src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Thu, 05 Apr 2012 13:57:23 -0400

author
tonyp
date
Thu, 05 Apr 2012 13:57:23 -0400
changeset 3691
2a0172480595
parent 3689
500023bd0818
child 3710
5c86f8211d1e
permissions
-rw-r--r--

7127697: G1: remove dead code after recent concurrent mark changes
Summary: Removed lots of dead code after some recent conc mark changes.
Reviewed-by: brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "runtime/arguments.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "utilities/debug.hpp"
    39 // Different defaults for different number of GC threads
    40 // They were chosen by running GCOld and SPECjbb on debris with different
    41 //   numbers of GC threads and choosing them based on the results
    43 // all the same
    44 static double rs_length_diff_defaults[] = {
    45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    46 };
    48 static double cost_per_card_ms_defaults[] = {
    49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    50 };
    52 // all the same
    53 static double young_cards_per_entry_ratio_defaults[] = {
    54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    55 };
    57 static double cost_per_entry_ms_defaults[] = {
    58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    59 };
    61 static double cost_per_byte_ms_defaults[] = {
    62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    63 };
    65 // these should be pretty consistent
    66 static double constant_other_time_ms_defaults[] = {
    67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    68 };
    71 static double young_other_cost_per_region_ms_defaults[] = {
    72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    73 };
    75 static double non_young_other_cost_per_region_ms_defaults[] = {
    76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    77 };
    79 // Help class for avoiding interleaved logging
    80 class LineBuffer: public StackObj {
    82 private:
    83   static const int BUFFER_LEN = 1024;
    84   static const int INDENT_CHARS = 3;
    85   char _buffer[BUFFER_LEN];
    86   int _indent_level;
    87   int _cur;
    89   void vappend(const char* format, va_list ap) {
    90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    91     if (res != -1) {
    92       _cur += res;
    93     } else {
    94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    95       _buffer[BUFFER_LEN -1] = 0;
    96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    97     }
    98   }
   100 public:
   101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   103       _buffer[_cur] = ' ';
   104     }
   105   }
   107 #ifndef PRODUCT
   108   ~LineBuffer() {
   109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   110   }
   111 #endif
   113   void append(const char* format, ...) {
   114     va_list ap;
   115     va_start(ap, format);
   116     vappend(format, ap);
   117     va_end(ap);
   118   }
   120   void append_and_print_cr(const char* format, ...) {
   121     va_list ap;
   122     va_start(ap, format);
   123     vappend(format, ap);
   124     va_end(ap);
   125     gclog_or_tty->print_cr("%s", _buffer);
   126     _cur = _indent_level * INDENT_CHARS;
   127   }
   128 };
   130 G1CollectorPolicy::G1CollectorPolicy() :
   131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   132                         ? ParallelGCThreads : 1),
   134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   135   _all_pause_times_ms(new NumberSeq()),
   136   _stop_world_start(0.0),
   137   _all_stop_world_times_ms(new NumberSeq()),
   138   _all_yield_times_ms(new NumberSeq()),
   140   _summary(new Summary()),
   142   _cur_clear_ct_time_ms(0.0),
   143   _root_region_scan_wait_time_ms(0.0),
   145   _cur_ref_proc_time_ms(0.0),
   146   _cur_ref_enq_time_ms(0.0),
   148 #ifndef PRODUCT
   149   _min_clear_cc_time_ms(-1.0),
   150   _max_clear_cc_time_ms(-1.0),
   151   _cur_clear_cc_time_ms(0.0),
   152   _cum_clear_cc_time_ms(0.0),
   153   _num_cc_clears(0L),
   154 #endif
   156   _aux_num(10),
   157   _all_aux_times_ms(new NumberSeq[_aux_num]),
   158   _cur_aux_start_times_ms(new double[_aux_num]),
   159   _cur_aux_times_ms(new double[_aux_num]),
   160   _cur_aux_times_set(new bool[_aux_num]),
   162   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   163   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   165   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   166   _prev_collection_pause_end_ms(0.0),
   167   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   168   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   172   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   173   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _non_young_other_cost_per_region_ms_seq(
   179                                          new TruncatedSeq(TruncatedSeqLength)),
   181   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   182   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   184   _pause_time_target_ms((double) MaxGCPauseMillis),
   186   _gcs_are_young(true),
   187   _young_pause_num(0),
   188   _mixed_pause_num(0),
   190   _during_marking(false),
   191   _in_marking_window(false),
   192   _in_marking_window_im(false),
   194   _known_garbage_ratio(0.0),
   195   _known_garbage_bytes(0),
   197   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   199   _recent_prev_end_times_for_all_gcs_sec(
   200                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   202   _recent_avg_pause_time_ratio(0.0),
   204   _all_full_gc_times_ms(new NumberSeq()),
   206   _initiate_conc_mark_if_possible(false),
   207   _during_initial_mark_pause(false),
   208   _last_young_gc(false),
   209   _last_gc_was_young(false),
   211   _eden_bytes_before_gc(0),
   212   _survivor_bytes_before_gc(0),
   213   _capacity_before_gc(0),
   215   _eden_cset_region_length(0),
   216   _survivor_cset_region_length(0),
   217   _old_cset_region_length(0),
   219   _collection_set(NULL),
   220   _collection_set_bytes_used_before(0),
   222   // Incremental CSet attributes
   223   _inc_cset_build_state(Inactive),
   224   _inc_cset_head(NULL),
   225   _inc_cset_tail(NULL),
   226   _inc_cset_bytes_used_before(0),
   227   _inc_cset_max_finger(NULL),
   228   _inc_cset_recorded_rs_lengths(0),
   229   _inc_cset_recorded_rs_lengths_diffs(0),
   230   _inc_cset_predicted_elapsed_time_ms(0.0),
   231   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   233 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   234 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   235 #endif // _MSC_VER
   237   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   238                                                  G1YoungSurvRateNumRegionsSummary)),
   239   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   240                                               G1YoungSurvRateNumRegionsSummary)),
   241   // add here any more surv rate groups
   242   _recorded_survivor_regions(0),
   243   _recorded_survivor_head(NULL),
   244   _recorded_survivor_tail(NULL),
   245   _survivors_age_table(true),
   247   _gc_overhead_perc(0.0) {
   249   // Set up the region size and associated fields. Given that the
   250   // policy is created before the heap, we have to set this up here,
   251   // so it's done as soon as possible.
   252   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   253   HeapRegionRemSet::setup_remset_size();
   255   G1ErgoVerbose::initialize();
   256   if (PrintAdaptiveSizePolicy) {
   257     // Currently, we only use a single switch for all the heuristics.
   258     G1ErgoVerbose::set_enabled(true);
   259     // Given that we don't currently have a verboseness level
   260     // parameter, we'll hardcode this to high. This can be easily
   261     // changed in the future.
   262     G1ErgoVerbose::set_level(ErgoHigh);
   263   } else {
   264     G1ErgoVerbose::set_enabled(false);
   265   }
   267   // Verify PLAB sizes
   268   const size_t region_size = HeapRegion::GrainWords;
   269   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   270     char buffer[128];
   271     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   272                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   273     vm_exit_during_initialization(buffer);
   274   }
   276   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   277   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   279   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   280   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   281   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
   283   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   284   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   286   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   288   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   290   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   291   _par_last_termination_attempts = new double[_parallel_gc_threads];
   292   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   293   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   294   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   296   int index;
   297   if (ParallelGCThreads == 0)
   298     index = 0;
   299   else if (ParallelGCThreads > 8)
   300     index = 7;
   301   else
   302     index = ParallelGCThreads - 1;
   304   _pending_card_diff_seq->add(0.0);
   305   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   306   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   307   _young_cards_per_entry_ratio_seq->add(
   308                                   young_cards_per_entry_ratio_defaults[index]);
   309   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   310   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   311   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   312   _young_other_cost_per_region_ms_seq->add(
   313                                young_other_cost_per_region_ms_defaults[index]);
   314   _non_young_other_cost_per_region_ms_seq->add(
   315                            non_young_other_cost_per_region_ms_defaults[index]);
   317   // Below, we might need to calculate the pause time target based on
   318   // the pause interval. When we do so we are going to give G1 maximum
   319   // flexibility and allow it to do pauses when it needs to. So, we'll
   320   // arrange that the pause interval to be pause time target + 1 to
   321   // ensure that a) the pause time target is maximized with respect to
   322   // the pause interval and b) we maintain the invariant that pause
   323   // time target < pause interval. If the user does not want this
   324   // maximum flexibility, they will have to set the pause interval
   325   // explicitly.
   327   // First make sure that, if either parameter is set, its value is
   328   // reasonable.
   329   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   330     if (MaxGCPauseMillis < 1) {
   331       vm_exit_during_initialization("MaxGCPauseMillis should be "
   332                                     "greater than 0");
   333     }
   334   }
   335   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   336     if (GCPauseIntervalMillis < 1) {
   337       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   338                                     "greater than 0");
   339     }
   340   }
   342   // Then, if the pause time target parameter was not set, set it to
   343   // the default value.
   344   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   345     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   346       // The default pause time target in G1 is 200ms
   347       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   348     } else {
   349       // We do not allow the pause interval to be set without the
   350       // pause time target
   351       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   352                                     "without setting MaxGCPauseMillis");
   353     }
   354   }
   356   // Then, if the interval parameter was not set, set it according to
   357   // the pause time target (this will also deal with the case when the
   358   // pause time target is the default value).
   359   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   360     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   361   }
   363   // Finally, make sure that the two parameters are consistent.
   364   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   365     char buffer[256];
   366     jio_snprintf(buffer, 256,
   367                  "MaxGCPauseMillis (%u) should be less than "
   368                  "GCPauseIntervalMillis (%u)",
   369                  MaxGCPauseMillis, GCPauseIntervalMillis);
   370     vm_exit_during_initialization(buffer);
   371   }
   373   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   374   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   375   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   376   _sigma = (double) G1ConfidencePercent / 100.0;
   378   // start conservatively (around 50ms is about right)
   379   _concurrent_mark_remark_times_ms->add(0.05);
   380   _concurrent_mark_cleanup_times_ms->add(0.20);
   381   _tenuring_threshold = MaxTenuringThreshold;
   382   // _max_survivor_regions will be calculated by
   383   // update_young_list_target_length() during initialization.
   384   _max_survivor_regions = 0;
   386   assert(GCTimeRatio > 0,
   387          "we should have set it to a default value set_g1_gc_flags() "
   388          "if a user set it to 0");
   389   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   391   uintx reserve_perc = G1ReservePercent;
   392   // Put an artificial ceiling on this so that it's not set to a silly value.
   393   if (reserve_perc > 50) {
   394     reserve_perc = 50;
   395     warning("G1ReservePercent is set to a value that is too large, "
   396             "it's been updated to %u", reserve_perc);
   397   }
   398   _reserve_factor = (double) reserve_perc / 100.0;
   399   // This will be set when the heap is expanded
   400   // for the first time during initialization.
