src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Wed, 03 Mar 2010 14:48:26 -0800

author
jcoomes
date
Wed, 03 Mar 2010 14:48:26 -0800
changeset 1746
2a1472c30599
parent 1428
54b3b351d6f9
child 1907
c18cbe5936b8
child 1926
2d127394260e
permissions
-rw-r--r--

4396719: Mark Sweep stack overflow on deeply nested Object arrays
Summary: Use an explicit stack for object arrays and process them in chunks.
Reviewed-by: iveresov, apetrusenko

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class ParallelScavengeHeap;
    26 class PSAdaptiveSizePolicy;
    27 class PSYoungGen;
    28 class PSOldGen;
    29 class PSPermGen;
    30 class ParCompactionManager;
    31 class ParallelTaskTerminator;
    32 class PSParallelCompact;
    33 class GCTaskManager;
    34 class GCTaskQueue;
    35 class PreGCValues;
    36 class MoveAndUpdateClosure;
    37 class RefProcTaskExecutor;
    39 // The SplitInfo class holds the information needed to 'split' a source region
    40 // so that the live data can be copied to two destination *spaces*.  Normally,
    41 // all the live data in a region is copied to a single destination space (e.g.,
    42 // everything live in a region in eden is copied entirely into the old gen).
    43 // However, when the heap is nearly full, all the live data in eden may not fit
    44 // into the old gen.  Copying only some of the regions from eden to old gen
    45 // requires finding a region that does not contain a partial object (i.e., no
    46 // live object crosses the region boundary) somewhere near the last object that
    47 // does fit into the old gen.  Since it's not always possible to find such a
    48 // region, splitting is necessary for predictable behavior.
    49 //
    50 // A region is always split at the end of the partial object.  This avoids
    51 // additional tests when calculating the new location of a pointer, which is a
    52 // very hot code path.  The partial object and everything to its left will be
    53 // copied to another space (call it dest_space_1).  The live data to the right
    54 // of the partial object will be copied either within the space itself, or to a
    55 // different destination space (distinct from dest_space_1).
    56 //
    57 // Split points are identified during the summary phase, when region
    58 // destinations are computed:  data about the split, including the
    59 // partial_object_size, is recorded in a SplitInfo record and the
    60 // partial_object_size field in the summary data is set to zero.  The zeroing is
    61 // possible (and necessary) since the partial object will move to a different
    62 // destination space than anything to its right, thus the partial object should
    63 // not affect the locations of any objects to its right.
    64 //
    65 // The recorded data is used during the compaction phase, but only rarely:  when
    66 // the partial object on the split region will be copied across a destination
    67 // region boundary.  This test is made once each time a region is filled, and is
    68 // a simple address comparison, so the overhead is negligible (see
    69 // PSParallelCompact::first_src_addr()).
    70 //
    71 // Notes:
    72 //
    73 // Only regions with partial objects are split; a region without a partial
    74 // object does not need any extra bookkeeping.
    75 //
    76 // At most one region is split per space, so the amount of data required is
    77 // constant.
    78 //
    79 // A region is split only when the destination space would overflow.  Once that
    80 // happens, the destination space is abandoned and no other data (even from
    81 // other source spaces) is targeted to that destination space.  Abandoning the
    82 // destination space may leave a somewhat large unused area at the end, if a
    83 // large object caused the overflow.
    84 //
    85 // Future work:
    86 //
    87 // More bookkeeping would be required to continue to use the destination space.
    88 // The most general solution would allow data from regions in two different
    89 // source spaces to be "joined" in a single destination region.  At the very
    90 // least, additional code would be required in next_src_region() to detect the
    91 // join and skip to an out-of-order source region.  If the join region was also
    92 // the last destination region to which a split region was copied (the most
    93 // likely case), then additional work would be needed to get fill_region() to
    94 // stop iteration and switch to a new source region at the right point.  Basic
    95 // idea would be to use a fake value for the top of the source space.  It is
    96 // doable, if a bit tricky.
    97 //
    98 // A simpler (but less general) solution would fill the remainder of the
    99 // destination region with a dummy object and continue filling the next
   100 // destination region.
   102 class SplitInfo
   103 {
   104 public:
   105   // Return true if this split info is valid (i.e., if a split has been
   106   // recorded).  The very first region cannot have a partial object and thus is
   107   // never split, so 0 is the 'invalid' value.
   108   bool is_valid() const { return _src_region_idx > 0; }
   110   // Return true if this split holds data for the specified source region.
   111   inline bool is_split(size_t source_region) const;
   113   // The index of the split region, the size of the partial object on that
   114   // region and the destination of the partial object.
   115   size_t    src_region_idx() const   { return _src_region_idx; }
   116   size_t    partial_obj_size() const { return _partial_obj_size; }
   117   HeapWord* destination() const      { return _destination; }
   119   // The destination count of the partial object referenced by this split
   120   // (either 1 or 2).  This must be added to the destination count of the
   121   // remainder of the source region.
   122   unsigned int destination_count() const { return _destination_count; }
   124   // If a word within the partial object will be written to the first word of a
   125   // destination region, this is the address of the destination region;
   126   // otherwise this is NULL.
   127   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
   129   // If a word within the partial object will be written to the first word of a
   130   // destination region, this is the address of that word within the partial
   131   // object; otherwise this is NULL.
   132   HeapWord* first_src_addr() const       { return _first_src_addr; }
   134   // Record the data necessary to split the region src_region_idx.
   135   void record(size_t src_region_idx, size_t partial_obj_size,
   136               HeapWord* destination);
   138   void clear();
   140   DEBUG_ONLY(void verify_clear();)
   142 private:
   143   size_t       _src_region_idx;
   144   size_t       _partial_obj_size;
   145   HeapWord*    _destination;
   146   unsigned int _destination_count;
   147   HeapWord*    _dest_region_addr;
   148   HeapWord*    _first_src_addr;
   149 };
   151 inline bool SplitInfo::is_split(size_t region_idx) const
   152 {
   153   return _src_region_idx == region_idx && is_valid();
   154 }
   156 class SpaceInfo
   157 {
   158  public:
   159   MutableSpace* space() const { return _space; }
   161   // Where the free space will start after the collection.  Valid only after the
   162   // summary phase completes.
   163   HeapWord* new_top() const { return _new_top; }
   165   // Allows new_top to be set.
   166   HeapWord** new_top_addr() { return &_new_top; }
   168   // Where the smallest allowable dense prefix ends (used only for perm gen).
