------Value------------------------------------------
  1139 const Type *ModDNode::Value( PhaseTransform *phase ) const {
  1140   // Either input is TOP ==> the result is TOP
  1141   const Type *t1 = phase->type( in(1) );
  1142   const Type *t2 = phase->type( in(2) );
  1143   if( t1 == Type::TOP ) return Type::TOP;
  1144   if( t2 == Type::TOP ) return Type::TOP;
  1146   // Either input is BOTTOM ==> the result is the local BOTTOM
  1147   const Type *bot = bottom_type();
  1148   if( (t1 == bot) || (t2 == bot) ||
  1149       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1150     return bot;
  1152   // If either number is not a constant, we know nothing.
  1153   if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
  1154     return Type::DOUBLE;        // note: x%x can be either NaN or 0
  1157   double f1 = t1->getd();
  1158   double f2 = t2->getd();
  1159   jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  1160   jlong  x2 = jlong_cast(f2);
  1162   // If either is a NaN, return an input NaN
  1163   if (g_isnan(f1))    return t1;
  1164   if (g_isnan(f2))    return t2;
  1166   // If an operand is infinity or the divisor is +/- zero, punt.
  1167   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
  1168     return Type::DOUBLE;
  1170   // We must be modulo'ing 2 double constants.
  1171   // Make sure that the sign of the fmod is equal to the sign of the dividend
  1172   jlong xr = jlong_cast(fmod(f1, f2));
  1173   if ((x1 ^ xr) < 0) {
  1174     xr ^= min_jlong;
  1177   return TypeD::make(jdouble_cast(xr));
  1180 //=============================================================================
  1182 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  1183   init_req(0, c);
  1184   init_req(1, dividend);
  1185   init_req(2, divisor);
  1188 //------------------------------make------------------------------------------
  1189 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  1190   Node* n = div_or_mod;
  1191   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
  1192          "only div or mod input pattern accepted");
  1194   DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  1195   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  1196   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  1197   return divmod;
  1200 //------------------------------make------------------------------------------
  1201 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  1202   Node* n = div_or_mod;
  1203   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
  1204          "only div or mod input pattern accepted");
  1206   DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  1207   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  1208   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  1209   return divmod;
  1212 //------------------------------match------------------------------------------
  1213 // return result(s) along with their RegMask info
  1214 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  1215   uint ideal_reg = proj->ideal_reg();
  1216   RegMask rm;
  1217   if (proj->_con == div_proj_num) {
  1218     rm = match->divI_proj_mask();
  1219   } else {
  1220     assert(proj->_con == mod_proj_num, "must be div or mod projection");
  1221     rm = match->modI_proj_mask();
  1223   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
  1227 //------------------------------match------------------------------------------
  1228 // return result(s) along with their RegMask info
  1229 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  1230   uint ideal_reg = proj->ideal_reg();
  1231   RegMask rm;
  1232   if (proj->_con == div_proj_num) {
  1233     rm = match->divL_proj_mask();
  1234   } else {
  1235     assert(proj->_con == mod_proj_num, "must be div or mod projection");
  1236     rm = match->modL_proj_mask();
  1238   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);

mercurial