   401   _reserve_regions = 0;
   403   initialize_all();
   404   _collectionSetChooser = new CollectionSetChooser();
   405   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   406 }
   408 void G1CollectorPolicy::initialize_flags() {
   409   set_min_alignment(HeapRegion::GrainBytes);
   410   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   411   if (SurvivorRatio < 1) {
   412     vm_exit_during_initialization("Invalid survivor ratio specified");
   413   }
   414   CollectorPolicy::initialize_flags();
   415 }
   417 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   418   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
   419   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
   420   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
   422   if (FLAG_IS_CMDLINE(NewRatio)) {
   423     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   424       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   425     } else {
   426       _sizer_kind = SizerNewRatio;
   427       _adaptive_size = false;
   428       return;
   429     }
   430   }
   432   if (FLAG_IS_CMDLINE(NewSize)) {
   433      _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
   434     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   435       _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   436       _sizer_kind = SizerMaxAndNewSize;
   437       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   438     } else {
   439       _sizer_kind = SizerNewSizeOnly;
   440     }
   441   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   442     _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   443     _sizer_kind = SizerMaxNewSizeOnly;
   444   }
   445 }
   447 size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) {
   448   size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
   449   return MAX2((size_t)1, default_value);
   450 }
   452 size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) {
   453   size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
   454   return MAX2((size_t)1, default_value);
   455 }
   457 void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
   458   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   460   switch (_sizer_kind) {
   461     case SizerDefaults:
   462       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   463       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   464       break;
   465     case SizerNewSizeOnly:
   466       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   467       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   468       break;
   469     case SizerMaxNewSizeOnly:
   470       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   471       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   472       break;
   473     case SizerMaxAndNewSize:
   474       // Do nothing. Values set on the command line, don't update them at runtime.
   475       break;
   476     case SizerNewRatio:
   477       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   478       _max_desired_young_length = _min_desired_young_length;
   479       break;
   480     default:
   481       ShouldNotReachHere();
   482   }
   484   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   485 }
   487 void G1CollectorPolicy::init() {
   488   // Set aside an initial future to_space.
   489   _g1 = G1CollectedHeap::heap();
   491   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   493   initialize_gc_policy_counters();
   495   if (adaptive_young_list_length()) {
   496     _young_list_fixed_length = 0;
   497   } else {
   498     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   499   }
   500   _free_regions_at_end_of_collection = _g1->free_regions();
   501   update_young_list_target_length();
   502   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   504   // We may immediately start allocating regions and placing them on the
   505   // collection set list. Initialize the per-collection set info
   506   start_incremental_cset_building();
   507 }
   509 // Create the jstat counters for the policy.
   510 void G1CollectorPolicy::initialize_gc_policy_counters() {
   511   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   512 }
   514 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
   515                                          double base_time_ms,
   516                                          size_t base_free_regions,
   517                                          double target_pause_time_ms) {
   518   if (young_length >= base_free_regions) {
   519     // end condition 1: not enough space for the young regions
   520     return false;
   521   }
   523   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
   524   size_t bytes_to_copy =
   525                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   526   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   527   double young_other_time_ms = predict_young_other_time_ms(young_length);
   528   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   529   if (pause_time_ms > target_pause_time_ms) {
   530     // end condition 2: prediction is over the target pause time
   531     return false;
   532   }
   534   size_t free_bytes =
   535                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
   536   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   537     // end condition 3: out-of-space (conservatively!)
   538     return false;
   539   }
   541   // success!
   542   return true;
   543 }
   545 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
   546   // re-calculate the necessary reserve
   547   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   548   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   549   // smaller than 1.0) we'll get 1.
   550   _reserve_regions = (size_t) ceil(reserve_regions_d);
   552   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   553 }
   555 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
   556                                                      size_t base_min_length) {
   557   size_t desired_min_length = 0;
   558   if (adaptive_young_list_length()) {
   559     if (_alloc_rate_ms_seq->num() > 3) {
   560       double now_sec = os::elapsedTime();
   561       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   562       double alloc_rate_ms = predict_alloc_rate_ms();
   563       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
   564     } else {
   565       // otherwise we don't have enough info to make the prediction
   566     }
   567   }
   568   desired_min_length += base_min_length;
   569   // make sure we don't go below any user-defined minimum bound
   570   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   571 }
   573 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
   574   // Here, we might want to also take into account any additional
   575   // constraints (i.e., user-defined minimum bound). Currently, we
   576   // effectively don't set this bound.
   577   return _young_gen_sizer->max_desired_young_length();
   578 }
   580 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   581   if (rs_lengths == (size_t) -1) {
   582     // if it's set to the default value (-1), we should predict it;
   583     // otherwise, use the given value.
   584     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   585   }
   587   // Calculate the absolute and desired min bounds.
   589   // This is how many young regions we already have (currently: the survivors).
   590   size_t base_min_length = recorded_survivor_regions();
   591   // This is the absolute minimum young length, which ensures that we
   592   // can allocate one eden region in the worst-case.
   593   size_t absolute_min_length = base_min_length + 1;
   594   size_t desired_min_length =
   595                      calculate_young_list_desired_min_length(base_min_length);
   596   if (desired_min_length < absolute_min_length) {
   597     desired_min_length = absolute_min_length;
   598   }
   600   // Calculate the absolute and desired max bounds.
   602   // We will try our best not to "eat" into the reserve.
   603   size_t absolute_max_length = 0;
   604   if (_free_regions_at_end_of_collection > _reserve_regions) {
   605     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   606   }
   607   size_t desired_max_length = calculate_young_list_desired_max_length();
   608   if (desired_max_length > absolute_max_length) {
   609     desired_max_length = absolute_max_length;
   610   }
   612   size_t young_list_target_length = 0;
   613   if (adaptive_young_list_length()) {
   614     if (gcs_are_young()) {
   615       young_list_target_length =
   616                         calculate_young_list_target_length(rs_lengths,
   617                                                            base_min_length,
   618                                                            desired_min_length,
   619                                                            desired_max_length);
   620       _rs_lengths_prediction = rs_lengths;
   621     } else {
   622       // Don't calculate anything and let the code below bound it to
   623       // the desired_min_length, i.e., do the next GC as soon as
   624       // possible to maximize how many old regions we can add to it.
   625     }
   626   } else {
   627     // The user asked for a fixed young gen so we'll fix the young gen
   628     // whether the next GC is young or mixed.
   629     young_list_target_length = _young_list_fixed_length;
   630   }
   632   // Make sure we don't go over the desired max length, nor under the
   633   // desired min length. In case they clash, desired_min_length wins
   634   // which is why that test is second.
   635   if (young_list_target_length > desired_max_length) {
   636     young_list_target_length = desired_max_length;
   637   }
   638   if (young_list_target_length < desired_min_length) {
   639     young_list_target_length = desired_min_length;
   640   }
   642   assert(young_list_target_length > recorded_survivor_regions(),
   643          "we should be able to allocate at least one eden region");
   644   assert(young_list_target_length >= absolute_min_length, "post-condition");
   645   _young_list_target_length = young_list_target_length;
   647   update_max_gc_locker_expansion();
   648 }
   650 size_t
   651 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   652                                                    size_t base_min_length,
   653                                                    size_t desired_min_length,
   654                                                    size_t desired_max_length) {
   655   assert(adaptive_young_list_length(), "pre-condition");
   656   assert(gcs_are_young(), "only call this for young GCs");
   658   // In case some edge-condition makes the desired max length too small...
   659   if (desired_max_length <= desired_min_length) {
   660     return desired_min_length;
   661   }
   663   // We'll adjust min_young_length and max_young_length not to include
   664   // the already allocated young regions (i.e., so they reflect the
   665   // min and max eden regions we'll allocate). The base_min_length
   666   // will be reflected in the predictions by the
   667   // survivor_regions_evac_time prediction.
   668   assert(desired_min_length > base_min_length, "invariant");
   669   size_t min_young_length = desired_min_length - base_min_length;
   670   assert(desired_max_length > base_min_length, "invariant");
   671   size_t max_young_length = desired_max_length - base_min_length;
   673   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   674   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   675   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   676   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   677   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   678   double base_time_ms =
   679     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   680     survivor_regions_evac_time;
   681   size_t available_free_regions = _free_regions_at_end_of_collection;
   682   size_t base_free_regions = 0;
   683   if (available_free_regions > _reserve_regions) {
   684     base_free_regions = available_free_regions - _reserve_regions;
   685   }
   687   // Here, we will make sure that the shortest young length that
   688   // makes sense fits within the target pause time.
   690   if (predict_will_fit(min_young_length, base_time_ms,
   691                        base_free_regions, target_pause_time_ms)) {
   692     // The shortest young length will fit into the target pause time;
   693     // we'll now check whether the absolute maximum number of young
   694     // regions will fit in the target pause time. If not, we'll do
   695     // a binary search between min_young_length and max_young_length.
   696     if (predict_will_fit(max_young_length, base_time_ms,
   697                          base_free_regions, target_pause_time_ms)) {
   698       // The maximum young length will fit into the target pause time.
   699       // We are done so set min young length to the maximum length (as
   700       // the result is assumed to be returned in min_young_length).
   701       min_young_length = max_young_length;
   702     } else {
   703       // The maximum possible number of young regions will not fit within
   704       // the target pause time so we'll search for the optimal
   705       // length. The loop invariants are:
   706       //
   707       // min_young_length < max_young_length
   708       // min_young_length is known to fit into the target pause time
   709       // max_young_length is known not to fit into the target pause time
   710       //
   711       // Going into the loop we know the above hold as we've just
   712       // checked them. Every time around the loop we check whether
   713       // the middle value between min_young_length and
   714       // max_young_length fits into the target pause time. If it
   715       // does, it becomes the new min. If it doesn't, it becomes
   716       // the new max. This way we maintain the loop invariants.
   718       assert(min_young_length < max_young_length, "invariant");
   719       size_t diff = (max_young_length - min_young_length) / 2;
   720       while (diff > 0) {
   721         size_t young_length = min_young_length + diff;
   722         if (predict_will_fit(young_length, base_time_ms,
   723                              base_free_regions, target_pause_time_ms)) {
   724           min_young_length = young_length;
   725         } else {
   726           max_young_length = young_length;
   727         }
   728         assert(min_young_length <  max_young_length, "invariant");
   729         diff = (max_young_length - min_young_length) / 2;
   730       }
   731       // The results is min_young_length which, according to the
   732       // loop invariants, should fit within the target pause time.