   169   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
   171   // Where the dense prefix ends, or the compacted region begins.
   172   HeapWord* dense_prefix() const { return _dense_prefix; }
   174   // The start array for the (generation containing the) space, or NULL if there
   175   // is no start array.
   176   ObjectStartArray* start_array() const { return _start_array; }
   178   SplitInfo& split_info() { return _split_info; }
   180   void set_space(MutableSpace* s)           { _space = s; }
   181   void set_new_top(HeapWord* addr)          { _new_top = addr; }
   182   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
   183   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
   184   void set_start_array(ObjectStartArray* s) { _start_array = s; }
   186   void publish_new_top() const              { _space->set_top(_new_top); }
   188  private:
   189   MutableSpace*     _space;
   190   HeapWord*         _new_top;
   191   HeapWord*         _min_dense_prefix;
   192   HeapWord*         _dense_prefix;
   193   ObjectStartArray* _start_array;
   194   SplitInfo         _split_info;
   195 };
   197 class ParallelCompactData
   198 {
   199 public:
   200   // Sizes are in HeapWords, unless indicated otherwise.
   201   static const size_t Log2RegionSize;
   202   static const size_t RegionSize;
   203   static const size_t RegionSizeBytes;
   205   // Mask for the bits in a size_t to get an offset within a region.
   206   static const size_t RegionSizeOffsetMask;
   207   // Mask for the bits in a pointer to get an offset within a region.
   208   static const size_t RegionAddrOffsetMask;
   209   // Mask for the bits in a pointer to get the address of the start of a region.
   210   static const size_t RegionAddrMask;
   212   class RegionData
   213   {
   214   public:
   215     // Destination address of the region.
   216     HeapWord* destination() const { return _destination; }
   218     // The first region containing data destined for this region.
   219     size_t source_region() const { return _source_region; }
   221     // The object (if any) starting in this region and ending in a different
   222     // region that could not be updated during the main (parallel) compaction
   223     // phase.  This is different from _partial_obj_addr, which is an object that
   224     // extends onto a source region.  However, the two uses do not overlap in
   225     // time, so the same field is used to save space.
   226     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   228     // The starting address of the partial object extending onto the region.
   229     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   231     // Size of the partial object extending onto the region (words).
   232     size_t partial_obj_size() const { return _partial_obj_size; }
   234     // Size of live data that lies within this region due to objects that start
   235     // in this region (words).  This does not include the partial object
   236     // extending onto the region (if any), or the part of an object that extends
   237     // onto the next region (if any).
   238     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   240     // Total live data that lies within the region (words).
   241     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   243     // The destination_count is the number of other regions to which data from
   244     // this region will be copied.  At the end of the summary phase, the valid
   245     // values of destination_count are
   246     //
   247     // 0 - data from the region will be compacted completely into itself, or the
   248     //     region is empty.  The region can be claimed and then filled.
   249     // 1 - data from the region will be compacted into 1 other region; some
   250     //     data from the region may also be compacted into the region itself.
   251     // 2 - data from the region will be copied to 2 other regions.
   252     //
   253     // During compaction as regions are emptied, the destination_count is
   254     // decremented (atomically) and when it reaches 0, it can be claimed and
   255     // then filled.
   256     //
   257     // A region is claimed for processing by atomically changing the
   258     // destination_count to the claimed value (dc_claimed).  After a region has
   259     // been filled, the destination_count should be set to the completed value
   260     // (dc_completed).
   261     inline uint destination_count() const;
   262     inline uint destination_count_raw() const;
   264     // The location of the java heap data that corresponds to this region.
   265     inline HeapWord* data_location() const;
   267     // The highest address referenced by objects in this region.
   268     inline HeapWord* highest_ref() const;
   270     // Whether this region is available to be claimed, has been claimed, or has
   271     // been completed.
   272     //
   273     // Minor subtlety:  claimed() returns true if the region is marked
   274     // completed(), which is desirable since a region must be claimed before it
   275     // can be completed.
   276     bool available() const { return _dc_and_los < dc_one; }
   277     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   278     bool completed() const { return _dc_and_los >= dc_completed; }
   280     // These are not atomic.
   281     void set_destination(HeapWord* addr)       { _destination = addr; }
   282     void set_source_region(size_t region)      { _source_region = region; }
   283     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   284     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   285     void set_partial_obj_size(size_t words)    {
   286       _partial_obj_size = (region_sz_t) words;
   287     }
   289     inline void set_destination_count(uint count);
   290     inline void set_live_obj_size(size_t words);
   291     inline void set_data_location(HeapWord* addr);
   292     inline void set_completed();
   293     inline bool claim_unsafe();
   295     // These are atomic.
   296     inline void add_live_obj(size_t words);
   297     inline void set_highest_ref(HeapWord* addr);
   298     inline void decrement_destination_count();
   299     inline bool claim();
   301   private:
   302     // The type used to represent object sizes within a region.
   303     typedef uint region_sz_t;
   305     // Constants for manipulating the _dc_and_los field, which holds both the
   306     // destination count and live obj size.  The live obj size lives at the
   307     // least significant end so no masking is necessary when adding.
   308     static const region_sz_t dc_shift;           // Shift amount.
   309     static const region_sz_t dc_mask;            // Mask for destination count.
   310     static const region_sz_t dc_one;             // 1, shifted appropriately.
   311     static const region_sz_t dc_claimed;         // Region has been claimed.
   312     static const region_sz_t dc_completed;       // Region has been completed.
   313     static const region_sz_t los_mask;           // Mask for live obj size.
   315     HeapWord*            _destination;
   316     size_t               _source_region;
   317     HeapWord*            _partial_obj_addr;
   318     region_sz_t          _partial_obj_size;
   319     region_sz_t volatile _dc_and_los;
   320 #ifdef ASSERT
   321     // These enable optimizations that are only partially implemented.  Use
   322     // debug builds to prevent the code fragments from breaking.
   323     HeapWord*            _data_location;
   324     HeapWord*            _highest_ref;
   325 #endif  // #ifdef ASSERT
   327 #ifdef ASSERT
   328    public:
   329     uint            _pushed;   // 0 until region is pushed onto a worker's stack
   330    private:
   331 #endif
   332   };
   334 public:
   335   ParallelCompactData();
   336   bool initialize(MemRegion covered_region);
   338   size_t region_count() const { return _region_count; }
   340   // Convert region indices to/from RegionData pointers.