   734       // These are the post-conditions of the binary search above:
   735       assert(min_young_length < max_young_length,
   736              "otherwise we should have discovered that max_young_length "
   737              "fits into the pause target and not done the binary search");
   738       assert(predict_will_fit(min_young_length, base_time_ms,
   739                               base_free_regions, target_pause_time_ms),
   740              "min_young_length, the result of the binary search, should "
   741              "fit into the pause target");
   742       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   743                                base_free_regions, target_pause_time_ms),
   744              "min_young_length, the result of the binary search, should be "
   745              "optimal, so no larger length should fit into the pause target");
   746     }
   747   } else {
   748     // Even the minimum length doesn't fit into the pause time
   749     // target, return it as the result nevertheless.
   750   }
   751   return base_min_length + min_young_length;
   752 }
   754 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   755   double survivor_regions_evac_time = 0.0;
   756   for (HeapRegion * r = _recorded_survivor_head;
   757        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   758        r = r->get_next_young_region()) {
   759     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   760   }
   761   return survivor_regions_evac_time;
   762 }
   764 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   765   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   767   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   768   if (rs_lengths > _rs_lengths_prediction) {
   769     // add 10% to avoid having to recalculate often
   770     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   771     update_young_list_target_length(rs_lengths_prediction);
   772   }
   773 }
   777 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   778                                                bool is_tlab,
   779                                                bool* gc_overhead_limit_was_exceeded) {
   780   guarantee(false, "Not using this policy feature yet.");
   781   return NULL;
   782 }
   784 // This method controls how a collector handles one or more
   785 // of its generations being fully allocated.
   786 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   787                                                        bool is_tlab) {
   788   guarantee(false, "Not using this policy feature yet.");
   789   return NULL;
   790 }
   793 #ifndef PRODUCT
   794 bool G1CollectorPolicy::verify_young_ages() {
   795   HeapRegion* head = _g1->young_list()->first_region();
   796   return
   797     verify_young_ages(head, _short_lived_surv_rate_group);
   798   // also call verify_young_ages on any additional surv rate groups
   799 }
   801 bool
   802 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   803                                      SurvRateGroup *surv_rate_group) {
   804   guarantee( surv_rate_group != NULL, "pre-condition" );
   806   const char* name = surv_rate_group->name();
   807   bool ret = true;
   808   int prev_age = -1;
   810   for (HeapRegion* curr = head;
   811        curr != NULL;
   812        curr = curr->get_next_young_region()) {
   813     SurvRateGroup* group = curr->surv_rate_group();
   814     if (group == NULL && !curr->is_survivor()) {
   815       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   816       ret = false;
   817     }
   819     if (surv_rate_group == group) {
   820       int age = curr->age_in_surv_rate_group();
   822       if (age < 0) {
   823         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   824         ret = false;
   825       }
   827       if (age <= prev_age) {
   828         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   829                                "(%d, %d)", name, age, prev_age);
   830         ret = false;
   831       }
   832       prev_age = age;
   833     }
   834   }
   836   return ret;
   837 }
   838 #endif // PRODUCT
   840 void G1CollectorPolicy::record_full_collection_start() {
   841   _cur_collection_start_sec = os::elapsedTime();
   842   // Release the future to-space so that it is available for compaction into.
   843   _g1->set_full_collection();
   844 }
   846 void G1CollectorPolicy::record_full_collection_end() {
   847   // Consider this like a collection pause for the purposes of allocation
   848   // since last pause.
   849   double end_sec = os::elapsedTime();
   850   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   851   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   853   _all_full_gc_times_ms->add(full_gc_time_ms);
   855   update_recent_gc_times(end_sec, full_gc_time_ms);
   857   _g1->clear_full_collection();
   859   // "Nuke" the heuristics that control the young/mixed GC
   860   // transitions and make sure we start with young GCs after the Full GC.
   861   set_gcs_are_young(true);
   862   _last_young_gc = false;
   863   clear_initiate_conc_mark_if_possible();
   864   clear_during_initial_mark_pause();
   865   _known_garbage_bytes = 0;
   866   _known_garbage_ratio = 0.0;
   867   _in_marking_window = false;
   868   _in_marking_window_im = false;
   870   _short_lived_surv_rate_group->start_adding_regions();
   871   // also call this on any additional surv rate groups
   873   record_survivor_regions(0, NULL, NULL);
   875   _free_regions_at_end_of_collection = _g1->free_regions();
   876   // Reset survivors SurvRateGroup.
   877   _survivor_surv_rate_group->reset();
   878   update_young_list_target_length();
   879   _collectionSetChooser->clearMarkedHeapRegions();
   880 }
   882 void G1CollectorPolicy::record_stop_world_start() {
   883   _stop_world_start = os::elapsedTime();
   884 }
   886 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   887                                                       size_t start_used) {
   888   if (PrintGCDetails) {
   889     gclog_or_tty->stamp(PrintGCTimeStamps);
   890     gclog_or_tty->print("[GC pause");
   891     gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
   892   }
   894   // We only need to do this here as the policy will only be applied
   895   // to the GC we're about to start. so, no point is calculating this
   896   // every time we calculate / recalculate the target young length.
   897   update_survivors_policy();
   899   assert(_g1->used() == _g1->recalculate_used(),
   900          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   901                  _g1->used(), _g1->recalculate_used()));
   903   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   904   _all_stop_world_times_ms->add(s_w_t_ms);
   905   _stop_world_start = 0.0;
   907   _cur_collection_start_sec = start_time_sec;
   908   _cur_collection_pause_used_at_start_bytes = start_used;
   909   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   910   _pending_cards = _g1->pending_card_num();
   911   _max_pending_cards = _g1->max_pending_card_num();
   913   _bytes_in_collection_set_before_gc = 0;
   914   _bytes_copied_during_gc = 0;
   916   YoungList* young_list = _g1->young_list();
   917   _eden_bytes_before_gc = young_list->eden_used_bytes();
   918   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   919   _capacity_before_gc = _g1->capacity();
   921 #ifdef DEBUG
   922   // initialise these to something well known so that we can spot
   923   // if they are not set properly
   925   for (int i = 0; i < _parallel_gc_threads; ++i) {
   926     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   927     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   928     _par_last_satb_filtering_times_ms[i] = -1234.0;
   929     _par_last_update_rs_times_ms[i] = -1234.0;
   930     _par_last_update_rs_processed_buffers[i] = -1234.0;
   931     _par_last_scan_rs_times_ms[i] = -1234.0;
   932     _par_last_obj_copy_times_ms[i] = -1234.0;
   933     _par_last_termination_times_ms[i] = -1234.0;
   934     _par_last_termination_attempts[i] = -1234.0;
   935     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   936     _par_last_gc_worker_times_ms[i] = -1234.0;
   937     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   938   }
   939 #endif
   941   for (int i = 0; i < _aux_num; ++i) {
   942     _cur_aux_times_ms[i] = 0.0;
   943     _cur_aux_times_set[i] = false;
   944   }
   946   // This is initialized to zero here and is set during the evacuation
   947   // pause if we actually waited for the root region scanning to finish.
   948   _root_region_scan_wait_time_ms = 0.0;
   950   _last_gc_was_young = false;
   952   // do that for any other surv rate groups
   953   _short_lived_surv_rate_group->stop_adding_regions();
   954   _survivors_age_table.clear();
   956   assert( verify_young_ages(), "region age verification" );
   957 }
   959 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   960                                                    mark_init_elapsed_time_ms) {
   961   _during_marking = true;
   962   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   963   clear_during_initial_mark_pause();
   964   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   965 }
   967 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   968   _mark_remark_start_sec = os::elapsedTime();
   969   _during_marking = false;
   970 }
   972 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   973   double end_time_sec = os::elapsedTime();
   974   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   975   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   976   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   977   _prev_collection_pause_end_ms += elapsed_time_ms;
   979   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   980 }
   982 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   983   _mark_cleanup_start_sec = os::elapsedTime();
   984 }
   986 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   987   _last_young_gc = true;
   988   _in_marking_window = false;
   989 }
   991 void G1CollectorPolicy::record_concurrent_pause() {
   992   if (_stop_world_start > 0.0) {
   993     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   994     _all_yield_times_ms->add(yield_ms);
   995   }
   996 }
   998 void G1CollectorPolicy::record_concurrent_pause_end() {
   999 }
  1001 template<class T>
  1002 T sum_of(T* sum_arr, int start, int n, int N) {
  1003   T sum = (T)0;
  1004   for (int i = 0; i < n; i++) {
  1005     int j = (start + i) % N;
  1006     sum += sum_arr[j];
  1008   return sum;
  1011 void G1CollectorPolicy::print_par_stats(int level,
  1012                                         const char* str,
  1013                                         double* data) {
  1014   double min = data[0], max = data[0];
  1015   double total = 0.0;
  1016   LineBuffer buf(level);
  1017   buf.append("[%s (ms):", str);
  1018   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1019     double val = data[i];
  1020     if (val < min)
  1021       min = val;
  1022     if (val > max)
  1023       max = val;
  1024     total += val;
  1025     buf.append("  %3.1lf", val);
  1027   buf.append_and_print_cr("");
  1028   double avg = total / (double) no_of_gc_threads();
  1029   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1030     avg, min, max, max - min);
  1033 void G1CollectorPolicy::print_par_sizes(int level,
  1034                                         const char* str,
  1035                                         double* data) {
  1036   double min = data[0], max = data[0];
  1037   double total = 0.0;
  1038   LineBuffer buf(level);
  1039   buf.append("[%s :", str);
  1040   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1041     double val = data[i];
  1042     if (val < min)
  1043       min = val;
  1044     if (val > max)
  1045       max = val;
  1046     total += val;
  1047     buf.append(" %d", (int) val);
  1049   buf.append_and_print_cr("");
  1050   double avg = total / (double) no_of_gc_threads();
  1051   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1052     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1055 void G1CollectorPolicy::print_stats(int level,
  1056                                     const char* str,
  1057                                     double value) {
  1058   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1061 void G1CollectorPolicy::print_stats(int level,
  1062                                     const char* str,
  1063                                     int value) {
  1064   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1067 double G1CollectorPolicy::avg_value(double* data) {
  1068   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1069     double ret = 0.0;
  1070     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1071       ret += data[i];
  1073     return ret / (double) no_of_gc_threads();
  1074   } else {
  1075     return data[0];
  1079 double G1CollectorPolicy::max_value(double* data) {
  1080   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1081     double ret = data[0];
  1082     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1083       if (data[i] > ret) {
  1084         ret = data[i];
  1087     return ret;
  1088   } else {
  1089     return data[0];
  1093 double G1CollectorPolicy::sum_of_values(double* data) {
  1094   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1095     double sum = 0.0;
  1096     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1097       sum += data[i];
  1099     return sum;
  1100   } else {
  1101     return data[0];
  1105 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1106   double ret = data1[0] + data2[0];
  1108   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1109     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1110       double data = data1[i] + data2[i];
  1111       if (data > ret) {
  1112         ret = data;
  1116   return ret;
  1119 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  1120   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
  1121     return false;
  1124   size_t marking_initiating_used_threshold =
  1125     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1126   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
  1127   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
  1129   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
  1130     if (gcs_are_young()) {
  1131       ergo_verbose5(ErgoConcCycles,
  1132         "request concurrent cycle initiation",
  1133         ergo_format_reason("occupancy higher than threshold")
  1134         ergo_format_byte("occupancy")
  1135         ergo_format_byte("allocation request")
  1136         ergo_format_byte_perc("threshold")
  1137         ergo_format_str("source"),
  1138         cur_used_bytes,
  1139         alloc_byte_size,
  1140         marking_initiating_used_threshold,
  1141         (double) InitiatingHeapOccupancyPercent,
  1142         source);
  1143       return true;
  1144     } else {
  1145       ergo_verbose5(ErgoConcCycles,
  1146         "do not request concurrent cycle initiation",
  1147         ergo_format_reason("still doing mixed collections")
  1148         ergo_format_byte("occupancy")
  1149         ergo_format_byte("allocation request")
  1150         ergo_format_byte_perc("threshold")
  1151         ergo_format_str("source"),
  1152         cur_used_bytes,
  1153         alloc_byte_size,
  1154         marking_initiating_used_threshold,
  1155         (double) InitiatingHeapOccupancyPercent,
  1156         source);
  1160   return false;
  1163 // Anything below that is considered to be zero
  1164 #define MIN_TIMER_GRANULARITY 0.0000001
  1166 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1167   double end_time_sec = os::elapsedTime();
  1168   double elapsed_ms = _last_pause_time_ms;
  1169   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1170   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1171          "otherwise, the subtraction below does not make sense");
  1172   size_t rs_size =
  1173             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1174   size_t cur_used_bytes = _g1->used();
  1175   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1176   bool last_pause_included_initial_mark = false;
  1177   bool update_stats = !_g1->evacuation_failed();
  1178   set_no_of_gc_threads(no_of_gc_threads);
  1180 #ifndef PRODUCT
  1181   if (G1YoungSurvRateVerbose) {
  1182     gclog_or_tty->print_cr("");
  1183     _short_lived_surv_rate_group->print();
  1184     // do that for any other surv rate groups too
  1186 #endif // PRODUCT
  1188   last_pause_included_initial_mark = during_initial_mark_pause();
  1189   if (last_pause_included_initial_mark) {
  1190     record_concurrent_mark_init_end(0.0);
  1191   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
  1192     // Note: this might have already been set, if during the last
  1193     // pause we decided to start a cycle but at the beginning of
  1194     // this pause we decided to postpone it. That's OK.
  1195     set_initiate_conc_mark_if_possible();
  1198   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1199                           end_time_sec, false);
  1201   // This assert is exempted when we're doing parallel collection pauses,
  1202   // because the fragmentation caused by the parallel GC allocation buffers
  1203   // can lead to more memory being used during collection than was used
  1204   // before. Best leave this out until the fragmentation problem is fixed.
  1205   // Pauses in which evacuation failed can also lead to negative
  1206   // collections, since no space is reclaimed from a region containing an
  1207   // object whose evacuation failed.
  1208   // Further, we're now always doing parallel collection.  But I'm still
  1209   // leaving this here as a placeholder for a more precise assertion later.
  1210   // (DLD, 10/05.)
  1211   assert((true || parallel) // Always using GC LABs now.
  1212          || _g1->evacuation_failed()
  1213          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1214          "Negative collection");
  1216   size_t freed_bytes =
  1217     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1218   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1220   double survival_fraction =
  1221     (double)surviving_bytes/
  1222     (double)_collection_set_bytes_used_before;
  1224   // These values are used to update the summary information that is
  1225   // displayed when TraceGen0Time is enabled, and are output as part
  1226   // of the PrintGCDetails output, in the non-parallel case.
  1228   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1229   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
  1230   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1231   double update_rs_processed_buffers =
  1232     sum_of_values(_par_last_update_rs_processed_buffers);
  1233   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1234   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1235   double termination_time = avg_value(_par_last_termination_times_ms);
  1237   double known_time = ext_root_scan_time +
  1238                       satb_filtering_time +
  1239                       update_rs_time +
  1240                       scan_rs_time +
  1241                       obj_copy_time;
  1243   double other_time_ms = elapsed_ms;
  1245   // Subtract the root region scanning wait time. It's initialized to
  1246   // zero at the start of the pause.
  1247   other_time_ms -= _root_region_scan_wait_time_ms;
  1249   if (parallel) {
  1250     other_time_ms -= _cur_collection_par_time_ms;
  1251   } else {
  1252     other_time_ms -= known_time;
  1255   // Now subtract the time taken to fix up roots in generated code
  1256   other_time_ms -= _cur_collection_code_root_fixup_time_ms;
  1258   // Subtract the time taken to clean the card table from the
  1259   // current value of "other time"
  1260   other_time_ms -= _cur_clear_ct_time_ms;
  1262   // TraceGen0Time and TraceGen1Time summary info updating.
  1263   _all_pause_times_ms->add(elapsed_ms);
  1265   if (update_stats) {
  1266     _summary->record_total_time_ms(elapsed_ms);
  1267     _summary->record_other_time_ms(other_time_ms);
  1269     MainBodySummary* body_summary = _summary->main_body_summary();
  1270     assert(body_summary != NULL, "should not be null!");
  1272     body_summary->record_root_region_scan_wait_time_ms(
  1273                                                _root_region_scan_wait_time_ms);
  1274     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1275     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
  1276     body_summary->record_update_rs_time_ms(update_rs_time);
  1277     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1278     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1280     if (parallel) {
  1281       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1282       body_summary->record_termination_time_ms(termination_time);
  1284       double parallel_known_time = known_time + termination_time;
  1285       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1286       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1289     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1291     // We exempt parallel collection from this check because Alloc Buffer
  1292     // fragmentation can produce negative collections.  Same with evac
  1293     // failure.
  1294     // Further, we're now always doing parallel collection.  But I'm still
  1295     // leaving this here as a placeholder for a more precise assertion later.
  1296     // (DLD, 10/05.
  1297     assert((true || parallel)
  1298            || _g1->evacuation_failed()
  1299            || surviving_bytes <= _collection_set_bytes_used_before,
  1300            "Or else negative collection!");
  1302     // this is where we update the allocation rate of the application
  1303     double app_time_ms =
  1304       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1305     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1306       // This usually happens due to the timer not having the required
  1307       // granularity. Some Linuxes are the usual culprits.
  1308       // We'll just set it to something (arbitrarily) small.
  1309       app_time_ms = 1.0;
  1311     // We maintain the invariant that all objects allocated by mutator
  1312     // threads will be allocated out of eden regions. So, we can use
  1313     // the eden region number allocated since the previous GC to
  1314     // calculate the application's allocate rate. The only exception
  1315     // to that is humongous objects that are allocated separately. But
  1316     // given that humongous object allocations do not really affect
  1317     // either the pause's duration nor when the next pause will take
  1318     // place we can safely ignore them here.
  1319     size_t regions_allocated = eden_cset_region_length();
  1320     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1321     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1323     double interval_ms =
  1324       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1325     update_recent_gc_times(end_time_sec, elapsed_ms);
  1326     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1327     if (recent_avg_pause_time_ratio() < 0.0 ||
  1328         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1329 #ifndef PRODUCT
  1330       // Dump info to allow post-facto debugging
  1331       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1332       gclog_or_tty->print_cr("-------------------------------------------");
  1333       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1334       _recent_gc_times_ms->dump();
  1335       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1336       _recent_prev_end_times_for_all_gcs_sec->dump();
  1337       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1338                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1339       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1340       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1341 #endif  // !PRODUCT
  1342       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1343       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1344       if (_recent_avg_pause_time_ratio < 0.0) {
  1345         _recent_avg_pause_time_ratio = 0.0;
  1346       } else {
  1347         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1348         _recent_avg_pause_time_ratio = 1.0;
  1353   for (int i = 0; i < _aux_num; ++i) {
  1354     if (_cur_aux_times_set[i]) {
  1355       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1359   // PrintGCDetails output
  1360   if (PrintGCDetails) {
  1361     bool print_marking_info =
  1362       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1364     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1365                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1366                            elapsed_ms / 1000.0);
  1368     if (_root_region_scan_wait_time_ms > 0.0) {
  1369       print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
  1371     if (parallel) {
  1372       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1373       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1374       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1375       if (print_marking_info) {
  1376         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
  1378       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1379       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1380       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1381       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1382       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1383       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1385       for (int i = 0; i < _parallel_gc_threads; i++) {
  1386         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] -
  1387                                           _par_last_gc_worker_start_times_ms[i];
  1389         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1390                                    _par_last_satb_filtering_times_ms[i] +
  1391                                    _par_last_update_rs_times_ms[i] +
  1392                                    _par_last_scan_rs_times_ms[i] +
  1393                                    _par_last_obj_copy_times_ms[i] +
  1394                                    _par_last_termination_times_ms[i];
  1396         _par_last_gc_worker_other_times_ms[i] = _par_last_gc_worker_times_ms[i] -
  1397                                                 worker_known_time;
  1400       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1401       print_par_stats(2, "GC Worker Total", _par_last_gc_worker_times_ms);
  1402       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1403     } else {
  1404       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1405       if (print_marking_info) {
  1406         print_stats(1, "SATB Filtering", satb_filtering_time);
  1408       print_stats(1, "Update RS", update_rs_time);
  1409       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1410       print_stats(1, "Scan RS", scan_rs_time);
  1411       print_stats(1, "Object Copying", obj_copy_time);
  1413     print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
  1414     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1415 #ifndef PRODUCT
  1416     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1417     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1418     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1419     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1420     if (_num_cc_clears > 0) {
  1421       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1423 #endif
  1424     print_stats(1, "Other", other_time_ms);
  1425     print_stats(2, "Choose CSet",
  1426                    (_recorded_young_cset_choice_time_ms +
  1427                     _recorded_non_young_cset_choice_time_ms));
  1428     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1429     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1430     print_stats(2, "Free CSet",
  1431                    (_recorded_young_free_cset_time_ms +
  1432                     _recorded_non_young_free_cset_time_ms));
  1434     for (int i = 0; i < _aux_num; ++i) {
  1435       if (_cur_aux_times_set[i]) {
  1436         char buffer[96];
  1437         sprintf(buffer, "Aux%d", i);
  1438         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1443   // Update the efficiency-since-mark vars.
  1444   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1445   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1446     // This usually happens due to the timer not having the required
  1447     // granularity. Some Linuxes are the usual culprits.
  1448     // We'll just set it to something (arbitrarily) small.