   341   inline RegionData* region(size_t region_idx) const;
   342   inline size_t     region(const RegionData* const region_ptr) const;
   344   // Returns true if the given address is contained within the region
   345   bool region_contains(size_t region_index, HeapWord* addr);
   347   void add_obj(HeapWord* addr, size_t len);
   348   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   350   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   351   // destination of region n is simply the start of region n.  The argument beg
   352   // must be region-aligned; end need not be.
   353   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   355   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
   356                                   HeapWord* destination, HeapWord* target_end,
   357                                   HeapWord** target_next);
   358   bool summarize(SplitInfo& split_info,
   359                  HeapWord* source_beg, HeapWord* source_end,
   360                  HeapWord** source_next,
   361                  HeapWord* target_beg, HeapWord* target_end,
   362                  HeapWord** target_next);
   364   void clear();
   365   void clear_range(size_t beg_region, size_t end_region);
   366   void clear_range(HeapWord* beg, HeapWord* end) {
   367     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   368   }
   370   // Return the number of words between addr and the start of the region
   371   // containing addr.
   372   inline size_t     region_offset(const HeapWord* addr) const;
   374   // Convert addresses to/from a region index or region pointer.
   375   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   376   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   377   inline HeapWord*  region_to_addr(size_t region) const;
   378   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   379   inline HeapWord*  region_to_addr(const RegionData* region) const;
   381   inline HeapWord*  region_align_down(HeapWord* addr) const;
   382   inline HeapWord*  region_align_up(HeapWord* addr) const;
   383   inline bool       is_region_aligned(HeapWord* addr) const;
   385   // Return the address one past the end of the partial object.
   386   HeapWord* partial_obj_end(size_t region_idx) const;
   388   // Return the new location of the object p after the
   389   // the compaction.
   390   HeapWord* calc_new_pointer(HeapWord* addr);
   392   HeapWord* calc_new_pointer(oop p) {
   393     return calc_new_pointer((HeapWord*) p);
   394   }
   396   // Return the updated address for the given klass
   397   klassOop calc_new_klass(klassOop);
   399 #ifdef  ASSERT
   400   void verify_clear(const PSVirtualSpace* vspace);
   401   void verify_clear();
   402 #endif  // #ifdef ASSERT
   404 private:
   405   bool initialize_region_data(size_t region_size);
   406   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   408 private:
   409   HeapWord*       _region_start;
   410 #ifdef  ASSERT
   411   HeapWord*       _region_end;
   412 #endif  // #ifdef ASSERT
   414   PSVirtualSpace* _region_vspace;
   415   RegionData*     _region_data;
   416   size_t          _region_count;
   417 };
   419 inline uint
   420 ParallelCompactData::RegionData::destination_count_raw() const
   421 {
   422   return _dc_and_los & dc_mask;
   423 }
   425 inline uint
   426 ParallelCompactData::RegionData::destination_count() const
   427 {
   428   return destination_count_raw() >> dc_shift;
   429 }
   431 inline void
   432 ParallelCompactData::RegionData::set_destination_count(uint count)
   433 {
   434   assert(count <= (dc_completed >> dc_shift), "count too large");
   435   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   436   _dc_and_los = (count << dc_shift) | live_sz;
   437 }
   439 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   440 {
   441   assert(words <= los_mask, "would overflow");
   442   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   443 }
   445 inline void ParallelCompactData::RegionData::decrement_destination_count()
   446 {
   447   assert(_dc_and_los < dc_claimed, "already claimed");
   448   assert(_dc_and_los >= dc_one, "count would go negative");
   449   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   450 }
   452 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   453 {
   454   DEBUG_ONLY(return _data_location;)
   455   NOT_DEBUG(return NULL;)
   456 }
   458 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   459 {
   460   DEBUG_ONLY(return _highest_ref;)
   461   NOT_DEBUG(return NULL;)
   462 }
   464 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   465 {
   466   DEBUG_ONLY(_data_location = addr;)
   467 }
   469 inline void ParallelCompactData::RegionData::set_completed()
   470 {
   471   assert(claimed(), "must be claimed first");
   472   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   473 }
   475 // MT-unsafe claiming of a region.  Should only be used during single threaded
   476 // execution.
   477 inline bool ParallelCompactData::RegionData::claim_unsafe()
   478 {
   479   if (available()) {
   480     _dc_and_los |= dc_claimed;
   481     return true;
   482   }
   483   return false;
   484 }
   486 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   487 {
   488   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   489   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   490 }
   492 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   493 {
   494 #ifdef ASSERT
   495   HeapWord* tmp = _highest_ref;
   496   while (addr > tmp) {
   497     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   498   }
   499 #endif  // #ifdef ASSERT
   500 }
   502 inline bool ParallelCompactData::RegionData::claim()
   503 {
   504   const int los = (int) live_obj_size();
   505   const int old = Atomic::cmpxchg(dc_claimed | los,
   506                                   (volatile int*) &_dc_and_los, los);
   507   return old == los;
   508 }
   510 inline ParallelCompactData::RegionData*
   511 ParallelCompactData::region(size_t region_idx) const
   512 {
   513   assert(region_idx <= region_count(), "bad arg");
   514   return _region_data + region_idx;
   515 }
   517 inline size_t
   518 ParallelCompactData::region(const RegionData* const region_ptr) const
   519 {
   520   assert(region_ptr >= _region_data, "bad arg");
   521   assert(region_ptr <= _region_data + region_count(), "bad arg");
   522   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   523 }
   525 inline size_t
   526 ParallelCompactData::region_offset(const HeapWord* addr) const
   527 {
   528   assert(addr >= _region_start, "bad addr");
   529   assert(addr <= _region_end, "bad addr");
   530   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   531 }
   533 inline size_t
   534 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   535 {
   536   assert(addr >= _region_start, "bad addr");
   537   assert(addr <= _region_end, "bad addr");
   538   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   539 }
   541 inline ParallelCompactData::RegionData*
   542 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   543 {
   544   return region(addr_to_region_idx(addr));
   545 }
   547 inline HeapWord*
   548 ParallelCompactData::region_to_addr(size_t region) const
   549 {
   550   assert(region <= _region_count, "region out of range");
   551   return _region_start + (region << Log2RegionSize);
   552 }
   554 inline HeapWord*
   555 ParallelCompactData::region_to_addr(const RegionData* region) const
   556 {
   557   return region_to_addr(pointer_delta(region, _region_data,
   558                                       sizeof(RegionData)));
   559 }
   561 inline HeapWord*
   562 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   563 {
   564   assert(region <= _region_count, "region out of range");
   565   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   566   return region_to_addr(region) + offset;
   567 }
   569 inline HeapWord*
   570 ParallelCompactData::region_align_down(HeapWord* addr) const
   571 {
   572   assert(addr >= _region_start, "bad addr");
   573   assert(addr < _region_end + RegionSize, "bad addr");
   574   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   575 }
   577 inline HeapWord*
   578 ParallelCompactData::region_align_up(HeapWord* addr) const
   579 {
   580   assert(addr >= _region_start, "bad addr");
   581   assert(addr <= _region_end, "bad addr");
   582   return region_align_down(addr + RegionSizeOffsetMask);
   583 }
   585 inline bool
   586 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   587 {
   588   return region_offset(addr) == 0;
   589 }
   591 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   592 // do_addr() method.