  1449     proc_ms = 1.0;
  1451   double cur_efficiency = (double) freed_bytes / proc_ms;
  1453   bool new_in_marking_window = _in_marking_window;
  1454   bool new_in_marking_window_im = false;
  1455   if (during_initial_mark_pause()) {
  1456     new_in_marking_window = true;
  1457     new_in_marking_window_im = true;
  1460   if (_last_young_gc) {
  1461     // This is supposed to to be the "last young GC" before we start
  1462     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1464     if (!last_pause_included_initial_mark) {
  1465       if (next_gc_should_be_mixed("start mixed GCs",
  1466                                   "do not start mixed GCs")) {
  1467         set_gcs_are_young(false);
  1469     } else {
  1470       ergo_verbose0(ErgoMixedGCs,
  1471                     "do not start mixed GCs",
  1472                     ergo_format_reason("concurrent cycle is about to start"));
  1474     _last_young_gc = false;
  1477   if (!_last_gc_was_young) {
  1478     // This is a mixed GC. Here we decide whether to continue doing
  1479     // mixed GCs or not.
  1481     if (!next_gc_should_be_mixed("continue mixed GCs",
  1482                                  "do not continue mixed GCs")) {
  1483       set_gcs_are_young(true);
  1487   if (_last_gc_was_young && !_during_marking) {
  1488     _young_gc_eff_seq->add(cur_efficiency);
  1491   _short_lived_surv_rate_group->start_adding_regions();
  1492   // do that for any other surv rate groupsx
  1494   if (update_stats) {
  1495     double pause_time_ms = elapsed_ms;
  1497     size_t diff = 0;
  1498     if (_max_pending_cards >= _pending_cards)
  1499       diff = _max_pending_cards - _pending_cards;
  1500     _pending_card_diff_seq->add((double) diff);
  1502     double cost_per_card_ms = 0.0;
  1503     if (_pending_cards > 0) {
  1504       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1505       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1508     size_t cards_scanned = _g1->cards_scanned();
  1510     double cost_per_entry_ms = 0.0;
  1511     if (cards_scanned > 10) {
  1512       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1513       if (_last_gc_was_young) {
  1514         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1515       } else {
  1516         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1520     if (_max_rs_lengths > 0) {
  1521       double cards_per_entry_ratio =
  1522         (double) cards_scanned / (double) _max_rs_lengths;
  1523       if (_last_gc_was_young) {
  1524         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1525       } else {
  1526         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1530     // This is defensive. For a while _max_rs_lengths could get
  1531     // smaller than _recorded_rs_lengths which was causing
  1532     // rs_length_diff to get very large and mess up the RSet length
  1533     // predictions. The reason was unsafe concurrent updates to the
  1534     // _inc_cset_recorded_rs_lengths field which the code below guards
  1535     // against (see CR 7118202). This bug has now been fixed (see CR
  1536     // 7119027). However, I'm still worried that
  1537     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1538     // inaccurate. The concurrent refinement thread calculates an
  1539     // RSet's length concurrently with other CR threads updating it
  1540     // which might cause it to calculate the length incorrectly (if,
  1541     // say, it's in mid-coarsening). So I'll leave in the defensive
  1542     // conditional below just in case.
  1543     size_t rs_length_diff = 0;
  1544     if (_max_rs_lengths > _recorded_rs_lengths) {
  1545       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1547     _rs_length_diff_seq->add((double) rs_length_diff);
  1549     size_t copied_bytes = surviving_bytes;
  1550     double cost_per_byte_ms = 0.0;
  1551     if (copied_bytes > 0) {
  1552       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1553       if (_in_marking_window) {
  1554         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1555       } else {
  1556         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1560     double all_other_time_ms = pause_time_ms -
  1561       (update_rs_time + scan_rs_time + obj_copy_time + termination_time);
  1563     double young_other_time_ms = 0.0;
  1564     if (young_cset_region_length() > 0) {
  1565       young_other_time_ms =
  1566         _recorded_young_cset_choice_time_ms +
  1567         _recorded_young_free_cset_time_ms;
  1568       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1569                                           (double) young_cset_region_length());
  1571     double non_young_other_time_ms = 0.0;
  1572     if (old_cset_region_length() > 0) {
  1573       non_young_other_time_ms =
  1574         _recorded_non_young_cset_choice_time_ms +
  1575         _recorded_non_young_free_cset_time_ms;
  1577       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1578                                             (double) old_cset_region_length());
  1581     double constant_other_time_ms = all_other_time_ms -
  1582       (young_other_time_ms + non_young_other_time_ms);
  1583     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1585     double survival_ratio = 0.0;
  1586     if (_bytes_in_collection_set_before_gc > 0) {
  1587       survival_ratio = (double) _bytes_copied_during_gc /
  1588                                    (double) _bytes_in_collection_set_before_gc;
  1591     _pending_cards_seq->add((double) _pending_cards);
  1592     _rs_lengths_seq->add((double) _max_rs_lengths);
  1595   _in_marking_window = new_in_marking_window;
  1596   _in_marking_window_im = new_in_marking_window_im;
  1597   _free_regions_at_end_of_collection = _g1->free_regions();
  1598   update_young_list_target_length();
  1600   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1601   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1602   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1604   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  1607 #define EXT_SIZE_FORMAT "%d%s"
  1608 #define EXT_SIZE_PARAMS(bytes)                                  \
  1609   byte_size_in_proper_unit((bytes)),                            \
  1610   proper_unit_for_byte_size((bytes))
  1612 void G1CollectorPolicy::print_heap_transition() {
  1613   if (PrintGCDetails) {
  1614     YoungList* young_list = _g1->young_list();
  1615     size_t eden_bytes = young_list->eden_used_bytes();
  1616     size_t survivor_bytes = young_list->survivor_used_bytes();
  1617     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1618     size_t used = _g1->used();
  1619     size_t capacity = _g1->capacity();
  1620     size_t eden_capacity =
  1621       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1623     gclog_or_tty->print_cr(
  1624       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1625       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1626       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1627       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1628       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1629       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1630       EXT_SIZE_PARAMS(eden_bytes),
  1631       EXT_SIZE_PARAMS(eden_capacity),
  1632       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1633       EXT_SIZE_PARAMS(survivor_bytes),
  1634       EXT_SIZE_PARAMS(used_before_gc),
  1635       EXT_SIZE_PARAMS(_capacity_before_gc),
  1636       EXT_SIZE_PARAMS(used),
  1637       EXT_SIZE_PARAMS(capacity));
  1639     _prev_eden_capacity = eden_capacity;
  1640   } else if (PrintGC) {
  1641     _g1->print_size_transition(gclog_or_tty,
  1642                                _cur_collection_pause_used_at_start_bytes,
  1643                                _g1->used(), _g1->capacity());
  1647 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1648                                                      double update_rs_processed_buffers,
  1649                                                      double goal_ms) {
  1650   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1651   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1653   if (G1UseAdaptiveConcRefinement) {
  1654     const int k_gy = 3, k_gr = 6;
  1655     const double inc_k = 1.1, dec_k = 0.9;
  1657     int g = cg1r->green_zone();
  1658     if (update_rs_time > goal_ms) {
  1659       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1660     } else {
  1661       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1662         g = (int)MAX2(g * inc_k, g + 1.0);
  1665     // Change the refinement threads params
  1666     cg1r->set_green_zone(g);
  1667     cg1r->set_yellow_zone(g * k_gy);
  1668     cg1r->set_red_zone(g * k_gr);
  1669     cg1r->reinitialize_threads();
  1671     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1672     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1673                                     cg1r->yellow_zone());
  1674     // Change the barrier params
  1675     dcqs.set_process_completed_threshold(processing_threshold);
  1676     dcqs.set_max_completed_queue(cg1r->red_zone());
  1679   int curr_queue_size = dcqs.completed_buffers_num();
  1680   if (curr_queue_size >= cg1r->yellow_zone()) {
  1681     dcqs.set_completed_queue_padding(curr_queue_size);
  1682   } else {
  1683     dcqs.set_completed_queue_padding(0);
  1685   dcqs.notify_if_necessary();
  1688 double
  1689 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1690   size_t rs_length = predict_rs_length_diff();
  1691   size_t card_num;
  1692   if (gcs_are_young()) {
  1693     card_num = predict_young_card_num(rs_length);
  1694   } else {
  1695     card_num = predict_non_young_card_num(rs_length);
  1697   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1700 double
  1701 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1702                                                 size_t scanned_cards) {
  1703   return
  1704     predict_rs_update_time_ms(pending_cards) +
  1705     predict_rs_scan_time_ms(scanned_cards) +
  1706     predict_constant_other_time_ms();
  1709 double
  1710 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1711                                                   bool young) {
  1712   size_t rs_length = hr->rem_set()->occupied();
  1713   size_t card_num;
  1714   if (gcs_are_young()) {
  1715     card_num = predict_young_card_num(rs_length);
  1716   } else {
  1717     card_num = predict_non_young_card_num(rs_length);
  1719   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1721   double region_elapsed_time_ms =
  1722     predict_rs_scan_time_ms(card_num) +
  1723     predict_object_copy_time_ms(bytes_to_copy);
  1725   if (young)
  1726     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1727   else
  1728     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1730   return region_elapsed_time_ms;
  1733 size_t
  1734 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1735   size_t bytes_to_copy;
  1736   if (hr->is_marked())
  1737     bytes_to_copy = hr->max_live_bytes();
  1738   else {
  1739     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1740     int age = hr->age_in_surv_rate_group();
  1741     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1742     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1744   return bytes_to_copy;
  1747 void
  1748 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
  1749                                           size_t survivor_cset_region_length) {
  1750   _eden_cset_region_length     = eden_cset_region_length;
  1751   _survivor_cset_region_length = survivor_cset_region_length;
  1752   _old_cset_region_length      = 0;
  1755 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1756   _recorded_rs_lengths = rs_lengths;
  1759 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1760                                                double elapsed_ms) {
  1761   _recent_gc_times_ms->add(elapsed_ms);
  1762   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1763   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1766 size_t G1CollectorPolicy::expansion_amount() {
  1767   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1768   double threshold = _gc_overhead_perc;
  1769   if (recent_gc_overhead > threshold) {
  1770     // We will double the existing space, or take
  1771     // G1ExpandByPercentOfAvailable % of the available expansion
  1772     // space, whichever is smaller, bounded below by a minimum
  1773     // expansion (unless that's all that's left.)