   593 //
   594 // The closure is initialized with the number of heap words to process
   595 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   596 // methods in subclasses should update the total as words are processed.  Since
   597 // only one subclass actually uses this mechanism to terminate iteration, the
   598 // default initial value is > 0.  The implementation is here and not in the
   599 // single subclass that uses it to avoid making is_full() virtual, and thus
   600 // adding a virtual call per live object.
   602 class ParMarkBitMapClosure: public StackObj {
   603  public:
   604   typedef ParMarkBitMap::idx_t idx_t;
   605   typedef ParMarkBitMap::IterationStatus IterationStatus;
   607  public:
   608   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   609                               size_t words = max_uintx);
   611   inline ParCompactionManager* compaction_manager() const;
   612   inline ParMarkBitMap*        bitmap() const;
   613   inline size_t                words_remaining() const;
   614   inline bool                  is_full() const;
   615   inline HeapWord*             source() const;
   617   inline void                  set_source(HeapWord* addr);
   619   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   621  protected:
   622   inline void decrement_words_remaining(size_t words);
   624  private:
   625   ParMarkBitMap* const        _bitmap;
   626   ParCompactionManager* const _compaction_manager;
   627   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   628   size_t                      _words_remaining; // Words left to copy.
   630  protected:
   631   HeapWord*                   _source;          // Next addr that would be read.
   632 };
   634 inline
   635 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   636                                            ParCompactionManager* cm,
   637                                            size_t words):
   638   _bitmap(bitmap), _compaction_manager(cm)
   639 #ifdef  ASSERT
   640   , _initial_words_remaining(words)
   641 #endif
   642 {
   643   _words_remaining = words;
   644   _source = NULL;
   645 }
   647 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   648   return _compaction_manager;
   649 }
   651 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   652   return _bitmap;
   653 }
   655 inline size_t ParMarkBitMapClosure::words_remaining() const {
   656   return _words_remaining;
   657 }
   659 inline bool ParMarkBitMapClosure::is_full() const {
   660   return words_remaining() == 0;
   661 }
   663 inline HeapWord* ParMarkBitMapClosure::source() const {
   664   return _source;
   665 }
   667 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   668   _source = addr;
   669 }
   671 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   672   assert(_words_remaining >= words, "processed too many words");
   673   _words_remaining -= words;
   674 }
   676 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   677 // does parts of the collection using parallel threads.  The collection includes
   678 // the tenured generation and the young generation.  The permanent generation is
   679 // collected at the same time as the other two generations but the permanent
   680 // generation is collect by a single GC thread.  The permanent generation is
   681 // collected serially because of the requirement that during the processing of a
   682 // klass AAA, any objects reference by AAA must already have been processed.
   683 // This requirement is enforced by a left (lower address) to right (higher
   684 // address) sliding compaction.
   685 //
   686 // There are four phases of the collection.
   687 //
   688 //      - marking phase
   689 //      - summary phase
   690 //      - compacting phase
   691 //      - clean up phase
   692 //
   693 // Roughly speaking these phases correspond, respectively, to
   694 //      - mark all the live objects
   695 //      - calculate the destination of each object at the end of the collection
   696 //      - move the objects to their destination
   697 //      - update some references and reinitialize some variables
   698 //
   699 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   700 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   701 // complete marking of the heap.  The summary phase is implemented in
   702 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   703 // in PSParallelCompact::compact().
   704 //
   705 // A space that is being collected is divided into regions and with each region
   706 // is associated an object of type ParallelCompactData.  Each region is of a
   707 // fixed size and typically will contain more than 1 object and may have parts
   708 // of objects at the front and back of the region.
   709 //
   710 // region            -----+---------------------+----------
   711 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   712 //
   713 // The marking phase does a complete marking of all live objects in the heap.
   714 // The marking also compiles the size of the data for all live objects covered
   715 // by the region.  This size includes the part of any live object spanning onto
   716 // the region (part of AAA if it is live) from the front, all live objects
   717 // contained in the region (BBB and/or CCC if they are live), and the part of
   718 // any live objects covered by the region that extends off the region (part of
   719 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   720 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   721 // done atomically as is the accumulation of the size of the live objects
   722 // covered by a region.
   723 //
   724 // The summary phase calculates the total live data to the left of each region
   725 // XXX.  Based on that total and the bottom of the space, it can calculate the
   726 // starting location of the live data in XXX.  The summary phase calculates for
   727 // each region XXX quantites such as
   728 //
   729 //      - the amount of live data at the beginning of a region from an object
   730 //        entering the region.
   731 //      - the location of the first live data on the region
   732 //      - a count of the number of regions receiving live data from XXX.
   733 //
   734 // See ParallelCompactData for precise details.  The summary phase also
   735 // calculates the dense prefix for the compaction.  The dense prefix is a
   736 // portion at the beginning of the space that is not moved.  The objects in the
   737 // dense prefix do need to have their object references updated.  See method
   738 // summarize_dense_prefix().
   739 //
   740 // The summary phase is done using 1 GC thread.
   741 //
   742 // The compaction phase moves objects to their new location and updates all
   743 // references in the object.
   744 //
   745 // A current exception is that objects that cross a region boundary are moved
   746 // but do not have their references updated.  References are not updated because
   747 // it cannot easily be determined if the klass pointer KKK for the object AAA
   748 // has been updated.  KKK likely resides in a region to the left of the region
   749 // containing AAA.  These AAA's have there references updated at the end in a
   750 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   751 // An alternate strategy is being investigated for this deferral of updating.
   752 //
   753 // Compaction is done on a region basis.  A region that is ready to be filled is
   754 // put on a ready list and GC threads take region off the list and fill them.  A
   755 // region is ready to be filled if it empty of live objects.  Such a region may
   756 // have been initially empty (only contained dead objects) or may have had all
   757 // its live objects copied out already.  A region that compacts into itself is
   758 // also ready for filling.  The ready list is initially filled with empty
   759 // regions and regions compacting into themselves.  There is always at least 1
   760 // region that can be put on the ready list.  The regions are atomically added
   761 // and removed from the ready list.
   763 class PSParallelCompact : AllStatic {
   764  public:
   765   // Convenient access to type names.
   766   typedef ParMarkBitMap::idx_t idx_t;
   767   typedef ParallelCompactData::RegionData RegionData;
   769   typedef enum {
   770     perm_space_id, old_space_id, eden_space_id,
   771     from_space_id, to_space_id, last_space_id
   772   } SpaceId;
   774  public:
   775   // Inline closure decls
   776   //
   777   class IsAliveClosure: public BoolObjectClosure {
   778    public:
   779     virtual void do_object(oop p);
   780     virtual bool do_object_b(oop p);
   781   };
   783   class KeepAliveClosure: public OopClosure {
   784    private:
   785     ParCompactionManager* _compaction_manager;
   786    protected:
   787     template <class T> inline void do_oop_work(T* p);
   788    public:
   789     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   790     virtual void do_oop(oop* p);
   791     virtual void do_oop(narrowOop* p);
   792   };
   794   // Current unused
   795   class FollowRootClosure: public OopsInGenClosure {
   796    private:
   797     ParCompactionManager* _compaction_manager;
   798    public:
   799     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   800     virtual void do_oop(oop* p);
   801     virtual void do_oop(narrowOop* p);
   802  };
   804   class FollowStackClosure: public VoidClosure {
   805    private:
   806     ParCompactionManager* _compaction_manager;
   807    public:
   808     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   809     virtual void do_void();
   810   };
   812   class AdjustPointerClosure: public OopsInGenClosure {
   813    private:
   814     bool _is_root;
   815    public:
   816     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
   817     virtual void do_oop(oop* p);
   818     virtual void do_oop(narrowOop* p);
   819     // do not walk from thread stacks to the code cache on this phase
   820     virtual void do_code_blob(CodeBlob* cb) const { }
   821   };
   823   // Closure for verifying update of pointers.  Does not
   824   // have any side effects.
   825   class VerifyUpdateClosure: public ParMarkBitMapClosure {
   826     const MutableSpace* _space; // Is this ever used?
   828    public:
   829     VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
   830       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
   831     { }
   833     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
   835     const MutableSpace* space() { return _space; }
   836   };
   838   // Closure for updating objects altered for debug checking
   839   class ResetObjectsClosure: public ParMarkBitMapClosure {
   840    public:
   841     ResetObjectsClosure(ParCompactionManager* cm):
   842       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
   843     { }
   845     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
   846   };
   848   friend class KeepAliveClosure;
   849   friend class FollowStackClosure;
   850   friend class AdjustPointerClosure;
   851   friend class FollowRootClosure;
   852   friend class instanceKlassKlass;
   853   friend class RefProcTaskProxy;
   855  private:
   856   static elapsedTimer         _accumulated_time;
   857   static unsigned int         _total_invocations;
   858   static unsigned int         _maximum_compaction_gc_num;
   859   static jlong                _time_of_last_gc;   // ms
   860   static CollectorCounters*   _counters;
   861   static ParMarkBitMap        _mark_bitmap;
   862   static ParallelCompactData  _summary_data;
   863   static IsAliveClosure       _is_alive_closure;
   864   static SpaceInfo            _space_info[last_space_id];
   865   static bool                 _print_phases;
   866   static AdjustPointerClosure _adjust_root_pointer_closure;
   867   static AdjustPointerClosure _adjust_pointer_closure;
   869   // Reference processing (used in ...follow_contents)
   870   static ReferenceProcessor*  _ref_processor;
   872   // Updated location of intArrayKlassObj.
   873   static klassOop _updated_int_array_klass_obj;
   875   // Values computed at initialization and used by dead_wood_limiter().
   876   static double _dwl_mean;
   877   static double _dwl_std_dev;
   878   static double _dwl_first_term;
   879   static double _dwl_adjustment;
   880 #ifdef  ASSERT
   881   static bool   _dwl_initialized;
   882 #endif  // #ifdef ASSERT
   884  private:
   885   // Closure accessors
   886   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
   887   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
   888   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
   890   static void initialize_space_info();
   892   // Return true if details about individual phases should be printed.
   893   static inline bool print_phases();
   895   // Clear the marking bitmap and summary data that cover the specified space.
   896   static void clear_data_covering_space(SpaceId id);
   898   static void pre_compact(PreGCValues* pre_gc_values);
   899   static void post_compact();
   901   // Mark live objects
   902   static void marking_phase(ParCompactionManager* cm,
   903                             bool maximum_heap_compaction);
   904   static void follow_weak_klass_links();
   905   static void follow_mdo_weak_refs();
   907   template <class T> static inline void adjust_pointer(T* p, bool is_root);
   908   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
   910   template <class T>
   911   static inline void follow_root(ParCompactionManager* cm, T* p);
   913   // Compute the dense prefix for the designated space.  This is an experimental
   914   // implementation currently not used in production.
   915   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
   916                                                     bool maximum_compaction);
   918   // Methods used to compute the dense prefix.
   920   // Compute the value of the normal distribution at x = density.  The mean and
   921   // standard deviation are values saved by initialize_dead_wood_limiter().
   922   static inline double normal_distribution(double density);
   924   // Initialize the static vars used by dead_wood_limiter().
   925   static void initialize_dead_wood_limiter();
   927   // Return the percentage of space that can be treated as "dead wood" (i.e.,
   928   // not reclaimed).
   929   static double dead_wood_limiter(double density, size_t min_percent);
   931   // Find the first (left-most) region in the range [beg, end) that has at least
   932   // dead_words of dead space to the left.  The argument beg must be the first
   933   // region in the space that is not completely live.
   934   static RegionData* dead_wood_limit_region(const RegionData* beg,
   935                                             const RegionData* end,
   936                                             size_t dead_words);
   938   // Return a pointer to the first region in the range [beg, end) that is not
   939   // completely full.
   940   static RegionData* first_dead_space_region(const RegionData* beg,
   941                                              const RegionData* end);
   943   // Return a value indicating the benefit or 'yield' if the compacted region
   944   // were to start (or equivalently if the dense prefix were to end) at the
   945   // candidate region.  Higher values are better.
   946   //
   947   // The value is based on the amount of space reclaimed vs. the costs of (a)
   948   // updating references in the dense prefix plus (b) copying objects and
   949   // updating references in the compacted region.
   950   static inline double reclaimed_ratio(const RegionData* const candidate,
   951                                        HeapWord* const bottom,
   952                                        HeapWord* const top,
   953                                        HeapWord* const new_top);
   955   // Compute the dense prefix for the designated space.
   956   static HeapWord* compute_dense_prefix(const SpaceId id,
   957                                         bool maximum_compaction);
   959   // Return true if dead space crosses onto the specified Region; bit must be
   960   // the bit index corresponding to the first word of the Region.
   961   static inline bool dead_space_crosses_boundary(const RegionData* region,
   962                                                  idx_t bit);
   964   // Summary phase utility routine to fill dead space (if any) at the dense
   965   // prefix boundary.  Should only be called if the the dense prefix is
   966   // non-empty.
   967   static void fill_dense_prefix_end(SpaceId id);
   969   // Clear the summary data source_region field for the specified addresses.
   970   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
   972 #ifndef PRODUCT
   973   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
   975   // Fill the region [start, start + words) with live object(s).  Only usable
   976   // for the old and permanent generations.
   977   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
   978                                      size_t words);
   979   // Include the new objects in the summary data.
   980   static void summarize_new_objects(SpaceId id, HeapWord* start);
   982   // Add live objects to a survivor space since it's rare that both survivors
   983   // are non-empty.
   984   static void provoke_split_fill_survivor(SpaceId id);
   986   // Add live objects and/or choose the dense prefix to provoke splitting.
   987   static void provoke_split(bool & maximum_compaction);
   988 #endif
   990   static void summarize_spaces_quick();
   991   static void summarize_space(SpaceId id, bool maximum_compaction);
   992   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
   994   // Adjust addresses in roots.  Does not adjust addresses in heap.
   995   static void adjust_roots();
   997   // Serial code executed in preparation for the compaction phase.
   998   static void compact_prologue();
  1000   // Move objects to new locations.
  1001   static void compact_perm(ParCompactionManager* cm);
  1002   static void compact();
  1004   // Add available regions to the stack and draining tasks to the task queue.
  1005   static void enqueue_region_draining_tasks(GCTaskQueue* q,
  1006                                             uint parallel_gc_threads);
  1008   // Add dense prefix update tasks to the task queue.
  1009   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
  1010                                          uint parallel_gc_threads);
  1012   // Add region stealing tasks to the task queue.
  1013   static void enqueue_region_stealing_tasks(
  1014                                        GCTaskQueue* q,
  1015                                        ParallelTaskTerminator* terminator_ptr,
  1016                                        uint parallel_gc_threads);
  1018   // For debugging only - compacts the old gen serially
  1019   static void compact_serial(ParCompactionManager* cm);
  1021   // If objects are left in eden after a collection, try to move the boundary
  1022   // and absorb them into the old gen.  Returns true if eden was emptied.
  1023   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  1024                                          PSYoungGen* young_gen,
  1025                                          PSOldGen* old_gen);
  1027   // Reset time since last full gc
  1028   static void reset_millis_since_last_gc();
  1030  protected:
  1031 #ifdef VALIDATE_MARK_SWEEP
  1032   static GrowableArray<void*>*           _root_refs_stack;
  1033   static GrowableArray<oop> *            _live_oops;
  1034   static GrowableArray<oop> *            _live_oops_moved_to;
  1035   static GrowableArray<size_t>*          _live_oops_size;
  1036   static size_t                          _live_oops_index;
  1037   static size_t                          _live_oops_index_at_perm;
  1038   static GrowableArray<void*>*           _other_refs_stack;
  1039   static GrowableArray<void*>*           _adjusted_pointers;
  1040   static bool                            _pointer_tracking;
  1041   static bool                            _root_tracking;
  1043   // The following arrays are saved since the time of the last GC and
  1044   // assist in tracking down problems where someone has done an errant
  1045   // store into the heap, usually to an oop that wasn't properly
  1046   // handleized across a GC. If we crash or otherwise fail before the
  1047   // next GC, we can query these arrays to find out the object we had
  1048   // intended to do the store to (assuming it is still alive) and the
  1049   // offset within that object. Covered under RecordMarkSweepCompaction.
  1050   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
  1051   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
  1052   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
  1053   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
  1054   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
  1055   static GrowableArray<size_t>*          _last_gc_live_oops_size;
  1056 #endif
  1058  public:
  1059   class MarkAndPushClosure: public OopClosure {
  1060    private:
  1061     ParCompactionManager* _compaction_manager;
  1062    public:
  1063     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
  1064     virtual void do_oop(oop* p);
  1065     virtual void do_oop(narrowOop* p);
  1066   };
  1068   PSParallelCompact();
  1070   // Convenient accessor for Universe::heap().
  1071   static ParallelScavengeHeap* gc_heap() {
  1072     return (ParallelScavengeHeap*)Universe::heap();
  1075   static void invoke(bool maximum_heap_compaction);
  1076   static void invoke_no_policy(bool maximum_heap_compaction);
  1078   static void post_initialize();
  1079   // Perform initialization for PSParallelCompact that requires
  1080   // allocations.  This should be called during the VM initialization
  1081   // at a pointer where it would be appropriate to return a JNI_ENOMEM
  1082   // in the event of a failure.
  1083   static bool initialize();
  1085   // Public accessors
  1086   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  1087   static unsigned int total_invocations() { return _total_invocations; }
  1088   static CollectorCounters* counters()    { return _counters; }
  1090   // Used to add tasks
  1091   static GCTaskManager* const gc_task_manager();
  1092   static klassOop updated_int_array_klass_obj() {
  1093     return _updated_int_array_klass_obj;
  1096   // Marking support
  1097   static inline bool mark_obj(oop obj);
  1098   // Check mark and maybe push on marking stack
  1099   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
  1100                                                       T* p);
  1102   // Compaction support.
  1103   // Return true if p is in the range [beg_addr, end_addr).
  1104   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  1105   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
  1107   // Convenience wrappers for per-space data kept in _space_info.
  1108   static inline MutableSpace*     space(SpaceId space_id);
  1109   static inline HeapWord*         new_top(SpaceId space_id);
  1110   static inline HeapWord*         dense_prefix(SpaceId space_id);
  1111   static inline ObjectStartArray* start_array(SpaceId space_id);
  1113   // Return true if the klass should be updated.
  1114   static inline bool should_update_klass(klassOop k);
  1116   // Move and update the live objects in the specified space.
  1117   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
  1119   // Process the end of the given region range in the dense prefix.
  1120   // This includes saving any object not updated.
  1121   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
  1122                                             size_t region_start_index,
  1123                                             size_t region_end_index,
  1124                                             idx_t exiting_object_offset,
  1125                                             idx_t region_offset_start,
  1126                                             idx_t region_offset_end);
  1128   // Update a region in the dense prefix.  For each live object
  1129   // in the region, update it's interior references.  For each
  1130   // dead object, fill it with deadwood. Dead space at the end
  1131   // of a region range will be filled to the start of the next
  1132   // live object regardless of the region_index_end.  None of the
  1133   // objects in the dense prefix move and dead space is dead
  1134   // (holds only dead objects that don't need any processing), so
  1135   // dead space can be filled in any order.
  1136   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  1137                                                   SpaceId space_id,
  1138                                                   size_t region_index_start,
  1139                                                   size_t region_index_end);
  1141   // Return the address of the count + 1st live word in the range [beg, end).
  1142   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
  1144   // Return the address of the word to be copied to dest_addr, which must be
  1145   // aligned to a region boundary.
  1146   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1147                                   SpaceId src_space_id,
  1148                                   size_t src_region_idx);
  1150   // Determine the next source region, set closure.source() to the start of the
  1151   // new region return the region index.  Parameter end_addr is the address one
  1152   // beyond the end of source range just processed.  If necessary, switch to a
  1153   // new source space and set src_space_id (in-out parameter) and src_space_top
  1154   // (out parameter) accordingly.
  1155   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1156                                 SpaceId& src_space_id,
  1157                                 HeapWord*& src_space_top,
  1158                                 HeapWord* end_addr);
  1160   // Decrement the destination count for each non-empty source region in the
  1161   // range [beg_region, region(region_align_up(end_addr))).  If the destination
  1162   // count for a region goes to 0 and it needs to be filled, enqueue it.
  1163   static void decrement_destination_counts(ParCompactionManager* cm,
  1164                                            SpaceId src_space_id,
  1165                                            size_t beg_region,
  1166                                            HeapWord* end_addr);
  1168   // Fill a region, copying objects from one or more source regions.
  1169   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1170   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1171     fill_region(cm, region);
  1174   // Update the deferred objects in the space.
  1175   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1177   // Mark pointer and follow contents.
  1178   template <class T>
  1179   static inline void mark_and_follow(ParCompactionManager* cm, T* p);
  1181   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1182   static ParallelCompactData& summary_data() { return _summary_data; }
  1184   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
  1185   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
  1187   template <class T>
  1188   static inline void adjust_pointer(T* p,
  1189                                     HeapWord* beg_addr,
  1190                                     HeapWord* end_addr);
  1192   // Reference Processing
  1193   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1195   // Return the SpaceId for the given address.
  1196   static SpaceId space_id(HeapWord* addr);
  1198   // Time since last full gc (in milliseconds).
  1199   static jlong millis_since_last_gc();
  1201 #ifdef VALIDATE_MARK_SWEEP
  1202   static void track_adjusted_pointer(void* p, bool isroot);
  1203   static void check_adjust_pointer(void* p);
  1204   static void track_interior_pointers(oop obj);
  1205   static void check_interior_pointers();
  1207   static void reset_live_oop_tracking(bool at_perm);
  1208   static void register_live_oop(oop p, size_t size);
  1209   static void validate_live_oop(oop p, size_t size);
  1210   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
  1211   static void compaction_complete();
  1213   // Querying operation of RecordMarkSweepCompaction results.
  1214   // Finds and prints the current base oop and offset for a word
  1215   // within an oop that was live during the last GC. Helpful for
  1216   // tracking down heap stomps.
  1217   static void print_new_location_of_heap_address(HeapWord* q);
  1218 #endif  // #ifdef VALIDATE_MARK_SWEEP
  1220   // Call backs for class unloading
  1221   // Update subklass/sibling/implementor links at end of marking.
  1222   static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
  1224   // Clear unmarked oops in MDOs at the end of marking.
  1225   static void revisit_mdo(ParCompactionManager* cm, DataLayout* p);
  1227 #ifndef PRODUCT
  1228   // Debugging support.
  1229   static const char* space_names[last_space_id];
  1230   static void print_region_ranges();
  1231   static void print_dense_prefix_stats(const char* const algorithm,
  1232                                        const SpaceId id,
  1233                                        const bool maximum_compaction,
  1234                                        HeapWord* const addr);
  1235   static void summary_phase_msg(SpaceId dst_space_id,
  1236                                 HeapWord* dst_beg, HeapWord* dst_end,
  1237                                 SpaceId src_space_id,
  1238                                 HeapWord* src_beg, HeapWord* src_end);
  1239 #endif  // #ifndef PRODUCT
  1241 #ifdef  ASSERT
  1242   // Sanity check the new location of a word in the heap.
  1243   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  1244   // Verify that all the regions have been emptied.
  1245   static void verify_complete(SpaceId space_id);
  1246 #endif  // #ifdef ASSERT
  1247 };
  1249 inline bool PSParallelCompact::mark_obj(oop obj) {
  1250   const int obj_size = obj->size();
  1251   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1252     _summary_data.add_obj(obj, obj_size);
  1253     return true;
  1254   } else {
  1255     return false;
  1259 template <class T>
  1260 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1261   assert(!Universe::heap()->is_in_reserved(p),
  1262          "roots shouldn't be things within the heap");
  1263 #ifdef VALIDATE_MARK_SWEEP
  1264   if (ValidateMarkSweep) {
  1265     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
  1266     _root_refs_stack->push(p);
  1268 #endif
  1269   T heap_oop = oopDesc::load_heap_oop(p);
  1270   if (!oopDesc::is_null(heap_oop)) {
  1271     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1272     if (mark_bitmap()->is_unmarked(obj)) {
  1273       if (mark_obj(obj)) {
  1274         obj->follow_contents(cm);
  1278   cm->follow_marking_stacks();
  1281 template <class T>
  1282 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
  1283                                                T* p) {
  1284   T heap_oop = oopDesc::load_heap_oop(p);
  1285   if (!oopDesc::is_null(heap_oop)) {
  1286     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1287     if (mark_bitmap()->is_unmarked(obj)) {
  1288       if (mark_obj(obj)) {
  1289         obj->follow_contents(cm);
  1295 template <class T>
  1296 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1297   T heap_oop = oopDesc::load_heap_oop(p);
  1298   if (!oopDesc::is_null(heap_oop)) {
  1299     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1300     if (mark_bitmap()->is_unmarked(obj)) {
  1301       if (mark_obj(obj)) {
  1302         // This thread marked the object and owns the subsequent processing of it.