  1774     const size_t min_expand_bytes = 1*M;
  1775     size_t reserved_bytes = _g1->max_capacity();
  1776     size_t committed_bytes = _g1->capacity();
  1777     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1778     size_t expand_bytes;
  1779     size_t expand_bytes_via_pct =
  1780       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1781     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1782     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1783     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1785     ergo_verbose5(ErgoHeapSizing,
  1786                   "attempt heap expansion",
  1787                   ergo_format_reason("recent GC overhead higher than "
  1788                                      "threshold after GC")
  1789                   ergo_format_perc("recent GC overhead")
  1790                   ergo_format_perc("threshold")
  1791                   ergo_format_byte("uncommitted")
  1792                   ergo_format_byte_perc("calculated expansion amount"),
  1793                   recent_gc_overhead, threshold,
  1794                   uncommitted_bytes,
  1795                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1797     return expand_bytes;
  1798   } else {
  1799     return 0;
  1803 class CountCSClosure: public HeapRegionClosure {
  1804   G1CollectorPolicy* _g1_policy;
  1805 public:
  1806   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1807     _g1_policy(g1_policy) {}
  1808   bool doHeapRegion(HeapRegion* r) {
  1809     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1810     return false;
  1812 };
  1814 void G1CollectorPolicy::count_CS_bytes_used() {
  1815   CountCSClosure cs_closure(this);
  1816   _g1->collection_set_iterate(&cs_closure);
  1819 void G1CollectorPolicy::print_summary(int level,
  1820                                       const char* str,
  1821                                       NumberSeq* seq) const {
  1822   double sum = seq->sum();
  1823   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1824                 str, sum / 1000.0, seq->avg());
  1827 void G1CollectorPolicy::print_summary_sd(int level,
  1828                                          const char* str,
  1829                                          NumberSeq* seq) const {
  1830   print_summary(level, str, seq);
  1831   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1832                 seq->num(), seq->sd(), seq->maximum());
  1835 void G1CollectorPolicy::check_other_times(int level,
  1836                                         NumberSeq* other_times_ms,
  1837                                         NumberSeq* calc_other_times_ms) const {
  1838   bool should_print = false;
  1839   LineBuffer buf(level + 2);
  1841   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1842                         fabs(calc_other_times_ms->sum()));
  1843   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1844                         fabs(calc_other_times_ms->sum()));
  1845   double sum_ratio = max_sum / min_sum;
  1846   if (sum_ratio > 1.1) {
  1847     should_print = true;
  1848     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1851   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1852                         fabs(calc_other_times_ms->avg()));
  1853   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1854                         fabs(calc_other_times_ms->avg()));
  1855   double avg_ratio = max_avg / min_avg;
  1856   if (avg_ratio > 1.1) {
  1857     should_print = true;
  1858     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1861   if (other_times_ms->sum() < -0.01) {
  1862     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1865   if (other_times_ms->avg() < -0.01) {
  1866     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1869   if (calc_other_times_ms->sum() < -0.01) {
  1870     should_print = true;
  1871     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1874   if (calc_other_times_ms->avg() < -0.01) {
  1875     should_print = true;
  1876     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1879   if (should_print)
  1880     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1883 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1884   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1885   MainBodySummary*    body_summary = summary->main_body_summary();
  1886   if (summary->get_total_seq()->num() > 0) {
  1887     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1888     if (body_summary != NULL) {
  1889       print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq());
  1890       if (parallel) {
  1891         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  1892         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1893         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1894         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  1895         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  1896         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  1897         print_summary(2, "Termination", body_summary->get_termination_seq());
  1898         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  1900           NumberSeq* other_parts[] = {
  1901             body_summary->get_ext_root_scan_seq(),
  1902             body_summary->get_satb_filtering_seq(),
  1903             body_summary->get_update_rs_seq(),
  1904             body_summary->get_scan_rs_seq(),
  1905             body_summary->get_obj_copy_seq(),
  1906             body_summary->get_termination_seq()
  1907           };
  1908           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  1909                                         6, other_parts);
  1910           check_other_times(2, body_summary->get_parallel_other_seq(),
  1911                             &calc_other_times_ms);
  1913       } else {
  1914         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1915         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1916         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  1917         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  1918         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  1921     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  1922     print_summary(1, "Other", summary->get_other_seq());
  1924       if (body_summary != NULL) {
  1925         NumberSeq calc_other_times_ms;
  1926         if (parallel) {
  1927           // parallel
  1928           NumberSeq* other_parts[] = {
  1929             body_summary->get_root_region_scan_wait_seq(),
  1930             body_summary->get_parallel_seq(),
  1931             body_summary->get_clear_ct_seq()
  1932           };
  1933           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  1934                                           3, other_parts);
  1935         } else {
  1936           // serial
  1937           NumberSeq* other_parts[] = {
  1938             body_summary->get_root_region_scan_wait_seq(),
  1939             body_summary->get_update_rs_seq(),
  1940             body_summary->get_ext_root_scan_seq(),
  1941             body_summary->get_satb_filtering_seq(),
  1942             body_summary->get_scan_rs_seq(),
  1943             body_summary->get_obj_copy_seq()
  1944           };
  1945           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  1946                                           6, other_parts);
  1948         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  1951   } else {
  1952     LineBuffer(1).append_and_print_cr("none");
  1954   LineBuffer(0).append_and_print_cr("");
  1957 void G1CollectorPolicy::print_tracing_info() const {
  1958   if (TraceGen0Time) {
  1959     gclog_or_tty->print_cr("ALL PAUSES");
  1960     print_summary_sd(0, "Total", _all_pause_times_ms);
  1961     gclog_or_tty->print_cr("");
  1962     gclog_or_tty->print_cr("");
  1963     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  1964     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  1965     gclog_or_tty->print_cr("");
  1967     gclog_or_tty->print_cr("EVACUATION PAUSES");
  1968     print_summary(_summary);
  1970     gclog_or_tty->print_cr("MISC");
  1971     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  1972     print_summary_sd(0, "Yields", _all_yield_times_ms);
  1973     for (int i = 0; i < _aux_num; ++i) {
  1974       if (_all_aux_times_ms[i].num() > 0) {
  1975         char buffer[96];
  1976         sprintf(buffer, "Aux%d", i);
  1977         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  1981   if (TraceGen1Time) {
  1982     if (_all_full_gc_times_ms->num() > 0) {
  1983       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  1984                  _all_full_gc_times_ms->num(),
  1985                  _all_full_gc_times_ms->sum() / 1000.0);
  1986       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  1987       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  1988                     _all_full_gc_times_ms->sd(),
  1989                     _all_full_gc_times_ms->maximum());
  1994 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1995 #ifndef PRODUCT
  1996   _short_lived_surv_rate_group->print_surv_rate_summary();
  1997   // add this call for any other surv rate groups
  1998 #endif // PRODUCT
  2001 #ifndef PRODUCT
  2002 // for debugging, bit of a hack...
  2003 static char*
  2004 region_num_to_mbs(int length) {
  2005   static char buffer[64];
  2006   double bytes = (double) (length * HeapRegion::GrainBytes);
  2007   double mbs = bytes / (double) (1024 * 1024);
  2008   sprintf(buffer, "%7.2lfMB", mbs);
  2009   return buffer;
  2011 #endif // PRODUCT
  2013 size_t G1CollectorPolicy::max_regions(int purpose) {
  2014   switch (purpose) {
  2015     case GCAllocForSurvived:
  2016       return _max_survivor_regions;
  2017     case GCAllocForTenured:
  2018       return REGIONS_UNLIMITED;
  2019     default:
  2020       ShouldNotReachHere();
  2021       return REGIONS_UNLIMITED;
  2022   };
  2025 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2026   size_t expansion_region_num = 0;
  2027   if (GCLockerEdenExpansionPercent > 0) {
  2028     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2029     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2030     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2031     // less than 1.0) we'll get 1.
  2032     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2033   } else {
  2034     assert(expansion_region_num == 0, "sanity");
  2036   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2037   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2040 // Calculates survivor space parameters.
  2041 void G1CollectorPolicy::update_survivors_policy() {
  2042   double max_survivor_regions_d =
  2043                  (double) _young_list_target_length / (double) SurvivorRatio;
  2044   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2045   // smaller than 1.0) we'll get 1.
  2046   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
  2048   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2049         HeapRegion::GrainWords * _max_survivor_regions);
  2052 #ifndef PRODUCT
  2053 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2054   CollectionSetChooser* _chooser;
  2055 public:
  2056   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2057     _chooser(chooser) {}
  2059   bool doHeapRegion(HeapRegion* r) {
  2060     if (!r->continuesHumongous()) {
  2061       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2063     return false;
  2065 };
  2067 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
  2068   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2069   _g1->heap_region_iterate(&cl);
  2070   return true;
  2072 #endif
  2074 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2075                                                      GCCause::Cause gc_cause) {
  2076   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2077   if (!during_cycle) {
  2078     ergo_verbose1(ErgoConcCycles,
  2079                   "request concurrent cycle initiation",
  2080                   ergo_format_reason("requested by GC cause")
  2081                   ergo_format_str("GC cause"),
  2082                   GCCause::to_string(gc_cause));
  2083     set_initiate_conc_mark_if_possible();
  2084     return true;
  2085   } else {
  2086     ergo_verbose1(ErgoConcCycles,
  2087                   "do not request concurrent cycle initiation",
  2088                   ergo_format_reason("concurrent cycle already in progress")
  2089                   ergo_format_str("GC cause"),
  2090                   GCCause::to_string(gc_cause));
  2091     return false;
  2095 void
  2096 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2097   // We are about to decide on whether this pause will be an
  2098   // initial-mark pause.
  2100   // First, during_initial_mark_pause() should not be already set. We
  2101   // will set it here if we have to. However, it should be cleared by
  2102   // the end of the pause (it's only set for the duration of an
  2103   // initial-mark pause).
  2104   assert(!during_initial_mark_pause(), "pre-condition");
  2106   if (initiate_conc_mark_if_possible()) {
  2107     // We had noticed on a previous pause that the heap occupancy has
  2108     // gone over the initiating threshold and we should start a
  2109     // concurrent marking cycle. So we might initiate one.
  2111     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2112     if (!during_cycle) {
  2113       // The concurrent marking thread is not "during a cycle", i.e.,
  2114       // it has completed the last one. So we can go ahead and
  2115       // initiate a new cycle.
  2117       set_during_initial_mark_pause();
  2118       // We do not allow mixed GCs during marking.
  2119       if (!gcs_are_young()) {
  2120         set_gcs_are_young(true);
  2121         ergo_verbose0(ErgoMixedGCs,
  2122                       "end mixed GCs",
  2123                       ergo_format_reason("concurrent cycle is about to start"));
  2126       // And we can now clear initiate_conc_mark_if_possible() as
  2127       // we've already acted on it.
  2128       clear_initiate_conc_mark_if_possible();
  2130       ergo_verbose0(ErgoConcCycles,
  2131                   "initiate concurrent cycle",
  2132                   ergo_format_reason("concurrent cycle initiation requested"));
  2133     } else {
  2134       // The concurrent marking thread is still finishing up the
  2135       // previous cycle. If we start one right now the two cycles
  2136       // overlap. In particular, the concurrent marking thread might
  2137       // be in the process of clearing the next marking bitmap (which
  2138       // we will use for the next cycle if we start one). Starting a
  2139       // cycle now will be bad given that parts of the marking
  2140       // information might get cleared by the marking thread. And we
  2141       // cannot wait for the marking thread to finish the cycle as it
  2142       // periodically yields while clearing the next marking bitmap
  2143       // and, if it's in a yield point, it's waiting for us to
  2144       // finish. So, at this point we will not start a cycle and we'll
  2145       // let the concurrent marking thread complete the last one.