  1303         cm->save_for_scanning(obj);
  1309 template <class T>
  1310 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
  1311   T heap_oop = oopDesc::load_heap_oop(p);
  1312   if (!oopDesc::is_null(heap_oop)) {
  1313     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1314     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1315     assert(new_obj != NULL ||                     // is forwarding ptr?
  1316            obj->is_shared(),                      // never forwarded?
  1317            "should be forwarded");
  1318     // Just always do the update unconditionally?
  1319     if (new_obj != NULL) {
  1320       assert(Universe::heap()->is_in_reserved(new_obj),
  1321              "should be in object space");
  1322       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1325   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
  1328 template <class T>
  1329 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1330 #ifdef VALIDATE_MARK_SWEEP
  1331   if (ValidateMarkSweep) {
  1332     if (!Universe::heap()->is_in_reserved(p)) {
  1333       _root_refs_stack->push(p);
  1334     } else {
  1335       _other_refs_stack->push(p);
  1338 #endif
  1339   mark_and_push(_compaction_manager, p);
  1342 inline bool PSParallelCompact::print_phases() {
  1343   return _print_phases;
  1346 inline double PSParallelCompact::normal_distribution(double density) {
  1347   assert(_dwl_initialized, "uninitialized");
  1348   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1349   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1352 inline bool
  1353 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1354                                                idx_t bit)
  1356   assert(bit > 0, "cannot call this for the first bit/region");
  1357   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1358          "sanity check");
  1360   // Dead space crosses the boundary if (1) a partial object does not extend
  1361   // onto the region, (2) an object does not start at the beginning of the
  1362   // region, and (3) an object does not end at the end of the prior region.
  1363   return region->partial_obj_size() == 0 &&
  1364     !_mark_bitmap.is_obj_beg(bit) &&
  1365     !_mark_bitmap.is_obj_end(bit - 1);
  1368 inline bool
  1369 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1370   return p >= beg_addr && p < end_addr;
  1373 inline bool
  1374 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1375   return is_in((HeapWord*)p, beg_addr, end_addr);
  1378 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1379   assert(id < last_space_id, "id out of range");
  1380   return _space_info[id].space();
  1383 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1384   assert(id < last_space_id, "id out of range");
  1385   return _space_info[id].new_top();
  1388 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1389   assert(id < last_space_id, "id out of range");
  1390   return _space_info[id].dense_prefix();
  1393 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1394   assert(id < last_space_id, "id out of range");
  1395   return _space_info[id].start_array();
  1398 inline bool PSParallelCompact::should_update_klass(klassOop k) {
  1399   return ((HeapWord*) k) >= dense_prefix(perm_space_id);
  1402 template <class T>
  1403 inline void PSParallelCompact::adjust_pointer(T* p,
  1404                                               HeapWord* beg_addr,
  1405                                               HeapWord* end_addr) {
  1406   if (is_in((HeapWord*)p, beg_addr, end_addr)) {
  1407     adjust_pointer(p);
  1411 #ifdef ASSERT
  1412 inline void
  1413 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
  1415   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
  1416          "must move left or to a different space");
  1418 #endif // ASSERT
  1420 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1421  public:
  1422   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1423                               ObjectStartArray* start_array,
  1424                               HeapWord* destination, size_t words);
  1426   // Accessors.
  1427   HeapWord* destination() const         { return _destination; }
  1429   // If the object will fit (size <= words_remaining()), copy it to the current
  1430   // destination, update the interior oops and the start array and return either
  1431   // full (if the closure is full) or incomplete.  If the object will not fit,
  1432   // return would_overflow.
  1433   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1435   // Copy enough words to fill this closure, starting at source().  Interior
  1436   // oops and the start array are not updated.  Return full.
  1437   IterationStatus copy_until_full();
  1439   // Copy enough words to fill this closure or to the end of an object,
  1440   // whichever is smaller, starting at source().  Interior oops and the start
  1441   // array are not updated.
  1442   void copy_partial_obj();
  1444  protected:
  1445   // Update variables to indicate that word_count words were processed.
  1446   inline void update_state(size_t word_count);
  1448  protected:
  1449   ObjectStartArray* const _start_array;
  1450   HeapWord*               _destination;         // Next addr to be written.
  1451 };
  1453 inline
  1454 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1455                                            ParCompactionManager* cm,
  1456                                            ObjectStartArray* start_array,
  1457                                            HeapWord* destination,
  1458                                            size_t words) :
  1459   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1461   _destination = destination;
  1464 inline void MoveAndUpdateClosure::update_state(size_t words)
  1466   decrement_words_remaining(words);
  1467   _source += words;
  1468   _destination += words;
  1471 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1472  private:
  1473   const PSParallelCompact::SpaceId _space_id;
  1474   ObjectStartArray* const          _start_array;
  1476  public:
  1477   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1478                     ParCompactionManager* cm,
  1479                     PSParallelCompact::SpaceId space_id);
  1481   // Update the object.
  1482   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1484   inline void do_addr(HeapWord* addr);
  1485 };
  1487 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1489   _start_array->allocate_block(addr);
  1490   oop(addr)->update_contents(compaction_manager());
  1493 class FillClosure: public ParMarkBitMapClosure
  1495 public:
  1496   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1497     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1498     _start_array(PSParallelCompact::start_array(space_id))
  1500     assert(space_id == PSParallelCompact::perm_space_id ||
  1501            space_id == PSParallelCompact::old_space_id,
  1502            "cannot use FillClosure in the young gen");
  1505   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1506     CollectedHeap::fill_with_objects(addr, size);
  1507     HeapWord* const end = addr + size;
  1508     do {
  1509       _start_array->allocate_block(addr);
  1510       addr += oop(addr)->size();
  1511     } while (addr < end);
  1512     return ParMarkBitMap::incomplete;
  1515 private:
  1516   ObjectStartArray* const _start_array;
  1517 };

mercurial