  2146       ergo_verbose0(ErgoConcCycles,
  2147                     "do not initiate concurrent cycle",
  2148                     ergo_format_reason("concurrent cycle already in progress"));
  2153 class KnownGarbageClosure: public HeapRegionClosure {
  2154   G1CollectedHeap* _g1h;
  2155   CollectionSetChooser* _hrSorted;
  2157 public:
  2158   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2159     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  2161   bool doHeapRegion(HeapRegion* r) {
  2162     // We only include humongous regions in collection
  2163     // sets when concurrent mark shows that their contained object is
  2164     // unreachable.
  2166     // Do we have any marking information for this region?
  2167     if (r->is_marked()) {
  2168       // We will skip any region that's currently used as an old GC
  2169       // alloc region (we should not consider those for collection
  2170       // before we fill them up).
  2171       if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) {
  2172         _hrSorted->addMarkedHeapRegion(r);
  2175     return false;
  2177 };
  2179 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2180   G1CollectedHeap* _g1h;
  2181   CollectionSetChooser* _hrSorted;
  2182   jint _marked_regions_added;
  2183   size_t _reclaimable_bytes_added;
  2184   jint _chunk_size;
  2185   jint _cur_chunk_idx;
  2186   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2187   int _worker;
  2188   int _invokes;
  2190   void get_new_chunk() {
  2191     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2192     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2194   void add_region(HeapRegion* r) {
  2195     if (_cur_chunk_idx == _cur_chunk_end) {
  2196       get_new_chunk();
  2198     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2199     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2200     _marked_regions_added++;
  2201     _reclaimable_bytes_added += r->reclaimable_bytes();
  2202     _cur_chunk_idx++;
  2205 public:
  2206   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2207                            jint chunk_size,
  2208                            int worker) :
  2209       _g1h(G1CollectedHeap::heap()),
  2210       _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2211       _marked_regions_added(0), _reclaimable_bytes_added(0),
  2212       _cur_chunk_idx(0), _cur_chunk_end(0), _invokes(0) { }
  2214   bool doHeapRegion(HeapRegion* r) {
  2215     // We only include humongous regions in collection
  2216     // sets when concurrent mark shows that their contained object is
  2217     // unreachable.
  2218     _invokes++;
  2220     // Do we have any marking information for this region?
  2221     if (r->is_marked()) {
  2222       // We will skip any region that's currently used as an old GC
  2223       // alloc region (we should not consider those for collection
  2224       // before we fill them up).
  2225       if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) {
  2226         add_region(r);
  2229     return false;
  2231   jint marked_regions_added() { return _marked_regions_added; }
  2232   size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; }
  2233   int invokes() { return _invokes; }
  2234 };
  2236 class ParKnownGarbageTask: public AbstractGangTask {
  2237   CollectionSetChooser* _hrSorted;
  2238   jint _chunk_size;
  2239   G1CollectedHeap* _g1;
  2240 public:
  2241   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2242     AbstractGangTask("ParKnownGarbageTask"),
  2243     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2244     _g1(G1CollectedHeap::heap()) { }
  2246   void work(uint worker_id) {
  2247     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
  2248                                                _chunk_size,
  2249                                                worker_id);
  2250     // Back to zero for the claim value.
  2251     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  2252                                          _g1->workers()->active_workers(),
  2253                                          HeapRegion::InitialClaimValue);
  2254     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2255     size_t reclaimable_bytes_added =
  2256                                    parKnownGarbageCl.reclaimable_bytes_added();
  2257     _hrSorted->updateTotals(regions_added, reclaimable_bytes_added);
  2258     if (G1PrintParCleanupStats) {
  2259       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2260                  worker_id, parKnownGarbageCl.invokes(), regions_added);
  2263 };
  2265 void
  2266 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2267   double start_sec;
  2268   if (G1PrintParCleanupStats) {
  2269     start_sec = os::elapsedTime();
  2272   _collectionSetChooser->clearMarkedHeapRegions();
  2273   double clear_marked_end_sec;
  2274   if (G1PrintParCleanupStats) {
  2275     clear_marked_end_sec = os::elapsedTime();
  2276     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
  2277                            (clear_marked_end_sec - start_sec) * 1000.0);
  2280   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2281     const size_t OverpartitionFactor = 4;
  2282     size_t WorkUnit;
  2283     // The use of MinChunkSize = 8 in the original code
  2284     // causes some assertion failures when the total number of
  2285     // region is less than 8.  The code here tries to fix that.
  2286     // Should the original code also be fixed?
  2287     if (no_of_gc_threads > 0) {
  2288       const size_t MinWorkUnit =
  2289         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
  2290       WorkUnit =
  2291         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
  2292              MinWorkUnit);
  2293     } else {
  2294       assert(no_of_gc_threads > 0,
  2295         "The active gc workers should be greater than 0");
  2296       // In a product build do something reasonable to avoid a crash.
  2297       const size_t MinWorkUnit =
  2298         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
  2299       WorkUnit =
  2300         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2301              MinWorkUnit);
  2303     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2304                                                              WorkUnit);
  2305     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2306                                             (int) WorkUnit);
  2307     _g1->workers()->run_task(&parKnownGarbageTask);
  2309     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2310            "sanity check");
  2311   } else {
  2312     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2313     _g1->heap_region_iterate(&knownGarbagecl);
  2315   double known_garbage_end_sec;
  2316   if (G1PrintParCleanupStats) {
  2317     known_garbage_end_sec = os::elapsedTime();
  2318     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2319                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
  2322   _collectionSetChooser->sortMarkedHeapRegions();
  2323   double end_sec = os::elapsedTime();
  2324   if (G1PrintParCleanupStats) {
  2325     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2326                            (end_sec - known_garbage_end_sec) * 1000.0);
  2329   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2330   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2331   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2332   _prev_collection_pause_end_ms += elapsed_time_ms;
  2333   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2336 // Add the heap region at the head of the non-incremental collection set
  2337 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2338   assert(_inc_cset_build_state == Active, "Precondition");
  2339   assert(!hr->is_young(), "non-incremental add of young region");
  2341   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2342   hr->set_in_collection_set(true);
  2343   hr->set_next_in_collection_set(_collection_set);
  2344   _collection_set = hr;
  2345   _collection_set_bytes_used_before += hr->used();
  2346   _g1->register_region_with_in_cset_fast_test(hr);
  2347   size_t rs_length = hr->rem_set()->occupied();
  2348   _recorded_rs_lengths += rs_length;
  2349   _old_cset_region_length += 1;
  2352 // Initialize the per-collection-set information
  2353 void G1CollectorPolicy::start_incremental_cset_building() {
  2354   assert(_inc_cset_build_state == Inactive, "Precondition");
  2356   _inc_cset_head = NULL;
  2357   _inc_cset_tail = NULL;
  2358   _inc_cset_bytes_used_before = 0;
  2360   _inc_cset_max_finger = 0;
  2361   _inc_cset_recorded_rs_lengths = 0;
  2362   _inc_cset_recorded_rs_lengths_diffs = 0;
  2363   _inc_cset_predicted_elapsed_time_ms = 0.0;
  2364   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2365   _inc_cset_build_state = Active;
  2368 void G1CollectorPolicy::finalize_incremental_cset_building() {
  2369   assert(_inc_cset_build_state == Active, "Precondition");
  2370   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2372   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  2373   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  2374   // that adds a new region to the CSet. Further updates by the
  2375   // concurrent refinement thread that samples the young RSet lengths
  2376   // are accumulated in the *_diffs fields. Here we add the diffs to
  2377   // the "main" fields.
  2379   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  2380     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  2381   } else {
  2382     // This is defensive. The diff should in theory be always positive
  2383     // as RSets can only grow between GCs. However, given that we
  2384     // sample their size concurrently with other threads updating them
  2385     // it's possible that we might get the wrong size back, which
  2386     // could make the calculations somewhat inaccurate.
  2387     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  2388     if (_inc_cset_recorded_rs_lengths >= diffs) {
  2389       _inc_cset_recorded_rs_lengths -= diffs;
  2390     } else {
  2391       _inc_cset_recorded_rs_lengths = 0;
  2394   _inc_cset_predicted_elapsed_time_ms +=
  2395                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  2397   _inc_cset_recorded_rs_lengths_diffs = 0;
  2398   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2401 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2402   // This routine is used when:
  2403   // * adding survivor regions to the incremental cset at the end of an
  2404   //   evacuation pause,
  2405   // * adding the current allocation region to the incremental cset
  2406   //   when it is retired, and
  2407   // * updating existing policy information for a region in the
  2408   //   incremental cset via young list RSet sampling.
  2409   // Therefore this routine may be called at a safepoint by the
  2410   // VM thread, or in-between safepoints by mutator threads (when
  2411   // retiring the current allocation region) or a concurrent
  2412   // refine thread (RSet sampling).
  2414   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2415   size_t used_bytes = hr->used();
  2416   _inc_cset_recorded_rs_lengths += rs_length;
  2417   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2418   _inc_cset_bytes_used_before += used_bytes;
  2420   // Cache the values we have added to the aggregated informtion
  2421   // in the heap region in case we have to remove this region from
  2422   // the incremental collection set, or it is updated by the
  2423   // rset sampling code
  2424   hr->set_recorded_rs_length(rs_length);
  2425   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2428 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  2429                                                      size_t new_rs_length) {
  2430   // Update the CSet information that is dependent on the new RS length
  2431   assert(hr->is_young(), "Precondition");
  2432   assert(!SafepointSynchronize::is_at_safepoint(),
  2433                                                "should not be at a safepoint");
  2435   // We could have updated _inc_cset_recorded_rs_lengths and
  2436   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  2437   // that atomically, as this code is executed by a concurrent
  2438   // refinement thread, potentially concurrently with a mutator thread
  2439   // allocating a new region and also updating the same fields. To
  2440   // avoid the atomic operations we accumulate these updates on two
  2441   // separate fields (*_diffs) and we'll just add them to the "main"
  2442   // fields at the start of a GC.
  2444   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  2445   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  2446   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  2448   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2449   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2450   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  2451   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  2453   hr->set_recorded_rs_length(new_rs_length);
  2454   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  2457 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2458   assert(hr->is_young(), "invariant");
  2459   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2460   assert(_inc_cset_build_state == Active, "Precondition");
  2462   // We need to clear and set the cached recorded/cached collection set
  2463   // information in the heap region here (before the region gets added
  2464   // to the collection set). An individual heap region's cached values
  2465   // are calculated, aggregated with the policy collection set info,
  2466   // and cached in the heap region here (initially) and (subsequently)
  2467   // by the Young List sampling code.
  2469   size_t rs_length = hr->rem_set()->occupied();
  2470   add_to_incremental_cset_info(hr, rs_length);
  2472   HeapWord* hr_end = hr->end();
  2473   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2475   assert(!hr->in_collection_set(), "invariant");
  2476   hr->set_in_collection_set(true);
  2477   assert( hr->next_in_collection_set() == NULL, "invariant");
  2479   _g1->register_region_with_in_cset_fast_test(hr);
  2482 // Add the region at the RHS of the incremental cset
  2483 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2484   // We should only ever be appending survivors at the end of a pause
  2485   assert( hr->is_survivor(), "Logic");
  2487   // Do the 'common' stuff
  2488   add_region_to_incremental_cset_common(hr);
  2490   // Now add the region at the right hand side
  2491   if (_inc_cset_tail == NULL) {
  2492     assert(_inc_cset_head == NULL, "invariant");
  2493     _inc_cset_head = hr;
  2494   } else {
  2495     _inc_cset_tail->set_next_in_collection_set(hr);
  2497   _inc_cset_tail = hr;
  2500 // Add the region to the LHS of the incremental cset
  2501 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2502   // Survivors should be added to the RHS at the end of a pause
  2503   assert(!hr->is_survivor(), "Logic");
  2505   // Do the 'common' stuff
  2506   add_region_to_incremental_cset_common(hr);
  2508   // Add the region at the left hand side
  2509   hr->set_next_in_collection_set(_inc_cset_head);
  2510   if (_inc_cset_head == NULL) {
  2511     assert(_inc_cset_tail == NULL, "Invariant");
  2512     _inc_cset_tail = hr;
  2514   _inc_cset_head = hr;
  2517 #ifndef PRODUCT
  2518 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2519   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2521   st->print_cr("\nCollection_set:");
  2522   HeapRegion* csr = list_head;
  2523   while (csr != NULL) {
  2524     HeapRegion* next = csr->next_in_collection_set();
  2525     assert(csr->in_collection_set(), "bad CS");
  2526     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2527                  "age: %4d, y: %d, surv: %d",
  2528                         csr->bottom(), csr->end(),
  2529                         csr->top(),
  2530                         csr->prev_top_at_mark_start(),
  2531                         csr->next_top_at_mark_start(),
  2532                         csr->top_at_conc_mark_count(),
  2533                         csr->age_in_surv_rate_group_cond(),
  2534                         csr->is_young(),
  2535                         csr->is_survivor());
  2536     csr = next;
  2539 #endif // !PRODUCT
  2541 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  2542                                                 const char* false_action_str) {
  2543   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2544   if (cset_chooser->isEmpty()) {
  2545     ergo_verbose0(ErgoMixedGCs,
  2546                   false_action_str,
  2547                   ergo_format_reason("candidate old regions not available"));
  2548     return false;
  2550   size_t reclaimable_bytes = cset_chooser->remainingReclaimableBytes();
  2551   size_t capacity_bytes = _g1->capacity();
  2552   double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  2553   double threshold = (double) G1HeapWastePercent;
  2554   if (perc < threshold) {
  2555     ergo_verbose4(ErgoMixedGCs,
  2556               false_action_str,
  2557               ergo_format_reason("reclaimable percentage lower than threshold")
  2558               ergo_format_region("candidate old regions")
  2559               ergo_format_byte_perc("reclaimable")
  2560               ergo_format_perc("threshold"),
  2561               cset_chooser->remainingRegions(),
  2562               reclaimable_bytes, perc, threshold);
  2563     return false;
  2566   ergo_verbose4(ErgoMixedGCs,
  2567                 true_action_str,
  2568                 ergo_format_reason("candidate old regions available")
  2569                 ergo_format_region("candidate old regions")
  2570                 ergo_format_byte_perc("reclaimable")
  2571                 ergo_format_perc("threshold"),
  2572                 cset_chooser->remainingRegions(),
  2573                 reclaimable_bytes, perc, threshold);
  2574   return true;
  2577 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  2578   // Set this here - in case we're not doing young collections.
  2579   double non_young_start_time_sec = os::elapsedTime();
  2581   YoungList* young_list = _g1->young_list();
  2582   finalize_incremental_cset_building();
  2584   guarantee(target_pause_time_ms > 0.0,
  2585             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2586                     target_pause_time_ms));
  2587   guarantee(_collection_set == NULL, "Precondition");
  2589   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2590   double predicted_pause_time_ms = base_time_ms;
  2591   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2593   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2594                 "start choosing CSet",
  2595                 ergo_format_ms("predicted base time")
  2596                 ergo_format_ms("remaining time")
  2597                 ergo_format_ms("target pause time"),
  2598                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2600   HeapRegion* hr;
  2601   double young_start_time_sec = os::elapsedTime();
  2603   _collection_set_bytes_used_before = 0;
  2604   _last_gc_was_young = gcs_are_young() ? true : false;
  2606   if (_last_gc_was_young) {
  2607     ++_young_pause_num;
  2608   } else {
  2609     ++_mixed_pause_num;
  2612   // The young list is laid with the survivor regions from the previous
  2613   // pause are appended to the RHS of the young list, i.e.
  2614   //   [Newly Young Regions ++ Survivors from last pause].
  2616   size_t survivor_region_length = young_list->survivor_length();
  2617   size_t eden_region_length = young_list->length() - survivor_region_length;
  2618   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2619   hr = young_list->first_survivor_region();
  2620   while (hr != NULL) {
  2621     assert(hr->is_survivor(), "badly formed young list");
  2622     hr->set_young();
  2623     hr = hr->get_next_young_region();
  2626   // Clear the fields that point to the survivor list - they are all young now.
  2627   young_list->clear_survivors();
  2629   _collection_set = _inc_cset_head;
  2630   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2631   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2632   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2634   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2635                 "add young regions to CSet",
  2636                 ergo_format_region("eden")
  2637                 ergo_format_region("survivors")
  2638                 ergo_format_ms("predicted young region time"),
  2639                 eden_region_length, survivor_region_length,
  2640                 _inc_cset_predicted_elapsed_time_ms);
  2642   // The number of recorded young regions is the incremental
  2643   // collection set's current size
  2644   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2646   double young_end_time_sec = os::elapsedTime();
  2647   _recorded_young_cset_choice_time_ms =
  2648     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2650   // We are doing young collections so reset this.
  2651   non_young_start_time_sec = young_end_time_sec;
  2653   if (!gcs_are_young()) {
  2654     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2655     assert(cset_chooser->verify(), "CSet Chooser verification - pre");
  2656     const size_t min_old_cset_length = cset_chooser->calcMinOldCSetLength();
  2657     const size_t max_old_cset_length = cset_chooser->calcMaxOldCSetLength();
  2659     size_t expensive_region_num = 0;
  2660     bool check_time_remaining = adaptive_young_list_length();
  2661     HeapRegion* hr = cset_chooser->peek();
  2662     while (hr != NULL) {
  2663       if (old_cset_region_length() >= max_old_cset_length) {
  2664         // Added maximum number of old regions to the CSet.
  2665         ergo_verbose2(ErgoCSetConstruction,
  2666                       "finish adding old regions to CSet",
  2667                       ergo_format_reason("old CSet region num reached max")
  2668                       ergo_format_region("old")
  2669                       ergo_format_region("max"),
  2670                       old_cset_region_length(), max_old_cset_length);
  2671         break;
  2674       double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2675       if (check_time_remaining) {
  2676         if (predicted_time_ms > time_remaining_ms) {
  2677           // Too expensive for the current CSet.
  2679           if (old_cset_region_length() >= min_old_cset_length) {
  2680             // We have added the minimum number of old regions to the CSet,
  2681             // we are done with this CSet.
  2682             ergo_verbose4(ErgoCSetConstruction,
  2683                           "finish adding old regions to CSet",
  2684                           ergo_format_reason("predicted time is too high")
  2685                           ergo_format_ms("predicted time")
  2686                           ergo_format_ms("remaining time")
  2687                           ergo_format_region("old")
  2688                           ergo_format_region("min"),
  2689                           predicted_time_ms, time_remaining_ms,
  2690                           old_cset_region_length(), min_old_cset_length);
  2691             break;
  2694           // We'll add it anyway given that we haven't reached the
  2695           // minimum number of old regions.
  2696           expensive_region_num += 1;
  2698       } else {
  2699         if (old_cset_region_length() >= min_old_cset_length) {
  2700           // In the non-auto-tuning case, we'll finish adding regions
  2701           // to the CSet if we reach the minimum.
  2702           ergo_verbose2(ErgoCSetConstruction,
  2703                         "finish adding old regions to CSet",
  2704                         ergo_format_reason("old CSet region num reached min")
  2705                         ergo_format_region("old")
  2706                         ergo_format_region("min"),
  2707                         old_cset_region_length(), min_old_cset_length);
  2708           break;
  2712       // We will add this region to the CSet.
  2713       time_remaining_ms -= predicted_time_ms;
  2714       predicted_pause_time_ms += predicted_time_ms;
  2715       cset_chooser->remove_and_move_to_next(hr);
  2716       _g1->old_set_remove(hr);
  2717       add_old_region_to_cset(hr);
  2719       hr = cset_chooser->peek();
  2721     if (hr == NULL) {
  2722       ergo_verbose0(ErgoCSetConstruction,
  2723                     "finish adding old regions to CSet",
  2724                     ergo_format_reason("candidate old regions not available"));
  2727     if (expensive_region_num > 0) {
  2728       // We print the information once here at the end, predicated on
  2729       // whether we added any apparently expensive regions or not, to
  2730       // avoid generating output per region.
  2731       ergo_verbose4(ErgoCSetConstruction,
  2732                     "added expensive regions to CSet",
  2733                     ergo_format_reason("old CSet region num not reached min")
  2734                     ergo_format_region("old")
  2735                     ergo_format_region("expensive")
  2736                     ergo_format_region("min")
  2737                     ergo_format_ms("remaining time"),
  2738                     old_cset_region_length(),
  2739                     expensive_region_num,
  2740                     min_old_cset_length,
  2741                     time_remaining_ms);
  2744     assert(cset_chooser->verify(), "CSet Chooser verification - post");
  2747   stop_incremental_cset_building();
  2749   count_CS_bytes_used();
  2751   ergo_verbose5(ErgoCSetConstruction,
  2752                 "finish choosing CSet",
  2753                 ergo_format_region("eden")
  2754                 ergo_format_region("survivors")
  2755                 ergo_format_region("old")
  2756                 ergo_format_ms("predicted pause time")
  2757                 ergo_format_ms("target pause time"),
  2758                 eden_region_length, survivor_region_length,
  2759                 old_cset_region_length(),
  2760                 predicted_pause_time_ms, target_pause_time_ms);
  2762   double non_young_end_time_sec = os::elapsedTime();
  2763   _recorded_non_young_cset_choice_time_ms =
  2764     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial